

What you need to use this book

The following list is the recommended operating system requirements for running the C# code in this book:

❑ Windows 2000 Professional or higher with IIS installed

❑ Windows XP Professional with IIS installed

❑ Visual Studio .NET Professional or higher

The book is intended for experienced developers, probably from a VB 6, C++, or Java background. Although
previous experience of C# or .NET programming is useful, it is not required.

Summary of Contents

Introduction 1
Chapter 1: C# and .NET Architecture 11
Chapter 2: C# Basics 37
Chapter 3: Object-Oriented C# 109
Chapter 4: Advanced C# Topics 169
Chapter 5: C# and the Base Classes 259
Chapter 6: Programming in the .NET Environment 337
Chapter 7: Windows Applications 381
Chapter 8: Assemblies 437
Chapter 9: Data Access with .NET 513
Chapter 10: Viewing .NET Data 567
Chapter 11: Manipulating XML 615
Chapter 12: File and Registry Operations 673
Chapter 13: Working with the Active Directory 717
Chapter 14: ASP.NET Pages 753
Chapter 15: Web Services 791
Chapter 16: User Controls and Custom Controls 815
Chapter 17: COM Interoperability 851
Chapter 18: COM+ Services 875
Chapter 19: Graphics with GDI+ 897
Chapter 20: Accessing the Internet 957
Chapter 21: Distributed Applications with .NET Remoting 981
Chapter 22: Windows Services 1035
Chapter 23:.NET Security 1085
Appendix A: Principles of Object-Oriented Programming 1141
Appendix B: C# Compilation Options 1181
Index 1191

Graphics with GDI+

This is the second of the two chapters in this book that cover the elements of interacting directly with the user;
displaying information on the screen and accepting user input. In Chapter 7 we focused on Windows Forms,
where we learned how to display a dialog box or SDI or MDI window, and how to place various controls on it
such as buttons, textboxes, and listboxes. We used these familiar, predefined controls at a high level and relied
on the fact that they are able to take full responsibility for getting themselves drawn on the display device.

Although these standard controls are powerful, and are by themselves quite adequate for the complete user
interface for many applications, there are situations in which you need more flexibility in your user
interface. For example, you may want to draw text in a given font in a precise position in a window, display
images without using a picture box control, or draw simple shapes or other graphics. None of this can be
done with the controls from Chapter 7. To display that kind of output, the application must take direct
responsibility for telling the operating system precisely what needs to be displayed where in its window.

Therefore, in this chapter we're going to show you how to draw a variety of items including:

❑ Lines and simple shapes

❑ Images from bitmap and other image files

❑ Text

In the process, we'll also need to use a variety of helper objects including pens (to define the characteristics of
lines), brushes (to define how areas are filled in), and fonts (to define the shape of the characters of text).
We'll also go into some detail on how devices interpret and display different colors.

Chapter 19

898

We'll start, however, by discussing a technology called GDI+. GDI+ consists of the set of .NET base classes
that are available to carry out custom drawing on the screen. These classes arrange for the appropriate
instructions to be sent to graphics device drivers to ensure the correct output is placed on the monitor screen
(or printed to a hard copy).

Understanding Drawing Principles
In this section, we'll examine the basic principles that we need to understand in order to start drawing to the
screen. We'll start by giving an overview of GDI, the underlying technology on which GDI+ is based, and see
how it and GDI+ are related. Then we'll move on to a couple of simple examples.

GDI and GDI+
In general, one of the strengths of Windows – and indeed of modern operating systems in general – lies in
their ability to abstract the details of particular devices away from the developer. For example, you don't need
to understand anything about your hard drive device driver in order to programmatically read and write files
to disk; you simply call the appropriate methods in the relevant .NET classes (or in pre-.NET days, the
equivalent Windows API functions). This principle is also very true when it comes to drawing. When the
computer draws anything to the screen, it does so by sending instructions to the video card. However, there are
many hundreds of different video cards on the market, most of which have different instruction sets and
capabilities. If you had to take that into account, and write specific code for each video driver, writing any
such application would be an almost impossible task. This is why the Windows Graphical Device Interface
(GDI) has always been around since the earliest versions of Windows.

GDI provides a layer of abstraction, hiding the differences between the different video cards. You simply call
the Windows API function to do the specific task, and internally the GDI figures out how to get your
particular video card to do whatever it is you want. Not only this, but if you have several display devices –
monitors and printers, say – GDI achieves the remarkable feat of making your printer look the same as your
screen as far as your application is concerned. If you want to print something instead of displaying it, you
simply inform the system that the output device is the printer and then call the same API functions in exactly
the same way.

As you can see, the DC is a very powerful object and you won't be surprised to learn that under GDI all
drawing had to be done through a device context. The DC was even used for operations that don't involve
drawing to the screen or to any hardware device, such as modifying images in memory.

Although GDI exposes a relatively high-level API to developers, it is still an API that is based on the old
Windows API, with C-style functions. GDI+ to a large extent sits as a layer between GDI and your
application, providing a more intuitive, inheritance-based object model. Although GDI+ is basically a wrapper
around GDI, Microsoft has been able through GDI+ to provide new features and claims to have made some
performance improvements.

The GDI+ part of the .NET base class library is huge, and we will scarcely scratch the surface of its features in
this chapter. That's a deliberate decision, because trying to cover more than a tiny fraction of the library would
have effectively turned this chapter into a huge reference guide that simply listed classes and methods. It's
more important to understand the fundamental principles involved in drawing, so that you will be in a good
position to explore the classes available yourself. Full lists of all the classes and methods available in GDI+
are of course available in the MSDN documentation.

Graphics with GDI+

899

Developers coming from a VB background, in particular, are likely to find the concepts
involved in drawing quite unfamiliar, since VB's focus lies so strongly in controls that handle
their own painting. Those coming from a C++/MFC background are likely to be in more
comfortable territory since MFC does require developers to take control of more of the
drawing process, using GDI. However, even if you have a good background in GDI, you'll find
a lot of the material is new.

GDI+ Namespaces
Here's an overview of the main namespaces you'll need to look in to find the GDI+ base classes:

Namespace Contains

System.Drawing Most of the classes, structs, enums, and delegates concerned
with the basic functionality of drawing

System.Drawing.Drawing2D Provides most of the support for advanced 2D and vector
drawing, including antialiasing, geometric transformations, and
graphics paths

System.Drawing.Imaging Various classes that assist in the manipulation of images
(bitmaps, GIF files, and so on)

System.Drawing.Printing Classes to assist when specifically targeting a printer or print
preview window as the "output device"

System.Drawing.Design Some predefined dialog boxes, property sheets, and other user
interface elements concerned with extending the design-time
user interface

System.Drawing.Text Classes to perform more advanced manipulation of fonts and
font families

You should note that almost all of the classes and structs that we use in this chapter will be taken from the
System.Drawing namespace.

Device Contexts and the Graphics Object
In GDI, the way that you identify which device you want your output to go to is through an object known as
the device context (DC). The DC stores information about a particular device and is able to translate calls to
the GDI API functions into whatever instructions need to be sent to that device. You can also query the device
context to find out what the capabilities of the corresponding device are (for example, whether a printer prints
in color or only black and white), so you can adjust your output accordingly. If you ask the device to do
something it's not capable of, the DC will normally detect this, and take appropriate action (which depending
on the situation might mean throwing an error or modifying the request to get the closest match that the device
is actually capable of).

However, the DC doesn't only deal with the hardware device. It acts as a bridge to Windows and is able to take
account of any requirements or restrictions placed on the drawing by Windows. For example, if Windows
knows that only a portion of your application's window needs to be redrawn, the DC can trap and nullify
attempts to draw outside that area. Due to the DC's relationship with Windows, working through the device
context can simplify your code in other ways.

Chapter 19

900

For example, hardware devices need to be told where to draw objects, and they usually want coordinates
relative to the top left corner of the screen (or output device). Usually, however, your application will be
thinking of drawing something at a certain position within the client area (the area reserved for drawing) of its
own window, possibly using its own coordinate system. Since the window might be positioned anywhere on
the screen, and a user might move it at any time, translating between the two coordinate systems is potentially
a difficult task. However, the DC always knows where your window is and is able to perform this translation
automatically.

With GDI+, the device context is wrapped up in the .NET base class System.Drawing.Graphics. Most
drawing is done by calling methods on an instance of Graphics. In fact, since the Graphics class is the
class that is responsible for actually handling most drawing operations, very little gets done in GDI+ that
doesn't involve a Graphics instance somewhere, so understanding how to manipulate this object is the key to
understanding how to draw to display devices with GDI+.

Drawing Shapes
We're going to start off with a short example, DisplayAtStartup, to illustrate drawing to an application's
main window. The examples in this chapter are all created in Visual Studio.NET as C# Windows applications.
Recall that for this type of project the code wizard gives us a class called Form1, derived from
System.Windows.Form, which represents the application's main window. Unless otherwise stated, in all
code samples, new or modified code means code that we've added to the wizard-generated code.

In .NET usage, when we are talking about applications that display various controls, the
terminology form has largely replaced window to represent the rectangular object that
occupies an area of the screen on behalf of an application. In this chapter, we've tended to
stick to the term window, since in the context of manually drawing items it's rather more
meaningful. We'll also talk about the Form when we're referring to the .NET class used to
instantiate the form/window. Finally, we'll use the terms drawing and painting interchangeably
to describe the process of displaying some item on the screen or other display device.

The first example will simply create a form and draw to it in the constructor, when the form starts up. I should
say at the start that this is not actually the best or the correct way to draw to the screen – we'll quickly find that
this example has a problem in that it is unable to redraw anything when it needs to after starting up. However
the sample will illustrate quite a few points about drawing without our having to do very much work.

For this sample, we start Visual Studio .NET and create a Windows application. We first set the background
color of the form to white. We've put this line in the InitializeComponent() method so that Visual
Studio .NET recognizes the line and is able to alter the design view appearance of the form. We could have
used the design view to set the background color, but this would have resulted in pretty much the same line
being added automatically:

private void InitializeComponent()
{

this.components = new System.ComponentModel.Container();
this.Size = new System.Drawing.Size(300,300);
this.Text = "Display At Startup";

this.BackColor = Color.White;

Graphics with GDI+

901

Then we add code to the Form1 constructor. We create a Graphics object using the Form's
CreateGraphics() method. This Graphics object contains the Windows DC we need to draw with. The
device context created is associated with the display device, and also with this window:

public Form1()
{

InitializeComponent();

Graphics dc = this.CreateGraphics();
this.Show();
Pen bluePen = new Pen(Color.Blue, 3);
dc.DrawRectangle(bluePen, 0,0,50,50);
Pen redPen = new Pen(Color.Red, 2);
dc.DrawEllipse(redPen, 0, 50, 80, 60);

}

As you can see, we then call the Show() method to display the window. This is really a fudge to force the
window to display immediately, because we can't actually do any drawing until the window has been
displayed – there's nothing to draw onto.

Finally, we display a rectangle, at coordinates (0,0), and with width and height 50, and an ellipse with
coordinates (0,50) and with width 80 and height 50. Note that coordinates (x,y) means x pixels to the right and
y pixels down from the top left corner of the client area of the window – and these are the coordinates of the
top left corner of the shape being displayed:

The overloads that we are using of the DrawRectangle() and DrawEllipse()methods each take five
parameters. The first parameter of each is an instance of the class System.Drawing.Pen. A Pen is one of a
number of supporting objects to help with drawing – it contains information about how lines are to be drawn.
Our first pen says that lines should be blue and with a width of 3 pixels, the second says that lines should be
red and have a width of 2 pixels. The final four parameters are coordinates and size. For the rectangle, they
represent the (x,y) coordinates of the top left hand corner of the rectangle, and its width and height. For the
ellipse these numbers represent the same thing, except that we are talking about a hypothetical rectangle that
the ellipse just fits into, rather than the ellipse itself.

Running this code gives this result:

Chapter 19

902

I know – the book's printed in grayscale. As with all the screenshots in this chapter, you'll just have to take my
word for it that the colors are correct. Or you can always try running the examples yourself!

This screenshot demonstrates a couple of points. First, you can see clearly what the client area of the window means.
It's the white area – the area that has been affected by our setting the BackColor property. And notice that the
rectangle nestles up in the corner of this area, as you'd expect when we specified coordinates of (0,0) for it. Second,
notice how the top of the ellipse overlaps the rectangle slightly, which you wouldn't expect from the coordinates we
gave in the code. That results from where Windows places the lines that border the rectangle and ellipse. By default,
Windows will try to center the line on where the border of the shape is – that's not always possible to do exactly,
because the line has to be drawn on pixels (obviously), but normally the border of each shape theoretically lies
between two pixels. The result is that lines that are 1 pixel thick will get drawn just inside the top and left sides of a
shape, but just outside the bottom and right sides – which means that shapes that strictly speaking are next to each
other will have their borders overlap by one pixel. We've specified wider lines; therefore the overlap is greater. It is
possible to change the default behavior by setting the Pen.Alignment property, as detailed in the MSDN
documentation, but for our purposes the default behavior is adequate.

Unfortunately, if you actually run the sample you'll notice the form behaves a bit strangely. It's fine if you just
leave it there, and it's fine if you drag it around the screen with the mouse. Try minimizing it then restoring it,
however, and our carefully drawn shapes just vanish! The same thing happens if you drag another window
across the sample. If you drag another window across it so that it only obscures a portion of our shapes, then
drag the other window away again, you'll find the temporarily obscured portion has disappeared and you're left
with half an ellipse or half a rectangle!

So what's going on? The problem arises when part of a window gets hidden, because Windows usually
immediately discards all the information concerning exactly what was being displayed there. It has to –
otherwise the memory usage for storing screen data would be astronomical. A typical computer might be
running with the video card set to display 1024 x 768 pixels, perhaps with 24-bit color mode. We'll cover what
24-bit color means later in the chapter, but for now I'll say that implies that each pixel on the screen occupies
3 bytes. That means 2.25MB to display the screen. However, it's not uncommon for a user to sit there working,
with 10 or 20 minimized windows in the taskbar. Let's do a worst-case scenario: 20 windows, each of which
would occupy the whole screen if it wasn't minimized. If Windows actually stored the visual information those
windows contained, ready for when the user restored them, you'd be talking about 45MB! These days, a good
graphics card might have 64MB of memory and be able to cope with that, but it's only a couple of years ago
that 4MB was considered generous in a graphics card – and the excess would need to be stored in the
computer's main memory. A lot of people still have old machines – for example, my backup computer that has
a 4 MB graphics card. Clearly it wouldn't be practical for Windows to manage its user interface like that.

The moment any part of a window gets hidden, the 'hidden' pixels get lost, because Windows frees the
memory that was holding those pixels. It does, however, note that a portion of the window is hidden, and when
it detects that it is no longer hidden, it asks the application that owns the window to redraw its contents. There
are a couple of exceptions to this rule – generally for cases in which a small portion of a window is hidden
very temporarily (a good example is when you select an item from the main menu and that menu item drops
down, temporarily obscuring part of the window below). In general, however, you can expect that if part of
your window gets hidden, your application will need to redraw it later.

That's the source of the problem for our sample application. We placed our drawing code in the Form1
constructor, which is called just once when the application starts up, and you can't call the constructor again to
redraw the shapes when required later on.

Graphics with GDI+

903

In Chapter 7, when we covered controls, we didn't need to know about any of that. This is because the
standard controls are pretty sophisticated and they are able to redraw themselves correctly whenever Windows
asks them to. That's one reason why when programming controls you don't need to worry about the actual
drawing process at all. If we are taking responsibility for drawing to the screen in our application then we also
need to make sure our application will respond correctly whenever Windows asks it to redraw all or part of its
window. In the next section, we will modify our sample to do just that.

Painting Shapes Using OnPaint()
If the above explanation has made you worried that drawing your own user interface is going to be terribly
complicated, don't worry. Getting your application to redraw itself when necessary is actually quite easy.

Windows notifies an application that some repainting needs to be done by raising a Paint event.
Interestingly, the Form class has already implemented a handler for this event so you don't need to add one
yourself. The Form1 handler for the Paint event will at some point in its processing call up a virtual method,
OnPaint(), passing to it a single PaintEventArgs parameter. This means that all we need to do is
override OnPaint()to perform our painting.

Although we've chosen to work by overriding OnPaint(), it's equally possible to achieve the same results by
simply adding our own event handler for the Paint event (a Form1_Paint() method, say) – in much the same
way as you would for any other Windows Forms event. This other approach is arguably more convenient, since you
can add a new event handler through the VS .NET properties window, saving yourself from typing some code.
However, our approach, of overriding OnPaint(), is slightly more flexible in terms of letting us control when the
call to the base class window processing occurs, and is the approach recommended in the documentation. We
suggest you use this approach for consistency.

We'll create a new Windows Application called DrawShapes to do this. As before, we set the background color
to white using the Properties Window. We'll also change the Form's text to 'DrawShapes sample'. Then we add
the following code to the generated code for the Form1 class:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
Pen bluePen = new Pen(Color.Blue, 3);
dc.DrawRectangle(bluePen, 0,0,50,50);
Pen redPen = new Pen(Color.Red, 2);
dc.DrawEllipse(redPen, 0, 50, 80, 60);

}

Notice that OnPaint() is declared as protected, because it is normally used internally within the class, so
there's no reason for any other code outside the class to know about its existence.

PaintEventArgs is a class that is derived from the EventArgs class normally used to pass in information
about events. PaintEventArgs has two additional properties, of which the more important is a Graphics
instance, already primed and optimized to paint the required portion of the window. This means that you don't
have to call CreateGraphics() to get a DC in the OnPaint() method – you've already been provided
with one. We'll look at the other additional property soon – it contains more detailed information about which
area of the window actually needs repainting.

Chapter 19

904

In our implementation of OnPaint(), we first get a reference to the Graphics object from
PaintEventArgs, then we draw our shapes exactly as we did before. At the end we call the base class's
OnPaint() method. This step is important. We've overridden OnPaint() to do our own painting, but it's
possible that Windows may have some additional work of its own to do in the painting process – any such
work will be dealt with in an OnPaint() method in one of the .NET base classes.

For this example, you'll find that removing the call to base.OnPaint() doesn't seem to have
any effect, but don't ever be tempted to leave this call out. You might be stopping Windows
from doing its work properly and the results could be unpredictable.

OnPaint() will also be called when the application first starts up and our window is displayed for the first
time, so there is no need to duplicate the drawing code in the constructor.

Running this code gives the same results initially as for our previous example – except that now our
application behaves itself properly when you minimize it or hide parts of the window.

Using the Clipping Region
Our DrawShapes sample from the last section illustrates the main principles involved with drawing to a
window, although it's not very efficient. The reason is that it attempts to draw everything in the window,
irrespective of how much needs to be drawn. Consider the situation shown in this screenshot. I ran the
DrawShapes example, but while it was on the screen I opened another window and moved it over the
DrawShapes form, so it hid part of it.

So far, so good. However, when I move the overlapping window so that the DrawShapes window is fully
visible again, Windows will as usual send a Paint event to the form, asking it to repaint itself. The rectangle
and ellipse both lie in the top left corner of the client area, and so were visible all the time; therefore, there's
actually nothing that needs to be done in this case apart from repaint the white background area. However,
Windows doesn't know that, so it thinks it should raise the Paint event, resulting in our OnPaint()
implementation being called. OnPaint() will then unnecessarily attempt to redraw the rectangle and ellipse.

Graphics with GDI+

905

Actually, in this case, the shapes will not get repainted. The reason is to do with the device context. Windows
has pre-initialized the device context with information concerning what area actually needed repainting. In the
days of GDI, the region that is marked for repainting used to be known as the invalidated region, but with
GDI+ the terminology has largely changed to clipping region. The device context knows what this region is;
therefore, it will intercept any attempts to draw outside this region, and not pass the relevant drawing
commands on to the graphics card. That sounds good, but there's still a potential performance hit here. We
don't know how much processing the device context had to do before it figured out that the drawing was
outside the invalidated region. In some cases it might be quite a lot, since calculating which pixels need to be
changed to what color can be very processor-intensive (although a good graphics card will provide hardware
acceleration to help with some of this).

The bottom line to this is that asking the Graphics instance to do some drawing outside the invalidated
region is almost certainly wasting processor time and slowing your application down. In a well designed
application, your code will actively help the device context out by carrying out a few simple checks, to see if
the proposed drawing work is likely to be actually needed, before it calls the relevant Graphics instance
methods. In this section we're going to code up a new example – DrawShapesWithClipping – by
modifying the DisplayShapes example to do just that. In our OnPaint() code, we'll do a simple test to
see whether the invalidated region intersects the area we need to draw in, and only call the drawing methods if
it does.

First, we need to obtain the details of the clipping region. This is where an extra property, ClipRectangle,
on the PaintEventArgs comes in. ClipRectangle contains the coordinates of the region to be repainted,
wrapped up in an instance of a struct, System.Drawing.Rectangle. Rectangle is quite a simple struct
– it contains four properties of interest: Top, Bottom, Left, and Right. These respectively contain the
vertical coordinates of the top and bottom of the rectangle, and the horizontal coordinates of the left and right
edges.

Next, we need to decide what test we'll use to determine whether drawing should take place. We'll go for a
simple test here. Notice, that in our drawing, the rectangle and ellipse are both entirely contained within the
rectangle that stretches from point (0,0) to point (80,130) of the client area; actually, point (82,132) to be on
the safe side, since we know that the lines may stray a pixel or so outside this area. So we'll check whether the
top left corner of the clipping region is inside this rectangle. If it is, we'll go ahead and redraw. If it isn't, we
won't bother.

Here is the code to do this:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;

if (e.ClipRectangle.Top < 132 && e.ClipRectangle.Left < 82)
{

Pen bluePen = new Pen(Color.Blue, 3);
dc.DrawRectangle(bluePen, 0,0,50,50);
Pen redPen = new Pen(Color.Red, 2);
dc.DrawEllipse(redPen, 0, 50, 80, 60);

}
}

Chapter 19

906

Note that what gets displayed is exactly the same as before – but performance is improved now by the early
detection of some cases in which nothing needs to be drawn. Notice, also that we've chosen a fairly crude test
of whether to proceed with the drawing. A more refined test might be to check separately, whether the
rectangle needs to be drawn, or whether the ellipse needs to be redrawn, or both. However, there's a balance
here. You can make your tests in OnPaint() more sophisticated, improving performance, but you'll also
make your own OnPaint() code more complex. It's almost always worth putting some test in, because
you've written the code so you understand far more about what is being drawn than the Graphics instance,
which just blindly follows drawing commands.

Measuring Coordinates and Areas
In our last example, we encountered the base struct, Rectangle, which is used to represent the coordinates of
a rectangle. GDI+ actually uses several similar structures to represent coordinates or areas, and we're at a
convenient point in the chapter to go over the main ones. We'll look at the following structs, which are all
defined in the System.Drawing namespace:

Struct Main Public Properties

struct Point

struct PointF
X, Y

struct Size

struct SizeF
Width, Height

struct Rectangle

struct RectangleF
Left, Right, Top, Bottom, Width, Height, X, Y, Location, Size

Note that many of these objects have a number of other properties, methods, or operator overloads not listed
here. In this section we'll just discuss the most important ones.

Point and PointF
We'll look at Point first. Point is conceptually the simplest of these structs. Mathematically, it's completely
equivalent to a 2D vector. It contains two public integer properties, which represent how far you move
horizontally and vertically from a particular location (perhaps on the screen). In other words, look at this
diagram:

Point A 20 units

Point B

10 units

X

Y

Graphics with GDI+

907

In order to get from point A to point B, you move 20 units across and 10 units down, marked as x and y on the
diagram as this is how they are commonly referred to. We could create a Point struct that represents that as
follows:

Point ab = new Point(20, 10);
Console.WriteLine("Moved {0} across, {1} down", ab.X, ab.Y);

X and Y are read-write properties, which means you can also set the values in a Point like this:

Point ab = new Point();
ab.X = 20;
ab.Y = 10;
Console.WriteLine("Moved {0} across, {1} down", ab.X, ab.Y);

Note that although conventionally horizontal and vertical coordinates are referred to as x and y coordinates
(lowercase), the corresponding Point properties are X and Y (uppercase) because the usual convention in C#
is for public properties to have names that start with an uppercase letter.

PointF is essentially identical to Point, except that X and Y are of type float instead of int. PointF is
used when the coordinates are not necessarily integer values. A cast has been defined so that you can
implicitly convert from Point to PointF. (Note that because Point and PointF are structs, this cast
involves actually making a copy of the data). There is no corresponding reverse case – to convert from
PointF to Point you have to explicitly copy the values across, or use one of three conversion methods,
Round(), Truncate(), and Ceiling():

PointF abFloat = new PointF(20.5F, 10.9F);
// converting to Point
Point ab = new Point();
ab.X = (int)abFloat.X;
ab.Y = (int)abFloat.Y;
Point ab1 = Point.Round(abFloat);
Point ab2 = Point.Truncate(abFloat);
Point ab3 = Point.Ceiling(abFloat);

// but conversion back to PointF is implicit
PointF abFloat2 = ab;

You may be wondering what a "unit" is measured in. By default, GDI+ will interpret units as pixels along the
screen (or printer, whatever the graphics device is) – so that's how the Graphics object methods will view
any coordinates that they get passed as parameters. For example, the point new Point(20,10) represents
20 pixels across the screen and 10 pixels down. Usually these pixels will be measured from the top left corner
of the client area of the window, as has been the case in our examples up to now. However, that won't always
be the case – for example, on some occasions you may wish to draw relative to the top left corner of the whole
window (including its border), or even to the top left corner of the screen. In most cases, however, unless the
documentation tells you otherwise, you can assume you're talking pixels relative to the top left corner of the
client area.

We'll have more to say on this subject later on, after we've examined scrolling, when we mention the three
different coordinate systems in use, world, page, and device coordinates.

Chapter 19

908

Size and SizeF
Like Point and PointF, sizes come in two varieties. The Size struct is for when you are using ints;
SizeF is available if you need to use floats. Otherwise Size and SizeF are identical. We'll focus on the
Size struct here.

In many ways the Size struct is identical to the Point struct. It has two integer properties that represent a
distance horizontally and a distance vertically – the main difference is that instead of X and Y, these properties
are named Width and Height. We can represent our earlier diagram by:

Size ab = new Size(20,10);
Console.WriteLine("Moved {0} across, {1} down", ab.Width, ab.Height);

Although strictly speaking, a Size mathematically represents exactly the same thing as a Point;
conceptually it is intended to be used in a slightly different way. A Point is used when we are talking about
where something is, and a Size is used when we are talking about how big it is. However, because Size and
Point are so closely related, there are even supported explicit conversions between these two:

Point point = new Point(20, 10);
Size size = (Size) point;
Point anotherPoint = (Point) size;

As an example, think about the rectangle we drew earlier, with top left coordinate (0,0) and size (50,50). The
size of this rectangle is (50,50) and might be represented by a Size instance. The bottom right corner is also
at (50,50), but that would be represented by a Point instance. To see the difference, suppose we drew the
rectangle in a different location, so it's top left coordinate was at (10,10):

dc.DrawRectangle(bluePen, 10,10,50,50);

Now the bottom right corner is at coordinate (60,60), but the size is unchanged – that's still (50,50).

The addition operator has been overloaded for Points and Sizes, so that it is possible to add a Size to a
Point giving another Point:

static void Main(string[] args)
{

Point topLeft = new Point(10,10);
Size rectangleSize = new Size(50,50);
Point bottomRight = topLeft + rectangleSize;
Console.WriteLine("topLeft = " + topLeft);
Console.WriteLine("bottomRight = " + bottomRight);
Console.WriteLine("Size = " + rectangleSize);

}

This code, running as a simple console application, called PointsAndSizes, produces this output:

Graphics with GDI+

909

Notice that this output also shows how the ToString() method has been overridden in both Point and
Size to display the value in {X,Y} format.

It is also possible to subtract a Size from a Point to give a Point, and you can add two Sizes together,
giving another Size. It is not possible, however, to add a Point to another Point. Microsoft decided that
adding Points doesn't conceptually make sense, and so chose not to supply any overload to the + operator
that would have allowed that.

You can also explicitly cast a Point to a Size and vice versa:

Point topLeft = new Point(10,10);
Size s1 = (Size)topLeft;
Point p1 = (Point)s1;

With this cast s1.Width is assigned the value of topLeft.X, and s1.Height is assigned the value of
topLeft.Y. Hence, s1 contains (10,10). p1 will end up storing the same values as topLeft.

Rectangle and RectangleF
These structures represent a rectangular region (usually of the screen). Just as with Point and Size, we'll
only consider the Rectangle struct here. RectangleF is basically identical except that those of its
properties that represent dimensions all use float, whereas those of Rectangle use int.

A Rectangle can be thought of as composed of a point, representing the top left corner of the rectangle, and
a Size, which represents how large it is. One of its constructors actually takes a Point and a Size as its
parameters. We can see this by rewriting our earlier code from the DrawShapes sample that draws a
rectangle:

Graphics dc = e.Graphics;
Pen bluePen = new Pen(Color.Blue, 3);
Point topLeft = new Point(0,0);
Size howBig = new Size(50,50);
Rectangle rectangleArea = new Rectangle(topLeft, howBig);
dc.DrawRectangle(bluePen, rectangleArea);

This code also uses an alternative override of Graphics.DrawRectangle(), which takes a Pen and a
Rectangle struct as its parameters.

You can also construct a Rectangle by supplying the top left horizontal coordinate, top left vertical
coordinate, width, and height separately, and in that order, as individual numbers:

Rectangle rectangleArea = new Rectangle(0, 0, 50, 50)

Chapter 19

910

Rectangle makes quite a few read-write properties available to set or extract its dimensions in different
combinations:

Property Description

int Left x-coordinate of left-hand edge

int Right x-coordinate of right-hand edge

int Top y-coordinate of top

int Bottom y-coordinate of bottom

int X same as Left

int Y same as Top

int Width width of rectangle

int Height height of rectangle

Point Location top left corner

Size Size size of rectangle

Note that these properties are not all independent – for example setting Width will also affect the
value of Right.

Region
We'll mention the existence of the System.Drawing.Region class here, though we don't have space to go
details in this book. Region represents an area of the screen that has some complex shape. For example the
shaded area in the diagram could be represented by Region:

As you can imagine, the process of initializing a Region instance is itself quite complex. Broadly speaking,
you can do it by indicating either what component simple shapes make up the region or what path you take as
you trace round the edge of the region. If you do need to start working with areas like this, then it's worth
looking up the Region class.

Graphics with GDI+

911

A Note about Debugging
We're just about ready to do some more advanced drawing now. First,however, I just want to say a few things
about debugging. If you have a go at setting break points in the examples in this chapter you will quickly
notice that debugging drawing routines isn't quite as simple as debugging other parts of your program. This is
because entering and leaving the debugger often causes Paint messages to be sent to your application. The
result can be that setting a breakpoint in your OnPaint() override simply causes your application to keep
painting itself over and over again, so it's unable to do anything else.

A typical scenario is as follows. You want to find out why your application is displaying something
incorrectly, so you set a break point in OnPaint(). As expected, the application hits the break point and the
debugger comes in, at which point your developer environment MDI window comes to the foreground. If
you're anything like me, you probably have the developer environments set to full screen display so you can
more easily view all the debugging information, which means it always completely hides the application you
are debugging.

Moving on, you examine the values of some variables and hopefully find out something useful. Then you hit
F5 to tell the application to continue, so that you can go on to see what happens when the application displays
something else, after it's done some processing. Unfortunately, the first thing that happens is that the
application comes to the foreground and Windows efficiently detects that the form is visible again and
promptly sends it a Paint event. This means, of course, that your break point gets hit again straight away. If
that's what you want fine, but more commonly what you really want is to hit the breakpoint later, when the
application is drawing something more interesting, perhaps after you've selected some menu option to read in
a file or in some other way changed what gets displayed. It looks like you're stuck. Either you don't have a
break point in OnPaint() at all, or your application can never get beyond the point where it's displaying its
initial startup window.

There are a couple of ways around this problem.

If you have a big screen the easiest way is simply to keep your developer environment window tiled rather
than maximized and keep it well away from your application window – so your application never gets hidden
in the first place. Unfortunately, in most cases that is not a practical solution, because that would make your
developer environment window too small. An alternative that uses the same principle is to have your
application declare itself as the topmost application while you are debugging. You do this by setting a property
in the Form class, TopMost, which you can easily do in the InitializeComponent() method:

private void InitializeComponent()
{

this.TopMost = true;

You can also set this property through the Properties Window in Visual Studio .NET.

Being a TopMost window means your application can never be hidden by other windows (except other
topmost windows). It always remains above other windows even when another application has the focus. This
is how the Task Manager behaves.

Chapter 19

912

Even with this technique you have to be careful, because you can never quite be certain when Windows might
decide for some reason to raise a Paint event. If you really want to trap some problem that occurs in
OnPaint() for some specific circumstance (for example, the application draws something after you select a
certain menu option, and something goes wrong at that point), then the best way to do this is to place some
dummy code in OnPaint() that tests some condition, which will only be true in the specified
circumstances – and then place the break point inside the if block, like this:

protected override void OnPaint(PaintEventArgs e)
{

// Condition() evaluates to true when we want to break
if (Condition() == true)
{

int ii = 0; // <-- SET BREAKPOINT HERE!!!
}

This is effectively a quick-and-easy way of putting in a conditional break point.

Drawing Scrollable Windows
Our earlier DrawShapes sample worked very well, because everything we needed to draw fitted into the
initial window size. In this section we're going to look at what we need to do if that's not the case.

We shall expand our DrawShapes sample to demonstrate scrolling. To make things a bit more realistic, we'll
start by creating an example, BigShapes, in which we will make the rectangle and ellipse a bit bigger. Also,
while we're at it we'll demonstrate how to use the Point, Size, and Rectangle structs by using them to
assist in defining the drawing areas. With these changes, the relevant part of the Form1 class looks like this:

// member fields
private Point rectangleTopLeft = new Point(0, 0);
private Size rectangleSize = new Size(200,200);
private Point ellipseTopLeft = new Point(50, 200);
private Size ellipseSize = new Size(200, 150);
private Pen bluePen = new Pen(Color.Blue, 3);
private Pen redPen = new Pen(Color.Red, 2);

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;

if (e.ClipRectangle.Top < 350 || e.ClipRectangle.Left < 250)
{

Rectangle rectangleArea =
new Rectangle (rectangleTopLeft, rectangleSize);

Rectangle ellipseArea =
new Rectangle (ellipseTopLeft, ellipseSize);

dc.DrawRectangle(bluePen, rectangleArea);
dc.DrawEllipse(redPen, ellipseArea);

}
}

Graphics with GDI+

913

Notice, that we've also turned the Pen, Size, and Point objects into member fields – this is more efficient than
creating a new Pen every time we need to draw anything, as we have been doing up to now.

The result of running this example looks like this:

We can see a problem instantly. The shapes don't fit in our 300x300 pixel drawing area.

Normally, if a document is too large to display, an application will add scrollbars to let you scroll the window
and look at a chosen part of it. This is another area in which, with the kind of user interface that we were
dealing with in Chapter 7, we'd let the .NET runtime and the base classes handle everything. If your form has
various controls attached to it then the Form instance will normally know where these controls are and it will
therefore know if its window becomes so small that scrollbars become necessary. The Form instance will also
automatically add the scrollbars for you, and not only that, but it's also able to correctly draw whichever
portion of the screen you've scrolled to. In that case there is nothing you need to explicitly do in your code. In
this chapter, however, we're taking responsibility for drawing to the screen; therefore, we're going to have to
help the Form instance out when it comes to scrolling.

In the last paragraph we said "if a document is too large to display". This probably made you
think in terms of something like a Word or Excel document. With drawing applications,
however, it's better to think of the document as whatever data the application is manipulating
that it needs to draw. For our current example, the rectangle and ellipse between them
constitute the document.

Getting the scrollbars added is actually very easy. The Form can still handle all that for us – the reason it hasn't
in the above ScrollShapes sample is that Windows doesn't know they are needed – because it doesn't know
how big an area we will want to draw in. How big an area is that? More accurately, what we need to figure out
is the size of a rectangle that stretches from the top left corner of the document (or equivalently, the top left
corner of the client area before we've done any scrolling), and which is just big enough to contain the entire
document. In this chapter, we'll refer to this area as the document area. Looking at the diagram of the
'document' we can see that for this example the document area is (250, 350) pixels.

Chapter 19

914

200

200

200

50
150

(250, 350)

It is easy to tell the form how big the document is. We use the relevant property,
Form.AutoScrollMinSize. Therefore we can add this code to either the InitializeComponent()
method or the Form1 constructor:

private void InitializeComponent()
{

this.components = new System.ComponentModel.Container();
this.Size = new System.Drawing.Size(300,300);
this.Text = "Scroll Shapes";
this.BackColor = Color.White;
this.AutoScrollMinSize = new Size(250, 350);

}

Alternatively the AutoScrollMinSize property can be set through the Visual Studio .NET properties
window.

Setting the minimum size at application startup and leaving it thereafter is fine in this particular application,
because we know that is how big the screen area will always be. Our "document" never changes size while this
particular application is running. Bear in mind, however, that if your application does things like display
contents of files or something else for which the area of the screen might change, you will need to set this
property at other times (and in that case you'll have to sort out the code manually – the Visual Studio .NET
Properties window can only help you with the initial value that a property has when the form is constructed).

Setting AutoScrollMinSize is a start, but it's not yet quite
enough. To see that, let's look at what our sample – which in this
version is downloadable as the ScrollShapes sample – looks like
now. Initially we get the screen that correctly displays
the shapes:

Graphics with GDI+

915

Notice that, not only has the form correctly set the scrollbars, but it's even correctly sized them to indicate
what proportion of the document is currently displayed. You can try resizing the window while the sample is
running – you'll find the scrollbars respond correctly, and even disappear if we make the window big enough
that they are no longer needed.

However, now look at what happens if we actually use one of the scrollbars and scroll down a bit:

Clearly something has gone wrong!

In fact, what's gone wrong is that we haven't taken into account the position of the scrollbars in the code in our
OnPaint() override. We can see this very clearly if we force the window to completely repaint itself by
minimizing and restoring it. The result looks like this:

The shapes have been painted, just as before, with the top left corner of the rectangle nestled into the top left
corner of the client area – just as if we hadn't moved the scrollbars at all.

Chapter 19

916

Before we go over how to correct this problem, we'll take a closer look at precisely what is happening in these
screenshots. Doing so is quite instructive, both because it'll help us to understand exactly how the drawing is
done in the presence of scrollbars and because it'll be quite good practice. If you start using GDI+, I promise
you that sooner or later, you'll find yourself presented with a strange drawing like one of those above, and
having to try to figure out what has gone wrong.

We'll look at the last screenshot first since that one is easy to deal with. The ScrollShapes sample has just
been restored so the entire window has just been repainted. Looking back at our code it instructs the graphics
instance to draw a rectangle with top left coordinates (0,0) – relative to the top left corner of the client area of
the window – which is what has been drawn. The problem is, that the graphics instance by default interprets
coordinates as relative to the client window – it doesn't know anything about the scrollbars. Our code as yet
does not attempt to adjust the coordinates for the scrollbar positions. The same goes for the ellipse.

Now, we can tackle the earlier screenshot, from immediately after we'd scrolled down. We notice that here the
top two-thirds or so of the window look fine. That's because these were drawn when the application first
started up. When you scroll windows, Windows doesn't ask the application to redraw what was already on the
screen. Windows is smart enough to figure out for itself which bits of what's currently being displayed on the
screen can be smoothly moved around to match where the scrollbars now are. That's a much more efficient
process, since it may be able to use some hardware acceleration to do that too. The bit in this screenshot that's
wrong is the bottom third of the window. This part of the window didn't get drawn when the application first
appeared, since before we started scrolling it was outside the client area. This means that Windows asks our
ScrollShapes application to draw this area. It'll raise a Paint event passing in just this area as the clipping
rectangle. And that's exactly what our OnPaint() override has done.

One way of looking at the problem is that we are at the moment expressing our coordinates relative to the top
left corner of the start of the 'document' – we need to convert them to express them relative to the top left
corner of the client area instead. The following diagram should make this clear:

P

Document

Client Area
(Screen)

B

A

To make the diagram clearer we've actually extended the document further downwards and to the right,
beyond the boundaries of the screen, but this doesn't change our reasoning. We've also assumed a small
horizontal scroll as well as a vertical one.

In the diagram the thin rectangles mark the borders of the screen area and of the entire document. The thick
lines mark the rectangle and ellipse that we are trying to draw. P marks some arbitrary point that we are
drawing, which we're going to take as an example. When calling the drawing methods we've supplied the
graphics instance with the vector from point B to (say) point P, expressed as a Point instance. We actually
need to give it the vector from point A to point P.

Graphics with GDI+

917

The problem is that we don't know what the vector from A to P is. We know what B to P is – that's just the
coordinates of P relative to the top left corner of the document – the position where we want to draw point P in
the document. We also know what the vector from B to A is – that's just the amount we've scrolled by; this is
stored in a property of the Form class called AutoScrollPosition. However, we don't know the vector
from A to P.

Now, if you were good at math at school, you might remember what the solution to this is – you just have to
subtract vectors. Say, for example, to get from B to P you move 150 pixels across and 200 pixels down, while
to get from B to A you have to move 10 pixels across and 57 pixels down. That means to get from A to P you
have to move 140 (=150 minus 10) pixels across and 143 (=200 minus 57) pixels down. The Graphics class
actually implements a method that will do these calculations for us. It's called TranslateTransform().
You pass it the horizontal and vertical coordinates that say where the top left of the client area is relative to
the top left corner of the document, (our AutoScrollPosition property, that is the vector from B to A in
the diagram). Then the Graphics device will from then on work out all its coordinates taking into account
where the client area is relative to the document.

After all that explanation, all we need to do is add this line to our drawing code:

dc.TranslateTransform(this.AutoScrollPosition.X, this.AutoScrollPosition.Y);

In fact in our example, it's a little more complicated because we are also separately testing whether we need to
do any drawing by looking at the clipping region. We need to adjust this test to take the scroll position into
account too. When we've done that, the full drawing code for the sample (downloadable from the Wrox Press
web site as ScrollShapes) looks like this:

protected override void OnPaint(PaintEventArgs e)

{

base.OnPaint(e);

Graphics dc = e.Graphics;

Size scrollOffset = new Size(this.AutoScrollPosition);

if (e.ClipRectangle.Top+scrollOffset.Width < 350 ||

e.ClipRectangle.Left+scrollOffset.Height < 250)

{

Rectangle rectangleArea = new Rectangle

(rectangleTopLeft+scrollOffset, rectangleSize);

Rectangle ellipseArea = new Rectangle

(ellipseTopLeft+scrollOffset, ellipseSize);

dc.DrawRectangle(bluePen, rectangleArea);

dc.DrawEllipse(redPen, ellipseArea);

}

}

Now we have our scroll code working perfectly, we can at last obtain a correctly scrolled screenshot!

Chapter 19

918

World, Page, and Device Coordinates
The distinction between measuring position relative to the top left corner of the document and measuring it
relative to the top left corner of the screen (desktop), is so important that GDI+ has special names for these
coordinate systems:

❑ World coordinates are the position of a point measured in pixels from the top left corner of the
document

❑ Page coordinates are the position of a point measured in pixels from the top left corner of the client
area

Developers familiar with GDI will note that world coordinates correspond to what in GDI
were known as logical coordinates. Page coordinates correspond to what used to be known as
device coordinates. Those developers should also note that the way you code up conversion
between logical and device coordinates has changed in GDI+. In GDI, conversions took place
via the device context, using the LPtoDP() and DPtoLP() Windows API functions. In GDI+,
it's the Control class, from which both Form and all the various Windows Forms controls derive,
that maintains the information needed to carry out the conversion.

GDI+ also distinguishes a third coordinate system, which is now known as device coordinates. Device
coordinates are similar to page coordinates, except that we do not use pixels as the unit of measurement –
instead we use some other unit that can be specified by the user by calling the Graphics.PageUnit
property. Possible units, besides the default of pixels, include inches and millimeters. Although we won't use
the PageUnit property in this chapter, it can be useful as a way of getting around the different pixel densities
of devices. For example, 100 pixels on most monitors will occupy something like an inch. However, laser
printers can have anything up to thousands of dpi (dots per inch) – which means that a shape specified to be
100 pixels wide will look a lot smaller when printed on it. By setting the units to, say, inches – and specifying
that the shape should be 1 inch wide, you can ensure that the shape will look the same size on the different
devices.

Graphics with GDI+

919

Colors
In this section, we're going to look at the ways that you can specify what color you want something to be drawn in.

Colors in GDI+ are represented by instances of the System.Drawing.Color struct. Generally, once you've
instantiated this struct, you won't do much with the corresponding Color instance – just pass it to whatever
other method you are calling that requires a Color. We've encountered this struct before – when we set the
background color of the client area of the window in each of our samples, as well as when we set the colors of
the various shapes we were displaying. The Form.BackColor property actually returns a Color instance. In
this section, we'll look at this struct in more detail. In particular, we'll examine several different ways that you
can construct a Color.

Red-Green-Blue (RGB) Values
The total number of colors that can be displayed by a monitor is huge – over 16 million. To be exact the
number is 2 to the power 24, which works out at 16,777,216. Obviously we need some way of indexing those
colors so we can indicate which of these is the color we want to display at a given pixel.

The most common way of indexing colors is by dividing them into the red, green, and blue components. This
idea is based on the principle that any color that the human eye can distinguish can be constructed from a
certain amount of red light, a certain amount of the green light, and a certain amount of blue light. These
colors are known as components. In practice, it's found that if we divide the amount of each component light
into 256 possible intensities, then that gives a sufficiently fine gradation to be able to display images that are
perceived by the human eye to be of photographic quality. We therefore specify colors by giving the amounts
of these components on a scale of 0 to 255 where 0 means that the component is not present and 255 means
that it is at its maximum intensity.

We can now see where are quoted figure of 16,777,216 colors comes from, since that number is just 256
cubed.

This gives us our first way of telling GDI+ about a color. You can indicate a color's red, green, and blue
values by calling the static function Color.FromArgb(). Microsoft has chosen not to supply a constructor
to do this task. The reason is that there are other ways, besides the usual RGB components, to indicate a color.
Because of this, Microsoft felt that the meaning of parameters passed to any constructor they defined would be
open to misinterpretation:

Color redColor = Color.FromArgb(255,0,0);

Color funnyOrangyBrownColor = Color.FromArgb(255,155,100);

Color blackColor = Color.FromArgb(0,0,0);

Color whiteColor = Color.FromArgb(255,255,255);

The three parameters are respectively the quantities of red, green, and blue. There are a number of other
overloads to this function, some of which also allow you to specify something called an alpha-blend (that's the
A in the name of the method, FromArgb()). Alpha blending is beyond the scope of this chapter, but it allows
you to paint a color semi-transparently by combining it with whatever color was already on the screen. This
can give some beautiful effects and is often used in games.

Chapter 19

920

The Named Colors
Constructing a Color using FromArgb() is the most flexible technique, since it literally means you can specify
any color that the human eye can see. However, if you want a simple, standard, well-known color such as red or
blue, it's a lot easier to just be able to name the color you want. Hence Microsoft has also provided a large number of
static properties in Color, each of which returns a named color. It is one of these properties that we used when we
set the background color of our windows to white in our samples:

this.BackColor = Color.White;

// has the same effect as:
// this.BackColor = Color.FromArgb(255, 255 , 255);

There are several hundred such colors. The full list is given in the MSDN documentation. They include all the
simple colors: Red, White, Blue, Green, Black, and so on, as well as such delights as
MediumAquamarine, LightCoral, and DarkOrchid. There is also a KnownColor enumeration, which
lists the named colors.

Incidentally, although it might look that way, these named colors have not been chosen at
random. Each one represents a precise set of RGB values, and they were originally chosen
many years ago for use on the Internet. The idea was to provide a useful set of colors right
across the spectrum whose names would be recognized by web browsers – thus saving you
from having to write explicit RGB values in your HTML code. A few years ago these colors
were also important because early browsers couldn't necessarily display very many colors
accurately, and the named colors were supposed to provide a set of colors that would be
displayed correctly by most browsers. These days that aspect is less important since modern
web browsers are quite capable of displaying any RGB value correctly.

Graphics Display Modes and the Safety Palette
Although we've said that in principle monitors can display any of the over 16 million RGB colors, in practice
this depends on how you've set the display properties on your computer. In Windows, there are traditionally
three main color options (although some machines may provide other options depending on the hardware):
true color (24-bit), high color (16-bit), and 256 colors. (On some graphics cards these days, true color is
actually marked as 32-bit for reasons to do with optimizing the hardware, though in that case only 24 bits of
the 32 bits are used for the color itself.)

Only true-color mode allows you to display all of the RGB colors simultaneously. This sounds the best option,
but it comes at a cost: 3 bytes are needed to hold a full RGB value which means 3 bytes of graphics card
memory are needed to hold each pixel that is displayed. If graphics card memory is at a premium (a restriction
that's less common now than it used to be) you may choose one of the other modes. High color mode gives you
2 bytes per pixel. That's enough to give 5 bits for each RGB component. So instead of 256 gradations of red
intensity you just get 32 gradations; the same for blue and green, which gives a total of 65,536 colors. That is
just about enough to give apparent photographic quality on a casual inspection, though areas of subtle shading
tend to be broken up a bit.

256-color mode gives you even fewer colors. However, in this mode, you get to choose which colors. What
happens is that the system sets up something known as a palette. This is a list of 256 colors chosen from the
16 million RGB colors. Once you've specified the colors in the palette, the graphics device will be able to
display just those colors. The palette can be changed at any time – but the graphics device can still only
display 256 different colors on the screen at any one time. 256-color mode is only really used when high
performance and video memory is at a premium. Most games will use this mode – and they can still achieve
decent-looking graphics because of a very careful choice of palette.

Graphics with GDI+

921

In general, if a display device is in high-color or 256-color mode and it is asked to display a particular RGB
color, it will pick the nearest mathematical match from the pool of colors that it is able to display. It's for this
reason that it's important to be aware of the color modes. If you are drawing something that involves subtle
shading or photographic quality images, and the user does not have 24-bit color mode selected, they may not
see the image the same way you intended it. So if you're doing that kind of work with GDI+, you should test
your application in different color modes. (It is also possible for your application to programmatically set a
given color mode, though we won't go into that in this chapter.)

The Safety Palette
For reference, we'll quickly mention the safety palette, which is a very commonly-used default palette. The
way it works is that we set six equally spaced possible values for each color component. Namely, the values 0,
51, 102, 153, 204, and 255. In other words, the red component can have any of these values. So can the green
component. So can the blue component. So possible colors from the safety palette include: (0,0,0), black;
(153,0,0), a fairly dark shade of red; (0, 255,102), green with a smattering of blue added; and so on. This gives
us a total of 6 cubed = 216 colors. The idea is that this gives us an easy way of having a palette that contains
colors from right across the spectrum and of all degrees of brightness, although in practice this doesn't actually
work that well because equal mathematical spacing of color components doesn't mean equal perception of
color differences by the human eye. Because the safety palette used to be widely used, however, you'll still
find a fair number of applications and images exclusively use colors from the safety palette.

If you set Windows to 256-color mode, you'll find the default palette you get is the safety palette, with 20
Windows standard colors added to it, and 20 spare colors.

Pens and Brushes
In this section, we'll review two helper classes that are needed in order to draw shapes. We've already
encountered the Pen class, used to tell the graphics instance how to draw lines. A related class is
System.Drawing.Brush, which tells it how to fill regions. For example, the Pen is needed to draw the
outlines of the rectangle and ellipse in our previous samples. If we'd needed to draw these shapes as solid, it
would have been a brush that would have been used to specify how to fill them in. One aspect of both of these
classes is that you will hardly ever call any methods on them. You simply construct a Pen or Brush instance
with the required color and other properties, and then pass it to drawing methods that require a Pen or Brush.

We will look at brushes first, then pens.

Incidentally, if you've programmed using GDI before you have noticed from the first couple of
examples that pens are used in a different way in GDI+. In GDI the normal practice was to
call a Windows API function, SelectObject(), which actually associated a pen with the
device context. That pen was then used in all drawing operations that required a pen until you
informed the device context otherwise, by calling SelectObject()again. The same
principle held for brushes and other objects such as fonts or bitmaps. With GDI+, as mentioned
earlier, Microsoft has instead gone for a stateless model in which there is no default pen or other
helper object. Rather, you simply specify with each method call the appropriate helper object to be
used for that particular method.

Chapter 19

922

Brushes
GDI+ has several different kinds of brush – more than we have space to go into in this chapter, so we'll just
explain the simpler ones to give you an idea of the principles. Each type of brush is represented by an instance
of a class derived from the abstract class System.Drawing.Brush. The simplest brush,
System.Drawing.SolidBrush, simply indicates that a region is to be filled with solid color:

Brush solidBeigeBrush = new SolidBrush(Color.Beige);
Brush solidFunnyOrangyBrownBrush =

new SolidBrush(Color.FromArgb(255,155,100));

Alternatively, if the brush is one of the Internet named colors you can construct the brush more simply using
another class, System.Drawing.Brushes. Brushes is one of those classes that you never actually
instantiate (it's got a private constructor to stop you doing that). It simply has a large number of static
properties, each of which returns a brush of a specified color. You'd use Brushes like this:

Brush solidAzureBrush = Brushes.Azure;
Brush solidChocolateBrush = Brushes.Chocolate;

The next level of complexity is a hatch brush, which fills a region by drawing a pattern. This type of brush is
considered more advanced so it's in the Drawing2D namespace, represented by the class
System.Drawing.Drawing2D.HatchBrush. The Brushes class can't help you with hatch brushes –
you'll need to construct one explicitly, by supplying the hatch style and two colors – the foreground color
followed by the background color (you can omit the background color, in which case it defaults to black). The
hatch style comes from an enumeration, System.Drawing.Drawing2D.HatchStyle. There are a large
number of HatchStyle values available, so it's easiest to refer to the MSDN documentation for the full list.
To give you an idea, typical styles include ForwardDiagonal, Cross, DiagonalCross,
SmallConfetti, and ZigZag. Examples of constructing a hatch brush include:

Brush crossBrush = new HatchBrush(HatchStyle.Cross, Color.Azure);

// background color of CrossBrush is black

Brush brickBrush = new HatchBrush(HatchStyle.DiagonalBrick,
Color.DarkGoldenrod, Color.Cyan);

Solid and hatch brushes are the only brushes available under GDI. GDI+ has added a couple of new styles of
brush:

❑ System.Drawing.Drawing2D.LinearGradientBrush fills in an area with a color that
varies across the screen

❑ System.Drawing.Drawing2D.PathGradientBrush is similar, but in this case the color
varies along a path around the region to be filled

We won't go into these brushes in this chapter. We'll note though that both can give some spectacular effects if
used carefully.

Graphics with GDI+

923

Pens
Unlike brushes, pens are represented by just one class – System.Drawing.Pen. The pen is, however,
actually slightly more complex than the brush, because it needs to indicate how thick lines should be (how
many pixels wide) and, for a wide line, how to fill the area inside the line. Pens can also specify a number of
other properties, which are beyond the scope of this chapter, but which include the Alignment property that
we mentioned earlier, which indicates where in relation to the border of a shape a line should be drawn, as
well as what shape to draw at the end of a line (whether to round off the shape).

The area inside a thick line can be filled with solid color, or it can be filled using a brush. Hence, a Pen
instance may contain a reference to a Brush instance. This is quite powerful, as it means you can draw lines
that are colored in by using – say – hatching or linear shading. There are four different ways that you can
construct a Pen instance that you have designed yourself. You can do it by passing a color, or you can do it by
passing in a brush. Both of these constructors will produce a pen with a width of one pixel. Alternatively, you
can pass in a color or a brush, and additionally a float, which represents the width of the pen. (It needs to be
a float in case we are using non-default units such as millimeters or inches for the Graphics object that
will do the drawing – so we can for example specify fractions of an inch.) So for example, you can construct
pens like this:

Brush brickBrush = new HatchBrush(HatchStyle.DiagonalBrick,

Color.DarkGoldenrod, Color.Cyan);

Pen solidBluePen = new Pen(Color.FromArgb(0,0,255));

Pen solidWideBluePen = new Pen(Color.Blue, 4);

Pen brickPen = new Pen(brickBrush);

Pen brickWidePen = new Pen(brickBrush, 10);

Additionally, for the quick construction of pens, you can use the class System.Drawing.Pens which, like
the Brushes class, simply contains a number of stock pens. These pens all have width one pixel and come in
the usual sets of Internet named colors. This allows you to construct pens in this way:

Pen solidYellowPen = Pens.Yellow;

Drawing Shapes and Lines
We've almost finished the first part of the chapter, in which we've covered all the basic classes and objects
required in order to draw specified shapes and so on to the screen. We'll round off by reviewing some of the
drawing methods the Graphics class makes available, and presenting a short example that illustrates the use
of several brushes and pens.

System.Drawing.Graphics has a large number of methods that allow you to draw various lines, outline
shapes, and solid shapes. Once again there are too many to provide a comprehensive list here, but the
following table gives the main ones and should give you some idea of the variety of shapes you can draw.

Chapter 19

924

Method Typical parameters What it draws

DrawLine Pen, start and end points A single straight line

DrawRectangle Pen, position, and size Outline of a rectangle

DrawEllipse Pen, position, and size Outline of an ellipse

FillRectangle Brush, position, and size Solid rectangle

FillEllipse Brush, position, and size Solid ellipse

DrawLines Pen, array of points Series of lines, connecting each point to
the next one in the array

DrawBezier Pen, 4 points A smooth curve through the two end
points, with the remaining two points
used to control the shape of the curve

DrawCurve Pen, array of points A smooth curve through the points

DrawArc Pen, rectangle, two angles Portion of circle within the rectangle
defined by the angles

DrawClosedCurve Pen, array of points Like DrawCurve but also draws a
straight line to close the curve

DrawPie Pen, rectangle, two angles Wedge-shaped outline within the
rectangle

FillPie Brush, rectangle, two angles Solid wedge-shaped area within the
rectangle

DrawPolygon Pen, array of points Like DrawLines but also connects first
and last points to close the figure drawn

Before we leave the subject of drawing simple objects, we'll round off with a simple example that
demonstrates the kinds of visual effect you can achieve by use of brushes. The example is called
ScrollMoreShapes, and it's essentially a revision of ScrollShapes. Besides the rectangle and ellipse,
we'll add a thick line and fill the shapes in with various custom brushes. We've already explained the principles of
drawing so we'll present the code without too many comments. First, because of our new brushes, we need to
indicate we are using the System.Drawing.Drawing2D namespace:

using System;

using System.Drawing;

using System.Drawing.Drawing2D;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

Next some extra fields in our Form1 class, which contain details of the locations where the shapes are to be
drawn, as well as various pens and brushes we will use:

Graphics with GDI+

925

private Rectangle rectangleBounds = new Rectangle(new Point(0,0),
new Size(200,200));

private Rectangle ellipseBounds = new Rectangle(new Point(50,200),
new Size(200,150));

private Pen bluePen = new Pen(Color.Blue, 3);
private Pen redPen = new Pen(Color.Red, 2);
private Brush solidAzureBrush = Brushes.Azure;
private Brush solidYellowBrush = new SolidBrush(Color.Yellow);
static private Brush brickBrush = new HatchBrush(HatchStyle.DiagonalBrick,

Color.DarkGoldenrod, Color.Cyan);
private Pen brickWidePen = new Pen(brickBrush, 10);

The brickBrush field has been declared as static, so that we can use its value to initialize the
brickWidePen field. C# won't let us use one instance field to initialize another instance field, because it's
not defined which one will be initialized first, but declaring the field as static solves the problem. Since only
one instance of the Form1 class will be instantiated, it is immaterial whether the fields are static or instance
fields.

Here is the OnPaint() override:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
Point scrollOffset = this.AutoScrollPosition;
dc.TranslateTransform(scrollOffset.X, scrollOffset.Y);
if (e.ClipRectangle.Top+scrollOffset.X < 350 ||

e.ClipRectangle.Left+scrollOffset.Y < 250)
{

dc.DrawRectangle(bluePen, rectangleBounds);
dc.FillRectangle(solidYellowBrush, rectangleBounds);
dc.DrawEllipse(redPen, ellipseBounds);
dc.FillEllipse(solidAzureBrush, ellipseBounds);
dc.DrawLine(brickWidePen, rectangleBounds.Location,

ellipseBounds.Location+ellipseBounds.Size);
}

}

As before we also set the AutoScrollMinSize to (250,350).
Now the results:

Notice that the thick diagonal line has been drawn on top of the rectangle and ellipse, because it was the last
item to be painted.

Chapter 19

926

Displaying Images
One of the most common things you may want to do with GDI+ is display an image that already exists in a
file. This is actually a lot simpler than drawing your own user interface, because the image is already pre-
drawn. Effectively, all you have to do is load the file and instruct GDI+ to display it. The image can be a
simple line drawing, an icon, or a complex image such as a photograph. It's also possible to perform some
manipulations on the image, such as stretching it or rotating it, and you can choose to display only a portion of
it.

In this section, just for a change, we'll present the sample first. Then we'll discuss some of the issues you need
to be aware of when displaying images. We can do this, because the code needed to display an image really is
so simple.

The class we need is the .NET base class, System.Drawing.Image. An instance of Image represents one
image – if you like, one picture. Reading in an image takes one line of code:

Image myImage = Image.FromFile("FileName");

FromFile() is a static member of Image and is the usual way of instantiating an image. The file can be any
of the commonly-supported graphics file formats, including .bmp, .jpg, .gif, and .png.

Displaying an image is also very simple, assuming you have a suitable Graphics instance to hand – a simple
call to either Graphics.DrawImageUnscaled() or Graphics.DrawImage() will suffice. There are
quite a few overloads of these methods, allowing you a lot of flexibility in the information you supply in terms
of where the image is located and how big it is to be drawn. But we will use DrawImage(), like this:

dc.DrawImage(myImage, points);

In this line of code, dc is assumed to be a Graphics instance, while myImage is the Image to be displayed.
points is an array of Point structs, where points[0], points[1], and points[2] are the coordinates
of top left, top right, and bottom left corner of the image.

Images are probably the area in which developers familiar with GDI will notice the biggest
difference with GDI+. In GDI, displaying an image involved several nontrivial steps. If the
image was a bitmap, loading it was reasonably simple, but if it was any other file type, loading
it would involve a sequence of calls to OLE objects. Actually getting a loaded image onto the
screen involved getting a handle to it, selecting it into a memory device context, then
performing a block transfer between device contexts. Although the device contexts and handles
are still there behind the scenes, and will be needed if you want to start doing sophisticated
editing of the images from your code, simple tasks have now been extremely well wrapped up
in the GDI+ object model.

We'll illustrate the process of displaying an image with an example called DisplayImage. The example
simply displays a .jpg file in the application's main window. To keep things simple, the path of the .jpg file
is hard coded into the application (so if you run the example you'll need to change it to reflect the location of
the file in your system). The .jpg file we'll display is a group photograph of attendees from a recent
COMFest event.

Graphics with GDI+

927

COMFest (www.comfest.co.uk) is an informal group of developers in the UK who meet to
discuss the latest technologies and swap ideas. The picture includes all the attendees at
COMFest 4, except for the author of this chapter who was (conveniently) taking the picture!

As usual for this chapter, the DisplayImage project is a standard C# Visual Studio .NET-generated
Windows application. We add the following fields to our Form1 class:

Image piccy;
private Point [] piccyBounds;

We then load the file in the Form1() constructor:

public Form1()
{

InitializeComponent();

piccy =
Image.FromFile(@"C:\ProCSharp\GdiPlus\Images\CF4Group.bmp");

this.AutoScrollMinSize = piccy.Size;
piccyBounds = new Point[3];
piccyBounds[0] = new Point(0,0); // top left
piccyBounds[1] = new Point(piccy.Width,0); // top right
piccyBounds[2] = new Point(0,piccy.Height); // bottom left

}

Note that the size in pixels of the image is obtained as its Size property, which we use to set the document
area. We also set up the piccyBounds array, which is used to identify the position of the image on the
screen. We have chosen the coordinates of the three corners to draw the image in its actual size and shape
here, but if we'd wanted the image to be resized, stretched, or even sheared into a non-rectangular
parallelogram, we could do so simply by changing the values of the Points in the piccyBounds array.

The image is displayed in the OnPaint() override:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
dc.ScaleTransform(1.0f, 1.0f);
dc.TranslateTransform(this.AutoScrollPosition.X, this.AutoScrollPosition.Y);
dc.DrawImage(piccy, piccyBounds);

}

Finally, we'll take particular note of the modification made to the code wizard-generated Form1.Dispose()
method:

protected override void Dispose(bool disposing)
{

piccy.Dispose();

Chapter 19

928

if(disposing)
{

if (components != null)
{

components.Dispose();
}

}
base.Dispose(disposing);

}

Disposing of the image as soon as possible when it's no longer needed is important, because images generally
eat a lot of memory while in use. After Image.Dispose() has been called the Image instance no longer
refers to any actual image, and so can no longer be displayed (unless you load a new image).

Running this code produces these results:

Issues When Manipulating Images
Although displaying images is very simple, it still pays to have some understanding what's going on behind the scenes.

The most important point to understand about images is that they are always rectangular. That's not just a
convenience, but because of the underlying technology. It's because all modern graphics cards have hardware
built-in that can very efficiently copy blocks of pixels from one area of memory to another area of memory,
provided that the block of pixels represents a rectangular region. This hardware-accelerated operation can
occur virtually as one single operation, and as such is extremely fast. Indeed, it is the key to modern high-
performance graphics. This operation is known as a bitmap block transfer (or BitBlt).
Graphics.DrawImageUnscaled() internally uses a BitBlt, which is why you can see a huge image,
perhaps containing as many as a million pixels, appearing almost instantly. If the computer had to copy the
image to the screen individually pixel by pixel, you'd see the image gradually being drawn over a period of up
to several seconds.

BitBlts are very efficient; therefore almost all drawing and manipulation of images is carried out using
them. Even some editing of images will be done by BitBlting portions of images between DCs that represent
areas of memory. In the days of GDI, the Windows 32 API function BitBlt() was arguably the most
important and widely used function for image manipulation, though with GDI+ the BitBlt operations are
largely hidden by the GDI+ object model.

Graphics with GDI+

929

It's not possible to BitBlt areas of images that are not rectangular, although similar effects can be easily
simulated. One way is to mark a certain color as transparent for the purposes of a BitBlt, so that areas of that
color in the source image will not overwrite the existing color of the corresponding pixel in the destination
device. It is also possible to specify that in the process of a BitBlt, each pixel of the resultant image will be
formed by some logical operation (such as a bitwise AND) on the colors of that pixel in the source image and in
the destination device before the BitBlt. Such operations are supported by hardware acceleration, and can be
used to give a variety of subtle effects. We're not going to go into details of this here. We'll remark however,
that the Graphics object implements another method, DrawImage(). This is similar to
DrawImageUnscaled(), but comes in a large number of overloads that allow you to specify more complex
forms of BitBlt to be used in the drawing process. DrawImage() also allows you to draw (BitBlt) only a
specified part of the image, or to perform certain other operations on it such as scaling it (expanding or
reducing it in size) as it is drawn.

Drawing Text
We've left the very important topic of displaying text until this late in the chapter because drawing text to the
screen is (in general) more complex than drawing simple graphics. Although displaying a line or two of text
when you're not that bothered about the appearance is extremely easy – it takes one single call to the
Graphics.DrawString() method, if you are trying to display a document that has a fair amount of text in
it, you rapidly find that things become a lot more complex. This is for two reasons:

❑ If you're concerned about getting the appearance just right, you need to understand fonts. Where
shape drawing requires brushes and pens as helper objects, the process of drawing text
correspondingly requires fonts as helper objects. And understanding fonts is not trivial task.

❑ Text needs to be very carefully laid out in the window. Users generally expect words to follow
naturally from one another – to be lined up with clear spaces in between. Doing that is harder than
you'd think. For a start, unlike the case for shapes, you don't usually know in advance how much
space on the screen a word is going to take up. That has to be calculated (using the
Graphics.MeasureString() method). Also, how much space on the screen a word occupies
will affect whereabouts on the screen every subsequent word in the document gets placed. If your
application does line wrapping then it'll need to carefully assess word sizes before deciding where to
place the break. The next time you run Word for Windows, look carefully at the way Word is
continually repositioning text as you do your work: there's a lot of complex processing going on
there. The chances are that any GDI+ application you work on won't be anything like as complex as
Word, but if you need to display any text then many of the same considerations still apply.

So, good quality text processing is tricky to get right, but putting a line of text on the screen, assuming you
know the font and where you want it to go, is actually very simple. Therefore, the next thing we'll do is
present a quick example that shows how to display a couple of pieces of text. After that, the plan for the rest of
the chapter is to review some of the principles of fonts and font families before moving on to our more
realistic text-processing example, the CapsEditor sample, which will demonstrate some of the issues
involved when you're trying to control text layout on-screen, and will also show how to handle user input.

Chapter 19

930

Simple Text Example
This example, DisplayText, is our usual Windows Forms effort. This time we've overridden OnPaint()
and added member fields as follows:

private System.ComponentModel.Container components = null;

private Brush blackBrush = Brushes.Black;

private Brush blueBrush = Brushes.Blue;

private Font haettenschweilerFont = new Font("Haettenschweiler", 12);

private Font boldTimesFont = new Font("Times New Roman", 10, FontStyle.Bold);

private Font italicCourierFont = new Font("Courier", 11, FontStyle.Italic |

FontStyle.Underline);

protected override void OnPaint(PaintEventArgs e)

{

base.OnPaint(e);

Graphics dc = e.Graphics;

dc.DrawString("This is a groovy string", haettenschweilerFont, blackBrush,

10, 10);

dc.DrawString("This is a groovy string " +

"with some very long text that will never fit in the box",

boldTimesFont, blueBrush,

new Rectangle(new Point(10, 40), new Size(100, 40)));

dc.DrawString("This is a groovy string", italicCourierFont, blackBrush,

new Point(10, 100));

}

Running this example produces this:

The example demonstrates the use of the Graphics.DrawString() method to draw items of text.
DrawString() comes in a number of overloads, of which we demonstrate three. The different overloads all,
however, require parameters that indicate the text to be displayed, the font that the string should be drawn in, and the
brush that should be used to construct the various lines and curves that make up each character of text. There are a
couple of alternatives for the remaining parameters. In general, however, it is possible to specify either a Point (or
equivalently, two numbers), or a Rectangle.

Graphics with GDI+

931

If you specify a Point, the text will start with its top left corner at that Point and simply stretch out to the
right. If you specify a Rectangle, then the Graphics instance will lay the string out inside that rectangle. If
the text doesn't fit into the bounds of the rectangle, then it'll be cut off, as you see from the screenshot. Passing
a rectangle to DrawString() means that the drawing process will take longer, as DrawString() will need
to figure out where to put line breaks, but the result may look nicer, provided the string fits in the rectangle!

This example also shows a couple of ways of constructing fonts. You always need the name of the font, and its size
(height). You can also optionally pass in various styles that modify how the text is to be drawn (bold, underline, and so
on).

Fonts and Font Families
We all think intuitively that we have a fairly good understanding of fonts; after all we look at them almost all
the time. A font describes exactly how each letter should be displayed. Selection of the appropriate font and
providing a reasonable variety of fonts within a document are important factors in improving readability.

Oddly, our intuitive understanding usually isn't quite correct. Most people, if asked to name a font, will say
things like 'Arial' or 'Times New Roman' or 'Courier'. In fact, these are not fonts at all – they are font families.
The font family tells you in generic terms the visual style of the text, and is a key factor in the overall
appearance of your application. Most of us will have become used to recognizing the styles of the most
common font families, even if we're not consciously aware of this.

An actual font would be something like Arial 9-point italic. In other words, the size and other modifications to
the text are specified as well as the font family. These modifications might include whether it is bold, italic,
underlined, or displayed in SMALL CAPS or as a subscript; this is technically referred to the style, though in some
ways the term is misleading since the visual appearance is determined as much by the font family.

The way the size of the text is measured is by specifying its height. The height is measured in points – a
traditional unit, which represents 1/72 of an inch (0.351 mm). So letters in a 10-point font are roughly 1/7'' or
3.5 mm high. However, you won't get seven lines of 10 point text into one inch of vertical screen or paper
space, because you need to allow for the spacing between the lines as well.

Strictly speaking, measuring the height isn't quite as simple as that, since there are several
different heights that you need to consider. For example, there is the height of tall letters like
the A or F (this is the measurement that we really mean when we talk about the height), the
additional height occupied by any accents on letters like Å or Ñ (the internal leading), and the
extra height below the base line needed for the tails of letters like y and g (the descent).
However, for this chapter we won't worry about that. Once you specify the font family and the
main height, these subsidiary heights are determined automatically – you can't independently
choose their values.

When you're dealing with fonts you may also encounter some other terms that are commonly used to describe
certain font families.

❑ A serif font family is one that has little tick marks at the ends of many of the lines that make up the
characters (These ticks are known as serifs). Times New Roman is a classic example of this.

Chapter 19

932

❑ Sans serif font families, by contrast, don't have these ticks. Good examples of sans serif fonts are
Arial, and Verdana. The lack of tick marks often gives text a blunt, in-your-face appearance, so
sans serif fonts are often used for important text.

❑ A True Type font family is one that is defined by expressing the shapes of the curves that make up
the characters in a precise mathematical manner. This means that that the same definition can be
used to calculate how to draw fonts of any size within the family. These days, virtually all the fonts
you will use are true type fonts. Some older font families from the days of Windows 3.1 were
defined by individually specifying the bitmap for each character separately for each font size, but
the use of these fonts is now discouraged.

Microsoft has provided two main classes that we need to deal with when selecting or manipulating fonts.
These are:

❑ System.Drawing.Font

❑ System.Drawing.FontFamily

We have already seen the main use of the Font class. When we wish to draw text we instantiate an instance of
Font and pass it to the DrawString() method to indicate how the text should be drawn. A FontFamily
instance is used (surprisingly enough) to represent a family of fonts.

One use of the FontFamily class is if you know you want a font of a particular type (Serif, Sans Serif or
Monospace), but don't mind which font. The static properties GenericSerif, GenericSansSerif, and
GenericMonospace return default fonts that satisfy these criteria:

FontFamily sansSerifFont = FontFamily.GenericSansSerif;

Generally speaking, however, if you're writing a professional application, you will want to choose your font in
a more sophisticated way than this. Most likely, you will implement your drawing code so that it checks the
font families available, and selects the appropriate one, perhaps by taking the first available one on a list of
preferred fonts. And if you want your application to be very user-friendly, the first choice on the list will
probably be the one that the user selected last time they ran your software. Usually, if you're dealing with the
most popular font families, such as Arial and Times New Roman, you'll be safe. However, if you do try to
display text using a font that doesn't exist the results aren't always predictable and you're quite likely to find
that Windows just substitutes the standard system font, which is very easy for the system to draw but it doesn't
look very pleasant – and if it does appear in your document it's likely to give the impression of very poor-
quality software.

You can find out what fonts are available on your system using a class called InstalledFontCollection,
which is in the System.Drawing.Text namespace. This class implements a property, Families, which is
an array of all the fonts that are available to use on your system:

InstalledFontCollection insFont = new InstalledFontCollection();
FontFamily [] families = insFont.Families;
foreach (FontFamily family in families)
{

// do processing with this font family

}

Graphics with GDI+

933

Example: Enumerating Font Families
In this section, we will work through a quick example, EnumFontFamilies, which lists all the font families
available on the system and illustrates them by displaying the name of each family using an appropriate font
(the 10-point regular version of that font family). When the sample is run it will look something like this:

Of course, the results that you get will depend on what fonts you have installed on your computer.

For this sample we have as usual created a standard C# Windows Application – this time named
EnumFontFamilies. We start off by adding an extra namespace to be searched. We will be using the
InstalledFontCollection class, which is defined in System.Drawing.Text.

using System;

using System.Drawing;
using System.Drawing.Text;

We then add the following constant to the Form1 class:

private const int margin = 10;

margin will be the size of the left and top margin between the text and the edge of the document – it stops the
text from appearing right at the edge of the client area.

This is designed as a quick-and-easy way of showing off font families; therefore the code is crude and in many
cases doesn't do things the way you ought to in a real application. For example, I've just hard-coded in a
guessed value for the document size of (200,1500) and set the AutoScrollMinSize property to this value
using the Visual Studio .NET Properties window. Normally you would have to examine the text to be
displayed to work out the document size. We will do that in the next section.

Chapter 19

934

Here is the OnPaint() method:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
int verticalCoordinate = margin;
Point topLeftCorner;
InstalledFontCollection insFont = new InstalledFontCollection();
FontFamily [] families = insFont.Families;
e.Graphics.TranslateTransform(AutoScrollPosition.X,

AutoScrollPosition.Y);
foreach (FontFamily family in families)
{

if (family.IsStyleAvailable(FontStyle.Regular))
{

Font f = new Font(family.Name, 10);
topLeftCorner = new Point(margin, verticalCoordinate);
verticalCoordinate += f.Height;
e.Graphics.DrawString (family.Name, f,

Brushes.Black,topLeftCorner);
f.Dispose();

}
}

}

In this code we start off by using an InstalledFontCollection object to obtain an array that contains
details of all the available font families. For each family, we instantiate a 10 point Font. We use a simple
constructor for Font – there are many more that allow additional options to be specified. The constructor
we've picked takes two parameters, the name of the family and the size of the font:

Font f = new Font(family.Name, 10);

This constructor constructs a font that has the regular style. To be on the safe side, however, we first check
that this style is available for each font family before attempting to display anything using that font. This is
done using the FontFamily.IsStyleAvailable() method, and this check is important, because not all
fonts are available in all styles:

if (family.IsStyleAvailable(FontStyle.Regular))

FontFamily.IsStyleAvailable() takes one parameter, a FontStyle enumeration. This enumeration
contains a number of flags that may be combined with the bitwise OR operator. The possible flags are Bold,
Italic, Regular, Strikeout, and Underline.

Finally, note that we use a property of the Font class, Height, which returns the height needed to display
text of that font, in order to work out the line spacing:

Font f = new Font(family.Name, 10);
topLeftCorner = new Point(margin, verticalCoordinate);
verticalCoordinate += f.Height;

Graphics with GDI+

935

Again, to keep things simple, our version of OnPaint()reveals some bad programming practices. For a start, we
haven't bothered to check what area of the document actually needs drawing – we just try to display everything.
Also, instantiating a Font is, as remarked earlier, a computationally intensive process, so we really ought to save
the fonts rather than instantiating new copies every time OnPaint() is called. As a result of the way the code has
been designed, you may notice that this example actually takes a noticeable time to paint itself. In order to try to
conserve memory and help the garbage collector out we do, however, call Dispose() on each font instance after
we have finished with it. If we didn't, then after 10 or 20 paint operations, there'd be a lot of wasted memory storing
fonts that are no longer needed.

Editing a Text Document: The CapsEditor Sample
We now come to the extended example in this chapter. The CapsEditor example is designed to illustrate
how the principles of drawing that we've learned up till now need to be applied in a more realistic example.
The example won't require any new material, apart from responding to user input via the mouse, but it will
show how to manage the drawing of text so that the application maintains performance while ensuring that the
contents of the client area of the main window are always kept up to date.

The CapsEditor program is functionally quite simple. It allows the user to read in a text file, which is then
displayed line by line in the client area. If the user double-clicks on any line, that line will be changed to all
uppercase. That's literally all the sample does. Even with this limited set of features, we'll find that the work
involved in making sure everything gets displayed in the right place while considering performance issues is
quite complex. In particular, we have a new element here, that the contents of the document can change –
either when the user selects the menu option to read a new file, or when they double-click to capitalize a line.
In the first case we need to update the document size so the scrollbars still work correctly, and we have to
redisplay everything. In the second case, we need to check carefully whether the document size is changed,
and what text needs to be redisplayed.

We'll start by reviewing the appearance of CapsEditor. When the application is first run, it has no document
loaded, and displays this:

Chapter 19

936

The File menu has two options: Open and Exit. Exit exits the application, while Open brings up the standard
OpenFileDialog and reads in whatever file the user selects. The next screenshot shows CapsEditor
being used to view its own source file, Form1.cs. I've also randomly double-clicked on a couple of lines to
convert them to uppercase:

The sizes of the horizontal and vertical scrollbars are, by the way, correct. The client area will scroll just
enough to view the entire document. CapsEditor doesn't try to wrap lines of text – the example is already
complicated enough without doing that. It just displays each line of the file exactly as it is read in. There are
no limits to the size of the file, but we are assuming it is a text file and doesn't contain any non-printable
characters.

We'll start off by adding a using command:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;

This is because we'll be using the StreamReader class which is in System.IO. Next we'll add in some
fields to the Form1 class:

#region Constant fields
private const string standardTitle = "CapsEditor";

// default text in titlebar
private const uint margin = 10;

// horizontal and vertical margin in client area
#endregion

#region Member fields
private ArrayList documentLines = new ArrayList(); // the 'document'

Graphics with GDI+

937

private uint lineHeight; // height in pixels of one line
private Size documentSize; // how big a client area is needed to

// display document
private uint nLines; // number of lines in document
private Font mainFont; // font used to display all lines
private Font emptyDocumentFont; // font used to display empty message
private Brush mainBrush = Brushes.Blue;

// brush used to display document text
private Brush emptyDocumentBrush = Brushes.Red;

// brush used to display empty document message
private Point mouseDoubleClickPosition;

// location mouse is pointing to when double-clicked
private OpenFileDialog fileOpenDialog = new OpenFileDialog();

// standard open file dialog
private bool documentHasData = false;

// set to true if document has some data in it
#endregion

Most of these fields should be self-explanatory. The documentLines field is an ArrayList that contains
the actual text of the file that has been read in. In a real sense, this is the field that contains the data in the
"document". Each element of documentLines contains information for one line of text that has been read in.
Since it's an ArrayList, rather than a plain array, we can dynamically add elements to it as we read in a file.
You'll notice I've also liberally used #region preprocessor directives to block up bits of the program to make
it easier to edit.

I said each documentLines element contains information about a line of text. This information is actually
an instance of another class I've defined, TextLineInformation:

class TextLineInformation
{

public string Text;
public uint Width;

}

TextLineInformation looks like a classic case where you'd normally use a struct rather than a class
since it's just there to group together a couple of fields. However, its instances are always accessed as
elements of an ArrayList, which expects its elements to be stored as reference types, so declaring
TextLineInformation as a class makes things more efficient by saving a lot of boxing and unboxing
operations.

Each TextLineInformation instance stores a line of text – and that can be thought of as the smallest item
that is displayed as a single item. In general, for each similar item in a GDI+ application, you'd probably want
to store the text of the item, as well as the world coordinates of where it should be displayed and its size (the
page coordinates will change frequently, whenever the user scrolls, whereas world coordinates will normally
only change when other parts of the document are modified in some way). In this case we've only stored the
Width of the item. The reason is because the height in this case is just the height of whatever our selected
font is. It's the same for all lines of text so there's no point storing it separately for each one; we store it once,
in the Form1.lineHeight field. As for the position – well in this case the x coordinate is just equal to the
margin, and the y coordinate is easily calculated as:

margin + lineHeight*(however many lines are above this one)

Chapter 19

938

If we'd been trying to display and manipulate, say, individual words instead of complete lines, then the x
position of each word would have to be calculated using the widths of all the previous words on that line of
text, but I wanted to keep it simple here, which is why we're treating each line of text as one single item.

Let's deal with the main menu now. This part of the application is more the realm of Windows Forms – the
subject of Chapter 7, than of GDI+. I added the menu options using the design view in Visual Studio .NET,
but renamed them as menuFile, menuFileOpen, and menuFileExit. I then added event handlers for the
File Open and File Exit menu options using the Visual Studio .NET Properties window. The event handlers
have their VS .NET-generated names of menuFileOpen_Click()and menuFileExit_Click().

We need some extra initialization code in the Form1() constructor:

public Form1()
{

InitializeComponent();

CreateFonts();
fileOpenDialog.FileOk += new

System.ComponentModel.CancelEventHandler(
this.OpenFileDialog_FileOk);
fileOpenDialog.Filter =

"Text files (*.txt)|*.txt|C# source files (*.cs)|*.cs";

}

The event handler added here is for when the user clicks OK on the File Open dialog. We have also set the
filter for the open file dialog so that we can only load up text files – we've opted for .txt files as well as C#
source files, so we can use the application to examine the sourcecode for our samples.

CreateFonts() is a helper method that sorts out the fonts we intend to use:

private void CreateFonts()
{

mainFont = new Font("Arial", 10);
lineHeight = (uint)mainFont.Height;
emptyDocumentFont = new Font("Verdana", 13, FontStyle.Bold);

}

The actual definitions of the handlers are pretty standard stuff:

protected void OpenFileDialog_FileOk(object Sender, CancelEventArgs e)
{

this.LoadFile(fileOpenDialog.FileName);
}

protected void menuFileOpen_Click(object sender, EventArgs e)
{

fileOpenDialog.ShowDialog();
}

protected void menuFileExit_Click(object sender, EventArgs e)
{

this.Close();
}

Graphics with GDI+

939

We'll examine the LoadFile() method now. It's the method that handles the opening and reading in of a file
(as well as ensuring a Paint event gets raised to force a repaint with the new file):

private void LoadFile(string FileName)
{

StreamReader sr = new StreamReader(FileName);
string nextLine;
documentLines.Clear();
nLines = 0;
TextLineInformation nextLineInfo;
while ((nextLine = sr.ReadLine()) != null)
{

nextLineInfo = new TextLineInformation();
nextLineInfo.Text = nextLine;
documentLines.Add(nextLineInfo);
++nLines;

}
sr.Close();
documentHasData = (nLines>0) ? true : false;

CalculateLineWidths();
CalculateDocumentSize();

this.Text = standardTitle + " - " + FileName;
this.Invalidate();

}

Most of this function is just standard file-reading stuff, as covered in Chapter 12. Notice how as the file is read
in, we progressively add lines to the documentLines ArrayList, so this array ends up containing
information for each of the lines in order. After we've read in the file, we set the documentHasData flag,
which indicates whether there is actually anything to display. Our next task is to work out where everything is
to be displayed, and, having done that, how much client area we need to display the file – the document size
that will be used to set the scrollbars. Finally, we set the title bar text and call Invalidate().
Invalidate() is an important method supplied by Microsoft, so we'll break for a couple of pages to explain
its use, before we examine the code for the CalculateLineWidths() and CalculateDocumentSize()
methods.

The Invalidate() Method
Invalidate() is a member of System.Windows.Forms.Form that we've not met before. It marks an
area of the client window as invalid and, therefore, in need of repainting, and then makes sure a Paint event
is raised. There are a couple of overrides to Invalidate(): you can pass it a rectangle that specifies (in
page coordinates) precisely which area of the window needs repainting, or if you don't pass any parameters
it'll just mark the entire client area as invalid.

You may wonder why we are doing it this way. If we know that something needs painting, why don't we just
call OnPaint() or some other method to do the painting directly? The answer is that in general, calling
painting routines directly is regarded as bad programming practice – if your code decides it wants some
painting done, in general you should call Invalidate(). Here's why:

Chapter 19

940

❑ Drawing is almost always the most processor-intensive task a GDI+ application will carry out, so
doing it in the middle of other work holds up the other work. With our example, if we'd directly
called a method to do the drawing from the LoadFile() method, then the LoadFile() method
wouldn't return until that drawing task was complete. During that time, our application can't respond
to any other events. On the other hand, by calling Invalidate() we are simply getting Windows
to raise a Paint event before immediately returning from LoadFile(). Windows is then free to
examine the events that are waiting to be handled. How this works internally is that the events sit as
what are known as messages in a message queue. Windows periodically examines the queue and if
there are events in it, it picks one and calls the corresponding event handler. Although the Paint
event may be the only one sitting in the queue (so OnPaint() gets called immediately anyway), in
a more complex application there may be other events that ought to get priority over our Paint
event. In particular, if the user has decided to quit the application, this will be marked by a message
known as WM_QUIT.

❑ Related to the first reason, if you have a more complicated, multithreaded, application, you'll
probably want just one thread to handle all the drawing. Using Invalidate() to route all drawing
through the message queue provides a good way of ensuring that the same thread (whatever thread
is responsible for the message queue – this will be the thread that called Application.Run())
does all the drawing, no matter what other thread requested the drawing operation.

❑ There's an additional performance-related reason. Suppose at about the same time a couple of
different requests to draw part of the screen come in. Maybe your code has just modified the
document and wants to ensure the updated document is displayed, while at the same time the user
has just moved another window that was covering part of the client area out of the way. By calling
Invalidate(), you are giving windows a chance to notice that this has occurred. Windows can
then merge the Paint events if appropriate, combining the invalidated areas, so that the painting is
only done once.

❑ Finally, the code to do the painting is probably going to be one of the most complex parts of the
code in your application, especially if you have a very sophisticated user interface. The guys who
have to maintain your code in a couple of years time will thank you for having kept your painting
code all in one place and as simple as you reasonably can – something that's easier to do if you don't
have too many pathways into it from other parts of the program.

The bottom line from all this is that it is good practice to keep all your painting in the OnPaint() routine, or
in other methods called from that method. However, you have to strike a balance; if you want to replace just
one character on the screen and you know perfectly well that it won't affect anything else that you've drawn,
then you may decide that it's not worth the overhead of going through Invalidate(), and just write a
separate drawing routine.

In a very complicated application, you may even write a full class that takes responsibility for
drawing to the screen. A few years ago when MFC was the standard technology for GDI-
intensive applications, MFC followed this model, with a C++ class,
C<ApplicationName>View that was responsible for painting. However, even in this case,
this class had one member function, OnDraw(), which was designed to be the entry point for
most drawing requests.

Graphics with GDI+

941

Calculating Item Sizes and Document Size
We'll return to the CapsEditor example now and examine the CalculateLineWidths() and
CalculateDocumentSize() methods that are called from LoadFile():

private void CalculateLineWidths()
{

Graphics dc = this.CreateGraphics();
foreach (TextLineInformation nextLine in documentLines)
{

nextLine.Width = (uint)dc.MeasureString(nextLine.Text,
mainFont).Width;

}
}

This method simply runs through each line that has been read in and uses the
Graphics.MeasureString() method to work out and store how much horizontal screen space the string
requires. We store the value, because MeasureString() is computationally intensive. If we hadn't made the
CapsEditor sample so simple that we can easily work out the height and location of each item, this method
would almost certainly have needed to be implemented in such a way as to compute all those quantities too.

Now we know how big each item on the screen is, and we can calculate where each item goes, we are in a
position to work out the actual document size. The height is basically the number of lines multiplied by the
height of each line. The width will need to be worked out by iterating through the lines to find the longest. For
both height and width, we will also want to make an allowance for a small margin around the displayed
document, to make the application look more attractive.

Here's the method that calculates the document size:

private void CalculateDocumentSize()
{

if (!documentHasData)
{

documentSize = new Size(100, 200);
}
else
{

documentSize.Height = (int)(nLines*lineHeight) + 2*(int)margin;
uint maxLineLength = 0;
foreach (TextLineInformation nextWord in documentLines)
{

uint tempLineLength = nextWord.Width + 2*margin;
if (tempLineLength > maxLineLength)

maxLineLength = tempLineLength;
}
documentSize.Width = (int)maxLineLength;

}
this.AutoScrollMinSize = documentSize;

}

This method first checks whether there is any data to be displayed. If there isn't we cheat a bit and use a hard-
coded document size, which I happen to know is big enough to display the big red <Empty Document>
warning. If we'd wanted to really do it properly, we'd have used MeasureString() to check how big that
warning actually is.

Chapter 19

942

Once we've worked out the document size, we tell the Form instance what the size is by setting the
Form.AutoScrollMinSize property. When we do this, something interesting happens behind the scenes.
In the process of setting this property, the client area is invalidated and a Paint event is raised, for the very
sensible reason that changing the size of the document means scrollbars will need to be added or modified and
the entire client area will almost certainly be repainted. Why do I say that's interesting? It illustrates perfectly
what I was saying earlier about using the Form.Invalidate() method. You see, if you look back at the
code for LoadFile() you'll realize that our call to Invalidate() in that method is actually redundant.
The client area will be invalidated anyway when we set the document size. I left the explicit call to
Invalidate() in the LoadFile() implementation to illustrate how in general you should normally do
things. In fact in this case, all calling Invalidate() again will do is needlessly request a duplicate Paint
event. However, this in turn illustrates what I was saying about how Invalidate() gives Windows the
chance to optimize performance. The second Paint event won't in fact get raised: Windows will see that
there's a Paint event already sitting in the queue and will compare the requested invalidated regions to see if
it needs to do anything to merge them. In this case both Paint events will specify the entire client area, so
nothing needs to be done, and Windows will quietly drop the second Paint request. Of course, going through
that process will take up a little bit of processor time, but it'll be an negligible amount of time compared to
how long it takes to actually do some painting.

OnPaint()
Now we've seen how CapsEditor loads the file, it's time to look at how the painting is done:

protected override void OnPaint(PaintEventArgs e)
{

base.OnPaint(e);
Graphics dc = e.Graphics;
int scrollPositionX = this.AutoScrollPosition.X;
int scrollPositionY = this.AutoScrollPosition.Y;
dc.TranslateTransform(scrollPositionX, scrollPositionY);

if (!documentHasData)
{

dc.DrawString("<Empty document>", emptyDocumentFont,
emptyDocumentBrush, new Point(20,20));

base.OnPaint(e);
return;

}

// work out which lines are in clipping rectangle
int minLineInClipRegion =

WorldYCoordinateToLineIndex(e.ClipRectangle.Top –
scrollPositionY);

if (minLineInClipRegion == -1)
minLineInClipRegion = 0;

int maxLineInClipRegion =
WorldYCoordinateToLineIndex(e.ClipRectangle.Bottom –

scrollPositionY);
if (maxLineInClipRegion >= this.documentLines.Count ||

maxLineInClipRegion == -1)
maxLineInClipRegion = this.documentLines.Count-1;

TextLineInformation nextLine;
for (int i=minLineInClipRegion; i<=maxLineInClipRegion ; i++)
{

Graphics with GDI+

943

nextLine = (TextLineInformation)documentLines[i];
dc.DrawString(nextLine.Text, mainFont, mainBrush,

this.LineIndexToWorldCoordinates(i));
}

}

At the heart of this OnPaint() override is a loop that goes through each line of the document, calling
Graphics.DrawString() to paint each one. The rest of this code is mostly to do with optimizing the
painting – the usual stuff about figuring out what exactly needs painting instead of rushing in and telling the
graphics instance to redraw everything.

We start off by checking if there is any data in the document. If there isn't, we draw a quick message saying
so, call the base class's OnPaint() implementation, and exit. If there is data, then we start looking at the
clipping rectangle. The way we do this is by calling another method that we've written,
WorldYCoordinateToLineIndex(). We'll examine this method next, but essentially it takes a given y
position relative to the top of the document, and works out what line of the document is being displayed at that
point.

The first time we call the WorldYCoordinateToLineIndex() method, we pass it the coordinate value
e.ClipRectangle.Top - scrollPositionY. This is just the top of the clipping region, converted to
world coordinates. If the return value is –1, we'll play safe and assume we need to start at the beginning of the
document (this is the case if the top of the clipping region is in the top margin).

Once we've done all that, we essentially repeat the same process for the bottom of the clipping rectangle, in
order to find the last line of the document that is inside the clipping region. The indices of the first and last
lines are respectively stored in minLineInClipRegion and maxLineInClipRegion, so then we can just
run a for loop between these values to do our painting. Inside the painting loop, we actually need to do
roughly the reverse transformation to the one performed by WorldYCoordinateToLineIndex(). We are
given the index of a line of text, and we need to check where it should be drawn. This calculation is actually
quite simple, but we've wrapped it up in another method, LineIndexToWorldCoordinates(), which
returns the required coordinates of the top left corner of the item. The returned coordinates are world
coordinates, but that's fine, because we have already called TranslateTransform() on the Graphics
object so that we need to pass it world, rather than page, coordinates when asking it to display items.

Coordinate Transforms
In this section, we'll examine the implementation of the helper methods that we've written in the
CapsEditor sample to help us with coordinate transforms. These are the
WorldYCoordinateToLineIndex() and LineIndexToWorldCoordinates() methods that we
referred to in the last section, as well as a couple of other methods.

First, LineIndexToWorldCoordinates() takes a given line index, and works out the world coordinates
of the top left corner of that line, using the known margin and line height:

private Point LineIndexToWorldCoordinates(int index)
{

Point TopLeftCorner = new Point(
(int)margin, (int)(lineHeight*index + margin));

return TopLeftCorner;
}

Chapter 19

944

We also used a method that roughly does the reverse transform in OnPaint().
WorldYCoordinateToLineIndex() works out the line index, but it only takes into account a vertical
world coordinate. This is because it is used to work out the line index corresponding to the top and bottom of
the clip region.

private int WorldYCoordinateToLineIndex(int y)
{

if (y < margin)
return -1;

return (int)((y-margin)/lineHeight);
}

There are three more methods, which will be called from the handler routine that responds to the user double-
clicking the mouse. First, we have a method that works out the index of the line being displayed at given
world coordinates. Unlike WorldYCoordinateToLineIndex(), this method takes into account the x and
y positions of the coordinates. It returns –1 if there is no line of text covering the coordinates passed in:

private int WorldCoordinatesToLineIndex(Point position)
{

if (!documentHasData)
return -1;

if (position.Y < margin || position.X < margin)
return -1;

int index = (int)(position.Y-margin)/(int)this.lineHeight;
// check position isn't below document
if (index >= documentLines.Count)

return -1;
// now check that horizontal position is within this line
TextLineInformation theLine =

(TextLineInformation)documentLines[index];
if (position.X > margin + theLine.Width)

return -1;

// all is OK. We can return answer
return index;

}

Finally, on occasions we also need to convert between line index and page, rather than world, coordinates. The
following methods achieve this:

private Point LineIndexToPageCoordinates(int index)
{

return LineIndexToWorldCoordinates(index) +
new Size(AutoScrollPosition);

}

private int PageCoordinatesToLineIndex(Point position)
{

return WorldCoordinatesToLineIndex(position - new
Size(AutoScrollPosition));

}

Note that when converting to page coordinates, we add the AutoScrollPosition, which is negative.

Graphics with GDI+

945

Although these methods by themselves don't look particularly interesting, they do illustrate a general
technique that you'll probably often need to use. With GDI+, we'll often find ourselves in a situation where we
have been given some coordinates (for example the coordinates of where the user has clicked the mouse) and
we'll need to figure out what item is being displayed at that point. Or it could happen the other way round –
given a particular display item, whereabouts should it be displayed? Hence, if you are writing a GDI+
application, you'll probably find it useful to write methods that do the equivalent of the coordinate
transformation methods illustrated here.

Responding to User Input
So far, with the exception of the File menu in the CapsEditor sample, everything we've done in this chapter
has been one way: the application has talked to the user, by displaying information on the screen. Almost all
software of course works both ways: the user can talk to the software as well. We're now going to add that
facility to CapsEditor.

Getting a GDI+ application to respond to user input is actually a lot simpler than writing the code to draw to
the screen, and indeed we've already covered how handle user input in Chapter 7. Essentially, you override
methods from the Form class that get called from the relevant event handler – in much the same way that
OnPaint() is called when a Paint event is raised.

For the case of detecting when the user clicks or moves the mouse the methods you may wish to override
include:

Method Called when:

OnClick(EventArgs e) mouse is clicked

OnDoubleClick(EventArgs e) mouse is double-clicked

OnMouseDown(MouseEventArgs e) left mouse button pressed

OnMouseHover(MouseEventArgs e) mouse stays still somewhere after moving

OnMouseMove(MouseEventArgs e) mouse is moved

OnMouseUp(MouseEventArgs e) left mouse button is released

If you want to detect when the user types in any text, then you'll probably want to override these methods:

Method Called when:

OnKeyDown(KeyEventArgs e) a key is depressed

OnKeyPress(KeyPressEventArgs e) a key is pressed and released

OnKeyUp(KeyEventArgs e) a pressed key is released

Notice that some of these events overlap. For example, if the user presses a mouse button this will raise the
MouseDown event. If the button is immediately released again, this will raise the MouseUp event and the
Click event. Also, some of these methods take an argument that is derived from EventArgs rather than an
instance of EventArgs itself. These instances of derived classes can be used to give more information about a
particular event. MouseEventArgs has two properties X and Y, which give the device coordinates of the
mouse at the time it was pressed. Both KeyEventArgs and KeyPressEventArgs have properties that
indicate which key or keys the event concerns.

Chapter 19

946

That's all there is to it. It's then up to you to think about the logic of precisely what you want to do. The only
point to note is that you'll probably find yourself doing a bit more logic work with a GDI+ application than
you would have with a Windows.Forms application. That's because in a Windows.Forms application you
are typically responding to quite high-level events (TextChanged for a textbox, for example). By contrast
with GDI+, the events tend to be more basic – user clicks the mouse, or hits the key h. The action your
application takes is likely to depend on a sequence of events rather than a single event. For example, say your
application works like Word for Windows, where in order to select some text the user clicks the left mouse
button, then moves the mouse, then releases the left mouse button. Your application will receive the
MouseDown event, but there's not much you can do with this event except record that the mouse was clicked
with the cursor in a certain position. Then, when the MouseMove event is received, you'll want to check from
the record whether the left button is currently down, and if so highlight text as the user selects it. When the
user releases the left mouse button, your corresponding action (in the OnMouseUp() method) will need to
check whether any dragging took place while the mouse button was down, and act accordingly. Only at this
point is the sequence complete.

Another point to consider is that, because certain events overlap, you will often have a choice of which event
you want your code to respond to.

The golden rule really is to think carefully about the logic of every combination of mouse movement or click
and keyboard event that the user might initiate, and ensure that your application responds in a way that is
intuitive and in accordance with the expected behavior of applications in every case. Most of your work here
will be in thinking rather than in coding, though the coding you do will be quite fiddly, as you may need to
take into account a lot of combinations of user input. For example, what should your application do if the user
starts typing in text while one of the mouse buttons is held down? It might sound like an improbable
combination, but sooner or later some user is going to try it!

For the CapsEditor example, we are keeping things very simple, so we don't really have any combinations
to think about. The only thing we are going to respond to is when the user double-clicks – in which case we
capitalize whatever line of text the mouse pointer is hovering over.

This should be a fairly simple task, but there is one snag. We need to trap the DoubleClick event, but the
table above shows that this event takes an EventArgs parameter, not a MouseEventArgs parameter. The
trouble is that we'll need to know where the mouse is when the user double-clicks, if we are to correctly
identify the line of text to be capitalized – and you need a MouseEventArgs parameter to do that. There are
two workarounds. One is to use a static method that is implemented by the Form1 object,
Control.MousePosition, to find out the mouse position, like so:

protected override void OnDoubleClick(EventArgs e)
{

Point MouseLocation = Control.MousePosition;
// handle double click

In most cases this will work. However, there could be a problem if your application (or even some other
application with a high priority) is doing some computationally intensive work at the moment the user double-
clicks. It just might happen in that case that the OnDoubleClick() event handler doesn't get called until
perhaps half a second or so after the user has double-clicked. You don't really want delays like that, because
they usually annoy users intensely, but even so, occasionally it does happen, and sometimes for reasons
beyond the control of your app (a slow computer for instance). Trouble is, half a second is easily enough time
for the mouse to get moved halfway across the screen – in which case your call to
Control.MousePosition will return completely the wrong location!

Graphics with GDI+

947

A better way here is to rely on one of the many overlaps between mouse-event meanings. The first part of
double-clicking a mouse involves pressing the left button down. This means that if OnDoubleClick() is
called then we know that OnMouseDown() has also just been called, with the mouse at the same location. We
can use the OnMouseDown() override to record the position of the mouse, ready for OnDoubleClick().
This is the approach we take in CapsEditor:

protected override void OnMouseDown(MouseEventArgs e)
{

base.OnMouseDown(e);
this.mouseDoubleClickPosition = new Point(e.X, e.Y);

}

Now let's look at our OnDoubleClick() override. There's quite a bit more work to do here:

protected override void OnDoubleClick(EventArgs e)
{

int i = PageCoordinatesToLineIndex(this.mouseDoubleClickPosition);
if (i >= 0)
{

TextLineInformation lineToBeChanged =
(TextLineInformation)documentLines[i];

lineToBeChanged.Text = lineToBeChanged.Text.ToUpper();
Graphics dc = this.CreateGraphics();
uint newWidth =(uint)dc.MeasureString(lineToBeChanged.Text,

mainFont).Width;
if (newWidth > lineToBeChanged.Width)

lineToBeChanged.Width = newWidth;
if (newWidth+2*margin > this.documentSize.Width)
{

this.documentSize.Width = (int)newWidth;
this.AutoScrollMinSize = this.documentSize;

}
Rectangle changedRectangle = new Rectangle(

LineIndexToPageCoordinates(i),
new Size((int)newWidth,
(int)this.lineHeight));

this.Invalidate(changedRectangle);
}
base.OnDoubleClick(e);

}

We start off by calling PageCoordinatesToLineIndex() to work out which line of text the mouse
pointer was hovering over when the user double-clicked. If this call returns –1 then we weren't over any text,
so there's nothing to do; except, of course, call the base class version of OnDoubleClick() to let Windows
do any default processing.

Assuming we've identified a line of text, we can use the string.ToUpper() method to convert it to
uppercase. That was the easy part. The hard part is figuring out what needs to be redrawn where. Fortunately,
because we kept the sample so simplistic, there aren't too many combinations. We can assume for a start, that
converting to uppercase will always either leave the width of the line on the screen unchanged, or increase it.
Capital letters are bigger than lowercase letters; therefore, the width will never go down. We also know that since
we are not wrapping lines, our line of text won't overflow to the next line and push out other text below. Our
action of converting the line to uppercase won't, therefore, actually change the locations of any of the other items
being displayed. That's a big simplification!

Chapter 19

948

The next thing the code does is use Graphics.MeasureString() to work out the new width of the text.
There are now just two possibilities:

❑ The new width might make our line the longest line, and cause the width of the entire document to
increase. If that's the case then we'll need to set AutoScrollMinSize to the new size so that the
scrollbars are correctly placed.

❑ The size of the document might be unchanged.

In either case, we need to get the screen redrawn, by calling Invalidate(). Only one line has changed; therefore,
we don't want to have the entire document repainted. Rather, we need to work out the bounds of a rectangle that
contains just the modified line, so that we can pass this rectangle to Invalidate(), ensuring that just that line of
text will be repainted. That's precisely what the above code does. Our call to Invalidate() will result in
OnPaint() being called, when the mouse event handler finally returns. Bearing in mind our comments earlier in
the chapter about the difficulty in setting a break point in OnPaint(), if you run the sample and set a break point
in OnPaint() to trap the resultant painting action, you'll find that the PaintEventArgs parameter to
OnPaint() does indeed contain a clipping region that matches the specified rectangle. And since we've
overloaded OnPaint() to take careful account of the clipping region, only the one required line of text will be
repainted.

Printing
In this chapter we've focused so far entirely on drawing to the screen. However, at some point you will
probably also want to be able to produce a hard copy of the data too. That's the topic of this section. We're
going to extend the CapsEditor sample so that it is able to print preview and print the document that is
being edited.

Unfortunately, we don't have enough space to go into too much detail about printing here, so the printing
functionality we will implement will be very basic. Usually, if you are implementing the ability for an
application to print data, you will add three items to the application's main File menu:

❑ Page Setup – allows the user to choose options such as which pages to print, which printer to use,
etc.

❑ Print Preview – opens a new Form that displays a mock-up of what the printed copy should look

❑ Print – actually prints the document

In our case, to keep things simple, we won't implement a Page Setup menu option. Printing will only be
possible using default settings. We will note, however, that, if you do want to implement Page Setup, then
Microsoft has already written a page setup dialog class for you to use. It is the class
System.Windows.Forms.PrintDialog. You will normally want to write an event handler that displays
this form, and saves the settings chosen by the user.

In many ways printing is just the same as displaying to a screen. You will be supplied with a device context
(Graphics instance) and call all the usual display commands against that instance. Microsoft has written a
number of classes to assist you in doing this; the two main ones that we need to use are
System.Drawing.Printing.PrintDocument and
System.Drawing.Printing.PrintPreviewDialog. These two classes handle the process of making
sure that drawing instructions passed to a device context get appropriately handled for printing, leaving you to
think about the logic of what to print where.

Graphics with GDI+

949

There are some important differences between printing/print previewing on the one hand, and displaying to the
screen on the other hand. Printers cannot scroll – instead they have pages. So you'll need to make sure you find a
sensible way of dividing your document into pages, and draw each page as requested. Among other things that
means calculating how much of your document will fit onto a single page, and therefore how many pages you'll
need, and which page each part of the document needs to be written to.

Despite the above complications, the process of printing is quite simple. Programmatically, the steps you need
to go through look roughly like this:

❑ Printing
You instantiate a PrintDocument object, and call its Print() method. This method will
internally cause an event, PrintPage, to be raised to signal the printing of the first page.
PrintPage takes a PrintPageEventArgs parameter, which supplies information concerning
paper size and setup, as well as a Graphics object used for the drawing commands. You should
therefore have written an event handler for this event, and have implemented this handler to print a
page. This event handler should also set a Boolean property of the PrintPageEventArgs,
HasMorePages, to either true or false to indicate whether there are more pages to be printed.
The PrintDocument.Print() method will repeatedly raise the PrintPage event until it sees
that HasMorePages has been set to false.

❑ Print Previewing
In this case, you instantiate both a PrintDocument object and a PrintPreviewDialog object.
You attach the PrintDocument to the PrintPreviewDialog (using the property
PrintPreviewDialog.Document) and then call the dialog's ShowDialog() method. This
method will modally display the dialog – which turns out to be a standard Windows print preview
form, and which displays pages of the document. Internally, the pages are displayed once again by
repeatedly raising the PrintPage event until the HasMorePages property is false. There's no
need to write a separate event handler for this; you can use the same event handler as used for
printing each page since the drawing code ought to be identical in both cases (after all, whatever is
print previewed ought to look identical to the printed version!).

Implementing Print and Print Preview
Now we've gone over the broad steps to be taken, let's see how this works in code terms. The code is
downloadable as the PrintingCapsEdit project, and consists of the CapsEditor project, with the
changes highlighted below made.

We start off by using the VS .NET design view to add two new items to the File menu: Print and Print
Preview. We also use the properties window to name these items menuFilePrint and
menuFilePrintPreview, and to set them to be disabled when the application starts up (we can't print
anything until a document has been opened!). We arrange for these menu items to be enabled by adding the
following code to the main form's LoadFile() method, which we recall is responsible for loading a file into
the CapsEditor application:

private void LoadFile(string FileName)
{

StreamReader sr = new StreamReader(FileName);
string nextLine;
documentLines.Clear();
nLines = 0;
TextLineInformation nextLineInfo;
while ((nextLine = sr.ReadLine()) != null)

Chapter 19

950

{
nextLineInfo = new TextLineInformation();
nextLineInfo.Text = nextLine;
documentLines.Add(nextLineInfo);
++nLines;

}
sr.Close();
if (nLines > 0)
{

documentHasData = true;
menuFilePrint.Enabled = true;
menuFilePrintPreview.Enabled = true;

}
else
{

documentHasData = false;
menuFilePrint.Enabled = false;
menuFilePrintPreview.Enabled = false;

}

CalculateLineWidths();
CalculateDocumentSize();

this.Text = standardTitle + " - " + FileName;
this.Invalidate();

}

The highlighted code above is the new code we have added to this method. Next we add a member field to the
Form1 class:

public class Form1 : System.Windows.Forms.Form
{

private int pagesPrinted = 0;

This field will be used to indicate which page we are currently printing. We are making it a member field, since we will
need to remember this information between calls to the PrintPage event handler.

Next, the event handlers for when the user selects the Print or Print Preview menu options:

private void menuFilePrintPreview_Click(object sender, System.EventArgs e)
{

this.pagesPrinted = 0;
PrintPreviewDialog ppd = new PrintPreviewDialog();
PrintDocument pd = new PrintDocument();
pd.PrintPage += new PrintPageEventHandler

(this.pd_PrintPage);
ppd.Document = pd;
ppd.ShowDialog();

}

private void menuFilePrint_Click(object sender, System.EventArgs e)
{

this.pagesPrinted = 0;
PrintDocument pd = new PrintDocument();
pd.PrintPage += new PrintPageEventHandler

(this.pd_PrintPage);
pd.Print();

}

Graphics with GDI+

951

We've already explained the broad procedure involved in printing, and we can see that these event handlers are
simply implementing that procedure. In both cases we are instantiating a PrintDocument object and attaching
an event handler to its PrintPage event. For the case of printing, we call PrintDocument.Print(), while
for print previewing, we attach the PrintDocument object to a PrintPreviewDialog, and call the
preview dialog object's ShowDialog() method. The real work is going to be done in that event handler to the
PrintPage event – and this is what that handler looks like:

private void pd_PrintPage(object sender, PrintPageEventArgs e)

{

float yPos = 0;

float leftMargin = e.MarginBounds.Left;

float topMargin = e.MarginBounds.Top;

string line = null;

// Calculate the number of lines per page.

int linesPerPage = (int)(e.MarginBounds.Height /

mainFont.GetHeight(e.Graphics));

int lineNo = this.pagesPrinted * linesPerPage;

// Print each line of the file.

int count = 0;

while(count < linesPerPage && lineNo < this.nLines)

{

line = ((TextLineInformation)this.documentLines[lineNo]).Text;

yPos = topMargin + (count * mainFont.GetHeight(e.Graphics));

e.Graphics.DrawString(line, mainFont, Brushes.Blue,

leftMargin, yPos, new StringFormat());

lineNo++;

count++;

}

// If more lines exist, print another page.

if(this.nLines > lineNo)

e.HasMorePages = true;

else

e.HasMorePages = false;

pagesPrinted++;

}

After declaring a couple of local variables, the first thing we do is work out how many lines of text can be
displayed on one page – which will be the height of a page divided by the height of a line and rounded down.
The height of the page can be obtained from the PrintPageEventArgs.MarginBounds property. This
property is a RectangleF struct that has been initialized to give the bounds of the page. The height of a line
is obtained from the Form1.mainFont field, which we recall from the CapsEditor sample is the font used
for displaying the text. There is no reason here for not using the same font for printing too. Note that for the
PrintingCapsEditor sample, the number of lines per page is always the same, so we arguably could have
cached the value the first time we calculated it. However, the calculation isn't too hard, and in a more
sophisticated application the value might change, so it's not bad practice to recalculate it every time we print a
page.

Chapter 19

952

We also initialize a variable called lineNo. This gives the zero-based index of the line of the document that
will be the first line of this page. This information is important because in principle, the pd_PrintPage()
method could have been called to print any page, not just the first page. lineNo is computed as the number of
lines per page times the number of pages that have so far been printed.

Next we run through a loop, printing each line. This loop will terminate either when we find that we have printed all
the lines of text in the document, or when we find that we have printed all the lines that will fit on this page –
whichever condition occurs first. Finally, we check whether there is any more of the document to be printed, and set
the HasMorePages property of our PrintPageEventArgs accordingly, and also increment the
pagesPrinted field, so that we know to print the correct page the next time the PrintPage event handler is
invoked.

One point to note about this event handler is that we do not worry about where the drawing commands are
being sent. We simply use the Graphics object that was supplied with the PrintPageEventArgs. The
PrintDocument class that Microsoft has written will internally take care of making sure that, if we are
printing, the Graphics object will have been hooked up to the printer, while if we are print previewing
then the Graphics object will have been hooked up to the print preview form on the screen.

Finally, we need to ensure the System.Drawing.Printing namespace is searched for type definitions:

using System;
using System.Drawing;
using System.Drawing.Printing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;

All that remains is to compile the project and check that the code works. We can't really show screenshots of a
printed document(!) but this is what happens if you run CapsEdit, load a text document (as before, we've
picked the C# source file for the project), and select Print Preview:

Graphics with GDI+

953

In the screenshot, we have scrolled through to page 5 of the document, and set the preview to display
normal size. The PrintPreviewDialog has supplied quite a lot of features for us, as can be seen from
the toolbar at the top of the form. The options available include actually printing the document, zooming in
or out, and displaying two, three, four or six pages together. These options are all fully functional, without
our needing to do any work. For example, if we change the zoom to auto and click to display four pages
(third toolbar button from the right), we get this.

Chapter 19

954

Summary
In this chapter, we've covered the area of drawing to a display device, where the drawing is done by your code
rather than by some predefined control or dialog – the realm of GDI+. GDI+ is a powerful tool, and there are
many .NET base classes available to help you draw to a device. We've seen that the process of drawing is
actually relatively simple – in most cases you can draw text or sophisticated figures or display images with
just a couple of C# statements. However, managing your drawing – the behind-the-scenes work involving
working out what to draw, where to draw it, and what does or doesn't need repainting in any given situation –
is far more complex and requires careful algorithm design. For this reason, it is also important to have a good
understanding of how GDI+ works, and what actions Windows takes in order to get something drawn. In
particular, because of the architecture of Windows, it is important that where possible drawing should be done
by invalidating areas of the window and relying on Windows to respond by issuing a Paint event.

There are many more .NET classes concerned with drawing than we've had space to cover in this chapter, but if
you've worked through it and understood the principles involved in drawing, you'll be in an excellent position to
explore them, by looking at their lists of methods in the documentation and instantiating instances of them to see
what they do. In the end, drawing, like almost any other aspect of programming, requires logic, careful thought,
and clear algorithms. Apply that and you'll be able to write sophisticated user interfaces that don't depend on the
standard controls. Your software will benefit hugely in both user-friendliness and visual appearance: There are
many applications out there that rely entirely on controls for their user interface. While this can be effective, such
applications very quickly end up looking just like each other. By adding some GDI+ code to do some custom
drawing you can mark out your software as distinct and make it appear more original – which can only help your
sales!

	Graphics with GDI+
	Understanding Drawing Principles
	Measuring Coordinates and Areas
	A Note about Debugging
	Drawing Scrollable Windows
	Colors
	Pens and Brushes
	Drawing Shapes and Lines
	Displaying Images
	Drawing Text
	Fonts and Font Families
	Example: Enumerating Font Families
	Editing a Text Document: The CapsEditor Sample
	Printing
	Summary

