

What You Need to Use This Book

The following is a list of recommended system requirements for using
this book:

• Windows 2000 or later with IIS installed
• ASP.NET Version 1.0
• SQL Server 2000 or MSDE
• Visual Studio .NET Professional or higher (optional)

This book assumes that you understand the basics of ASP.NET and Visual Basic .NET.

Summary of Contents

Introduction 1
Chapter 1: Intranet Concepts 9
Chapter 2: The IBuySpy Portal Architecture 21
Chapter 3: Customizing the Portal 53
Chapter 4: Security in the Intranet 109
Chapter 5: The Discussions Module 149
Chapter 6: Extending The Events Module 217
Chapter 7: Content Management 249
Chapter 8: Document Management 291
Chapter 9: Human Resources Information System 357
Appendix A : Common Data Access Class 435
Index 443

The IBuySpy Portal Architecture

In this book, we'll be using the freely available IBuySpy Portal as a starting point for our intranet
development. This choice needs justification - and that is what we will do in the first part of this chapter.
We'll look at both why we are modifying an existing intranet application rather than creating our own,
and why we choose the IBuySpy Portal in particular.

Once we have covered the basics, we'll continue to look in more depth at the IBuySpy Portal, starting
with how to install it. Next, we'll take a tour of its features, with an eye on how it fits in with the
objectives outlined in the previous chapter.

Moving on from this we'll take a more technical look at the IBuySpy Portal architecture, looking at the
files and types it consists of, how they function and fit together, and general principles behind the site.

Finally, we'll take a brief look at how security is handled.

Why use an existing architecture?
In the last chapter, we looked at all the things we are likely to want from an intranet, and there were
quite a few of them! However, if we were to design an intranet from scratch, many areas would require
a lot of work to obtain even the most basic functionality. There are also many important challenges to
overcome, such as deciding how to handle authentication and authorization, what other applications we
require on our servers, and so on.

Chapter 2

22

Much of this is solved instantly if we take an existing intranet's architecture as a starting point. If
someone else has already worked out how to handle security issues, how to achieve effective data
storage, and so on, then we can get up and running much quicker. This doesn't mean that we can just
take any existing intranet, though, since some architectures may not fulfill enough of our requirements,
or may be very difficult to customize and extend.

What we want, then, is a well-designed intranet architecture that solves problems without creating new
ones – an intranet architecture that we can easily tailor to our needs.

What does the IBuySpy Portal Architecture provide?
The IBuySpy Portal architecture is one that makes the grade. As we will see in this and other chapters, it
simplifies the creation of our intranet while providing an excellent foundation for adding our own
features. It also offers one other crucial advantage - it is free to obtain and no restrictions are placed on
our usage of the code it contains!

We'll look at the specific features that are obtained from the IBuySpy Portal later, but first here's a list of
key points:

❑ It makes use of well-established database technology via SQL server or Microsoft Data Engine
(MSDE) database access.

❑ It is simple (and free) to install, with no tiresome and time-consuming registration forms to
complete.

❑ It is built in a modular way, with several useful modules (such as modules for authentication,
forums, and news articles) already in place, and it's also extensible, so we can add more
as required.

❑ It is 100% customizable to whatever corporate look and feel you need, with whatever extra
functionality you can dream up.

The application architecture follows a traditional n-tier model, with functional separation of classes that
deal with presentation, business logic, and data access. However, as with many ASP.NET applications,
the business logic does overlap slightly with the presentation, since ASP.NET pages are capable of
sophisticated processing without affecting performance.

All database access is achieved via stored procedures, which also improves performance. Stored
procedures are SQL queries stored as part of the database, which may be parameterized to add
versatility. Since they are part of the database, the database server can perform additional optimization
for us, such as using built-in caching. In addition, security is improved by using this method, since we
can restrict access to stored procedures only, thus preventing malicious users from executing potentially
harmful SQL queries. The result of this, as we will see later, is that we end up with very simple data
access components that for the most part simply act as an interface for the stored procedures in the
database, via ADO.NET.

To get a better idea of what is provided you can either look at the online version of the portal at
http://www.ibuyspyportal.com/ or install it on your server. Since we will spend the rest of the book
modifying the code for this application you may as well go right ahead and install it now.

The IBuySpy Portal Architecture

23

Installing the IBuySpy Portal Architecture
IBuySpy Portal can be obtained from http://www.asp.net/ibuyspy/downloads.aspx. This download
page also contains files for another example application, IBuySpy Store, which is a starting point for
Internet e-commerce applications. However, we're not interested in this application here.

Before we download the application (or, as it is referred to on the web page for downloading it, the
Solution Kit) we should ensure that our server is equipped to deal with it. The most basic requirement
here is having the .NET Framework installed. We also need access to either a SQL Server database, or
the free (but trickier to administer - see note below) MSDE data engine. MSDE is installed as part of the
ASP.NET quickstart applications that are part of the .NET Framework.

If you only have MSDE installed then many administration tasks may only be carried out using
command line SQL queries. Here's a tip: get the Enterprise Manager application from the MSDN
SQL Server evaluation download - it'll make your life a lot easier and isn't limited by the 120 day
trial license that applies to the SQL Server database download itself!

The IBuySpy Portal also requires an installation of the ASP.NET Mobile Internet Toolkit, a link to
which appears on the web page mentioned above. In this book, we won't be looking at the mobile
device access of intranets, but it is worth remembering that IBuySpy Portal has been designed with this
functionality in mind, and you may want to conduct your own research into this area.

For more information on the Microsoft Mobile Internet Toolkit, see ASP.NET Mobile Controls:
Tutorial Guide: Adaptive Web Content for Mobile Devices with the MMIT, by Wrox Press, ISBN:
1861005229

There are four different versions of the download for IBuySpy Portal, two for the VB.NET version of
the code and two for the C# version. In this book we're using VB.NET, so we can ignore the two C#
versions. The difference between the two VB.NET versions is that one of them (the VS.NET version) is
intended for Visual Studio .NET users while the other (the SDK version) isn't. There is no difference in
functionality between these versions, only that the VS.NET version uses the 'codebehind' model for all
ASP.NET files, where the VB.NET code is contained in separate .vb files rather than being included in
.aspx and .ascx files, and includes solution files for loading straight into the VS.NET IDE. The
choice of which version you use is entirely up to you depending on which code model you prefer (and
on whether you own a copy of VS.NET!). I prefer the codebehind model, so the screenshots etc. in this
chapter will reflect this, but don't feel left out if you go for the other version, it really makes very little
difference.

Now, a word of caution! When you run the installer program for the IBuySpy Portal Developer Solution
Kit (whichever version you choose), it will present a dialog that warns about the risk of installing a new
version when an existing version of the portal is present (even if the installer is being run for the
first time):

Chapter 2

24

Modifications made to a previous installation can be lost if you ever run one of the four IBuySpy Portal
installer programs at a later date. We'll come back to this point shortly, after we've seen what the
installer program actually does.

The installer requires very little intervention - all we need to do is to select a folder to install to (the
default, C:\PortalVBVS for the VS.NET version of the application, is fine) and a database instance to
use to store the data used by the application. Since a new database will be added, we need the required
database privileges to do this, although I won't go into details about this. Suffice to say that if you are
logged in as Administrator, and are using a local SQL Server or MSDE instance you won't encounter
any problems here.

After we select the database instance and click on configure it should only take a minute or two for
everything to be set up for us. At this point, we can look at the installation log to ensure everything went
smoothly - here's the one I ended up with (I've removed the date stamps for clarity):

[Checking system requirements]
[Pass] Detected the NetSDK version of MSDE.
[Pass] Determined SQL Server version (8.00.194).
[Pass] Detected .NET Framework.
[Pass] Detected Internet Information Server (IIS).
[Begin Sample Configuration]
[Pass] Created IIS virtual directory.: PortalVBVS
[Pass] Determined SQL Server version (8.00.194).
[Pass] Added ASPNET user to SQL Server.
[Pass] Executed SQL script.: PortalDB.sql
[Pass] Added aspnet user to database.: Portal
[Done]

The installer performs the following steps:

❑ It creates a new directory to hold the application (C:\PortalVBVS) and copies the portal files
to it.

❑ It configures an IIS virtual directory pointing at a subdirectory of the directory created in the
above step (C:\PortalVBVS\PortalVBVS), with the same name as this directory
(PortalVBVS).

❑ It creates a new database in the selected database instance (called Portal) and populates it
with data.

❑ It adds the user (local)\ASPNET to the database server and to the list of users with
permission to access the newly created database (this is essential for ASP.NET applications
since it is the account that they run under - the portal wouldn't be able to access the data
without this step).

Now we can discuss what will happen if we rerun one of the installation programs at a later date. First, if
we select the same directory to install to as before then files may be overwritten. Second, the database
creation will fail. The result of this second problem is that the new installation will have access to
modified data. Should we wish a completely new database to be installed we have to remove the
existing database manually, or move it somewhere else if it contains data we wish to preserve.
Unfortunately, no facility exists for specifying the database name to use during installation, which would
solve this problem.

The IBuySpy Portal Architecture

25

The root directory of the portal (C:\PortalVBVS) contains many of the files used during installation,
including the SQL script used to generate the database, and the resulting log file. It also contains the
End User License Agreement (EULA) for the portal code, and a directory with the files that are
accessed via the IIS virtual directory for the portal, as mentioned above.

IBuySpy Portal Acclimatization
When you first open the IBuySpy Portal intranet site in a web browser, by either navigating to
http://www.ibyspyportal.com/ or using your local copy at http://localhost/PortalVBVS/, you will
be greeted with the following page:

If you are using the online version then the Example Image frame on the right will contain an
actual image - many of the bitmaps that make up the example application aren't included in the
downloadable version to keep the size of the download to a respectable level. This doesn't affect the
functionality at all.

This initial page illustrates much of the functionality of the portal. Starting from the top, we have a title
bar containing a main heading, a collection of tabs, and a few other bits and pieces that don't concern us
for now. The Home tab is currently selected, and the rest of the page makes up the Home page content.

Chapter 2

26

The main body of the page is divided up into three columns - a large one in the middle and smaller
ones on either side. Each of these columns contains content that is built up from individual modules,
which may not be apparent at first since the modules are designed to use the same styles so they do
seem to merge together in places. There are eight modules displayed on this page: two on the left (one
for logging in and one for quick navigation), three in the middle (the welcome message, a news section,
and an events section), and three on the right (the 'This week's Special' section, an image, and the 'Top
Movers' section).

Logging In
The module on the top of the left column allows us to log on, or to create a new login. The IBuySpy
Portal is initially configured to handle authentication in this way, using form-based authentication,
although it is quite easy to switch to integrated Windows authentication if desired.

We'll look at this in a little more depth at the end of this chapter, before covering security issues
thoroughly in Chapter 4.

The initial installation comes with one existing user account called Guest with the e-mail address of
Guest and the password of Guest. Users can add themselves to the intranet simply by clicking on the
register link in the authentication module. Try this now:

When you click on the Register and Sign in Now link you'll be returned to the Home page with a few
differences - the authentication module has disappeared, and the information at the top of the page
has changed:

The IBuySpy Portal Architecture

27

User information now appears, and a new Logoff link enables you to log off.

Once you are logged in you have access to more functionality, such as being able to contribute to
discussions and so on, although the specific privileges granted is determined by an administrator. This
granting of privileges is known as authorization (not to be confused with authentication, which is the act
of verifying login information). In the IBuySpy Portal architecture, this is achieved by privileges based
on groups, where a user may belong to any number of groups.

Initially, only one group is defined for us, a group called Admins whose members are intranet
administrators. The user we start with, Guest, is a member of this group. If you log off your new
Charles Darwin user and log on as Guest one effect of this is instantly visible:

A new tab has appeared: Admin. Through this tab, which is only available to users in the Admin group,
we can perform administrative tasks, such as user account manipulation, and even complete
reorganization of the intranet site.

It's not just administrators who can get this customized content; we can add any number of groups and
tabs that only certain groups can see.

Exploring the Content
At this point, I'll ask you to put down this book and look around the default installation of the IBuySpy
portal. Try to get a feel for the way things work - it's pretty much all self-explanatory. Explore the
various tabs and the content on those tabs, add a discussion message or two, perhaps upload a
document, and you'll find that the interface is intuitive and exciting. Don't fiddle around too much with
the Admin tab for now - you may find yourself accidentally doing something you'll regret later!

When you're ready, come back and we'll take a closer look at how this application meets the objectives
outlined in the last chapter.

Addressing our Objectives
In the last chapter, we outlined three broad objectives of an intranet site:

❑ Centralization of information

❑ Access to information

❑ Communication

Chapter 2

28

The IBuySpy Portal certainly proves it's worth here. Information is centralized - document data is stored
either in the portal database or through the web server virtual directories. Information is easy to access -
the web interface and simple authentication exposes our data to all clients who can run a web browser,
and we can expose some or all of the information over the wider Internet for remote access.
Communication is made simple - the various modules that exist or can be added make it easy for staff to
communicate in a variety of ways, from discussion groups, to articles, to shared documents.

We also pointed out several common features of intranets in the last chapter:

❑ Content management

❑ Document management

❑ Project management

❑ Forums

❑ Human Resources Information System

❑ Shared calendar

❑ Contact management

Several of these are already available with the existing modules (notably content and document
management via the Admin tab, forums via the discussion group module, and contact via the contacts
module). The portal architecture makes it possible to add all the rest, which is something we will be
looking at in later chapters.

Corporate Identity
The IBuySpy Portal has a specific look and feel about it. This may not be exactly what you are looking
for, but don't panic! In the next chapter, we'll see how we can completely customize the look and feel of
the portal, using stylesheets and direct code modification. What is there now is purely a demonstration
of what is possible, not a limitation on what you can do. The important point is that the backend
functionality is solid, and you aren't likely to want to make too many changes to that.

Modules Supplied
The IBuySpy Portal architecture comes with ten modules, which form a starting point for our intranet
development. The modules supplied are as follows:

Module Name Module Description

Announcements A list of text articles, showing a summary of the article and a read more link
to get access to full text.

Contacts A list of contacts.

Discussion A discussion forum, divided into threads.

Documents A list of documents, either uploaded to the server or linked to via URLs.

The IBuySpy Portal Architecture

29

Module Name Module Description

Events A list of events, with date and location information as well as short
descriptions.

Html/Text A general purpose module for displaying HTML.

Image A simple module for rendering an image.

Links A list of hyperlinks.

QuickLinks A list of hyperlinks rendered in a compact way.

Xml/Xsl A module for displaying XML documents by transforming them with an
XSL stylesheet.

These modules may be used several times in a single portal - a single page may even contain multiple
instances of a single module. To achieve this, each module added to the portal is assigned a unique ID.
This also enables multiple modules of the same type to store their data in the same database table, thus
simplifying the data storage structure.

Tab Manipulation
The Admin tab allows administrators to manage the content of the IBuySpy Portal intranet by adding
new tabs, deleting old ones, or modifying existing ones. Head to this tab now and edit the Employee
Info tab by selecting it and clicking on the pencil icon shown below:

Chapter 2

30

This takes us to a new screen that shows us tab properties as follows:

❑ The name of the tab

❑ What roles have access to the tab

❑ Whether the tab is shown to mobile browsers

❑ What name to use for the tab for mobile users

❑ What modules to show on the tab, along with their names and positions

The IBuySpy Portal Architecture

31

The page also includes the facility to add new modules of a selected type, and edit module properties. If
you select a module and click on the pencil icon, you'll be taken to a screen containing general
module properties:

Module specific properties and module content can only be modified by subsequently navigating to the
tab and editing the module via its own interface. The above module, Spy diary, is only editable by
members of the Admin group.

Interestingly, no information is shown concerning the types of modules. Once a module is added the
only way to glean this information with the default application code is to navigate to the tab containing
the module directly and edit it. However, this information isn't crucial, as it's the functionality of
modules that's important once they are added.

A Technical Look at the IBuySpy Portal Architecture
For the remainder of this chapter we will look in a little more depth at how the IBuySpy Portal
architecture works, providing an insight into the customization techniques we will be using in the rest of
the book.

First, a general overview. Users entering the intranet site are redirected by default.aspx to one of
two other pages, DesktopDefault.aspx or MobileDefault.aspx. We'll concentrate on the former,
as we're not looking in detail at the mobile aspect of this application in this book.

Chapter 2

32

DesktopDefault.aspx is really a placeholder for the various modules that make up individual tabs in
the application, which are in fact user controls stored in.ascx files. The authentication module, stored
in SignIn.ascx, is displayed in all tabbed pages, but only if the user has yet to log in. Other modules
are added depending on what tab is selected. DesktopDefault.aspx also contains one standard user
control,- DeskTopPortalBanner.ascx, which is displayed at the top of the page. All these user
controls are dynamically added to the page that the user sees when they request a given tab, that is, they
are added to the content of DesktopDefault.aspx as this page is loaded.

Many of the .ascx files take their display information from data in the database, or use information in
the database in some other way (such as authenticating login information). None of the .ascx files
perform database access directly; instead they use data access classes stored in other .vb files to do this.

The general overview, then, looks like this:

Default.aspx

DesktopDefault

.aspx

MobileDefault

.aspx

Data access classes

DesktopPortal

Banner.ascx
SignIn.aspx

Other
modules

.ascx

Databases

The IBuySpy Portal Architecture

33

Database Structure
The content and arrangement of content within the IBuySpy Portal application is all stored in the portal
database. In order to get to grips with what the code does we should look at this database to see what
information it contains.

Table Name Table Function

Announcements Data used by Announcements modules.

Contacts Data used by Contacts modules.

Discussion Data used by Discussion modules.

Documents Data used by Documents modules.

Events Data used by Events modules.

HtmlText Data used by Html/Text modules.

Links Data used by Links and Quicklinks modules.

ModuleDefinitions A list of the available modules, including a reference to the .ascx
files that define them.

Modules A list of what modules appear on what tabs, along with information
about where they appear, what title to use, who can edit the module
content, and so on.

ModuleSettings Additional data for any modules that require it.

Portals A list of the portals defined in the database (initially only one
appears here - the default IBuySpy Portal).

Roles The roles that users can be members of.

Tabs The tabs that can be displayed in the portal, and which roles are
allowed to view them.

UserRoles A list of links associating users with roles.

Users A list of users, with password and e-mail information.

The database also includes 66 stored procedures used by the data access objects in the application, for
all functionality. This includes adding records, extracting records, and so on.

Initially, the sample portal content is configured as follows:

❑ The IBuySpy Portal is given an ID in the Portals table.

❑ A single role, Admin, is set up in the Roles table, and a single user, guest, is set up in the
Users table. The guest user is set up as a member of the Admin role via an entry in the
UserRoles table.

Chapter 2

34

❑ The ModuleDefinitions table contains a list of the 15 modules: the ten sample modules
listed earlier and five for administration.

❑ The Tabs table contains entries for each of the six tabs available to users.

❑ The Modules table contains information about all of the modules present on each of the six
tabs in the Tabs table.

❑ The ModuleSettings table contains module-specific configurations.

❑ The remaining tables contain the data used by each module instance (remember that just one
of these tables, Announcements say, contains data for all of the Announcements modules in
the portal, identified by Module ID values).

All of the data in the database can be edited by hand if required, although there is nothing there that
can't be modified using the tools on the Admin tab of the portal.

We shouldn't remove any of the tables themselves, but we might well add our own tables as we
customize the portal.

Keeping Track of Things: the PortalSettings Class
The basic scheme described above centers on the fact that the .ascx user controls are added
dynamically to a basic framework. In order for this to work in practice the user controls must be aware
of certain information, such as the logged in user (if any). The DesktopPortalBanner.ascx control
also needs to know what tabs to display, as well as which one is selected. Some other controls also have
custom information that will be required when they render themselves.

To facilitate this, contextual information is stored whenever the portal receives an HTTP request. This
information can then be accessed by any of the user controls, or other classes that make up the
application. User information is stored in the standard User member of the Context object that is
accessible by ASP.NET code, and other information is stored in an instance of a class called
PortalSettings, which is defined as part of the application.

This information storage is carried out in the code for global.asax, which is the file that contains
application, session, and request level event handlers. One event handler,
Application_AuthenticateRequest, deals with authentication (as its name suggests!), and will
be covered in more detail in Chapter 4. Another event handler, Application_BeginRequest,
deals with creating a PortalSettings instance, placing it in the Items collection of the Context
object for retrieval by whatever code requires it during request processing.

When an instance of the PortalSettings class is created, it extracts tab information from the
database, including the names of the tabs, which user roles have access to each tab, and so on. It also
uses information passed to it in its constructor to determine the currently selected tab (which is detected
in Application_BeginRequest by looking at the querystring accompanying the web request -
selecting a tab results in this information being sent to the server). Settings for individual modules are
extracted from the database as and when required - individual modules can use the shared
PortalSettings.GetModuleSettings method for this.

The IBuySpy Portal Architecture

35

The code for Application_BeginRequest is as follows:

 Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)

 Dim tabIndex As Integer = 0
 Dim tabId As Integer = 0

 ' Get TabIndex from querystring
 If Not (Request.Params("tabindex") Is Nothing) Then
 tabIndex = CInt(Request.Params("tabindex"))
 End If

 ' Get TabID from querystring
 If Not (Request.Params("tabid") Is Nothing) Then
 tabId = CInt(Request.Params("tabid"))
 End If

 Context.Items.Add("PortalSettings", New PortalSettings(tabIndex, tabId))

 End Sub

Here you can see that the two querystring parameters tabindex and tabid (referring to the
position and type of tab selected respectively) are extracted and passed to the PortalSettings
constructor to initialize the object. The newly created object is stored as an item called
PortalSettings in the Context object.

The PortalSettings class exposes the following public fields:

 Public PortalId As Integer
 Public PortalName As String
 Public AlwaysShowEditButton As Boolean
 Public DesktopTabs As New ArrayList()
 Public MobileTabs As New ArrayList()
 Public ActiveTab As New TabSettings()

Here PortalId and PortalName are taken from the querystring parameters, and the rest are
extracted from the database. The global AlwaysShowEditButton field is used by many modules when
they render, the DesktopTabs and MobileTabs fields are lists of properties of tabs that exist
(including what roles they are available for, used when determining which tabs to display), and the
ActiveTab field contains information about the currently selected tab.

DesktopTabs and MobileTabs are ArrayList fields that contain TabStripDetails instances. This
simple class is as follows:

 Public Class TabStripDetails

 Public TabId As Integer
 Public TabName As String
 Public TabOrder As Integer
 Public AuthorizedRoles As String

 End Class

Chapter 2

36

Each tab in the Tabs table is placed in an instance of this class, with fields as follows:

TabStripDetails Field Name Description

TabId The ID of the tab in the Tabs table.

TabName The text to display for the tab.

TabOrder Tabs with lower order number are displayed first.

AuthorizedRoles The roles with access to the tab, in the form of a semicolon
separated list of role names.

ActiveTab is an instance of the TabSettings class, defined as follows:

 Public Class TabSettings

 Public TabIndex As Integer
 Public TabId As Integer
 Public TabName As String
 Public TabOrder As Integer
 Public MobileTabName As String
 Public AuthorizedRoles As String
 Public ShowMobile As Boolean
 Public Modules As New ArrayList()

 End Class

Some of these fields are duplicates of the ones examined above. The rest of the fields are as follows:

TabSettings Field Name Description

TabIndex The position of the tab in the title bar.

MobileTabName The text to display for the tab on mobile devices.

ShowMobile Whether this tab should be displayed on a mobile device.

Modules Which modules appear on the tab page.

The Modules field is very important, since it contains information about all the modules that exist on a
tab. Without this data the page couldn't be rendered. ActiveTab.Modules is an ArrayList
containing a ModuleSettings object for every object on the tab. The class definition of
ModuleSettings is as follows:

 Public Class ModuleSettings

 Public ModuleId As Integer
 Public ModuleDefId As Integer
 Public TabId As Integer
 Public CacheTime As Integer

The IBuySpy Portal Architecture

37

 Public ModuleOrder As Integer
 Public PaneName As String
 Public ModuleTitle As String
 Public AuthorizedEditRoles As String
 Public ShowMobile As Boolean
 Public DesktopSrc As String
 Public MobileSrc As String

 End Class

All this information is extracted from the Modules table, using the current tab ID to get the relevant
modules, except for DesktopSrc and MobileSrc, which come from the ModuleDefintions table for
associated module type. The fields contain the following information:

ModuleSettings Field Name Description

ModuleId The ID of the module in the Modules table.

ModuleDefId The corresponding ID of the module in the
ModuleDefinitions table.

TabId The ID of the tab that the module belongs to.

CacheTime The amount of time to cache the module output for (0 in all
cases for the default installation).

ModuleOrder Modules with a lower number here are added to the tab page
first.

PaneName Where to display the module on the page (see next section).

ModuleTitle The title to display for the module, if any.

AuthorizedEditRoles Which roles have access to edit the content of the modules.

ShowMobile Whether this module can be displayed on a mobile device.

DesktopSrc The .ascx user control source code for the module when
displaying on a desktop web browser.

MobileSrc The .ascx user control source code for the module when
displaying on a mobile web browser, if any.

Now we know what information is available to the rest of the application we can delve deeper into what
happens when the main page is loaded.

DesktopDefault.aspx Architecture
We can get a better understanding of DesktopDefault.aspx by looking at the ASP.NET code for this
page. The important section is the <table> element in the form body:

<table width="100%" cellspacing="0" cellpadding="0" border="0">
 <tr valign="top">

Chapter 2

38

 <td colspan="2">
 <portal:Banner id="Banner" SelectedTabIndex="0" runat="server" />
 </td>
 </tr>
 <tr>
 <td>

 <table width="100%" cellspacing="0" cellpadding="4" border="0">
 <tr height="*" valign="top">
 <td width="5">

 </td>
 <td id="LeftPane" Visible="false" Width="170" runat="server">
 </td>
 <td width="1">
 </td>
 <td id="ContentPane" Visible="false" Width="*" runat="server">
 </td>
 <td id="RightPane" Visible="false" Width="230" runat="server">
 </td>
 <td width="10">

 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

Here the <portal:Banner> element is mapped to the DesktopPortalBanner.ascx user control
(which we'll look at in more detail in the next section), and you can see the three columns in the form of
three table cells with the names LeftPane, ContentPane, and RightPane respectively:

 <td id="LeftPane" Visible="false" Width="170" runat="server">
 </td>
 <td width="1">
 </td>
 <td id="ContentPane" Visible="false" Width="*" runat="server">
 </td>
 <td id="RightPane" Visible="false" Width="230" runat="server">
 </td>

These columns are populated as part of the Page_Init event handler in the code for this page. The
code here uses the PortalSettings instance created earlier to get the information it needs. One of the
first tasks of the code, then, is to retrieve this object from the Context object:

 ' Obtain PortalSettings from Current Context
 Dim _portalSettings As PortalSettings =
 CType(HttpContext.Current.Items("PortalSettings"), PortalSettings)

The IBuySpy Portal Architecture

39

Next, the code handles some security issues, namely checking to see if the current user has been
authenticated and if so whether access to the current tab is permitted. We won't look at this for now
since we're covering security issues later.

The currently selected tab determines what modules are displayed. As we saw in the last section,
information about these modules is stored in the Modules field of the ActiveTab field of the
PortalSettings object that has just been extracted. The rest of the code examines this information
and populates the three columns accordingly:

 ' Dynamically Populate the Left, Center and Right pane sections of the
 ' portal page
 If _portalSettings.ActiveTab.Modules.Count > 0 Then

 ' Loop through each entry in the configuration system for this tab
 Dim _moduleSettings As ModuleSettings
 For Each _moduleSettings In _portalSettings.ActiveTab.Modules

 Dim parent As Control = Page.FindControl(_moduleSettings.PaneName)

 ' If no caching is specified, create the user control instance and
 ' dynamically inject it into the page. Otherwise, create a cached
 ' module instance that may or may not optionally inject the module
 ' into the tree
 If _moduleSettings.CacheTime = 0 Then

 Dim portalModule As PortalModuleControl = _
 CType(Page.LoadControl(_moduleSettings.DesktopSrc), _
 PortalModuleControl)

 portalModule.PortalId = _portalSettings.PortalId
 portalModule.ModuleConfiguration = _moduleSettings

 parent.Controls.Add(portalModule)

 Else

 Dim portalModule As New CachedPortalModuleControl()

 portalModule.PortalId = _portalSettings.PortalId
 portalModule.ModuleConfiguration = _moduleSettings

 parent.Controls.Add(portalModule)

 End If

 ' Dynamically inject separator break between portal modules
 parent.Controls.Add(New LiteralControl("<" + "br" + ">"))
 parent.Visible = True

 Next _moduleSettings

 End If

 End Sub

An interesting point, with consequences for customization as we will see in the next chapter, is that the
PaneName information for a module is one of LeftPane, ContentPane, or RightPane, that is, it
matches one of the columns on the page. The correct column is found using the Page.FindControl
method, and used to add the module to.

Chapter 2

40

When the module to add has a CacheTime setting of 0, the user control for the module is loaded using
the Page.LoadControl method, which returns a UserControl, then converted to a
PortalModuleControl (the base class for all modules user controls as we will see later). It is then
initialized and added to the child controls collection of the column that the module will be displayed in.
If CacheTime is not 0 then a CachedPortalModuleControl is used instead, and initialized with
enough information to create the required module and cache rendering results.

The CacheTime setting actually means 'the amount of time, in seconds, to cache the HTML returned
by this control'.

This pretty much completes the discussion of DesktopDefault.aspx. The rest of the functionality of
the portal is encapsulated in the user controls that are added to this page.

Tabs and the DesktopPortalBanner.ascx Control
The DecsktopPortalBanner.ascx user control appears at the top of DesktopDefault.aspx, and
displays tabs along with some other information. This control uses the PortalSettings object stored
in Context to find the tabs to display, and user login information to determine whether to display a
Log Off link etc. The site title is displayed in a label called siteName:

<asp:label id="siteName" CssClass="SiteTitle" EnableViewState="false"
 runat="server" />

The ASP.NET code for the control also includes an <asp:datalist> control for displaying tabs:

<asp:datalist id="tabs" cssclass="OtherTabsBg" repeatdirection="horizontal"
 ItemStyle-Height="25" SelectedItemStyle-CssClass="TabBg"
 ItemStyle-BorderWidth="1" EnableViewState="false" runat="server">
 <ItemTemplate>

 <a href='<%= Request.ApplicationPath %>/DesktopDefault.aspx?tabindex=
 <%# Container.ItemIndex %>&tabid=<%# Ctype(Container.DataItem,
 TabStripDetails).TabId %>'
 class="OtherTabs">
 <%# Ctype(Container.DataItem, TabStripDetails).TabName %>

 </ItemTemplate>
 <SelectedItemTemplate>

 <%# Ctype(Container.DataItem, TabStripDetails).TabName %>

 </SelectedItemTemplate>
</asp:datalist>

The IBuySpy Portal Architecture

41

This control, called tabs, displays an array of TabStripDetails objects. It uses the position of the
tab (as represented by Container.ItemIndex) and the ID of the tab (from
TabStripDetails.TabId, extracted from Container.DataItem) to create a URL that users can use
to navigate to the tab page. This URL is of the form:

(AppPath)/DesktopDefault.aspx?tabindex=(TabIndex)&tabid=(TabId)

This is the correct format used by the Application_BeginRequest() event handler we saw
earlier, when these two parameters are used to initialize a PortalSettings object.

The code for this user control is very short, and only consists of a Page_Load() event handler. As
before, this code needs to extract the PortalSettings object:

 ' Obtain PortalSettings from Current Context
 Dim _portalSettings As PortalSettings = _
 CType(HttpContext.Current.Items("PortalSettings"), PortalSettings)

The name of the site is extracted from this object and used as the Text property of the siteName label
we saw above:

 ' Dynamically Populate the Portal Site Name
 siteName.Text = _portalSettings.PortalName

Next, we have some security code to check what other information to display on the banner (which we
won't look at here), and finally the code to obtain an ArrayList of TabStripDetails objects to bind
to the tabs datalist:

 ' Dynamically render portal tab strip
 If ShowTabs = True Then

 tabIndex = _portalSettings.ActiveTab.TabIndex

 ' Build list of tabs to be shown to user
 Dim authorizedTabs As New ArrayList()
 Dim addedTabs As Integer = 0

 Dim i As Integer
 For i = 0 To _portalSettings.DesktopTabs.Count - 1

 Dim tab As TabStripDetails = _
 CType(_portalSettings.DesktopTabs(i), TabStripDetails)

 If PortalSecurity.IsInRoles(tab.AuthorizedRoles) Then
 authorizedTabs.Add(tab)
 End If

 If addedTabs = tabIndex Then
 tabs.SelectedIndex = addedTabs
 End If

 addedTabs += 1

Chapter 2

42

 Next i

 ' Populate Tab List at Top of the Page with authorized tabs
 tabs.DataSource = authorizedTabs
 tabs.DataBind()

 End If

 End Sub

This code simply extracts the TabStripDetails objects stored in the PortalSettings object and
adds them to an ArrayList called authorizedTabs if the current user is in a role that the tab applies
to. This ArrayList is then databound to the tabs datalist.

Apart from the security code, which we'll leave to Chapter 4, this functionality is pretty straightforward,
and results in the tabbed banner we've seen several times already.

Module Structure
Earlier we saw that DesktopDefault.aspx added user control modules to three table cells called
LeftPane, ContentPane, and RightPane using the following code:

 Dim portalModule As PortalModuleControl = _
 CType(Page.LoadControl(_moduleSettings.DesktopSrc), _
 PortalModuleControl)

 portalModule.PortalId = _portalSettings.PortalId
 portalModule.ModuleConfiguration = _moduleSettings

 parent.Controls.Add(portalModule)

The code in the .ascx file for the control is used to create a PortalModuleControl object, which
then has two of its properties initialized before being added to the controls on the page. Specifically, the
PortalId property is set to the PortalId value extracted from the PortalSettings instance used to
create the page, and the ModuleConfiguration property is set to the ModuleSettings object that
has previously been extracted from the PortalSettings object for this module.

These actions link the module controls into the IBuySpy Portal framework. Since all modules inherit
from this PortalModuleControl class we should examine this class (which is stored in the
DesktopControls.vb file) in more detail.

PortalModuleControl
The two properties used by the DesktopDefault.aspx above, PortalId and
ModuleConfiguration, are simple - they simply wrap two private fields, an integer value in
_portalId for PortalId, and a ModuleSettings value in _moduleConfiguration for
ModuleConfiguration.

The IBuySpy Portal Architecture

43

PortalModuleControl has three other properties: ModuleId, Settings, and IsEditable. The
simplest of these, ModuleId, simply returns the ModuleId field of the stored ModuleSettings object.
This could just as easily be achieved via the ModuleConfiguration property, but since this is a
commonly used value, the IBuySpy Portal designers have seen fit to expose it directly.

Settings uses the shared PortalConfiguration.GetModuleSettings method discussed earlier
to extract custom module configuration information from the database, in the form of a
HashTable.This method is only called once, the first time the Settings property is accessed, at which
point the returned HashTable is stored in the private field _settings. Subsequent attempts to access
Settings have access to this cached version. This mode of operation ensures that as few database
accesses as possible are used - modules that don't have custom configuration information won't even
access the database once. The code to do this is as follows:

 <Browsable(False), _
 DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)> _
 Public ReadOnly Property Settings() As Hashtable

 Get

 If _settings Is Nothing Then
 _settings = PortalSettings.GetModuleSettings(ModuleId)
 End If

 Return _settings
 End Get

 End Property

IsEditable is a Boolean property that is used to determine whether the module is currently editable, a
fact that is used by many controls to render an Edit button. There are two situations when this property
will be True: either the current user will have edit permission granted directly on account of role
membership, or the global PortalSettings.AlwaysShowEditButton is True. The latter case
doesn't necessarily mean that the user can edit the content, they still require the correct permission to
do this, but it does mean that the Edit button will be visible.

The code for this property makes use of a private _isEditable field to cache the result of the
calculation of this value:

 <Browsable(False), _
 DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)> _
 Public ReadOnly Property IsEditable() As Boolean

 Get

 ' Perform tri-state switch check to avoid having to perform a security
 ' role lookup on every property access (instead caching the result)
 If _isEditable = 0 Then

 ' Obtain PortalSettings from Current Context
 Dim _portalSettings As PortalSettings = _
 CType(HttpContext.Current.Items("PortalSettings"), PortalSettings)

Chapter 2

44

 If _portalSettings.AlwaysShowEditButton = True Or _
 PortalSecurity.IsInRoles(_
 _moduleConfiguration.AuthorizedEditRoles) Then
 _isEditable = 1
 Else
 _isEditable = 2
 End If
 End If

 Return _isEditable = 1
 End Get

 End Property

Initially, _isEditable is set to 0, so the logic in the middle of the above code is executed. This code
results in _isEditable being set either to 1 if the PortalSettings.AlwaysShowEditButton
property is True or the user is authorized to edit the module, or 2 otherwise. If _isEditable is set to 1
then the property returns a value of True, otherwise it returns False.

The advantage of doing things this way is that most of the code shown above only executes once, since
_isEditable cannot be 0 after it has finished processing, only 1 or 2.

Editable modules generally display an Edit button using the DesktopModuleTitle.ascx user control.

DesktopModuleTitle.ascx
In order to get a common look and feel for modules, many of them use this user control to display a title
and an Edit button. The ASP.NET code for this simple control is as follows:

<table width="98%" cellspacing="0" cellpadding="0">
 <tr>
 <td align="left">
 <asp:label id="ModuleTitle" cssclass="Head" EnableViewState="false"
 runat="server" />
 </td>
 <td align="right">
 <asp:hyperlink id="EditButton" cssclass="CommandButton"
 EnableViewState="false" runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <hr noshade size="1">
 </td>
 </tr>
</table>

The IBuySpy Portal Architecture

45

A label control (ModuleTitle) is used to display the title itself, and a hyperlink (EditButton) shows
the Edit button. This button only appears if the control is editable, a fact that is determined in the
Page_Load event handler for the control:

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Obtain PortalSettings from Current Context
 Dim _portalSettings As PortalSettings = _
 CType(HttpContext.Current.Items("PortalSettings"), PortalSettings)

 ' Obtain reference to parent portal module
 Dim portalModule As PortalModuleControl = _
 CType(Me.Parent, PortalModuleControl)

 ' Display Modular Title Text and Edit Buttons
 ModuleTitle.Text = portalModule.ModuleConfiguration.ModuleTitle

 ' Display the Edit button if the parent portalmodule has configured the
 ' PortalModuleTitle User Control to display it -- and the current client
 ' has edit access permissions
 If _portalSettings.AlwaysShowEditButton = True Or _
 (PortalSecurity.IsInRoles(_
 portalModule.ModuleConfiguration.AuthorizedEditRoles) And _
 Not (EditText Is Nothing)) Then

 EditButton.Text = EditText
 EditButton.NavigateUrl = EditUrl + "?mid=" + _
 portalModule.ModuleId.ToString()
 EditButton.Target = EditTarget
 End If

 End Sub

This code sets the Text property of ModuleTitle label to a value extracted from the
ModuleSettings object obtained from the parent module, and the Text, NavigateUrl, and Target
properties of EditButton to values taken prom the parameters used in the ASP.NET code used to
insert the control. The URL for EditButton also has an additional querystring parameter added, mid -
which is set to the module ID.

User Controls
The code for the various module user controls varies quite a lot for the ten modules included with the
IBuySpy Portal download, but they share several common features:

❑ They all inherit from PortalModuleControl.

❑ Many of them use DesktopModuleTitle.ascx to render a title and edit link.

❑ Many of them use a separate data object for accessing database-stored data.

Chapter 2

46

To illustrate all these features, let's look at a control that exhibits all three of the above:
Announcements.ascx. The complete ASP.NET code for this control is as follows:

<%@ Control language="vb" Inherits="ASPNetPortal.Announcements"
 CodeBehind="Announcements.ascx.vb" AutoEventWireup="false" %>
<%@ Register TagPrefix="Portal" TagName="Title" Src="~/DesktopModuleTitle.ascx"%>
<portal:title EditText="Add New Announcement"
 EditUrl="~/DesktopModules/EditAnnouncements.aspx" runat="server" />
<asp:DataList id="myDataList" CellPadding="4" Width="98%" EnableViewState="false"
 runat="server">
 <ItemTemplate>
 <asp:HyperLink id="editLink" ImageUrl="~/images/edit.gif"
 NavigateUrl='<%# "~/DesktopModules/EditAnnouncements.aspx?ItemID=" &
 DataBinder.Eval(Container.DataItem,"ItemID") & "&mid=" & ModuleId %>'
 Visible="<%# IsEditable %>" runat="server" />

 <%# DataBinder.Eval(Container.DataItem,"Title") %>

 <%# DataBinder.Eval(Container.DataItem,"Description") %>

 <asp:HyperLink id="moreLink"
 NavigateUrl='<%# DataBinder.Eval(Container.DataItem,"MoreLink") %>'
 Visible='<%# DataBinder.Eval(Container.DataItem,"MoreLink") <>
 String.Empty %>' runat="server">
 read more...
 </asp:HyperLink>

 </ItemTemplate>
</asp:DataList>

Near the top of this code you can see the <portal:title> control that is used for the
DesktopModuleTitle.ascx control detailed in the last section, with appropriate parameters used to
provide a link to the edit page for the module. We won't look at EditAnnouncements.aspx here
since the code is simple and makes use of data access objects in the same way as this user control, so we
won't learn anything new there.

The main body of this module is a DataList, which is set to display the announcements obtained from
the database. We'll come back to the specifics of this control shortly, once we've seen the data it is used
to display.

The DataList control (myDataList) is initialized in the Page_Load event handler for the module
(which constitutes 100% of the code for the user control):

 Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ' Obtain announcement information from Announcements table
 ' and bind to the datalist control
 Dim announcements As New ASPNetPortal.AnnouncementsDB()

The IBuySpy Portal Architecture

47

 ' DataBind Announcements to DataList Control
 myDataList.DataSource = announcements.GetAnnouncements(ModuleId)
 myDataList.DataBind()

 End Sub

This code uses a data object, AnnouncementsDB, to obtain data for filling the DataList. The
AnnouncementsDB.GetAnnouncements method gets a DataSet filled with the announcements that
correspond with this particular module (as specified by the ID of the module). This DataSet is then
databound to the DataList control.

Since we haven't looked in detail at one of the data objects in this application, this is a good opportunity
to do so. The method used, GetAnnouncements, is as follows:

 Public Function GetAnnouncements(ByVal moduleId As Integer) As DataSet

 ' Create Instance of Connection and Command Object
 Dim myConnection As _
 New SqlConnection(ConfigurationSettings.AppSettings("connectionString"))
 Dim myCommand As New SqlDataAdapter("GetAnnouncements", myConnection)

 ' Mark the Command as a SPROC
 myCommand.SelectCommand.CommandType = CommandType.StoredProcedure

 ' Add Parameters to SPROC
 Dim parameterModuleId As New SqlParameter("@ModuleId", SqlDbType.Int, 4)
 parameterModuleId.Value = moduleId
 myCommand.SelectCommand.Parameters.Add(parameterModuleId)

 ' Create and Fill the DataSet
 Dim myDataSet As New DataSet()
 myCommand.Fill(myDataSet)

 ' Return the DataSet
 Return myDataSet

 End Function

The connection to the database is initialized using the connectionString value from the
AppSettings of the application (stored in web.config). The moduleId parameter obtained from the
module using this data object is then used as a parameter for the GetAnnouncements SQL stored
procedure to obtain the required data.

The GetAnnouncements stored procedure is as follows:

CREATE PROCEDURE GetAnnouncements
(
 @ModuleID int
)
AS

SELECT

Chapter 2

48

 ItemID,
 CreatedByUser,
 CreatedDate,
 Title,
 MoreLink,
 MobileMoreLink,
 ExpireDate,
 Description

FROM
 Announcements

WHERE
 ModuleID = @ModuleID
 AND
 ExpireDate > GetDate()

GO

This stored procedure wraps a simple SQL SELECT statement, returning all columns except ModuleId
from the Announcements table for records with the selected ModuleId value.

The AnnouncementsDB data object also has methods for getting individual announcements, for
deleting announcements, and for adding new announcements. These are used by the
EditAnnouncements.aspx page.

Back in the ASP.NET code for the Announcements.ascx user control, we can see that the
<ItemTemplate> starts with a link for editing the announcement item:

<asp:DataList id="myDataList" CellPadding="4" Width="98%" EnableViewState="false"
 runat="server">
 <ItemTemplate>
 <asp:HyperLink id="editLink" ImageUrl="~/images/edit.gif"
 NavigateUrl='<%# "~/DesktopModules/EditAnnouncements.aspx?ItemID=" &
 DataBinder.Eval(Container.DataItem,"ItemID") & "&mid=" & ModuleId %>'
 Visible="<%# IsEditable %>" runat="server" />

The URL of the page for editing the item is hardcoded here, and is combined with an ItemID
querystring parameter taken from the ItemID field of the announcement being displayed and a mid
querystring parameter taken from the PortalModuleControl.ModuleId property. This link is only
displayed if the module is currently editable, making use of the IsEditable property of
PortalModuleControl we saw earlier.

Next, we have the announcement title:

 <%# DataBinder.Eval(Container.DataItem,"Title") %>

The IBuySpy Portal Architecture

49

This uses the Title field of the current announcement. Similarly, the Description field of the
announcement is used to give the announcement summary, and MoreLink is used to display a link to
more text if the field is present:

 <%# DataBinder.Eval(Container.DataItem,"Description") %>

 <asp:HyperLink id="moreLink"
 NavigateUrl='<%# DataBinder.Eval(Container.DataItem,"MoreLink") %>'
 Visible='<%# DataBinder.Eval(Container.DataItem,"MoreLink") <>
 String.Empty %>' runat="server">
 read more...
 </asp:HyperLink>

 </ItemTemplate>
</asp:DataList>

That is all that is required for a IBuySpy Portal module. In the next chapter we'll look at how we can
make our own modules using the framework described here, recapping much of this information.

Security
As mentioned earlier in the chapter, the IBuySpy Portal works with both forms-based and
Windows authentication.

Forms-based authentication is an independent authentication method that works equally well for local
and remote users of the intranet, since login information is requested from the user as part of the web
application, using the authentication module we looked at earlier.

Windows integrated authentication involves tying the intranet authentication in with existing network
accounts. This is great for local network intranets, since users only need to log on once, when they log
on to their Windows domain account. The account information is then passed on to the intranet code
when they access the site, so that they don't need to enter additional information. This has the effect of
streamlining things, and makes the intranet feel more like a corporate application. The main benefit is
that all user account information is centralized.

There are, however, problems with Windows integrated authentication. For a start, we are assuming that
all of our users are using Windows operating systems. If our organization uses other operating systems
as well, such as Linux or Macintosh consoles, then it can be a bit tricky to configure the network users
and groups correctly, resulting in many annoyed users being unable to connect to the intranet. I'm not
saying that this is impossible - it's just more trouble than it's worth in most cases. In addition, remote
users may find it difficult to log on to their network account, or might not even have such an account.
There are also security concerns, since transmitting this information over the Internet is by definition
less secure than doing so over a local network.

Security is covered in more depth in Chapter 4, where we will look at how the forms authentication system
works and how we can configure IBuySpy Portal-based intranets for Windows authentication if desired.

Chapter 2

50

Summary
In this chapter, we have taken a fairly in-depth tour of the IBuySpy Portal intranet architecture. We
started out in general terms, looking at what is provided via the interface created for us. Once we got
past the 'wow' stage, we proceeded to look at things in more depth, and at how things fit together. We
covered the backend for the database structure, and the important user controls and types that
encapsulate the intranet functionality. We saw how the framework works and how individual modules
communicate with the framework as a whole.

The rest of this book is concerned with customizing this architecture, in both simple and advanced
ways. Now we have a good understanding of how things work, we can start to do more interesting
things with the code. In the next chapter, we'll look at the basic principles behind this.

The IBuySpy Portal Architecture

51

Chapter 2

52

