


What You Need to Use This Book
The following list is the recommended system requirements for running the code
in this book:

❑ Windows 2000 Professional or higher with IIS installed

❑ Windows XP Professional with IIS installed

❑ ASP.NET Version 1.0

❑ SQL Server 2000 or MSDE

❑ Visual Studio .NET Professional or higher (optional)

In addition, this book assumes the following knowledge:

❑ A good understanding of the .NET Framework and ASP.NET

❑ Understanding of the VB.NET language

Summary of Contents
Introduction 1

Chapter 1: System.Web 9

Chapter 2: System.Web.UI 101

Chapter 3: System.Web.UI.HtmlControls 177

Chapter 4: System.Web.UI.WebControls 269

Chapter 5: System.Web.UI.MobileControls 429

Chapter 6: System.Web.Caching 499

Chapter 7: System.Web.Configuration 525

Chapter 8: System.Web.Security 549

Chapter 9: System.Web.Services 587

Chapter 10: System.Web.Services.Description 613

Chapter 11: System.Web.Services.Protocols 681

Appendix A: Data in ASP.NET 749

Appendix B: XML in ASP.NET 789

Index 835



C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

System.Web
The System.Web namespace contains classes that provide the basic infrastructure for developing web-
based applications and supporting ASP.NET framework client-server communication. It includes classes
like HttpRequest and HttpResponse that encapsulate the communication information passed
between web server and client browser, yet also provides classes to access information about the
application and file paths to give you detailed insight of the web application's execution environment.
Overall, the System.Web namespace provides you with a rich set of classes that allow you to keep your
focus on building web solutions rather than digging into the unnecessary complex details of the
communication protocol and execution environment.

In this chapter we'll cover those classes in the System.Web namespace that are the most useful, and
commonly used in ASP.NET web applications. These classes make up the bulk of the namespace and
provide the majority of its functionality. Before we begin, however, we'll cover some of the basics of
ASP.NET web development.

Creating an ASP.NET Page
In classic ASP programming, server-side script was embedded directly into the HTML text of a page.
The HTML content was written onto the page and the statements that need to be executed on the server
side were written between <% and %> tags so that the server could catch them for processing. Certainly
there were exceptions to this, for example when a page simply redirected the user to a display screen,
but for the most part, this was the case.

This mixing of code (representing business logic or validation logic) with the HTML (usually containing
only user interface information) produced code that was difficult to write and maintain, especially in
large development projects. More proactive development teams would take extra steps to develop
coding standards to minimize this but it still could not be eliminated by root, as this was the basic nature
of ASP development during those days.

With ASP.NET you can continue to mix code and layout, but there are features available in the development
framework that will allow you to keep the presentation tier separate from the business logic tier. This method
uses a code-behind way of development where one file (the Web Form) will contain all presentation
information, and a separate file with a similar name (the code-behind file) will contain all the server-side
processing information. This approach has many benefits, not least of which is improved manageability,
readability, and reusability.



10

Example: Retrieving the Time

Here is an example web form, Time.aspx, where code and layout are mixed. The code is
enclosed in <script> blocks:

<%@ Page %>
<html>
<head>
  <title>Time Web Form</title>
</head>
<body>
  <script language="VB" runat="server">
    Public Function GetTime() As String
      GetTime =  System.DateTime.Now.ToString()
    End Function
  </script>
  The time at the server is
  <%=GetTime()%>
</body>
</html>

The first point to note here is that our page has an .aspx file extension. This tells the web server
that it is an ASP.NET web form, and should be handled accordingly. Next, notice that we're using a
script block to wrap a function called GetTime that returns the system date and time as a string
value. The surrounding script block specifies the language and the location to run the script, in this
case at the server. You can only use one of the supported languages on a given web page, as the
entire page is compiled to a single instance of a Page class (discussed in Chapter 2), but different
languages can be used for different pages, enabling a web application to contain several different
languages within the one application.

Finally, our script returns a value using a function call and returns the following output:

This could also have been achieved like this:

<h2>
  The time at the server is
  <%=System.DateTime.Now.ToString()%>
</h2>



11

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

The structure we've used so far will be very familiar to ASP developers. Now we're going to
compose a similar example, TimeDotNetStyle.aspx, using the suggested ASP.NET
architecture, where only the layout elements appear in the .aspx file:

<%@ Page Language="vb" Inherits="TimeDotNetStyle"
         Src="TimeDotNetStyle.aspx.vb"%>
<html>
  <head>
    <title>Time DotNet Style</title>
  </head>
  <body>
    <form id="Form1" method="post" runat="server">
      <asp:Label ID="time" Runat="server"></asp:Label>
    </form>
  </body>
</html>

There are a couple of important things to notice here. First, the file now contains a @Page
directive at the top of the file, which tells the .NET runtime about the page. Its Language
attribute tells the runtime which compiler to use on the file; in this case it's the Visual Basic .NET
compiler. Its Src attribute specifies the name of the file (also referred to as the code-behind file)
that contains our server-side code, and its Inherits attribute indicates that our .aspx page
derives from the TimeDotNetStyle class.

In addition, we have used an ASP.NET <asp:Label> and an HTTP <form> element, both
with their runat attributes set to server. This indicates that these items will be available to us
as objects in our code-behind file. To see how this works, let's examine that file,
TimeDotNetStyle.aspx.vb, now:

'This class is representing our page object. It is named the same as our
'page and is inheriting from System.Web.UI.Page:

Public Class TimeDotNetStyle
  Inherits System.Web.UI.Page

  Protected WithEvents time As System.Web.UI.WebControls.Label
  'our variable in code behind which represents the label control in our
  'web form and whose name is the same as the ID property of the control

  Private Sub Page_Init(ByVal sender As System.Object, _
                        ByVal e As System.EventArgs) _
                        Handles MyBase.Init
    'we do nothing in the Page Initialization section
  End Sub

  Private Sub Page_Load(ByVal sender As System.Object, _
                        ByVal e As System.EventArgs)   _
                        Handles MyBase.Load
    'set the text property of our label control to the current time.
    time.Text = "The time at the server is: " & _
                System.DateTime.Now.ToString()
  End Sub
End Class



12

Here we're defining a class to inherit from System.Web.UI.Page. Within that class we're
declaring a variable called time of the type System.Web.UI.WebControls.Label that
represents our <asp:Label> element from the web form. Then in the Page_Load event
handler we're simply setting the Text property of our label to the value that we want to display.
The output produced by TimeDotNetStyle.aspx is exactly the same as that produced by the
former code, in Time.aspx.

The System.Web Namespace
Now that we've seen how to make a basic page, we'll delve into more detail about the many classes that
the ASP.NET System.Web namespace makes available to developers. We'll be focusing primarily on
classes that deal with communication between the client and the server.

The following classes are covered in the System.Web namespace. Those that are in bold are the classes
in the System.Web namespace that are most frequently used.

Class Description

HttpApplication An ASP.NET application is a collection of files, pages, executable pages,
and so on, all stored within a virtual directory (and its subdirectories)
on a single web server. An ASP.NET web server maintains a pool of
HttpApplication objects for each ASP.NET application configured
on the server. Once the server receives a request for an application, it
will pick up an instance of HttpApplication object from that pool
and assign it to process the incoming request. While this
HttpApplication object is assigned to this request, it is exclusive
to it and will remain actively so throughout the lifetime of this
request. After the request is completed it is assigned back to the pool
of objects for future reuse. Among its many properties, the object of
this class is to provide you with access to important information
stored in the Request, Response and Session objects for the
current request. It is also responsible for initiating
Application_OnStart and Application_OnEnd events.

HttpApplication
State

The HttpApplicationState class objects are responsible for
maintaining application-wide state for an ASP.NET application. An
HttpApplicationState object is created when a client requests
the very first resource from ASP.NET application and it will live as
long as the application is active. It is therefore ideal for storing
global information that should live beyond individual user
sessions, requests or responses.

HttpBrowser
Capabilities

This class pulls the browser capability information from the HTTP
request and makes this information accessible on the server. With the
help of this class you can easily determine if the browser making a
request for your Web forms is capable of supporting ActiveX controls,
Java Applets, JavaScript, cookies, frames, etc. You can also collect
other information like browser type, version, operating system, and
much more.



13

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Class Description

HttpCachePolicy The HttpCachePolicy class allows you to have programmatic
control over the Output caching mechanism of ASP.NET.
HttpCachePolicy allows you to have control over the expiration of
cache, dependency settings and caching parameters among
other things.

HttpCacheVaryBy
Headers

You can use the HttpCacheVaryByHeaders class to vary the
cache output based on the list of HTTP Headers. The
HttpCacheVaryByHeaders class provides a type safe way to set
the HttpCachePolicy.VaryByHeaders property.

HttpCacheVaryBy
Params

You can use the HttpCacheVaryByParams property to vary the
cache output based on the list of parameters in a given GET or POST
request. The HttpCacheVaryByparams class provides a type safe
way to set the HttpCachePolicy.VaryByParams property.

HttpClient
Certificate

An object of the HttpClientCertificate class will hold
information about the digital certificate that the client uses to
negotiate with the web server. Using its properties like Issuer,
IsValid and Certificate, among others, you can get all required
information about the client certificate.

HttpCompile
Exception

HttpCompileException derives from HttpException. It is
thrown if there is a compiler error. You can use the properties of this
class to find out more about the causes of the error.

HttpContext This class provides information about the current context in which
the request is executing including error information or values
contained within the request.

HttpCookie This class allows the creation and manipulation of cookies sent to and
from the client.

HttpCookie
Collection

This class provides access to a collection of cookies. An object of this
type is available in both the HttpRequest and HttpResponse
objects to allow access to the cookies sent with a request or to be sent
with the response.

HttpException This exception is thrown when an HTTP error occurs.
HttpFile
Collection

This class provides a wrapper around a collection of posted files to
make managing and working with those files as a group much easier.

HttpModule
Collection

HttpModuleCollection is an assembly that can be created to
respond to various ASP.NET or user generated events.
HttpModuleCollection class is used to index and retrieve a
collection of iHttpModules associated with a given ASP.NET
application.

HttpParse
Exception

This exception is thrown when a parse error occurs.

HttpPostedFile This class provides an object that represents a file posted to the
server via an input tag on the browser and allows easy
manipulation and saving of the file.

Table continued on following page



14

Class Description

HttpRequest This class encapsulates information and functionality surrounding
the request made to the web server by the client including forms
data, query strings, headers, and browser information. Essentially, it
encompasses all information sent to the server in an object.

HttpResponse This class encapsulates the outgoing stream from the server and
allows for manipulation of the information being sent to the client
including outgoing cookies, headers, HTML content, and caching
information.

HttpRuntime This class provides access to the Internet Information Services (IIS)
run-time process and provides information on the host environment
including file paths, application IDs and the ability to process a
request and to close the runtime.

HttpServer
Utility

This class encapsulates a great deal of the helper functions for
working with web applications including the encoding and
decoding of strings, mapping paths, executing other .aspx pages,
and creating COM objects to be used in the page.

HttpStatic
Objects
Collection

StaticObjects are the objects declared in the global.asax
within the <object> tags with scope set to application.
HttpStaticObjectsCollection provides a collection for such
objects in the given ASP.NET application.

HttpUtility HttpUtility class provides various utility methods for encoding
and decoding URLs.

HttpWorker
Request

HttpWorkerRequest is an abstract class that defines methods and
enumerations used by the ASP.NET runtime to process requests; you
will only use this class when you need to implement your own
hosting environment instead of using the one provided by ASP.NET.

HttpWriter HttpWriter class can be use to send output to the clients. It is
basically a TextWriter attached to an HttpResponse object.

ProcessInfo ProcessInfo provides information on currently executing
ASP.NET worker processes. You can get a ProcessInfo class for
the currently executing ASP.NET application by using shared
methods available in ProcessModelInfo class.

ProcessModelInfo ProcessModelInfo provides two shared methods;
ProcessModelInfo.GetCurrentProcessInfo and
ProcessModelInfo.GetHistory. These return the
ProcessInfo for the current ASP.NET worker processes.

TraceContext The TraceContext class can be used to reveal the execution details
of a web request. This class provides two methods, warn and write
that you can use for writing to the trace log. You can specify a tracing
category to organize your statements.



15

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

HttpApplicationState Class
The HttpApplicationState class is responsible for maintaining application-wide state for an
ASP.NET application. An HttpApplicationState object is created when a client requests the very
first resource from an ASP.NET application and it exists as long as the application is active.
Consequently, the application state is a good place to store the information that should live beyond
individual user sessions, requests or responses. However, while this class is a natural area for global
variables, these would not be shared across either a Web farm or a Web garden.

An HttpApplicationState object stores the state of an application in the form of a name-object pair
inside a collection and provides methods to manipulate this collection. This class derives from the more
general System.Collections.Specialized.NameObjectCollectionBase class (a
MustInherit class), which defines some base functionality for Name-Object collection objects.

HttpApplicationState Public Methods
❑ Add

❑ Clear

❑ Equals – inherits from System.Object, see Introduction for more details

❑ Get

❑ GetEnumerator

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetKey

❑ GetObjectData

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ Lock

❑ OnDeserialization

❑ Remove

❑ RemoveAll

❑ RemoveAt

❑ Set

❑ ToString – inherits from System.Object, see Introduction for more details.

❑ UnLock

Add
The Add method is used to insert items into the HttpApplicationState collection. It takes an object
as a parameter for the value, and since all items in .NET are derived from Object, you can, potentially,
store anything in application state. However, you should seriously consider those items that you are
storing and the cost of saving and retrieving that information. This will depend on the object size you
have chosen for your site. Large items can degrade performance as the user load increases.



16

Public Sub Add(ByVal name As String, ByVal value As Object)

The parameter name specifies the key name of the item you wish to add to the collection. The parameter
value specifies the value of the object you wish to add to the application state.

Clear
The Clear method can be used to remove all of the items that are currently stored in
HttpApplicationState collection.

Public Sub Clear()

Get
The Get method is used to get the object from the HttpApplicationState collection either by key
name or the index value. This method is overloaded and exists in two versions.

Overloads Public Function Get(ByVal index As Integer) As Object

The index parameter represents the index number of the object that needs to be fetched. It is a zero-
based index.

Overloads Public Function Get(ByVal key As String) As Object

The key parameter represents the key name of the object that needs to be fetched.

GetEnumerator
The GetEnumerator method allows for reading through a collection, by returning an enumerator,
which will iterate through the NameObjectCollectionBase. This method is derived from
System.Collections.Specialized.NameObjectCollectionBase. The enumerator cannot
be used to make any changes to the collection and serves to return the keys of the collections, in string
form, only. To move between keys, you will need to call IEnumerator.MoveNext.

NotOverridable Public Function GetEnumerator() As IEnumerator _
                           Implements IEnumerable.GetEnumerator

GetKey
The GetKey method allows for accessing the key name of the object stored in the collection by
specifying the index. This method returns the name of the object by which it was stored.

Public Function GetKey(ByVal index As Integer) As String

The parameter index specifies the index of the object in the collection.

GetObjectData
The GetObjectData method implements the ISerializable interface and is derived from
System.Collections.Specialized.NameObjectCollectionBase. It returns the data
needed to serialize the HttpApplicationState. Serialization reduces an object into a more easily
managed and transportable form that still bears a strong correlation to the original object.



17

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Overridable Public Sub GetObjectData(ByVal info As SerializationInfo, _
                                     ByVal context As StreamingContext) _
                                     Implements ISerializable.GetObjectData

The info parameter specifies the information needed to serialize an object. The context parameter
refers to the source and destination of the serialized stream for this object's instance.

Lock
The Lock method applies a block on the HttpApplicationState collection. This is very helpful
when you are trying to perform updates to this collection and don't want other pages to modify the
application state concurrently. It's always a good practice to call this method when the application state
data is modifiable by pages. However when other pages try to access the collection when this method is
called they will have to wait till this lock is released using the UnLock method explained later in this
section. Locking may extend application response time at the cost of data integrity so the combination of
Lock and UnLock should be used judiciously to Lock as late as possible and UnLock as early
as possible.

Public Sub Lock()

OnDeserialization
The OnDeserialization method implements the
System.Runtime.Serialization.ISerializable interface and is derived from
System.Collections.Specialized.NameObjectCollectionBase. It raises the
deserialization event when deserialization is complete.

Overridable Public Sub OnDeserialization(ByVal sender As Object) _
            Implements IDeserializationCallback.OnDeserialization

The sender parameter specifies the source object of the deserialization event.

Remove
The Remove method allows for taking a single object out of the collection. The method is called with the
key name of the object, which was created at the time of adding the object.

Public Sub Remove(ByVal name As String)

The name parameter specifies the name of the object that is to be removed.

RemoveAll
The RemoveAll method removes all the objects from the HttpApplicationState collection. This
method makes an internal call to the Clear method.

Public Sub RemoveAll()

RemoveAt
The RemoveAt method removes a single object out of the application state by specifying its index position.



18

Public Sub RemoveAt(ByVal index As Integer)

The index parameter represents the index number of the object that needs to be removed. It is a zero-
based index.

Set
The Set method allows for updating an object that is already present in the application state.

Public Sub Set(ByVal name As String, ByVal value As Object)

The name parameter specifies the key name of the object that needs to be updated. The value
parameter represents the new updated object.

UnLock
The UnLock method is used to release the lock previously applied by the Lock method to the
HttpApplicationState object. Whenever Lock is applied, the application state object is not
accessible by the other pages or objects. Therefore once the updating is done, the lock should be released
using the UnLock method.

Public Sub UnLock()

HttpApplicationState Protected Methods
❑ BaseAdd

❑ BaseClear

❑ BaseGet

❑ BaseGetAllKeys

❑ BaseGetAllValues

❑ BaseGetKey

❑ BaseHasKeys

❑ BaseRemove

❑ BaseRemoveAt

❑ BaseSet

❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

BaseAdd
The BaseAdd method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The BaseAdd
method is used to insert items into the collection object. It throws a NotSupportedException if the
collection is read-only.

Protected Sub BaseAdd(ByVal name As String, ByVal value As Object)



19

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

The name parameter specifies the key name of the item you wish to add to the collection. The value
parameter specifies the object that needs to be added.

BaseClear
The BaseClear method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The BaseClear
method can be used to remove all of the items that are currently stored in the collection object. It throws
a NotSupportedException if the collection is read-only.

Protected Sub BaseClear()

BaseGet
The BaseGet method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The BaseGet
method is used to get the object from the collection either by key name or the index value. It is an
overloaded method.

Overloads Protected Function BaseGet(ByVal index As Integer) As Object

The index parameter represents the index number of the object that needs to be fetched. It is a zero-
based index.

Overloads Protected Function BaseGet(ByVal key As String) As Object

The key parameter represents the key name of the object that needs to be fetched.

BaseGetAllKeys
The BaseGetAllKeys method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The
BaseGetAllKeys method is used to get all the key names from the collection in an array of strings.

Protected Function BaseGetAllKeys() As String()

BaseGetAllValues
The BaseGetAllValues method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The
BaseGetAllValues method is used to get all the values from the collection in an array. This method
is overloaded and has two versions:

Overloads Protected Function BaseGetAllValues() As Object()
Overloads Protected Function BaseGetAllValues(ByVal type As Type) _
                                              As Object()

The type parameter represents the type of the array to be returned. If the type passed is not a valid
System.Type object then an ArgumentException is thrown, or if it is passed as Nothing then an
ArgumentNullException is thrown.



20

BaseGetKey
The BaseGetKey method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The BaseGetKey
method allows for accessing the key name of the object stored in the collection by specifying the index.
This method returns the name of the object by which it was stored.

Protected Function BaseGetKey(ByVal index As Integer) As String

The index parameter specifies the index of the object in the collection.

BaseHasKeys
The BaseHasKeys method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The BaseHasKeys
method returns a Boolean value where false represents that the collection has keys that refer
to Nothing.

Protected Function BaseHasKeys() As Boolean

BaseRemove
The BaseRemove method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The BaseRemove
method allows for taking specified objects out of the collection. This method is called with the key name
of the object, which was created at the time of adding the object. It throws a
NotSupportedException when the collection is read-only or the collection has fixed size.

Protected Sub BaseRemove(ByVal name As String)

The name parameter specifies the name of the object that is to be removed.

BaseRemoveAt
The BaseRemoveAt method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The
BaseRemoveAt method removes a single object out of the collection by specifying its index position. It
throws a NotSupportedException when the collection is read-only or the collection has fixed size. It
also throws an ArgumentOutOfRangeException if the index is outside the possible valid range
of indexes.

Protected Sub BaseRemoveAt(ByVal index As Integer)

The index parameter represents the index number of the object that needs to be removed. It is a zero-
based index.

BaseSet
The BaseSet method is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The BaseSet
method allows for updating an object that is already present in the collection. This method has two
overloaded versions.



21

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Overloads Protected Sub BaseSet(ByVal index as Integer, _
                                ByVal value As Object)

In the method illustrated above, the index parameter represents the index number of the object that
needs to be updated. It is a zero-based index. The value parameter represents the new updated object.
The method below has the name parameter specifying the key name of the object that needs to be
updated. The value parameter represents the new updated object.

Overloads Protected Sub BaseSet(ByVal name As String, _
                                ByVal value As Object)

It throws a NotSupportedException when the collection is read-only and an
ArgumentOutOfRangeException if the index is outside the possible valid range of indexes.

HttpApplicationState Public Properties

All the properties of the application state are read-only.

❑ AllKeys

❑ Contents

❑ Count

❑ Item

❑ Keys

❑ StaticObjects

AllKeys
The AllKeys property gets all the key names available in the application state collection. A string array
is returned with each item containing the key name of an object.

Public ReadOnly Property AllKeys As String()

Contents
The Contents property just gets a reference to the HttpApplicationState object.

Public ReadOnly Property Contents As HttpApplicationState

This property is available for backward compatibility with the earlier versions of
ASP. Traditionally, this property was implemented as a collection of the
Application object that allowed access to the contents of Application with a
collection interface.

Count
The Count property gets the number of objects in the application state. The default value is 0. This
property is overridden.



22

Overrides Public ReadOnly Property Count As Integer Implements _
                                                    ICollection.Count

Item
The Item property indicates a specific object in the application state collection. This method has two
overloaded versions to allow for accessing the object by name or numeric index.

Overloads Public Default Property Item(ByVal index As Integer) As Object

The index parameter represents the index number of the object that needs to be fetched. It is a zero-
based index.

Overloads Public Default Property Item(ByVal key As String) As Object

The key parameter represents the key name of the object that needs to be retrieved.

Keys
The Keys property is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. The Keys
property gets all the key names available in the collection. A
System.Collections.Specialized.NameObjectCollectionBase.KeysCollection
object is returned containing keys of the collection.

Overridable Public ReadOnly Property Keys As _
                                  NameObjectCollectionBase.KeysCollection

StaticObjects
The StaticObjects property provides access to items that were declared in the Global.asax file
using the following syntax:

 <object scope="Application" runat="server">

This property returns a special collection class that acts as a wrapper around these objects.

Public ReadOnly Property StaticObjects As HttpStaticObjectsCollection

HttpApplicationState Protected Properties
❑ IsReadOnly

IsReadOnly
The IsReadOnly property is derived from the
System.Collections.Specialized.NameObjectCollectionBase class. It gets or sets a
Boolean value indicating whether the collection is read-only or not. A value of True means the
collection is read-only.

Protected Property IsReadOnly As Boolean



23

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

HttpBrowserCapabilities Class
Knowing the client's browser and the environment in which your pages are being viewed is very helpful
in tailoring your pages to them. For example, using different stylesheets and tags for different situations
gives a great deal of useful flexibility. You could make a decision about whether to use ActiveX or a Java
Applet to perform some functionality based on your knowledge of what the client supports.

It is the means to make these decisions that the HttpBrowserCapabilities class provides. It
derives from the more general System.Web.Configuration.HttpCapabilitiesBase class,
which provides some base functionality for reading capabilities information from configuration files.
This is based on the User-Agent header and server variables collection for the given request. The
machine wide configuration file, machine.config, contains the mappings of a User-Agent string
(discussed with the HttpRequest class) to the capabilities of a browser. Keep in mind that these
capabilities only indicate what a client is capable of, not what it will actually support. For example, a
user may turn off cookie support in their browser, but because the browser can support cookies in
general, the HttpBrowserCapabilities class will indicate that the client supports cookies.

As it helps us to know the capabilities of the client's browser, this class can be accessed through the
browser property of the intrinsic request object.

HttpBrowserCapablilities Public Methods
❑ Equals – inherits from System.Object, see Introduction for more details.

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ ToString – inherits from System.Object, see Introduction for more details.

HttpBrowserCapabilities Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

HttpBrowserCapabilities Public Properties
The majority of the properties of the HttpBrowserCapabilities class are Boolean values
indicating if a particular technology is supported or not. If a value cannot be determined on the client
requesting a resource, then the default value of False is returned. Since these properties return the
capabilities of a client's browser, these are all read-only properties.

❑ ActiveXControls

❑ AOL

❑ BackgroundSounds

❑ Beta

❑ Browser

❑ CDF

❑ ClrVersion



24

❑ Cookies

❑ Crawler

❑ EcmaScriptVersion

❑ Frames

❑ Item

❑ JavaApplets

❑ JavaScript

❑ MajorVersion

❑ MinorVersion

❑ MSDomVersion

❑ Platform

❑ Tables

❑ Type

❑ VBScript

❑ Version

❑ W3CDomVersion

❑ Win16

❑ Win32

ActiveXControls
The ActiveXControls property indicates if the browser supports ActiveX controls. It is a read-only
property and returns a Boolean value. This value is False by default.

Public ReadOnly Property ActiveXControls As Boolean

AOL
The AOL property indicates whether the browser is an America Online browser. This property can be
used to determine if the client is using an AOL browser and then target special features of that AOL
client, or to suppress content that is not appropriate for an AOL browser. It is a read-only property and
returns a Boolean value. The default value for this property is False.

Public ReadOnly Property AOL As Boolean

BackgroundSounds
The BackgroundSounds property indicates whether the browser supports background sounds, which
are embedded links to sound files that play while the page is being displayed, without any user
interaction to start them. It is a read-only property and returns a Boolean value. The default value for
this property is False.

Public ReadOnly Property BackgroundSounds As Boolean



25

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Beta
The Beta property indicates whether the browser is a beta version as indicated in the HTTP headers
sent to the server. It is a read-only property and returns a Boolean value. The default value for this
property is False.

Public ReadOnly Property Beta As Boolean

Browser
The Browser property indicates the name of the client browser as sent to the server in the user-agent HTTP
header. It is a read-only property and returns a String value. If you want to get a string value
representing the browser and the version, use the Type property.

Public ReadOnly Property Browser As String

CDF
The CDF property indicates whether the browser supports the Channel Definition Format (CDF), which
is an implementation of XML that allows for providing software channels such as those found in the
Internet Explorer browser. It is a read-only property and returns a Boolean value. The default value for
this property is False.

Public ReadOnly Property CDF As Boolean

ClrVersion
The ClrVersion property indicates the version number of the Common Language Runtime (CLR) on
the client machine. Currently, this property will not be widely used, as most clients will not have the
CLR installed on their computers. In the future, it will prove useful to target code to the client based on
their version of the CLR. This property is only supported in browsers that are IE 5.0 or higher.

Public ReadOnly Property ClrVersion As Version

It is a read-only property and returns a Version object. The Version object represents the version as
MajorVersion.MinorVersion[.build[.revision]], where the build and revision
versions are optional. If the CLR is not installed in the client's machine, the property returns
0.0.-1.-1.

Cookies
The Cookies property indicates whether the client browser can support cookies. It is a read-only
property and returns a Boolean value. This property will not tell you if the Cookies option has been
turned off on the client browser. The default value for this property is False.

Public ReadOnly Property Cookies As Boolean

Crawler
The Crawler property indicates whether the client requesting the page is a search engine crawler or an
Internet browser. It is a read-only property and returns a Boolean value. A value of True indicates
that the client is a search engine crawler. The default value for this property is False.



26

Public ReadOnly Property Crawler As Boolean

EcmaScriptVersion
The EcmaScriptVersion property indicates the version of European Computer Manufacturer's
Association (ECMA) script supported by the client. ECMA script is more commonly referred to as
JavaScript. This property can be used in conjunction with the JavaScript property that determines if
the browser supports JavaScript. For more information about ECMA, see their official web site at
http://www.ecma.ch.

Public ReadOnly Property EcmaScriptVersion As Version

It is a read-only property and returns a Version object. The Version object represents the version as
MajorVersion.MinorVersion[.build[.revision]], where the build and revision
versions are optional.

Frames
The Frames property indicates whether the client browser supports HTML frames. It is a read-only
property and returns a Boolean object. The default value for this property is False.

Public ReadOnly Property Frames As Boolean

Item
The Item property gets the value of a specified property of the HttpBrowserCapabilities class,
passed as a parameter.

Overridable Public Default ReadOnly Property Item(ByVal key As String) _
                                                  As String

The key parameter specifies the name of the property in this class to be retrieved.

The following code displays the EcmaScriptVersion through the Item property:

sbText.AppendFormat("ECMA Script Version via Item property: {0}" , _
                    Request.Browser.Item("EcmaScriptVersion"))

JavaApplets
The JavaApplets property indicates whether the browser supports Java Applets. It is a read-only
property and returns a Boolean object. The default value for this property is False.

Public ReadOnly Property JavaApplets As Boolean

JavaScript
The JavaScript property indicates whether the browser supports JavaScript. It is a read-only
property and returns a Boolean object. The default value for this property is False. This property can
be used in conjunction with the EcmaScriptVersion property, which provides the version number
of supported scripting.



27

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Public ReadOnly Property JavaScript As Boolean

MajorVersion
The MajorVersion property indicates the major version of the browser as sent to the server by the
browser. A browser with a version number of 4.7, for instance, has a major version of 4. It is a read-only
property and returns an Integer value.

Public ReadOnly Property MajorVersion As Integer

MinorVersion
The MinorVersion property indicates the minor, or decimal, version number of the client browser
based on information passed from the browser to the server in the request. Therefore, a browser with a
version number of 4.7, for instance, has a minor version of 0.7. It is a read-only property and returns a
Double value.

Public ReadOnly Property MinorVersion As Double

MSDomVersion
The MSDomVersion property returns the version of the Microsoft HTML Document Object Model
(DOM) present on the client. Use this property to determine the level of HTML functionality supported
on the client side. It is a read-only property and returns a Version object. The Version object
represents the version as MajorVersion.MinorVersion[.build[.revision]], where the
build and revision versions are optional. For non-Microsoft browsers, this property will return an
MSDomVersion of 0.0.

Public ReadOnly Property MSDomVersion As Version

Platform
The Platform property indicates the operating system platform that the client is using as sent to the
browser in the HTTP request. This is useful for managing stylesheets, as, for example, the Macintosh
renders pages slightly differently from Windows machines.

Public ReadOnly Property Platform As String

This property is read-only and returns a String value. Possible return values are: Unknown, Win16,
Win95, Win98, WinNT (this includes Windows 2000 and Windows XP), WinCE, Mac68K, MacPPC,
UNIX, and WebTV.

Tables
The Tables property indicates whether the client's browser supports HTML tables. The default value
for this property is False.

Public ReadOnly Property Tables As Boolean



28

Type
The Type property indicates the browser name and major version number for the client browser. For
example, if the client is using Internet Explorer 6, the Type property returns IE6. This property is
different from the Browser property, which only represents the browser and not the version. It is a
read-only property and returns a String value.

Public ReadOnly Property Type As String

VBScript
The VBScript property indicates whether the client supports VBScript in the browser. It is a read-
only property and returns a Boolean value where True indicates that the browser supports
VBScript. The default value for this property is False.

Public ReadOnly Property VBScript As Boolean

Version
The Version property indicates the version of the client browser including the major and minor
numbers. It is a read only property and returns a string representation of the browser's version.

Public ReadOnly Property Version As String

W3CDomVersion
The W3CDomVersion property indicates the version of the W3C XML Document Object Model (DOM)
that is supported on the client. This property can be useful in determining whether or not to use certain
XML elements. It is a read-only property returning a Version object. The Version object represents
the version as MajorVersion.MinorVersion[.build[.revision]], where the build and
revision versions are optional.

Public ReadOnly Property W3CDomVersion As Version

Win16
The Win16 property indicates whether the client is running on a 16-bit Windows platform. The default
value for this property is False.

Public ReadOnly Property Win16 As Boolean

Win32
The Win32 property indicates whether the client is running on a 32-bit Windows platform. The default
value for this property is False.

Public ReadOnly Property Win32 As Boolean



29

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Example: Using the HttpBrowserCapabilities Class

The following code snippet shows the usage of all of the properties of the
HttpBrowserCapabilities class, available in HttpBrowserCapabilitiesUsage.aspx:

Imports System.Text
Public Class HttpBrowserCapabilitiesUsage
  Inherits System.Web.UI.Page
  Protected WithEvents LBtnBrowser As System.Web.UI.WebControls.LinkButton
  Protected WithEvents LblBrowser As System.Web.UI.WebControls.Label

...

  Private Sub Page_Load(ByVal sender As System.Object, _
                        ByVal e As System.EventArgs) Handles MyBase.Load
  End Sub

  Private Sub LBtnBrowser_Click(ByVal sender As System.Object, _
                                ByVal e As System.EventArgs) _
                                Handles LBtnBrowser.Click
    Dim sbText As New StringBuilder()

    ' Get the reference to the HttpBrowserCapabilities object
    Dim myBrowser As HttpBrowserCapabilities
    myBrowser = Request.Browser

    'Display all of the properties of the HttpBrowserCapabilities Class
    sbText.AppendFormat("ActiveX Controls Support: {0}", _
                         myBrowser.ActiveXControls)
    sbText.Append("<br>")
    sbText.AppendFormat("AOL Client: {0}", myBrowser.AOL)
    sbText.Append("<br>")
    sbText.AppendFormat("Background Sounds Support: {0}", _
                         myBrowser.BackgroundSounds)
    sbText.Append("<br>")
    sbText.AppendFormat("Beta Release: {0}", myBrowser.Beta)
    sbText.Append("<br>")
    sbText.AppendFormat("Browser String: {0}", myBrowser.Browser)
    sbText.Append("<br>")
    sbText.AppendFormat("Channel Definition Format(CDF) Support: {0}", _
                         myBrowser.CDF)
    sbText.Append("<br>")
    sbText.AppendFormat(".NET CLR Version: {0}", myBrowser.ClrVersion)
    sbText.Append("<br>")
    sbText.AppendFormat("Cookies Support: {0}", myBrowser.Cookies)
    sbText.Append("<br>")
    sbText.AppendFormat("Crawler Search Engine: {0}", myBrowser.Crawler)
    sbText.Append("<br>")
    sbText.AppendFormat("ECMA Script Version: {0}", _
                         myBrowser.EcmaScriptVersion)
    sbText.Append("<br>")
    sbText.AppendFormat("Frames Support: {0}", myBrowser.Frames)



30

sbText.Append("<br>")
    sbText.AppendFormat("ECMA Script Version via Item property: {0}", _
                         myBrowser.Item("EcmaScriptVersion"))
    sbText.Append("<br>")
    sbText.AppendFormat("Java Applet Support: {0}", myBrowser.JavaApplets)
    sbText.Append("<br>")
    sbText.AppendFormat("JavaScript Support: {0}", myBrowser.JavaScript)
    sbText.Append("<br>")
    sbText.AppendFormat("Browser Major Version: {0}", _
                         myBrowser.MajorVersion)
    sbText.Append("<br>")
    sbText.AppendFormat("Browser Minor Version: {0}", _
                         myBrowser.MinorVersion)
    sbText.Append("<br>")
    sbText.AppendFormat("Microsoft HTML Document Object Model " & _
                        "Version: {0}", myBrowser.MSDomVersion)
    sbText.Append("<br>")
    sbText.AppendFormat("Client's Platform: {0}", myBrowser.Platform)
    sbText.Append("<br>")
    sbText.AppendFormat("HTML Tables Support: {0}", myBrowser.Tables)
    sbText.Append("<br>")
    sbText.AppendFormat("Browser Type - Name and Major Version: {0}", _
                         myBrowser.Type)
    sbText.Append("<br>")
    sbText.AppendFormat("VBScript support: {0}", myBrowser.VBScript)
    sbText.Append("<br>")
    sbText.AppendFormat("Browser Full Version: {0}", myBrowser.Version)
    sbText.Append("<br>")
    sbText.AppendFormat("World Wide Web (W3C) XML Document Object" & _
                        " Model Version: {0}", myBrowser.W3CDomVersion)
    sbText.Append("<br>")
    sbText.AppendFormat("Win16 Computer: {0}", myBrowser.Win16)
    sbText.Append("<br>")
    sbText.AppendFormat("Win32 Computer: {0}", myBrowser.Win32)
    sbText.Append("<br>")
    LblBrowser.Text = sbText.ToString()

  End Sub
End Class

The following screenshot displays the browser capabilities in an IE6 browser:



31

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

To demonstrate the differences when an alternative browser accesses a page, the screenshot
below displays the browser capabilities in a Netscape 6.1 browser:



32

HttpContext Class
To process an HTTP Request, an ASP.NET application needs to know a considerable amount about the
particular context of a request, such as the security level of the user or the configuration settings of the
browser. The HttpContext class can provide all of the information about the context in which a given
web request is executing.

HttpContext Public Methods
❑ AddError

❑ ClearError

❑ Equals – inherits from System.Object, see Introduction for more details.

❑ GetAppConfig

❑ GetConfig

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ RewritePath

❑ ToString – inherits from System.Object, see Introduction for more details.



33

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

AddError
The AddError method allows the developer to insert an exception into the errors collection, which can be
useful if you want to make your error information more generally available. For example, if you create a
user control, you may want to record exceptions that occur in your control to the error collection of the
context so that other objects in the page can be aware of, and get information about, the error.

Public Sub AddError(ByVal error As Exception)

The error parameter here specifies the Exception object that contains information about the error
you want to add to the collection.

ClearError
The ClearError method clears all errors from the errors collection of the current web request. This is
especially important when you are providing custom error handling using the Error event of the page
object. See ErrorPage in Chapter 2 for more information on custom error handling. When you deal with
errors that arise in the context of a web request, you must clear this collection if you do not also want the
ASP.NET runtime to catch and report those errors.

Public Sub ClearError()

GetAppConfig
The GetAppConfig method allows the developer to retrieve the configuration information applicable
to the current application from the application's web.config file. This method is Shared and the
object that this returns depends on the configuration section accessed. See Chapter 7 for more
information on configuration files and managing configuration information in ASP.NET.

Public Shared Function GetAppConfig(ByVal key As String) As Object

The key parameter here specifies the name of the configuration section you wish to retrieve.

GetConfig
The GetConfig method allows the developer to retrieve configuration information for the current web
request. The type of object returned by this method depends on the configuration section accessed. See
Chapter 7 for information on configuration files and managing configuration information in ASP.NET.

Public Function GetConfig(ByVal key As String) As Object

The key parameter here specifies the name of the configuration section you wish to retrieve.

RewritePath
The RewritePath method allows you to specify a rewrite path. This can be used to programmatically
redirect the user to an alternative page. An example of the use for this could be if you wished to
personalize the page that a user is accessing; you would not wish to rewrite the page each time a user
requests it, so you could use the RewritePath property to point the request at a generic page. This
page could then utilize user name information sent in the request to customize the page accessed via the
RewritePath.

Public Sub RewritePath(ByVal path As String)



34

The path parameter here represents the path that is to be set as the rewrite path.

HttpContext Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

HttpContext Public Properties
❑ AllErrors

❑ Application

❑ ApplicationInstance

❑ Cache

❑ Current

❑ Error

❑ Handler

❑ IsCustomErrorEnabled

❑ IsDebuggingEnabled

❑ Items

❑ Request

❑ Response

❑ Server

❑ Session

❑ SkipAuthorization

❑ Timestamp

❑ Trace

❑ User

AllErrors
The AllErrors property returns an array of the exceptions (System.Exception object) that have
been thrown in the processing of the current request. This property is a convenient way to collect, and
act on, all of the errors that occurred during processing, either by logging them, or presenting them to
the user. It is a read-only property. It returns Nothing if there were no errors generated while
processing the request.

Public ReadOnly Property AllErrors As Exception()

Application
The Application property gets a reference to the HttpApplicationState object for the current
request, which can be used to store values across sessions and requests. It is a read-only property but
allows the underlying HttpApplicationState object to be modified.



35

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Public ReadOnly Property Application As HttpApplicationState

ApplicationInstance
The ApplicationInstance property provides a reference to the HttpApplication object. This
property can be used to retrieve or assign an application object for the current HTTP Request. The
HttpApplication class is the base class for applications defined and contains properties, methods
and events common to all the objects in the application in the Global.asax file.

Public Property ApplicationInstance As HttpApplication

Cache
The Cache property accesses the Cache object for the current HTTP Request, allowing the developer to
insert and retrieve items to the cache. This built-in Cache object can be extremely useful in caching data
or other information that is expensive to retrieve and does not change often. It is a read-only property
and returns a reference to the System.Web.Caching.Cache object for the current HTTP request. See
Chapter 6 for a detailed explanation on Caching.

Public ReadOnly Property Cache As Cache

Current
This shared property provides a reference to the current context (HttpContext) object in which the
request is executing. This can be useful if you want to access the methods and properties of the context
as this provides you with a reference.

Public Shared ReadOnly Property Current As HttpContext

This method can be used in the multi-tier architecture by the business layer or the database layer (.dll)
files that need to get a reference to the current context to invoke its methods or call its properties.

Error
The Error property provides access to the first error encountered during the processing of the request.
If you are just looking for the first error, perhaps to indicate the cause of further errors, then this
property will give you access to that information. It is a read-only property and returns a
System.Exception object.

Public ReadOnly Property Error As Exception

Handler
The Handler property gets or sets the IHttpHandler object (which is a Page object) for the current
request. This gives a reference to the Page object in the case of web pages. Other classes that implement
IHttpHandler include HttpApplication and HttpRemotingHandler.

Public Property Handler As IHttpHandler

IsCustomErrorEnabled
IsCustomErrorEnabled provides a Boolean value representing whether custom errors are enabled
or not for the current web request. It is a read-only property and returns True if the custom errors are
enabled for the HTTP Request and False otherwise.



36

Public ReadOnly Property IsCustomErrorEnabled As Boolean

IsDebuggingEnabled
IsDebuggingEnabled provides a Boolean value representing whether debugging is enabled or not
for the current web request. It is a read-only property and returns True if the HTTP Request is in debug
mode and False otherwise.

Public ReadOnly Property IsDebuggingEnabled As Boolean

Items
The Items property returns an IDictionary based key-value collection that in a web request can be
used to maintain and share data between an IhttpHandler-based object and IhttpModule-
based object.

Public ReadOnly Property Items As IDictionary

Request
The Request property gets access to the HttpRequest object for the current web request. This
property can then be accessed to call all the methods and properties of the HttpRequest class. See the
HttpRequest class reference in this chapter for detailed information.

Public ReadOnly Property Request As HttpRequest

Response
The Response property gets access to the HttpResponse object for the current web request. This
property then can be accessed to call all the methods and properties of the HttpResponse class. See
the HttpResponse class reference in this chapter for detailed information.

Public ReadOnly Property Response As HttpResponse

Server
The Server property gets access to the HttpServerUtility object for the current web request. This
property then can be accessed to call all the methods and properties of the HttpServerUtility class.
See the HttpServerUtility class reference in this chapter for detailed information.

Public ReadOnly Property Server As HttpServerUtility

Session
The Session property gets access to the HttpSessionState object for the current web request. This
property then can be accessed to call all the methods and properties of the HttpSessionState class.
See the HttpSessionState class reference in this chapter for detailed information.

Public ReadOnly Property Session As HttpSessionState



37

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

SkipAuthorization
The SkipAuthorization property allows the developer to indicate that a given request should skip
the authorization process and execute without checking the user's credentials. This property is for use in
advanced security schemes where there is a need to allow a user access to a page with universal access.
The Forms authentication process uses this to allow a user access to a specified login page before being
authenticated. It sets a Boolean value of False as default, which will not skip the authorization process.

Public Property SkipAuthorization As Boolean

Timestamp
The Timestamp property retrieves the date and time of when the current HTTP web request was
initiated.

Public ReadOnly Property Timestamp As DateTime

Trace
The Trace property allows the developer to retrieve the TraceContext object for the current HTTP
web request. This property can be used to write values into the TraceContext object, which is useful
for debugging.

Public ReadOnly Property Trace As TraceContext

User
The User property indicates the IPrincipal object under which the current request is executing.
Using this object you can get information about the user making the request and use this information to
get or set the security information. For more information on Security settings, see Chapter 8.

Public Property User As Iprincipal

Example: The Properties of the HttpContext Class

The following code snippet, from HttpContextUsage.aspx, shows the usage of all the
properties of the HttpContext class:

Imports System.Text
Public Class HttpContextUsage
  Inherits System.Web.UI.Page
  Protected WithEvents LblContext As _
                       System.Web.UI.WebControls.Label
  Protected WithEvents LBtnContext As _
                       System.Web.UI.WebControls.LinkButton

...

  Private Sub Page_Load(ByVal sender As System.Object, _
                        ByVal e As System.EventArgs) _



38

                                Handles MyBase.Load
    'Put user code to initialize the page here
  End Sub

  Private Sub LBtnContext_Click(ByVal sender As System.Object, _
                                ByVal e As System.EventArgs) _
                                Handles LBtnContext.Click
    Dim sbText As New StringBuilder()

    'Display all the properties of the HttpContext Class
    sbText.Append("All Errors:")
    sbText.Append("<br>")
    Dim aException() As Exception
    aException = Context.AllErrors
    If Not aException Is Nothing Then
      Dim myException As Exception
      For Each myException In aException
        sbText.AppendFormat("Exception: {0}", _
                             myException.Message)
        sbText.Append("<br>")
      Next
    End If

    sbText.AppendFormat("Application Items Count: {0}", _
                        Context.Application.Count)
    sbText.Append("<br>")

    sbText.AppendFormat("Application Instance: {0}", _
                         Context.ApplicationInstance)
    sbText.Append("<br>")

    sbText.AppendFormat("Number of Items in the Cache: {0}", _
                         Context.Cache.Count)
    sbText.Append("<br>")

    sbText.AppendFormat("Current Context's Timestamp: {0}", _
                        Context.Current.Timestamp)
    sbText.Append("<br>")

    sbText.AppendFormat("First Error: {0}", Context.Error)
    sbText.Append("<br>")

    sbText.AppendFormat("Get the Page Postback value via the" & _
                        "Handler property: {0}", _
                         CType(Context.Handler, Page).IsPostBack)
    sbText.Append("<br>")

    sbText.AppendFormat("Is Custom Error Enabled: {0}", _
                         Context.IsCustomErrorEnabled)
    sbText.Append("<br>")



39

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

    sbText.AppendFormat("Is Debugging Enabled: {0}", _
                         Context.IsDebuggingEnabled)
    sbText.Append("<br>")

    sbText.AppendFormat("Context Items Count: {0}", _
                         Context.Items.Count)
    sbText.Append("<br>")

    sbText.AppendFormat("Request Content Type: {0}", _
                         Context.Request.ContentType)
    sbText.Append("<br>")

    sbText.AppendFormat("Response Content Type: {0}", _
                         Context.Response.ContentType)
    sbText.Append("<br>")

    sbText.AppendFormat("Server TimeOut: {0}", _
                         Context.Server.ScriptTimeout)
    sbText.Append("<br>")

    sbText.AppendFormat("Session ID: {0}", _
                         Context.Session.SessionID)
    sbText.Append("<br>")

    sbText.AppendFormat("Skip Authorization: {0}", _
                         Context.SkipAuthorization)
    sbText.Append("<br>")

    sbText.AppendFormat("Timestamp: {0}", Context.Timestamp)
    sbText.Append("<br>")

    sbText.AppendFormat("Trace Enabled: {0}", _
                         Context.Trace.IsEnabled)
    sbText.Append("<br>")

    sbText.AppendFormat("User Identity Is Authenticated: {0}", _
                         Context.User.Identity.IsAuthenticated)
    sbText.Append("<br>")

    LblContext.Text = sbText.ToString()

  End Sub
End Class

Here is a screenshot showing the output of the above code:



40

HttpCookie Class
The HTTP protocol is stateless by nature. A client sends a request to the server and receives a response.
Until the client requests another page, the browser is not connected to the server. While this lightens the
load on the server because the connection does not need to be maintained, it limits the ability to persist
information specific to the client. Each time the client connects to the server to request a page it could be
a different client, or a different user on the same machine.

Cookies, introduced in the early versions of the popular web browsers, allow the web developer to store
small pieces of information on the client computer, providing that the browser has been configured to
accept cookies. These "cookies" of information specify an expiration date and a URL path on the server.
The client browser then sends the cookie back to the originating server each time a request is made for a
resource in the path specified. In addition to having cookies that are persisted between visits to the site,
in-memory cookies (also known as session cookies or transient cookies) can be created that only last
until the browser is closed, which is how session has traditionally been maintained.



41

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Using these cookies, developers are able to maintain some sense of state or "connectedness" with the
client. However, many users do not like the idea of web sites storing information on their computer, so
they may turn cookies off. A good web site needs to be developed with this in mind and come up with
alternative methods for maintaining state. With ASP.NET, it is possible to utilize the method used in
classic ASP, where state could be maintained by passing the SessionID to the client but bypass the
need for cookies altogether by changing just one setting in a file. This can be set in the web.config file,
under the sessionState setting that is illustrated below:

<sessionState
  mode="InProc"
  stateConnectionString="tcpip=127.0.0.1:42424"
  sqlConnectionString="data source=127.0.0.1;
                       user id=sa;password="
  cookieless="false"
  timeout="20"
/>

Where the cookieless state setting is set to True (False is the default value), a unique number will be
randomly generated and added in front of the requested file as an identifier.

HttpCookie Public Methods
❑ Equals – inherits from System.Object, see Introduction for more details.

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ ToString – inherits from System.Object, see Introduction for more details.

HttpCookie Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

HttpCookie Public Properties
❑ Domain

❑ Expires

❑ HasKeys

❑ Item

❑ Name

❑ Path

❑ Secure

❑ Value

❑ Values



42

Domain
The Domain property indicates the domain name where the cookie originated and thus where it should
be sent when making client requests. It is used to get or set the domain name. The default value is the
current domain.

Public Property Domain As String

Cookies can only be sent to their originating domain. This practice protects the user because it means
that your cookies from the online retailer you shop at do not get transmitted to other sites you visit. See
also the Path property.

Expires
The Expires property indicates the expiration date and time of the cookie.

Public Property Expires As DateTime

Use this property when setting a new cookie to indicate to the browser when the cookie should no
longer be sent with requests. An application of this property is when a cookie has been set to expire and
its life needs to be extended.

HasKeys
Unlike a typical name/value pair, a cookie can have multiple string values. The HasKeys property
indicates whether this is the case or not.

Public ReadOnly Property HasKeys As Boolean

For example, a simple cookie might have a name of color and a value of red. However, a cookie with
subkeys might have a name of color and values of red, blue, or yellow.

<%
Response.Cookies("color")("color1")="red"
Response.Cookies("color")("color2")="blue"
Response.Cookies("color")("color3")="yellow"
%>

If we checked the HasKeys properties in this second case it would return True. We could then use the
Values property to extract the individual values. If this property returns False, then we can use the
Value property to get the one specific value.

Item
The Item property indicates a specific value in the cookie. This property would only be used on a
cookie that has subkeys, as indicated by the HasKeys property. The Item property acts as a shortcut to
the items in the Values collection (as distinct from the Value property).

Public Default Property Item(ByVal key As String)As String

The parameter key specifies the name of the item in the cookie to be retrieved.



43

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

This property is only available for backward compatibility. Use the Values property
in ASP.NET.

Name
The Name property indicates the name of the cookie to be set, or that has been set. The default value is
Nothing.

Public Property Name As String

Path
The Path property indicates the path on the server for which the cookie is valid. This property, in
conjunction with the Domain attribute of the cookie, indicates to the client browser when it should send
the cookie along with the request.

Public Property Path As String

Cookies are intended to maintain state on a given site. Because the information stored in these cookies is
specific to a site, and may contain information that should not be shared, client browsers only send
cookies to the domain from which they were created. Therefore, a cookie created in the www.wrox.com
domain will not be sent when the user visits msdn.microsoft.com.

To further specify when, and where, the cookie should be sent, the path for a cookie can be set to
indicate the directory path on the domain that should receive it. So, a cookie from the www.wrox.com
domain with a path of /aspprogref would not be accessible for pages requested from
http://www.wrox.com/authors, but would be available for pages requested from
http://www.wrox.com/aspprogref/examples. Using a Path of "/" indicates that all directory paths on the
server should have access to the cookie.

Secure
The Secure property indicates whether the cookie should be sent over a Secure Socket Layer (SSL)
connection. If so, the cookie will only be sent if the protocol of the request is HTTPS.

Public Property Secure As Boolean

Use this property when working on a secure site to ensure that the client does not send the cookie over
an insecure connection.

Value
The Value property indicates the value for the cookie. Use this property to either set or get the value of
the cookie.

Public Property Value As String

Values
The Values property returns a NameValueCollection of the values for the cookie, or allows for the
setting of specific values.



44

Public Property Values As NameValueCollection

The majority of cookies are used as a single name and value. However, a given cookie may have more
than one value. This property allows for retrieving all of the values in a cookie within one property. It
can be used in conjunction with the HasKeys property of the HttpCookie object or the HasKeys
method of the Values property itself.

HttpPostedFile Class
The HttpPostedFile class provides an object to encapsulate a file that has been posted to the server.
The binary file content is included in the content body of the incoming request and traditionally
required the use of a third-party component or custom code to extract. In ASP.NET we have a built-in
object to work with that represents the individual file posted to the server.

HttpPostedFile Public Methods
❑ Equals – inherits from System.Object, see Introduction for more details.

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ SaveAs

❑ ToString – inherits from System.Object, see Introduction for more details.

SaveAs
The SaveAs method allows you to save a posted file to a given location on the server with a specific name.

Public Sub SaveAs(ByVal fileName As String)

The fileName parameter represents the physical path where the file should be saved.

The file name must be a physical path to the file. If a simple file name is given without any path
information, an attempt will be made to write the file to the Windows System directory (typically
c:\winnt\system32\), where the IIS executable resides. Since this is probably not the place you
want to be collecting posted files, you should provide the file name with a full directory path.

Example: Using the HttpPostedFile Class

The following code snippet from HttpPostedFileUsage.aspx shows the usage of SaveAs
method and some of the properties of the HttpPostedFile class:

Public Class HttpPostedFileUsage
  Inherits System.Web.UI.Page
  Protected WithEvents LBtnSubmit As _
                       System.Web.UI.WebControls.Button
  Protected WithEvents Label1 As _
                       System.Web.UI.WebControls.Label



45

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Protected WithEvents LblMessage As _
                       System.Web.UI.WebControls.Label
  Protected WithEvents InputFile As _
                       System.Web.UI.HtmlControls.HtmlInputFile

...

  Private Sub Page_Load(ByVal sender As System.Object, _
                        ByVal e As System.EventArgs) _
                        Handles MyBase.Load
    'Put user code to initialize the page here
  End Sub

  Private Sub LBtnSubmit_Click(ByVal sender As System.Object, _
                               ByVal e As System.EventArgs) _
                               Handles LBtnSubmit.Click
    If Not (InputFile.PostedFile Is Nothing) Then
      Try
        Dim file As HttpPostedFile = InputFile.PostedFile
        LblMessage.Text &= "Content Length:" & _
                            file.ContentLength & "<BR>"
        LblMessage.Text &= "Content Type:" & _
                            file.ContentType & "<BR>"
        LblMessage.Text &= "File Name:" & file.FileName & "<BR>"

        InputFile.PostedFile.SaveAs("C:\new.txt")

        LblMessage.Text &= "File uploaded from the client " & _
                           "successfully: C:\new.txt"
        Catch ex As Exception
          LblMessage.Text &= "Error Uploading file: C:\new.txt" & _
                             "<br>" & ex.ToString
      End Try

    Else
      LblMessage.Text = "Please choose a file to upload"
    End If
  End Sub
End Class

This code will produce the following output:



46

To write files to disk, it is required that your security permissions be such that the
account the web request is running under is allowed write access to the server. If you
wish to allow users complete access to your site, the account under which their
requests will be executing is the aspnet_wp account, by default.

HttpPostedFile Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

HttpPostedFile Public Properties
❑ ContentLength

❑ ContentType

❑ FileName

❑ InputStream

ContentLength
The ContentLength property indicates the length, in bytes, of the file that was posted to the server.
This information can be important in determining actions to perform on the file. For example, you could
have a page that submits files to a BizTalk Server via Microsoft Message Queuing (MSMQ). Because
MSMQ has a message size limit of 2MB for Unicode files, a check of the ContentLength property
could determine if the file can be sent via MSMQ or whether an alternative transport mechanism will
need to be employed.

Public ReadOnly Property ContentLength As Integer

ContentType
The ContentType property indicates the Multipurpose Internet Mail Extensions (MIME) type of the
file posted to the web server such as text/HTML or text/XML.

Public ReadOnly Property ContentType As String

The content type of the file can be extremely important to the security of your site. You may want to
ensure that the files posted to your web site meet certain criteria in order to be processed, or to process
files differently based on their content. For example, you may allow people to post both HTML or text
files as well as image files as part of a custom content management system. Incoming images may go to
one location while text files get parsed and saved to another location. On the other hand, you probably
don't want a user to be able to load an executable application to your server. Therefore, if a file does not
meet the requirements you have set you'll want your application to refuse it.

Some common MIME types are shown in the following table along with their file extensions.



47

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Type Description FileExtensions

application/msaccess Microsoft Access .mdb

application/msword Microsoft Word .doc

application/
octet-stream

Uninterpreted Binary .bin

application/pdf Portable Document
Format

.pdf

application/postscript Postscript file .ps, .ai, .eps

application/vnd.
ms-excel

Microsoft Excel .xls

application/vnd.ms-
powerpoint

Microsoft PowerPoint .ppt

application/vnd.ms-
project

Microsoft Project .mpp

application/vnd.visio Microsoft Visio .vsd

application/vnd.
wap.wmlc

Compiled WML .wmlc

application/vnd.
wap.wmlscriptc

Compiled WML script .wmlsc

application/zip Zip compressed file .zip

audio/mpeg MPEG audio file .mpg, .mpeg

image/gif GIF image .gif

image/jpeg JPEG image .jpg, .jpeg, .jpe

image/png PNG image file .png

image/tiff Tag Image File Format .tiff, .tif

image/vnd.wap.wbmp WAP bitmap .wbmp

text/css Cascading Style Sheets .css

text/html HyperText Markup
Language

.htm, .html

text/plain Plain text .txt

text/richtext Rich text .rtx

text/sgml Structured Generalized
Markup Language

.sgml

Table continued on following page



48

Type Description FileExtensions

text/tab-separated-
values

Tab separated text .tsv

text/vnd.wap.wml Wireless Markup
Language

.wml

text/vnd.wap.
wmlscript

Wireless Markup
Language Script

.wmls

text/xml eXtensible Markup
Language

.xml

text/xml-external-
parsed-entity

XML externally parsed
entities

.xml

video/mpeg MPEG video .mpg, .mpeg

video/quicktime Apple QuickTime video .mov

video/vnd.vivo VIVO movie .vivo

For a full list of MIME types visit:
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/

FileName
The FileName property indicates the path of the file on the client's computer. This property matches
the text that appears in the file input box on the web page. Don't be confused by this property and think
that the path maps to a location on the server. Use the SaveAs method to save a file to a specific
location on the server.

Public ReadOnly Property FileName As String

InputStream
The InputStream property indicates the stream object that the file is on, allowing access to the file as a
stream. This object provides an alternative to the simpler SaveAs method in that we can act directly on
the stream of data provided allowing for more detailed checking of content or specialized processing.

Public ReadOnly Property InputStream As Stream

Below is an example of reading from the input stream and writing that information out to another
stream. The FileStream object could be replaced with almost any stream to write the data to.

Dim i As Integer

'loop through the posted files
For i = 0 To Request.Files.Count

  'create a file stream to write out the temporary file



49

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

  Dim OutputFile As New System.IO.FileStream("file" + i.ToString() _
                        + ".tmp", System.IO.FileMode.OpenOrCreate, _
                        System.IO.FileAccess.Write)

  'create a buffer for working with the streams

  Dim buffer(64) As Byte

  'as long as we are getting data out, we'll write it to the other stream.

  While (Request.Files.Item(i).InputStream.Read(buffer, 0, _
                                                Buffer.Length) > 0)
    OutputFile.Write(buffer, 0, Buffer.Length)
  End While

Next

HttpRequest Class
The HttpRequest class represents the incoming request from a client. For example, when a user enters
a URL in their browser, the browser makes a request to the server identified in the URL for a given
resource. This request includes a wide variety of information pertaining to the client and the request
itself. Included in this might be form data that a user has filled out, or persisted information from
cookies. The ASP.NET intrinsic Request object provides a reference to HttpRequest class methods
and properties.

HttpRequest Public Methods
❑ BinaryRead

❑ Equals – inherits from System.Object, see Introduction for more details.

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ MapImageCoordinates

❑ MapPath

❑ SaveAs

❑ ToString – inherits from System.Object, see Introduction for more details.

BinaryRead
The BinaryRead method reads a specified number of bytes from the request stream in an array. The
number of bytes to read will most often be the size of the request in order to get the entire content sent,
but can vary depending on the problem you are trying to solve.

Public Function BinaryRead(ByVal count as Integer) As Byte()

The parameter count represents the number of bytes to read. If this value is zero, or greater than the
number of bytes available, an ArgumentException will be thrown.



50

When working with posted data on the request object, the bulk of development rests with reading
simple text data from the posted information. However, there are cases where the information posted is
not in plain text. This is where the BinaryRead method is useful. This method allows for the reading
of binary information, such as an image or file, and working with the bytes returned. In other situations,
there may be a need to capture the request in a binary format and transmit it to some other process.

The BinaryRead method is provided for backward compatibility. For new
applications use the InputStream property of the HttpRequest class to read the raw
data from the request.

MapImageCoordinates
The MapImageCoordinates method returns an array of integers representing the map coordinates of
a form image that is submitted to the server. This method works with both HTML input elements, with
its type set to image, and with the ImageButton server control.

Public Function MapImageCoordinates(ByVal imageFieldName As String) _
                                                          As Integer

The parameter imageFieldName specifies the field name of the image map as it is defined in the form.

Example: Using the MapImageCoordinates Method

The following code example, MapImageCoordinates.aspx, shows how to get the x and y
coordinates of an image input control indicating where it has been clicked:

Public Class MapImageCoordinates
  Inherits System.Web.UI.Page
  Protected WithEvents mapimage As _
                       System.Web.UI.HtmlControls.HtmlInputImage
  Protected WithEvents LblCoordinates As System.Web.UI.WebControls.Label

...

  Private Sub Page_Load(ByVal sender As System.Object, _
                        ByVal e As System.EventArgs) _
                        Handles MyBase.Load
    'get the coordinates and write them out to the response if the page
    'has been posted back
    If (IsPostBack) Then
      Dim Coordinates() As Integer
      Coordinates = Request.MapImageCoordinates("mapimage")
      LblCoordinates.Text = "X: " & Coordinates(0) & "<br>Y: " & _
                                    Coordinates(1)
    End If
  End Sub

End Class



51

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

In the web form we add an <input> element with its type set to image. In the code behind, we
first check to make sure the page is being posted back to by using the IsPostBack property, and
then retrieve the coordinates of the image input. In this example we simply output the coordinates
for where in the square the user has clicked, but we could also determine the location of the click
and respond differently depending on where the click occurred. The output from this example,
MapImageCoordinates.aspx, is illustrated below:

MapPath
The MapPath method maps a given virtual path to the physical path. It returns a string representing the
physical path of the file for a specified virtual path of a web server, passed as its parameter. There are two
overloaded forms of this method.

Overloads Public Function MapPath(By Val virtualPath As String) _
                                                     As String

In the above example, the parameter virtualPath represents the virtual path for which a
corresponding physical path is desired.

Overloads Public Function MapPath(ByVal virtualPath As String, _
                                  ByVal baseVirtualDir As String, _
                                  ByVal allowCrossMapping As Boolean) _
                                  As String

Here, the baseVirtualDir parameter represents the base virtual directory from which the file should
be mapped. The allowCrossMapping allows the file path to map to another application.

This method will throw an HttpException if there is no HttpContext object defined for the
request. It can also throw this exception if the virtual file path belonged to another application and
allowCrossMapping was set to False.

The following code snippet shows the path to the directory of another application on the server in order
to reference an XML file stored there and output the text of one of the nodes:



52

'map the path to the file in the other application

Dim Path As String
Path = Request.MapPath("categories.xml", "\HelperApp", True)

'open the xml document from the path and output the first category node

Dim Categories As New XmlDocument()
Categories.Load(path)
Response.Write(Categories.SelectNodes("//category").Item(0).InnerText)

'set our variable to nothing so it can be garbage collected

Categories = Nothing

SaveAs
The SaveAs method saves the current HttpRequest to a disk file.

Public Sub SaveAs(ByVal fileName As String, _
                  ByVal includeHeaders As Boolean)

The parameter filename specifies the physical path to the file location for saving the request. The
parameter includeHeaders indicates whether the headers from the request should also be saved out
to the file.

The SaveAs method allows the developer to save the client request out to a file. This can be helpful when
working with requests that contain data such as XML documents or other messaging systems where the
client request as a whole might be saved to a directory to be picked up by another application or if there is
a need to keep a history of the requests made to the server, for security or analysis purposes.

HttpRequest Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

HttpRequest Public Properties
All HttpRequest class properties, except the Filter property, are ReadOnly.

❑ AcceptTypes

❑ ApplicationPath

❑ Browser

❑ ClientCertificate

❑ ContentEncoding

❑ ContentLength

❑ ContentType

❑ Cookies



53

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

❑ CurrentExecutionFilePath

❑ FilePath

❑ Files

❑ Filter

❑ Form

❑ Headers

❑ HttpMethod

❑ InputStream

❑ IsAuthenticated

❑ IsSecureConnection

❑ Params

❑ Path

❑ PathInfo

❑ PhysicalApplicationPath

❑ PhysicalPath

❑ QueryString

❑ RawUrl

❑ RequestType

❑ ServerVariables

❑ TotalBytes

❑ Url

❑ UrlReferrer

❑ UserAgent

❑ UserHostAddress

❑ UserHostName

❑ UserLanguages

AcceptTypes
The AcceptTypes property indicates the MIME types of files that the requesting client will accept in
return. An array of string values, each representing a MIME type accepted by the browser, is returned.

Public ReadOnly Property AcceptTypes As String()

Most client browsers allow a user to indicate handlers for certain document types. Using this property,
the developer can determine if a client supports a specific type. For example, you could have a function
on your site that outputs a Microsoft Word file. It might be useful to check that the client will accept the
application/msword type. If not, then an alternative format, such as PDF, could be used. See the
HttpPostedFile.ContentType property for a list of popular MIME types.



54

The following code snippet shows the usage of AcceptTypes property and then iterates through the
string array returned to display all the AcceptTypes:

Response.Write("AcceptTypes:")
Dim atypes As String() = Request.AcceptTypes
Dim types as String
For Each types In aTypes
    Response.Write(types)
Next

ApplicationPath
The ApplicationPath property indicates the ASP.NET application's virtual path on the server. This
property is useful when you need to determine the root path of the web application in order to
determine the location of other files.

Public ReadOnly Property ApplicationPath As String

For example, we might want to write code to be included in many different web pages. This code could
load an XML file that is in a subdirectory of the application. The following code would allow us to find
this file, regardless of where in the application hierarchy the code executes:

dim XmlSettings as String
XmlSettings = Request.ApplicationPath & "/XML/settings.xml"

Browser
The Browser property returns an HttpBrowserCapabilities object, which allows access to the
abilities and characteristics of the requesting browser. See the HttpBrowserCapabilities class
earlier in this chapter for more details.

The following code snippet can be used to determine if the browser type is IE6 or not:

If Request.Browser.Type.Equals("IE6")
Then
  'perform an action for the IE browser
Else
  'perform an action supported by all browsers
End If

ClientCertificate
The ClientCertificate property indicates the certificate sent from the client for secure
communications. This object can be used to get access to the information contained in that certificate.

Public ReadOnly Property ClientCertificate As HttpClientCertificate

The client certificate is used in secure communications, with the server using SSL technology. Being able
to access this certificate allows the developer to ensure the certificate is appropriate and sufficient for the
site. In the following snippet, we check to make sure the client certificate has at least 128-bit encryption.
If not, we output a simple message that indicates to the user that they needed a certificate with greater
encryption and end the processing of the page immediately using the End method of the
HttpResponse class. The KeySize of a certificate indicates the level of encryption. The greater the
key size, the greater the encryption:



55

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

If Request.ClientCertificate.KeySize <128 Then
  Response.Write("Your certificate needs to be at least 128 bit")
  Response.End()
End if

ContentEncoding
The ContentEncoding property indicates the character encoding of the client. This value indicates
whether the request is ASCII text, or UTF8, or similar. For more information on the different encoding
values and utility classes to convert from one encoding to another, examine the Encoding class in the
System.Text namespace.

Public ReadOnly Property ContentEncoding As Encoding

Here is a usage of this property showing the EncodingName:

Response.Write("Content Encoding Name: " & _
                 Request.ContentEncoding.EncodingName)

ContentLength
The ContentLength property indicates the length, in bytes, of the request. This information can be
used when handling the content using the BinaryRead method or the InputStream property to read
the data from the request.

Public ReadOnly Property ContentLength As Integer

The following code displays the value returned by this property:

Response.Write("Content Length: " & Request.ContentLength)

ContentType
The ContentType property indicates the MIME type of the incoming request such as text/HTML.

Public ReadOnly Property ContentType As String

The ContentType property can be used to discriminate between the types of files being posted to the
server. For example, when the content type is "multipart/form-data" files may be included in the
posted information.

The following code displays the ContentType of the current request:

Response.Write("Content Type: " & Request.ContentType)

Cookies
The Cookies property returns all of the cookies sent to the server by the client browser. The Cookies
collection on the request allows for accessing those cookies being sent to the server. Use the Cookies
collection of the HttpResponse object to send new cookies out to the client, or update existing cookies
there. This property returns an HttpCookieCollection object.



56

Public ReadOnly Property Cookies As HttpCookieCollection

The following code checks the user_name cookie property:

If Request.Cookies.Item("user_name") Is Nothing Then
  Response.Cookies.Item("user_name") = Request.Form.Item("user_name")
End if

CurrentExecutionFilePath
The CurrentExecutionFilePath property indicates the virtual path to the file on the server. This
property is different from the FilePath property, as it returns the path of the current executing page
when the HttpServerUtility.Transfer and HttpServerUtility.Execute methods are
called, unlike returning the path of the parent page that called these methods.

Public ReadOnly Property CurrentExecutionFilePath As String

FilePath
The FilePath property indicates the virtual path to the file on the server.

Public ReadOnly Property FilePath As String

For example, given the URL http://www.wrox.com/aspprogref/chapters.aspx the FilePath property
would return /aspprogref/chapters.aspx.

Files
The Files property indicates a collection of files posted to the web server from a client form submission.

Public ReadOnly Property Files As HttpFileCollection

Uploading files to a web server has come to be an important part of many custom web solutions and
content management packages. In the past, the easiest way to manage all of these files was to use a
third-party component that did the work of splitting out the files from the uploaded form data.

The Files collection is only populated when the ContentType of the form is
"multipart/form-data."

Filter
The Filter property indicates a stream object to use as a filter on the incoming request object. The
incoming request will be passed through this stream as it is processed, allowing the filtering stream class
to read and manipulate the incoming data. This could be used to build a sort of incoming proxy, by
which the data is thoroughly examined before being dealt with in the page. It gets or sets the stream
object to be used as a filter and throws an HttpException if the stream object is not valid.

Public ReadOnly Property Filter As Stream



57

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Form
The Form property indicates the contents of an HTML form posted to the server. In order for form data
to be accessible, the MIME type of the incoming request must be "application/x-www-form-
urlencoded" or "multipart/form-data". The values in the form are returned as a collection,
specifically a NameValueCollection class instance.

Public ReadOnly Property Form As NameValueCollection

HTML forms are one of the primary ways to allow a user to send information to a web site. The Form
property allows the developer to get access to the information that was posted and handle it
appropriately, perhaps saving it to a database, or performing actions based on the input.

Form values are accessed from this collection using the names given them in the HTML form at design
time, including radio buttons and checkboxes. For more information on the elements in a form and their
properties, see Chapters 3 to 5.

The following code snippet displays all the items in the form collection:

Response.Write("Form Values:")
Dim formFields As NameValueCollection = Request.Form
Dim aFields As String() = formFields.AllKeys
Dim field As String
For Each field In aFields
  Response.Write(field & ":" & formFields.Item(field))
Next

Headers
The Headers property indicates the HTML headers sent in the request. This value is returned as a
collection, specifically a NameValueCollection class instance.

Public ReadOnly Property Headers As NameValueCollection

When a client makes a request to a server for a resource, a great deal of the information sent to the
server is Metadata (data that describes the request and the client). The headers of a request contain
information regarding the client browser, cookies, accepted types, language, and encoding. Much of this
information is encapsulated in other properties of the request that may be easier to use. However, the
Headers property allows the developer to access specialized information from the headers, and, in the
HttpResponse object, add their own headers. For example, if we wished to view the User-Agent
header, we could use the following code:

Dim UserAgent as String = Request.Headers.Item("User-Agent")

HttpMethod
The HttpMethod property indicates the method of the HTTP request being made (GET, POST,
or HEAD).

Public ReadOnly Property HttpMethod As String



58

When requesting a resource from a site, there are three different methods that can be used. When typing
in a URL to your browser and getting a page back, a GET request is made. When submitting a form, the
POST method can be specified, which will include the information in the request itself rather than in the
URL. The HEAD request specifies that only the headers that would be sent with a GET request should be
returned. This property indicates in which method the data was transferred and can provide insight into
where to look for specific data.

The following code displays the HttpMethod of the incoming request:

Response.Write "Http Method:" & Request.HttpMethod)

InputStream
The InputStream property indicates a stream containing the incoming HTTP request body. This read-
only stream object provides access to the body of the incoming request. For example, when we post a
form to the server, the values in our form show up in the body of the HTTP request and can, therefore,
be seen using this stream.

Public ReadOnly Property InputStream As Stream

The following code snippet displays the Length of the stream containing the incoming HTTP request body:

Response.Write("Input Stream Length: " & Request.InputStream.Length)

IsAuthenticated
The IsAuthenticated property indicates whether the user has been authenticated to the site. There are
several methods of authentication available to a developer when building a site in ASP.NET including
Windows, Forms-based, and Passport. This property will indicate whether the client making the request
has been authenticated by one of these mechanisms. In order for this property to return anything except
False, the <authentication> element in the web.config file must be set to a value other than
none. Similarly, you may have to change the values in the <authorization> element to allow and
deny users. See Chapter 8 for information on forms-based authentication.

Public ReadOnly Property IsAuthenticated As Boolean

The following code displays whether the user has been authenticated or not:

Response.Write("Is Authenticated: " & Request.IsAuthenticated)

IsSecureConnection
The IsSecureConnection property indicates whether the user's connection is over a HTTPS (secure)
connection. When creating secure sites that contain sensitive information or that will be requesting
sensitive information from users, a form of data encryption is often employed to protect this
information. Today, Secure Sockets Layer (SSL) is the most common security framework used to protect
this data.

SSL provides a public/private key framework for ensuring that a client or server is who it says it is and
assures the user that they are sending their information only where they want. A hacker cannot get
access to the information because they do not have access to the public or private keys existing on the
communicating servers. This security comes at a cost to performance. Encrypting and decrypting data
takes time, and the size of the data that needs to be transmitted is larger as well. For this reason, it is
important to use SSL only where necessary.



59

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Use this property to determine if the client is requesting pages using SSL encryption. It might be helpful
to modify a site to use low resolution images, or different formatting, knowing that the requests to the
server will take longer given the increased network traffic related to encrypting and decrypting the data.

Public ReadOnly Property IsSecureConnection As Boolean

The code below displays whether the incoming request was over a HTTPS or not:

Response.Write("Is Secure Connection: " & Request.IsSecureConnection)

Params
The Params property is a collection combining the Form, QueryString, Cookies, and
ServerVariables values into one collection object of the type NameValueCollection.

Public ReadOnly Property Params As NameValueCollection

This property allows for accessing a named parameter that might exist in a variety of locations. At times,
it might be expected that a parameter will be sent to the page, but it may come in different forms. This
property makes it easier to access these values without creating long conditional statements.

The following code displays all the contents stored in the Form, QueryString, Cookies, and
ServerVariables by iterating through the collection object returned by the Params property:

Response.Write("Param Values contain QueryString, Form, " & _
                ServerVariables and Cookies items:")
Dim params As NameValueCollection = Request.Params
Dim aParam As String() = params.AllKeys
Dim paramKey As String
For Each paramKey In aParam
  Response.Write(paramKey & ":" & params.Item(paramKey))
Next

Path
The Path property indicates the path of the current request, including any information trailing the file
name. This property differs from the FilePath in that the FilePath property does not include the
information following the file itself. See below for more clarification on this.

Public ReadOnly Property Path As String

PathInfo
The PathInfo property indicates the information in a URL request that follows the file location.

Public ReadOnly Property PathInfo As String

The FilePath, Path, and PathInfo properties are all closely related and can be a bit
confusing. A sample to show the difference should clarify any confusion. Given the
URL: http://www.wrox.com/aspprogref.aspx/TOC



60

The following values would be returned for the three properties:

FilePath:    http://www.wrox.com/aspprogref.aspx

Path:             http://www.wrox.com/aspprogref.aspx/TOC

PathInfo:    TOC

PhysicalApplicationPath
The PhysicalApplicationPath property indicates the disk (physical) file path to the
application directory.

Public ReadOnly Property PhysicalApplicationPath As String

An example return value for this property would be "c:\inetpub\wwwroot\WebUsage\".

PhysicalPath
The PhysicalPath property indicates the physical disk path to the file requested in the URL. This
differs from the above property in that it reflects the path of the actual file requested.

Public ReadOnly Property PhysicalPath As String

An example return value for this property would be
"c:\inetpub\wwwroot\WebUsage\HttpRequestUsage.aspx".

QueryString
The QueryString property indicates a collection of the parameters sent to the server via the URL.

NameValueCollection Query = HttpRequest.QueryString

For example, given the URL: "http://www.wrox.com/aspprogref.aspx?chap=2&section=3"

HttpRequest.QueryString.Item("chap") will return the value "2".
HttpRequest.QueryString.Item("section") will return the value "3".

RawUrl
The RawUrl property indicates the path to the resource excluding the server and domain information,
but including the query string parameters, if present.

Public ReadOnly Property RawUrl As String

For example, the URL "http://www.wrox.com/aspprogref/examples/chap2.zip" would result in the
following return value: /aspprogref/examples/chap2.zip

RequestType
The RequestType property indicates the type of request made by the client (GET or POST).



61

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Public ReadOnly Property RequestType As String

The following code displays the RequestType of the incoming request:

Response.Write "Request Type:" & Request.RequestType)

ServerVariables
The ServerVariables property gets a collection of the web server variables.

Public ReadOnly Property ServerVariables As NameValueCollection

Below is a table of the possible server variables in this collection:

Variable Meaning

ALL_HTTP All of the HTTP headers with their names in all caps and
prefixed with HTTP_.

ALL_RAW All of the HTTP headers in the format they were sent to the
server.

APPL_MD_PATH The metabase path of the web application. The metabase is
the storage area for IIS configuration settings.

APPL_PHYSICAL_PATH The physical path of the web application.

AUTH_PASSWORD The password of the user if using Basic authentication.

AUTH_TYPE The authentication type used to authenticate the user.
Possible values include NTLM and basic.

AUTH_USER The user name of the authorized user.

CERT_COOKIE A cookie providing the ID of the certificate if one is present
on the client.

CERT_ISSUER The name of the company that issued the client certificate;
this matches the issuer field on the certificate.

CERT_KEYSIZE The size, in bits, of the encryption key used to encrypt data.

CERT_SECRETKEYSIZE The size, in bits, of the secret or private key on the server.

CERT_SERIALNUMBER The serial number of the client certificate.

CERT_SERVER_ISSUER The issuer field in the server certificate.

CERT_SERVER_SUBJECT The subject field of the server certificate.

CERT_SUBJECT The subject field of the client certificate.

CONTENT_LENGTH The length, in bytes, of the incoming request.

CONTENT_TYPE The MIME type of the request, such as www-url-
encoded for a form being posted to the server.

GATEWAY_INTERFACE The Common Gateway Interface (CGI) supported on the
server.

HTTP_ACCEPT The MIME types the client can accept.

Table continued on following page



62

Variable Meaning

HTTP_ACCEPT_ENCODING The compression encoding types supported by the client.

HTTP_ACCEPT_LANGUAGE The languages accepted by the client.

HTTP_CONNECTION Indicates whether the connection allows keep-alive
functionality.

HTTP_COOKIE The cookies sent with a request.

HTTP_HOST The host name of the server.

HTTP_USER_AGENT Information about the browser used to connect to the
server including version and type.

HTTPS Indicates whether HTTPS was used for the request.
Returns "On" if the request came through SSL, or "Off"
if not.

HTTPS_KEYSIZE The number of bits in the encryption used to make the SSL
connection.

HTTPS_SECRETKEYSIZE The size, in bits, of the private key on the server.

HTTPS_SERVER_ISSUER The name of the issuing authority for the server certificate
as found in the Issuer field of the certificate.

HTTPS_SERVER_SUBJECT The subject of the server certificate as found in the subject
field of the certificate.

INSTANCE_ID The metabase ID of the web server instance.

INSTANCE_META_PATH The metabase path of the web server instance.

LOCAL_ADDR The IP address of the server that is handling the request.

LOGON_USER The NT user name of the user if known.

PATH_INFO The virtual path to the requested resource.

PATH_TRANSLATED The physical path to the requested resource.

QUERY_STRING A string containing any information after the name of the
resource requested.

REMOTE_ADDR The IP address of the client making the request.

REMOTE_HOST The host name of the client making the request, if available.

REMOTE_USER The original NT user name sent by the client before it is
modified by any authentication filters on the server.

REQUEST_METHOD The type of the HTTP request made. Possible values are
"GET", "POST", and "HEAD".

SCRIPT_NAME The virtual path to the script currently executing.

SERVER_NAME The host name of the server.

SERVER_PORT The server port to which the request was made.

SERVER_PORT_SECURE If the port is set to use SSL, this value is 1, otherwise it is 0.

SERVER_PROTOCOL The HTTP protocol and version in use on the server.

SERVER_SOFTWARE The name and version of the web server software running
on the server.

URL The virtual path to the file requested.



63

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

TotalBytes
The TotalBytes property indicates the total number of bytes posted to the server in the client's request.

Public ReadOnly Property TotalBytes As Integer

The following code displays the TotalBytes of the current request:

Response.Write("Total Bytes: " & Request.TotalBytes)

Url
The Url property indicates the Universal Resource Identifier (URI) and its associated information
regarding the resource requested. For a client using a web browser, this would be the same information
that appears in their browser address.

Public ReadOnly Property Url As Uri

The following code displays the Url of the current request:

Response.Write("Url: " & Request.Url.Tostring())

UrlReferrer
The UrlReferrer property indicates the URI of the previously accessed page that linked to the current
request page. The UrlReferrer property can be useful for tracking information about how users arrive at
your site or the path that users take when in your site. However, it is not a good idea to use this
information for security purposes or any other purpose where you need to be guaranteed that a user is
coming from a certain page. This property is only populated when the user is navigating to the page from
a link in another web page. Therefore, if the client enters the address directly in their browser, or uses a
bookmark, this object will be Nothing.

Public ReadOnly Property UrlReferrer As Uri

The following code displays the UrlReferrer:

Response.Write("Url Referrer: " & Request.UrlReferrer.Tostring())

UserAgent
The UserAgent property indicates the browser being used by the client. It contains a raw string
representing the client's browser. This property is the basis for much of the information contained in the
HttpBrowserCapabilities object retrieved via the Browser property.

Public ReadOnly Property UserAgent As String

The following code displays the UserAgent:

Response.Write("User Agent: " & Request.UserAgent)



64

An example of a string for IE 6.0 might look like this:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; .NET CLR 1.0.3705)

UserHostAddress
The UserHostAddress property indicates the IP address of the requesting client's machine. This can
be useful if you want to determine if someone's connecting from your local network or not. It also has
potential for allowing customisation based on whether you know of the user's network or not. For
example, a company may want to have different content or navigation on their home page for
employees browsing to the site from the office, versus the content that users outside the company get.

Public ReadOnly Property UserHostAddress As String

The following code displays the UserHostAddress:

Response.Write("User Host Address: " & Request.UserHostAddress)

UserHostName
The UserHostName property indicates the host name of the requesting client's machine.

Public ReadOnly Property UserHostName As String

The following code displays the UserHostName:

Response.Write("User Host Name: " & Request.UserHostName)

UserLanguages
The UserLanguages property indicates the languages preferred by the user's browser. This property
returns an array of languages supported by the client. In Internet Explorer, the user can set these values
via the Internet Options control panel. You can use this array of values to search for a preferred language
to present your information in.

Public ReadOnly Property UserLanguages As String()

The following code snippet displays all the languages preferred by the requesting browser:

Response.Write("User Languages:")
Dim alanguages As String() = Request.UserLanguages
Dim languages as String
For Each languages In aLanguages
  Response.Write(languages)
Next



65

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Example: The Properties of the HttpRequest Class

The code shown below, HttpRequestUsage.aspx, will display the values of all of the
properties of the HttpRequest class:

Imports System.Text
Imports System.IO
Imports System.Collections.Specialized
Public Class HttpRequestUsage
  Inherits System.Web.UI.Page
  Protected WithEvents LBtnRequest As _
            System.Web.UI.WebControls.LinkButton
  Protected WithEvents LblRequest As _
            System.Web.UI.WebControls.Label

...

  Private Sub Page_Load(ByVal sender As System.Object, _
                        ByVal e As System.EventArgs) _
                        Handles MyBase.Load
    'Put user code to initialize the page here
  End Sub

  Private Sub LBtnRequest_Click( _
                          ByVal sender As System.Object, _
                          ByVal e As System.EventArgs) _
                          Handles LBtnRequest.Click
    Dim sbText As New StringBuilder()

    'Display all the properties of the HttpRequest Class
    sbText.Append("This example shows the usage of the" & _
                  "properties of HttpRequest Class")
    sbText.Append("<br>")

    sbText.Append("AcceptTypes:")
    sbText.Append("<br>")
    Dim atypes As String() = Request.AcceptTypes
    Dim types As String
    For Each types In atypes
      sbText.Append(types)
      sbText.Append("<br>")
    Next
    sbText.Append("<br>")

    sbText.AppendFormat("Application Path: {0}", & _
                         Request.ApplicationPath)
    sbText.Append("<br>")

    sbText.AppendFormat("Browser Type: {0}", & _
                         Request.Browser.Type)
    sbText.Append("<br>")



66

sbText.AppendFormat("Client Certificate Subject: {0}", _
                         Request.ClientCertificate.Subject)
    sbText.Append("<br>")

    sbText.AppendFormat("Content Encoding Name: {0}", _
                       Request.ContentEncoding.EncodingName)
    sbText.Append("<br>")

    sbText.AppendFormat("Content Length: {0}",
                         Request.ContentLength)
    sbText.Append("<br>")

    sbText.AppendFormat("Content Type: {0}",
                         Request.ContentType)
    sbText.Append("<br>")

    sbText.Append("Cookies ")
    sbText.Append("<br>")
    Dim cookiesCollection As _
                  HttpCookieCollection = Request.Cookies
    Dim cookieCount As Integer = cookiesCollection.Count
    Dim i As Integer
    For i = 0 To cookieCount - 1
      sbText.Append(cookiesCollection(i).Name & ":" & _
                    cookiesCollection(i).Value)
      sbText.Append("<br>")
    Next
    sbText.Append("<br>")

    sbText.AppendFormat("Current Execution File " & _
       "Path: {0}", Request.CurrentExecutionFilePath)
    sbText.Append("<br>")

    sbText.AppendFormat("File Path: {0}", Request.FilePath)
    sbText.Append("<br>")

    sbText.Append("Files ")
    sbText.Append("<br>")
    Dim filesCollection As _
                 HttpFileCollection = Request.Files
    Dim fileCount As Integer = filesCollection.Count
    Dim j As Integer
    For j = 0 To fileCount - 1
      sbText.Append(filesCollection(j).FileName)
      sbText.Append("<br>")
    Next
    sbText.Append("<br>")

    sbText.AppendFormat("Filter Length: {0}", _
                         Request.Filter.Length)
    sbText.Append("<br>")



67

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

sbText.Append("Form Values:")
    sbText.Append("<br>")
    Dim formFields As NameValueCollection = Request.Form
    Dim aFields As String() = formFields.AllKeys
    Dim field As String
    For Each field In aFields
      sbText.Append(field & ":" & formFields.Item(field))
      sbText.Append("<br>")
    Next

    sbText.Append("Header Values:")
    sbText.Append("<br>")
    Dim headers As NameValueCollection = Request.Headers
    Dim aHeader As String() = headers.AllKeys
    Dim headerKey As String
    For Each headerKey In aHeader
      sbText.Append(headerKey & ":" & _
                    headers.Item(headerKey))
      sbText.Append("<br>")
    Next
    sbText.Append("<br>")

    sbText.AppendFormat("Http Method: {0}", _
                         Request.HttpMethod)
    sbText.Append("<br>")

    sbText.AppendFormat("Input Stream Length: {0}", _
                         Request.InputStream.Length)
    sbText.Append("<br>")

    sbText.AppendFormat("Is Authenticated: {0}", _
                         Request.IsAuthenticated)
    sbText.Append("<br>")

    sbText.AppendFormat("Is Secure Connection: {0}", _
                         Request.IsSecureConnection)
    sbText.Append("<br>")

    sbText.AppendFormat("Is Secure Connection via " & _
                        "Item Property: {0}", _
                        Request.Item("IsSecureConnection"))
    sbText.Append("<br>")

    sbText.Append("Param Values contain QueryString," & _
                  "Form, ServerVariables and Cookies" & _
                  " items:")
    sbText.Append("<br>")
    Dim params As NameValueCollection = Request.Params
    Dim aParam As String() = params.AllKeys
    Dim paramKey As String
    For Each paramKey In aParam
      sbText.Append(paramKey & ":" & params.Item(paramKey))



68

sbText.Append("<br>")
    Next
    sbText.Append("<br>")

    sbText.AppendFormat("Path: {0}", Request.Path)
    sbText.Append("<br>")

    sbText.AppendFormat("Path Information: {0}", _
                         Request.PathInfo)
    sbText.Append("<br>")

    sbText.AppendFormat("Physical Application Path:" & _
                 " {0}", Request.PhysicalApplicationPath)

    sbText.Append("<br>")

    sbText.AppendFormat("Physical Path: {0}", _
                         Request.PhysicalPath)
    sbText.Append("<br>")

    sbText.Append("QueryString Values:")
    sbText.Append("<br>")
    Dim querys As _
           NameValueCollection = Request.QueryString
    Dim aQuery As String() = querys.AllKeys
    Dim queryKey As String
    For Each queryKey In aQuery
      sbText.Append(queryKey & ":" & _
                    querys.Item(queryKey))
      sbText.Append("<br>")
    Next
    sbText.Append("<br>")

    sbText.AppendFormat("Raw Url: {0}", Request.RawUrl)
    sbText.Append("<br>")

    sbText.AppendFormat("Request Type: {0}", _
                         Request.RequestType)
    sbText.Append("<br>")

    sbText.Append("Server Variables Values:")
    sbText.Append("<br>")
    Dim servers As _
            NameValueCollection = Request.ServerVariables
    Dim aServer As String() = servers.AllKeys
    Dim serverKey As String
    For Each serverKey In aServer
      sbText.Append(serverKey & ":" & _
                    servers.Item(serverKey))
      sbText.Append("<br>")
    Next
    sbText.Append("<br>")



69

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

    sbText.AppendFormat("Total Bytes: {0}", _
                         Request.TotalBytes)
    sbText.Append("<br>")

    sbText.AppendFormat("Url: {0}", Request.Url)
    sbText.Append("<br>")

    sbText.AppendFormat("Url Referrer: {0}", _
                         Request.UrlReferrer)
    sbText.Append("<br>")

    sbText.AppendFormat("User Agent: {0}", _
                         Request.UserAgent)
    sbText.Append("<br>")

    sbText.AppendFormat("User Host Address: {0}", _
                         Request.UserHostAddress)
    sbText.Append("<br>")

    sbText.AppendFormat("User Host Name: {0}", _
                         Request.UserHostName)
    sbText.Append("<br>")

    sbText.Append("User Languages:")
    sbText.Append("<br>")
    Dim alanguages As String() = Request.UserLanguages
    Dim languages As String
    For Each languages In alanguages
      sbText.Append(languages)
      sbText.Append("<br>")
    Next
    sbText.Append("<br>")

    LblRequest.Text = sbText.ToString()

  End Sub

End Class

Here is a screenshot showing just some of the output that this example produces:



70

HttpResponse Class
The HttpResponse class encompasses all of the content getting written out to the client, including
headers, cookies, and other non-UI items. Writing to this stream is equivalent to sending data to the
client. The HttpResponse object is accessible via the intrinsic Response object allowing syntax like
the following:

Response.ContentType="text/XML"

HttpResponse Public Methods
❑ AddCacheItemDependencies

❑ AddCacheItemDependency



71

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

❑ AddFileDependencies

❑ AddFileDependency

❑ AddHeader

❑ AppendHeader

❑ AppendToLog

❑ ApplyAppPathModifier

❑ BinaryWrite

❑ Clear

❑ ClearContent

❑ ClearHeaders

❑ Close

❑ End

❑ Equals – inherits from System.Object, see Introduction for more details.

❑ Flush

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ Pics

❑ Redirect

❑ RemoveOutputCacheItem

❑ ToString – inherits from System.Object, see Introduction for more details.

❑ Write

❑ WriteFile

AddCacheItemDependencies
The AddCacheItemDependencies method allows you to specify that validity of one item in the
cache is dependent on a list of other items in the cache. The list of items is supplied as an ArrayList
containing keys of the items. When the items referred to by these keys are removed from the cache, the
cache response for the current item will become invalid.

Public Sub AddCacheItemDependencies(ByVal cacheKeys As ArrayList)

AddCacheItemDependency
The AddCacheItemDependency method allows you to specify that validity of one item in the cache is
dependent on some other item in the cache. If the other item is removed from cache, the cache response
of current item will become invalid.

Public Sub AddCacheItemDependency(ByVal cacheKey As String)



72

AddFileDependencies
The AddFileDependencies method allows the addition of multiple files to the list of files the current
response is dependent on. These file dependencies are related to the caching mechanisms in ASP.NET as
setting file dependencies indicates that a cached response is dependent on the files and the cache should
be refreshed when the file(s) change. See Chapter 6 for more information on caching in ASP.NET.

Public Sub AddFileDependencies(ByVal fileNames As ArrayList)

The parameter fileNames represents an ArrayList filled with values representing the file path of
the files to add.

AddFileDependency
The AddFileDependency method allows the addition of a single file as a dependency for the given
response object. It is a quicker method to add a single file dependency than using an array of file names
as above. Caching is an important part of many high volume sites and having a response that can be
cached based on when a file changes is a very powerful mechanism for achieving high throughput on a
web site. See Chapter 6 for more information on caching in ASP.NET.

Public Sub AddFileDependency(ByVal fileName As String)

The parameter fileName represents the path to the file on which this response should be dependent.

AddHeader
The AddHeader method allows the addition of an HTTP header to the outgoing response. See the
HttpRequest class's Headers property for more information on common headers.

Public Sub AddHeader(ByVal name As String, ByVal value AS String)

The parameter name specifies the name of the header to add and the value parameter represents the
value to be set for the header named in the first parameter.

This method is only provided for backward compatibility with ASP. In ASP.NET the
AppendHeader method should be used instead.

AppendHeader
The AppendHeader method allows the addition of a header to the outgoing response stream.

Public Sub AppendHeader(ByVal name As String, ByVal value As String)

The parameter name specifies the name of the header to add and the value parameter represents the
value to be set for the header named in the first parameter. For example, maybe we have a server web
farm and want to indicate to the calling program the actual server that serviced the request. We could
append a custom header indicating this value:

Response.AppendHeader("SERVICING_SERVER" , _
         Request.ServerVariables.Item("LOCAL_ADDR"))



73

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

There are standard headers in HTTP communications with a browser, but this method allows for adding
your own custom ones, in addition to the standard headers.

AppendToLog
The AppendToLog method allows you to append information to the IIS web log entry for the request. In
this way, specialized information can be included in the log based on the events of the page processing.

Public Sub AppendToLog(ByVal param As String)

The parameter param represents the string to be added to the IIS web log entry for this response.

Being able to extend the web site log can be a powerful mechanism for performing business analysis on
a web site. While the standard web logs can be useful for understanding basic traffic patterns, being able
to add information to the log can allow you to understand a user's actions through adding in more
information about what they're doing. The information in the logs can be imported into a database or
other source to provide more powerful analysis.

ApplyAppPathModifier
The ApplyAppPathModifier method allows the addition of a session ID to the virtual path,
returning the new virtual path with the addition of the session ID in the virtual path. This method can
be used when the session state's cookieless attribute is set to True, as it will add the Session ID in the
newly constructed virtual path.

Public Function ApplyAppPathModifier(ByVal virtualPath As String) As String

The parameter virtualPath refers to a virtual path that needs Session ID to be appended and is
pointing to resource.

BinaryWrite
The BinaryWrite method allows writing out binary data, such as an image or PDF file, to the
response stream.

Public Sub BinaryWrite(ByVal buffer() As Byte)

The parameter buffer represents the byte array containing the binary data to be written to the
Response stream.

Clear
The Clear method allows cleaning out the response stream buffer. This might be helpful if information
has been written out and the page logic requires the information not to be displayed. For example, if the
request begins processing, and the logic dictates that a redirect is necessary, then this method can be
used to clear the headers that have already been written to the response before redirecting the client.

Public Sub Clear()

ClearContent
The ClearContent method clears out just the content portion of the buffer stream but not the
header information.



74

Public Sub ClearContent()

ClearHeaders
The ClearHeaders method clears any custom or standard headers that have been set for the response.
This can be useful if you are designing pages that do not contain any user interface. For example, if you
have a page that serves as an interface to another application, you may want to remove the headers for
your communication between the two applications. It throws an HttpException object if this method
is called after the headers information is sent.

Public Sub ClearHeaders()

Close
The Close method closes the response object so that no other data can be written to it. In actuality the
physical socket connection between the client and the server is closed.

Public Sub Close()

End
The End method stops execution of the page after flushing the output buffer to the client. It also raises
the Application_EndRequest event.

Public Sub End()

In the middle of a page execution, a situation might arise that causes the page execution to end without
completing the processing. Calling this method stops the execution at the point of call and returns the
output to the client.

Flush
The Flush method allows for flushing all of the currently buffered content out to the client.

Public Sub Flush()

When buffering the response (see the BufferContent property) the Flush method can be used to
send the buffered content to the browser in chunks. This provides a faster display to the client. The
Flush method is called intrinsically when the End method is called.

Pics
The Pics method allows the addition of a Pics-label HTTP header to the outgoing response object.
This Pics-label identifies a content rating for the material contained in the page. Any value can be
set using this method, as the .NET runtime does not set any requirements or do any checking on the
value. The only restriction is that the value must be less than 255 characters. This PICS header is the
indicator of content that is checked when you set content restrictions in Internet Explorer. For more
information on PICS, visit the World Wide Web Consortium's web site at http://w3c.org/PICS/.

Public Sub Pics(ByVal value As String)

The value parameter specifies the value to be set for the Pics-label header.



75

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Redirect
The Redirect method allows you to send a redirection directive to the client browser. Many browsers
support this type of response and will make a new request for the specified resource. This method
requires another round trip between the client and server. As such, you should, instead, try to use either
the HttpServerUtility.Transfer method or the HttpServerUtility.Execute method, as
neither of these methods requires the client to make a new request. The Redirect method has
two overloads.

Overloads Public Sub Redirect(ByVal url As String)

The parameter url represents the URL client needs redirecting to.

Overloads Public Sub Redirect(ByVal url As String, _
                              ByVal endResponse As Boolean)

The endResponse parameter indicates whether to end the current response, by implicitly calling the
End method. The default value for this property, if only specifying the URL, is True. The
endResponse parameter is useful if you want code to continue executing even if the user has been
redirected. For example, if you decide at some point in your code to redirect the user, but you have code
that follows in your page that still needs to execute in order for the page to successfully process, then
you can set this value to False to ensure that the rest of the code in your page executes.

RemoveOutputCacheItem
The RemoveOutputCacheItem is a Shared method that removes all the cached items linked with
any resource. The path is specified as a parameter to this method and it removes all cached items from
the cache for the specified physical path.

Public Shared Sub RemoveOutputCacheItem(ByVal path As String)

The path represents the physical path for which the cache items need to be removed.

Write
The Write method allows writing output to the outgoing stream. There are several overloaded versions
of this method to allow for the output of a variety of data types.

Overloads Public Sub Write(ByVal ch As Char)

The parameter ch specifies the character to write to the output stream.

Overloads Public Sub Write(ByVal ob As Object)

The parameter ob specifies the object to write to the output stream. It writes the object to the output
stream by calling its ToString method intrinsically.

Overloads Public Sub Write(ByVal value As String)

The parameter value specifies the string value to write to the output stream.



76

Overloads Public Sub Write(ByVal buffer() As Char, _
                           ByVal index As Integer, _
                           ByVal count As Integer)

The parameter buffer represents the character array to write to the outgoing stream. The parameter
index specifies the array index to begin writing from and the parameter count represents the number
of elements to write out to the stream.

WriteFile
The WriteFile method writes a file out to the output stream. This file could contain HTML and other
text elements that would help make up the page content. This method has four overloaded versions:

Overloads Public Sub WriteFile(ByVal fileName As String)

The parameter fileName specifies the name or path of the file to write out to the stream.

Overloads Public Sub WriteFile(ByVal fileName As String, _
                               readIntoMemory As Boolean)

The parameter fileName specifies the name or path of the file to write out to the stream. The
readIntoMemory parameter indicates whether the file should be read into a memory block.

Overloads Public Sub WriteFile(ByVal fileHandle As IntPtr, _
                               ByVal offset As Long, _
                               ByVal size As Long)

The parameter fileHandle specifies the handle to the file that should be written out to the stream.
The offset parameter represents the starting position in the file at which reading should begin and the
size parameter specifies the number of bytes to read and then write out to the stream.

Overloads Public Sub WriteFile(ByVal fileName As String, _
                               ByVal offset As Long, _
                               ByVal size As Long)

The parameter fileName specifies the name or path of the file to write out to the stream. The offset
parameter represents the starting position in the file at which reading should begin and the size
parameter specifies the number of bytes to read and then write out to the stream.

HttpResponse Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

HttpResponse Public Properties
❑ Buffer

❑ BufferOutput

❑ Cache



77

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

❑ CacheControl

❑ Charset

❑ ContentEncoding

❑ ContentType

❑ Cookies

❑ Expires

❑ ExpiresAbsolute

❑ Filter

❑ IsClientConnected

❑ Output

❑ OutputStream

❑ Status

❑ StatusCode

❑ StatusDescription

❑ SuppressContent

Buffer
The Buffer property indicates whether or not the output to the response stream will be buffered and
therefore cleared before being sent to the client. It is used to return or assign a Boolean value where
True represents that the output will be buffered.

Public Property Buffer As Boolean

This method is only available for backward compatibility with ASP. Use the
BufferOutput property instead in ASP.NET.

BufferOutput
The BufferOutput property indicates whether the response output should be buffered until the page
has completed processing and then be sent to the client, instead of being sent as the page is processed.

Public Property BufferOutput As Boolean

It is used to return or assign a Boolean value where True represents that the output will be buffered.
The default value for this property is True, to allow buffering. Buffering the content before it goes out
to the client has several benefits. For example, because the output is buffered, if after processing a
portion of the page it is determined that the response should be redirected, then there is no problem.
However, if the response had not been buffered, the header would have already been sent to the client.
In this case the "302" header cannot be written to the response and an error will be thrown.



78

Cache
The Cache property indicates the caching policy in effect for the page by returning a Cache object. This
property is the preferred mechanism for setting information about page caching expirations. Caching
allows for the maintenance of a copy of the page output in memory and servicing requests for the page
from memory rather than processing the page again. The policy, set through the Cache property,
indicates such parameters as when the in-memory cached data should expire and where the information
can be cached (Server, Client, or Intermediate Server).

Public ReadOnly Property Cache As HttpCachePolicy

CacheControl
The CacheControl property indicates the value to set for the HTTP cache-control header. This value can
be Public or Private; Public indicates that the page can be cached at any point between the client and
the server, such as on a server designed specifically for caching, and Private indicates that the content
can only be cached on the client.

Public Property CacheControl As String

The CacheControl property has been deprecated. You should use the methods and
properties of the HttpCachePolicy object exposed through the Cache property to
set the cacheability of the page.

Charset
The Charset property indicates the character set to use for the output stream.

Public Property Charset As String

The default character set is determined by the settings in the <globalization> section of the
web.config file but can be overridden by setting this property. In this section you can set the default
values for many of the properties related to globalization. The sample section from a web.config file
below shows some of the properties that can be set:

<globalization
      fileEncoding="utf-8"
      requestEncoding="utf-8"
      responseEncoding="utf-8"
      culture="en-US"
      uiCulture="de-DE"
    />

The settings listed here, with the exception of fileEncoding and requestEncoding can also be set
at the page level by placing them in a page directive.

The difference between the CharSet property and the ContentEncoding property is that the
CharSet can be set to Nothing and the content-type header will be suppressed. The
ContentEncoding property cannot be set to Nothing.



79

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

ContentEncoding
The ContentEncoding property indicates an Encoding object that represents the character set in use on
the outgoing stream. This property provides a more robust, object-oriented approach for setting the
character set for the outgoing response when compared with the CharSet property. It becomes important
when working with international applications, which need to be flexible in the languages they display.
Setting the ContentEncoding property to Nothing will cause an ArgumentException to
be thrown.

Public Property ContentEncoding As Encoding

ContentType
The ContentType property indicates the MIME type (see list earlier in this chapter of MIME types) of
the outgoing response stream. The default value for this property is text/html as the majority of
content served by web servers is HTML text. If you were returning XML data directly to the client, then
this property would be set to text/xml. The ContentType property will throw an HttpException
if it is set to Nothing.

Public Property ContentType As String

Cookies
The Cookies property indicates the cookies collection, which allows the addition of cookies to the
outgoing stream. The HttpCookiesCollection (discussed earlier in the chapter) provides a
wrapper for a collection of cookies. The Cookies property refers to the collection that is created on the
server and sent to the client in the Set-Cookie header. The property is read-only, but the underlying
collection can be used to add or manipulate the cookies sent to the client.

Public ReadOnly Property Cookies As HttpCookiesCollection

Expires
The Expires property indicates the number of minutes that the page should be cached on the client browser.
It is used to set or get the number of minutes before which the page cached expires.

Public Property Expires As Integer

The Expires property has been deprecated. You should use the methods and
properties of the HttpCachePolicy object exposed through the Cache property to
set the expiration for the page in ASP.NET.

ExpiresAbsolute
The ExpiresAbsolute property indicates the specific date and time until which the page should be
cached by the client browser.

Public Property ExpiresAbsolute As DateTime

The ExpiresAbsolute property has been deprecated. You should use the methods
and properties of the HttpCachePolicy object exposed through the Cache property
to set the absolute expiration for the page.



80

Filter
The Filter property indicates the stream applied as a filter to the outgoing response. A custom stream
class can be set to filter the outgoing content and apply any changes necessary. A simple example would
be a stream class that capitalizes all of the HTML tags in the output.

Public Property Filter As Stream

IsClientConnected
The IsClientConnected property indicates whether the client is still connected to the server. It
returns true if the client is connected to the server and false otherwise. This property can be useful when
running a lengthy request. Perhaps you have a long-running query, or are waiting for a response from
another server. If the client is no longer connected, it does not pay to continue processing the request. In
a high-volume site, it's important to only process what is necessary.

Public ReadOnly Property IsClientConnected As Boolean

Output
The Output property indicates a TextWriter object that can be used to directly send output to the HTTP
response stream. The Response.Write syntax is much more familiar for classic ASP developers, but
ultimately does the same thing. Writing with the Response.Write or Response.Output.Write
methods performs the same operation, and will produce the same results. The Output property simply
allows for another mechanism of doing this and provides a TextWriter class as the object.

Public ReadOnly Property Output As TextWriter

OutputStream
The OutputStream property indicates a stream object that can be used to write output directly onto
the response stream. This is useful if you have content that you are streaming from another source or if
you are using a business object, or helper function, that requires a stream to write to. This stream is very
similar to the Response object in that it is written to in similar ways, but this property gives you direct
access to the stream as an object that derives directly from the abstract stream class. This property helps
in sending binary output in the content sent to the client. It throws an HttpException when the
output stream is not present.

Public ReadOnly Property OutputStream As Stream

Status
The Status property indicates the HTTP status that is being sent to the client. This is a string value
representing both the code and text versions (for example 200 OK). The default value is 200 OK. An
HttpException occurs if the Status is set to an invalid status code.

Public Property Status As String



81

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

StatusCode
The StatusCode property indicates the numeric representation of the status of the HTTP output sent by
the server to the client. For example, a successful request is indicated by a status code 200 while a
redirection is indicated by status code of 302. Most users are probably familiar with the 404 status code
meaning that a resource was not found. These codes indicate to the web browser the outcome of the
request made to the server. The default value is 200. An HttpException occurs if the StatusCode is
set after sending the HTTP headers. For a complete list of HTTP status codes, see
http://www.w3.org/Protocols/HTTP/HTRESP.html.

Public Property StatusCode As Integer

StatusDescription
The StatusDescription property indicates the string representation of the status of the HTTP output
sent by the server to the client. The default value is OK. An HttpException occurs if the
StatusDescription is set after sending the HTTP headers.

Public Property StatusDescription As String

SuppressContent
The SuppressContent property indicates whether the content in the page should be sent to the client.
A True value indicates that the content should be suppressed and not sent. If this property is set to
True, and the response is being buffered, then the response to the client will be blank. If buffering is
turned off and this property is set to True, then only that content sent to the output stream before
setting this property to True will be sent.

Public Property SuppressContent As Boolean

HttpRuntime Class
The HttpRuntime class offers methods and properties regarding the run-time environment in which
the web application is running as well as information about the runtime itself. This information can be
useful for finding path information or locating files needed in processing pages, as well as in more
advanced development where the programmer needs to work with the ASP.NET internals.

HttpRuntime Public Methods
❑ Close

❑ Equals – inherits from System.Object, see Introduction for more details.

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ ProcessRequest

❑ ToString – inherits from System.Object, see Introduction for more details.



82

Close
The Close method allows shutting down the runtime (CLR) and clearing the cache. There is no need to
call this method in the normal processing of request. This method call is required when the application
wishes to provide its own hosting requirement.

Public Shared Sub Close()

ProcessRequest
The ProcessRequest method is the method that drives all requests made to the web site. This
method is the invocation that actually starts a web request. This method call is required, like Close
method, when the application wishes to provide its own hosting requirement or when the code
implements its own HttpWorkerRequest to execute child requests.

Public Shared Sub ProcessRequest(ByVal request as HttpWorkerRequest)

The parameter request represents the actual request made by the client.

HttpRuntime Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

HttpRuntime Public Properties
All the properties of the HttpRuntime class are Public, Shared, and ReadOnly.

❑ AppDomainAppId

❑ AppDomainAppPath

❑ AppDomainAppVirtualPath

❑ AppDomainId

❑ AspInstallDirectory

❑ BinDirectory

❑ Cache

❑ ClrInstallDirectory

❑ CodegenDir

❑ IsOnUNCShare

❑ MachineConfigurationDirectory

AppDomainAppId
The AppDomainAppId shared property indicates a string value that represents the identification of the
application within the AppDomain that the web application is currently executing in. See the
AppDomainId property to get the ID for the application domain itself. An application domain is a unit
of processing that is used to separate the code executing in different applications. While the runtime
generally takes care of creating application domains, they can be created by a developer to execute code
in separate spaces. AppDomainAppId is a read-only property and returns a string value.



83

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Public Shared ReadOnly Property AppDomainAppId As String

AppDomainAppPath
The AppDomainAppPath property indicates the file path to the physical directory where the files for the
current web application reside. AppDomainAppPath is a read-only property and returns a string value.

Public Shared ReadOnly Property AppDomainAppPath As String

AppDomainAppVirtualPath
The AppDomainAppVirtualPath property indicates the virtual path to the directory where the files for
the web application exist in the application domain. It is a read-only property and returns a string value.

Public Shared ReadOnly Property AppDomainAppVirutalPath As String

AppDomainId
The AppDomainId property indicates the identification (ID) of the AppDomain in which the web
application is running. AppDomainId is a read-only property and returns a string value.

Public Shared ReadOnly Property AppDomainId As String

AspInstallDirectory
The AspInstallDirectory property indicates the physical path to the directory where the ASP.NET
runtime is installed. It is a read-only property and returns a string value representing the physical path.

Public Shared ReadOnly Property AspInstallDirectory As String

BinDirectory
The BinDirectory property indicates the bin directory for the current web application. This
directory is where all assemblies used in the application, other than those in the Global Application
Cache (GAC), are located. It is a read-only property and returns a string value representing the bin
directory path.

Public Shared ReadOnly Property BinDirectory As String

Cache
The Cache property indicates a Cache object that allows the developer to insert and retrieve items to
be cached. This built-in Cache object can be extremely useful in caching data or other information that
is expensive to retrieve and does not change often. It is a read-only property and returns a reference to
System.Web.Caching.Cache object.

Public Shared ReadOnly Property Cache As Cache

The Cache object can be used to cache frequently used information in a web application. This helps in
improving the performance of the application. See Chapter 6 for an example of using the Cache object
to cache data from a database. These Cache objects can also have dependencies, such as a file
dependency. For example, we might load information from an XML document and store it in the Cache
object. This cache can be dependent on the file we loaded our data from, so that when our file changes,
the cache can be updated.



84

ClrInstallDirectory
The ClrInstallDirectory property indicates the physical path to the file system directory where the
Common Language Runtime binary files are located. It is a read-only property and returns a string value.

Public Shared ReadOnly Property ClrInstallDirectory As String

CodegenDir
The CodegenDir property indicates the physical path to the directory on the file system that acts as the
default location for assemblies generated dynamically. It is a read-only property and returns a string value.

Public Shared ReadOnly Property CodegenDir As String

One of the benefits of ASP.NET over classic ASP programming is that the code and web pages are
compiled as opposed to being interpreted. This compilation allows faster execution of the code. When a
page is requested, if it has not been compiled, it is compiled at that time and the compiled files are accessed
from that point on. This property provides the path to the directory where these compiled files are created.

IsOnUNCShare
The IsOnUNCShare property indicates whether the application files are located on a UNC (Universal
Naming Convention) share as opposed to being located locally on the web server. It is a read-only
property and returns a Boolean value, with True indicating that the application files are located on a
UNC share.

Public Shared ReadOnly Property IsOnUNCShare As Boolean

MachineConfigurationDirectory
The MachineConfigurationDirectory property indicates the physical path to the directory where
the machine configuration (machine.config) file for the current application is located. It is a read-only
property and returns a string value.

Public Shared ReadOnly Property MachineConfigurationDirectory As String

The machine configuration file contains configuration information that covers the entire machine. This
information acts as the base configuration information for the machine, which can be overridden by
more specific files such as the web.config file. See Chapter 7 for more information on using the
configuration files in ASP.NET.

Example: The Properties of the HttpRuntime Class
The code example shown below, HttpRuntimeUsage.aspx, demonstrates the usage for all of
the properties of the HttpRuntime class:

Imports System.Text
Public Class HttpRuntimeUsage
  Inherits System.Web.UI.Page
  Protected WithEvents LblRuntime As System.Web.UI.WebControls.Label
  Protected WithEvents LBtnRuntime As _



85

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

System.Web.UI.WebControls.LinkButton

...

  Private Sub Page_Load(ByVal sender As System.Object, _
                        ByVal e As System.EventArgs) _
                        Handles MyBase.Load
    'Put user code to initialize the page here
  End Sub

  Private Sub LBtnRuntime_Click(ByVal sender As System.Object, _
                                ByVal e As System.EventArgs) _
                                Handles LBtnRuntime.Click
    Dim sbText As New StringBuilder()

    'Display all the properties of the HttpRuntime Class
    sbText.AppendFormat("Application Identification of Application" & _
                        " Domain: {0}",
                         HttpRuntime.AppDomainAppId)
    sbText.Append("<br>")
    sbText.AppendFormat("Physical Path of the Application" & _
                        " Directory: {0}", _
                        HttpRuntime.AppDomainAppPath)
    sbText.Append("<br>")
    sbText.AppendFormat("Virtual Path of the Application" & _
                        " Directory: {0}", _
                        HttpRuntime.AppDomainAppVirtualPath)
    sbText.Append("<br>")
    sbText.AppendFormat("Application Domain Identification: {0}", _
                         HttpRuntime.AppDomainId)
    sbText.Append("<br>")
    sbText.AppendFormat("ASP.NET Executable Files Install" & _
                        " Directory: {0}", _
                        HttpRuntime.AspInstallDirectory)
    sbText.Append("<br>")
    sbText.AppendFormat("Bin Files Directory: {0}", & _
                         HttpRuntime.BinDirectory)
    sbText.Append("<br>")
    sbText.AppendFormat("Current Application Cache: {0}", & _
                         HttpRuntime.Cache)
    sbText.Append("<br>")
    sbText.AppendFormat("CLR Executable Files Install Directory: {0}", _
                         HttpRuntime.ClrInstallDirectory)
    sbText.Append("<br>")
    sbText.AppendFormat("ASP.NET Code Generated Files Directory: {0}", _
                         HttpRuntime.CodegenDir)
    sbText.Append("<br>")
    sbText.AppendFormat("ASP.NET Files located on UNC Share: {0}", _
                         HttpRuntime.IsOnUNCShare)
    sbText.Append("<br>")
    sbText.AppendFormat("machine.config File Directory: {0}", _
                         HttpRuntime.MachineConfigurationDirectory)



86

sbText.Append("<br>")
    LblRuntime.Text = sbText.ToString()

  End Sub
End Class

The following screenshot displays the output:

HttpServerUtility Class
The HttpServerUtility class provides helper functions that can be used in your application. These
methods and properties are available through the intrinsic Server object of the Page class and can be
referenced from within a page as in the following example:



87

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Server.HtmlDecode(String)

HttpServerUtility Public Methods
❑ ClearError

❑ CreateObject

❑ CreateObjectFromClsid

❑ Equals – inherits from System.Object, see Introduction for more details.

❑ Execute

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetLastError

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ HtmlDecode

❑ HtmlEncode

❑ MapPath

❑ ToString – inherits from System.Object, see Introduction for more details.

❑ Transfer

❑ UrlDecode

❑ UrlEncode

❑ UrlPathEncode

ClearError
The ClearError method enables you to clear the last exception. The exception still needs to be caught,
but this method clears it from memory so that it does not appear that there have been, or are currently,
errors with the application.

Public Sub ClearError()

CreateObject
The CreateObject method enables the creation of COM objects using their PROGID or using the type
of the object. This method is similar to the Server.CreateObject method in classic ASP. There are
two overloaded versions of this method.

Overloads Public Function CreateObject(ByVal progID As String) As Object

The progID parameter here represents the Programmatic Identifier of the COM object to be created as
it is found in the registry.

Overloads Public Function CreateObject(ByVal type As Type) As Object

The type parameter here represents the System.Type of the Object to be created as a COM object.



88

This method creates a COM object on the server and returns an object reference to it allowing the
developer to program against the object calling its methods and properties.

One thing to keep in mind when working with COM components is that apartment-threaded
components are not creatable by default. In order to be able to use these components, such as the
Scripting.Dictionary object, the AspCompat attribute of the page directive must be set to True.

<%@ Page AspCompat=true %>

This indicates to the runtime that this page should be allowed to run on a Single-Threaded Apartment
(STA) thread. This offers the benefit of being able to call apartment-threaded components and
components in COM+ that need access to the ASP.NET intrinsic objects or object context.

CreateObjectFromClsid
The CreateObjectFromClsid method enables the creation of a COM object from its Class ID
(CLSID) as it appears in the registry.

Public Function CreateObjectFromClsid(ByVal clsid As String) As Object

The clsid parameter represents the string representation of the class ID of the object to be created.

This method allows for the creation of COM objects on the server based on the CLSID of these objects.
This allows for interoperability between .NET managed code and unmanaged COM code, written in
C++ or VB, for example.

Execute
The Execute method executes an .aspx page from within the current page and, optionally, returns
the output of that page. This method passes the current HttpRequest and HttpResponse to the
executing page, so it will be able to access the information about the request, and write to the response
as if it were requested directly. There are two overloaded versions of this method as outlined below.

Overloads Public Sub Execute(ByVal path As String)

The path parameter here specifies the URL of the page to execute.

Overloads Public Sub Execute(ByVal path As String, _
                             ByVal writer As TextWriter)

The path parameter here specifies the URL of the page to execute. The writer parameter represents
the TextWriter object into which the executing page writes its output.

It is often the case that a web site using classic ASP is designed with UI pages and action pages. For
example, there might be a page that contains a form and another that processes it. The UI page could
still be called and pass execution to the processing page, even returning the UI output to the client. The
example below demonstrates how ASP.NET might handle this:



89

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

<%@ Page language="VB" %>
<html>
<body>
<h2>Thank you for your response.</h2>

<script runat="server">

  Private Sub BtnSubmit_Click(ByVal sender As System.Object, _
                              ByVal e As System.EventArgs) _
                              Handles btnSubmit.Click
    'execute the processing page and return the output to the response
    'object
    Server.Execute("processing.aspx", Response.Output)
  End Sub

</script>
</body>
</html>

GetLastError
The GetLastError method allows the developer to get the last exception that was thrown. It returns
the Exception object representing the last exception. If there were no exceptions generated, then the
method will return Nothing. Therefore the returned Exception object must be always first verified
against Nothing, or a run time NullReferenceException is thrown.

Public Function GetLastError() As Exception

HtmlDecode
The HtmlDecode method enables decoding strings that have been previously encoded for sending
safely over HTTP to a browser. It returns the decoded string. This method has two overloaded versions:

Overloads Public Function HtmlDecode(ByVal encodedString As String) _
                                                         As String

The encodedString parameter here specifies the encoded string to be decoded.

Overloads Public Sub HtmlDecode(ByVal encodedString As String, _
                                ByVal writer As TextWriter)

The writer parameter represents the TextWriter object into which the decoded string will be written.

HtmlEncode
The HtmlEncode method enables strings to be encoded so that they are safe for transmitting over
HTTP to a web browser. There are two overloaded versions of this method:

Overloads Public Function HtmlEncode(ByVal inputString As String) As String

The inputString parameter here specifies the string to be encoded for delivery to the browser.



90

Overloads Public Sub HtmlEncode(ByVal inputString As String, _
                                ByVal writer As TextWriter)

The writer parameter represents the TextWriter object into which the encoded string will be written.

When working with URL strings it is important to ensure that the browser can interpret them correctly.
URL strings are therefore encoded with replacement characters so that the browser can achieve this. An
example of this would be the string "Priced < $50", which becomes "Priced &lt; $50" after being
encoded. Notice that the "<" symbol was replaced as it has special meaning to the HTML rendering
engines in web browsers. The HtmlEncode and HtmlDecode methods provide an easy way to
manipulate strings so they are safe to pass to the browser.

MapPath
The MapPath method allows mapping of the physical path of the file given the virtual path. It returns a
string object representing the physical path of the file for a specified virtual path of web server, passed
as its parameter.

Public Function MapPath(ByVal path As String) As String

The parameter path represents the virtual path for which a corresponding physical path is desired.

Transfer
The Transfer method allows the transfer of a page execution from the current page to another page on
the server. Unlike the Redirect method, this method transfers execution to a new page that returns a
result to the browser.

Overloads Public Sub Transfer String(ByVal url as String)

The parameter url specifies the URL to transfer the execution to. This resource must reside on the same
server and the URL must not contain any querystrings.

Overloads Public Sub Transfer String(ByVal url as String, Boolean preserve)

The preserve parameter indicates whether the forms and query string collection should be preserved
so they may be accessed from the receiving page.

In ASP 2.0, we had access to the Response.Redirect method that would send a directive to the
client browser with a 302 status code that indicated to the browser that it should request a different
resource. In ASP 3.0 and now in ASP.NET, we also have the ability to transfer execution of a page to
another page without this round trip to the client. Not only is this faster, but it creates a smoother
experience for the user.

UrlDecode
The UrlDecode method enables the decoding of a URL string that has been encoded to allow for
special characters in the URL. This method has two overloaded versions:

Overloads Public Function UrlDecode(ByVal url As String) As String



91

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

The parameter url specifies the URL to be decoded.

Overloads Public Sub UrlDecode(ByVal url As String, _
                               ByVal writer As TextWriter)

The writer object represents the TextWriter object to which the decoded string will be written.

UrlEncode
The UrlEncode method enables the encoding of a URL string so that the string becomes safe to be
transmitted over HTTP. This method has two overloaded versions.

Overloads Public Function UrlEncode(ByVal url As String) As String

The parameter url specifies the URL to be encoded.

Overloads Public Sub UrlEncode(ByVal url As String, _
                               ByVal writer As TextWriter)

The writer object represents the TextWriter object to which the encoded string will be written.

Given the URL http://www.mysite.com/default.aspx?name=my site, the UrlEncode method would return:

http%3a%2f%2fwww.mysite.com%2fdefault.aspx%3fname%3dMy+site.

All spaces and special characters in the string are replaced with character codes so that the string is safe
to be passed to the browser.

UrlPathEncode
The UrlPathEncode method allows for encoding the directory path portion of a URL. This method
does not encode the resource name itself, the path info, or query string parameters.

Public Function UrlPathEncode(ByVal url As String) As String

The parameter url specifies the URL to be encoded.

Given the URL http://www.mysite.com/default.aspx?name=my site the UrlPathEncode method
would return:

 http%3a%2f%2fwww.mysite.com%2fdefault.aspx?name=Mysite.

Notice that while all spaces and special characters in the URL are replaced with special characters, as in
the UrlEncode method, the information following the page name is not encoded.

HttpServerUtility Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.



92

HttpServerUtility Public Properties
❑ MachineName

❑ ScriptTimeout

MachineName
The MachineName property returns the name of the server that hosts the application. The property
throws an HttpException if the server name could not be found.

Public ReadOnly Property MachineName As String

ScriptTimeout
The ScriptTimeout property indicates the number of seconds that are allowed to elapse before the
processing of a page will be terminated and a timeout error is sent to the client. Therefore it allows you
to set or get the request timeout.

Public Property ScriptTimeout As Integer

A script running in IIS may encounter issues that keep it from continuing execution, such as waiting for
a database query to return. This property indicates how long the script will run before being cancelled.
If a script needs a long time to run, for example, when you know the query will take a long time and will
probably wish to avoid the timeout; this property should be set higher in this situation. Be sure to alert
your users that the action they are about to take is going to take some time as many users will not wait
more than a few seconds for a response from a web server.

HttpSessionState Class
While the HttpSessionState class is not part of the System.Web namespace (it belongs to the
System.Web.SessionState namespace), maintaining state is an integral part of many web developers'
core activities. As such, it makes sense to talk briefly about this class and how to use it. First, it should be
noted that Session in ASP.NET has grown considerably from the ASP 3.0 days. In classic ASP, the
session object allowed the storage of name-value pairs. These items are stored in memory and were
accessible only for a given client and for a specified duration, the client's "session". Two big problems with
maintaining state using the session object in classic ASP were that the storing a value in session tied a user
to a given server so load balancing and server farms could not take full advantage of spreading the web
hits across multiple servers. Second, storing objects in session could cause nightmarish performance
problems when the object was not free-threaded, as it caused a given session not only to be tied to a
machine, but also to be tied to a specific thread on that machine. So, when the user made a request, if the
thread they needed was busy, they would have to wait until it was ready to process their request.

With .NET, the first problem is solved by providing several different storage mechanisms and improvements
to the way session information is handled and the second is less of an issue with .NET as components are
thread-safe and have the ability to easily serialize themselves to a persistent storage medium.

In ASP.NET we have three options for storing session values. A description of each appears in the table
below along with some of the benefits and drawbacks of each.



93

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Mode Description Benefits Drawbacks

InProc Session data is
stored in memory
on the web server.
This is comparable
to the Session
object in classic
ASP. This is the
default setting.

Fastest access to
items in session of
the three options.

The drawbacks are the same
as they always have been for
session: a user is tied to a
single server so this is not as
scalable as other modes.

Sql
Server

Session data is
stored in a SQL
Server database.
An SQL script is
provided to set up
the database.

This provides a
scalable solution in
that it does not tie a
user to a given server
for their requests.
This method has the
ability to provide
failure recovery, as
the database is a
persistent and
transactional system
that can recover the
state if necessary.

While this method does not
tie a client to a given web
server, performance is
degraded a bit by the
overhead of reading and
writing to the database.

State
Server

Session data is
stored in memory
on a specified
server. An NT
service runs on a
central server and
state data is sent
to and retrieved
from this service,
which keeps the
data in memory.

This method provides
a bit more scalability
in that clients are not
tied to a given server,
but there is some
added overhead
involved in traversing
the network to read
and write values.

Like the InProc method,
this option does not have any
disaster recovery. If the
StateServer crashes or
hangs for some reason, all
session data is lost and the
site will not be able to
continue to work with
session data.

In choosing an option for session state you should consider the needs of your application and what the
most important factors are. In general, session state management in ASP.NET is greatly improved. In
addition to the options for the storage location, session state is processed on separate threads so that the
crash of an application does not mean a loss of state information. And, for those browsers that do not
support cookies, there is a cookieless session mechanism that utilizes the query string to pass the session
ID back to the server.

This class allows for access to the mechanisms for storing information for a given user session. (This class
actually belongs to the System.Web.SessionState namespace.)

In order to set the mode for session, you will need to edit the web.config file. The three examples
below show typical settings for the three different modes.



94

InProc

<sessionState mode="InProc"
              cookieless="false"
              timeout="20" />

SqlServer

<sessionState mode="SqlServer"
              sqlConnectionString="data source=127.0.0.1;database=state;
                                   user id=sa;password="
              cookieless="false"
              timeout="20" />

StateServer

<sessionState mode="StateServer"
              stateConnectionString="tcpip=127.0.0.1:42424"
              cookieless="false"
              timeout="20" />

One final note on session: if you are not using session in your application, disable it. Like many of the
other features of ASP.NET, session can be very powerful, but if it is not being used, it adds extra
overhead to the processing on the server.

HttpSessionState Public Methods
❑ Abandon

❑ Add

❑ Clear

❑ CopyTo

❑ Equals – inherits from System.Object, see Introduction for more details.

❑ GetEnumerator

❑ GetHashCode – inherits from System.Object, see Introduction for more details.

❑ GetType – inherits from System.Object, see Introduction for more details.

❑ Remove

❑ RemoveAll

❑ RemoveAt

❑ ToString – inherits from System.Object, see Introduction for more details.

Abandon
The Abandon method terminates the session, removing all values from it. Essentially, this method
notifies the session handlers to drop the session and all of its contents. You can use this method to force
a session to be dropped, rather than waiting for a user to close their browser or the timeout to be
reached. This can be used to provide "sign out" functionality in which the user indicates they are done
working on the site and allows you to cancel their session to recover server resources.



95

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Public Sub Abandon()

Add
The Add method is used to insert items into an HttpSessionState collection. It takes an object as a
parameter for the value, and since all items in .NET are derived from Object, you can, potentially,
store anything in session state. However, you should seriously consider those items that you are storing
and the cost of saving and retrieving that information. This will depend both on the object size you have
chosen for your site. Large items can degrade performance as the user load increases.

Public Sub Add(ByVal name As String, ByVal value As Object)

The parameter name specifies the key name of the item you wish to add to the collection. The parameter
value specifies the object you wish to add to the session state.

Clear
The Clear method can be used to remove all of the items that are currently stored in the
HttpSessionState collection.

Public Sub Clear()

CopyTo
The CopyTo method copies the session state values collection to a single-dimensional array at the
specified index.

NotOverridable Public Sub CopyTo(ByVal array As Array, _
                                 ByVal index As Integer) _
                                 Implements ICollection.CopyTo

The array parameter specifies the array in which the values collection is copied and the index
parameter specifies the starting index to copy from in the array.

GetEnumerator
The GetEnumerator method allows reading through the session state collection, by letting it iterate
through the Name–Object collection. It does not allow modifying the underlying collection. It returns
keys of the collection as strings and lets you move to the next key through the
IEnumerator.MoveNext method.

NotOverridable Public Function GetEnumerator() As IEnumerator _
                           Implements IEnumerable.GetEnumerator

Remove
The Remove method deletes a single object out of the session-state collection. This method is called with
the key name of the object, which was created at the time of adding the object.

Public Sub Remove(ByVal name As String)

The parameter name specifies the name of the object that is to be removed.



96

RemoveAll
The RemoveAll method removes all the objects from the HttpSessionState collection. This
method makes an internal call to the Clear method.

Public Sub RemoveAll()

RemoveAt
The RemoveAt method removes a single object out of the session state by specifying its index position.

Public Sub RemoveAt(ByVal index As Integer)

The parameter index represents the index number of the object that needs to be removed. It is a zero-
based index.

HttpSessionState Protected Methods
❑ Finalize – inherits from System.Object, see Introduction for more details.

❑ MemberwiseClone – inherits from System.Object, see Introduction for more details.

HttpSessionState Public Properties
All the properties of the session state are read-only.

❑ CodePage

❑ Contents

❑ Count

❑ IsCookieLess

❑ IsNewSession

❑ IsReadOnly

❑ IsSynchronized

❑ Item

❑ Keys

❑ LCID

❑ Mode

❑ SessionID

❑ StaticObjects

❑ SyncRoot

❑ Timeout

CodePage
The CodePage property gets or sets the character set or code page identifier used for displaying
dynamic content, for the current session.



97

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

Public Property CodePage As Integer()

The CodePage property is provided for compatibility with previous versions of ASP.
You should use Response.ContentEncoding.CodePage instead.

Contents
The Contents property just gets a reference to the HttpSessionState object.

Public ReadOnly Property Contents As HttpSessionState

This property is available for backward compatibility with the earlier versions of
ASP. Traditionally, this property was implemented as a collection of the Session object that
allowed access to the contents of Session with a collection interface.

Count
The Count property gets the number of objects in the session state. The default value is 0. This property
is overridden.

Overrides Public ReadOnly Property Count As Integer Implements _
                                             ICollection.Count

IsCookieLess
The IsCookieLess property returns a Boolean value indicating whether the session mechanism is
operating in a cookieless fashion. For those browsers with cookie support disabled, or that do not support
cookies, the Session ID is passed to the server as part of the query string. This property can be used to
determine if the session is using cookies so a developer can make decisions about interacting with the client.

Public ReadOnly Property IsCookieLess As Boolean

IsNewSession
The IsNewSession property returns a Boolean value indicating whether the session was created with the
current request.

Public ReadOnly Property IsNewSession As Boolean

IsReadOnly
The IsReadOnly property returns a Boolean value indicating whether the session object is read-only.

Public ReadOnly Property IsReadOnly As Boolean

IsSynchronized
The IsSynchronized property returns a Boolean value indicating whether the session object is
synchronized or not.

Public ReadOnly Property IsSynchronized As Boolean Implements _
                                     ICollection.IsSynchronized



98

Item
The Item property indicates a specific object in the session state collection. This method has two
overloaded versions to allow for accessing the object by name or numeric index.

Overloads Public Default Property Item(ByVal index As Integer) As Object

The parameter index represents the index number of the object that needs to be fetched. It is a zero-
based index.

Overloads Public Default Property Item(ByVal key As String) As Object

The parameter key represents the key name of the object that needs to be retrieved.

Keys
The Keys property gets all the key names available in the collection. A
SystemCollections.Specialized.NameObjectCollectionBase.
KeysCollection object is returned containing keys of the collection.

Overridable Public ReadOnly Property Keys As _
                           NameObjectCollectionBase.KeysCollection

LCID
The LCID property gets or sets the locale identifier of the current session.

Public Property LCID As Integer

Mode
The Mode property returns an enumerated value indicating the storage mechanism for the session.
These options were discussed in the introduction of this section.

Public ReadOnly Property As SessionStateMode

The possible values for the Mode property are indicated below:

Value Meaning

Off Session is disabled and therefore not available for storage of values.
InProc Session is being maintained on the local machine in memory.
SqlServer Session is using a SQL Server database to store values.
StateServer Session is being stored using the out-of-process NT service state

server.

SessionID
The SessionID returns the unique session identifier that identifies the current session.

Public ReadOnly Property SessionID As String



99

C
hapter 1

: S
ystem

.W
eb

C
hapter 1

: S
ystem

.W
eb

StaticObjects
The StaticObjects property provides access to items that were declared in the Global.asax file
using the following syntax:

 <object runat="server" scope="Session" >

This property returns a special collection class that acts as a wrapper around these objects.

Public ReadOnly Property As HttpStaticObjectsCollection

SyncRoot
The SyncRoot property returns an object to be used to synchronize access to the session-state collection.

Public ReadOnly Property SyncRoot As Object Implements ICollection.SyncRoot

Timeout
The Timeout property indicates the time, in minutes, that is allowed between requests from a client
before the session is destroyed. The default value for this property is 20. This is important because a
session is defined as a single user's interaction with your web site. Once that user has stopped
interacting with your site, their session is still taking up valuable memory on the server. In a high
volume site this can have an impact on performance. On the other hand, if you set this property too low,
a user may not have completed working on your site and come back to their computer to find that all of
the work they have done is lost and they must start all over again.

You should be sure to consider the ramifications and the needs of your site before changing this value. It
can also be set for an application in the web.config file.

Public Property Timeout As Integer



100


