


What You Need to Use This Book
A prerequisite to running the samples in this book is that you have a machine with the .NET
Framework installed upon it. This means that you'll need to be running either:

❑ Windows 2000 Professional (or better)

❑ Windows XP

It is also recommended that you use a version of Visual Studio .NET with this book.

In this book, prior knowledge of network programming is not assumed, so basic and more
advanced networking concepts are appropriately covered.

All the code examples in this book are in C#, and a working knowledge of the language
is assumed.

Summary of Contents

Introduction 1
Chapter 1:     Networking Concepts and Protocols 9
Chapter 2:     Streams in .NET 51
Chapter 3      Network Programming in .NET 91
Chapter 4:     Working with Sockets 127
Chapter 5:     TCP 167
Chapter 6:     UDP 219
Chapter 7:     Multicast Sockets 253
Chapter 8:     HTTP 299
Chapter 9:     E-Mail Protocols 347
Chapter 10:   Cryptography in .NET 387
Chapter 11:   Authentication Protocols 429
Index 447



Multicast Sockets

In 1994, you may recall, the Rolling Stones transmitted a live concert over the Internet for free. This
was made possible due to multicasting, the same technology that makes it possible to watch astronauts
in space, to hold meetings over the Internet, and more.

Unicasting would be inappropriate for these applications, as for events attended by thousands of clients,
the load on the server and the network would be excessive. Multicasting means that the server only has
to send messages just once, and they will be distributed to a whole group of clients. Only systems that
are members of the group participate in the network transfers.

In the last few chapters, we discussed socket programming using connection-oriented and connection-
less protocols. Chapter 6 showed how we can send broadcasts with the UDP protocol. In this chapter,
the UDP protocol again rears its head, but now we are using multicasts.

Multicasts can be used for group communications over the Internet, where every node participating in the
multicast has to join the group set up for the purpose. Routers can forward messages to all interested nodes.

In this chapter, we will create two Windows applications using multicasting features. With one
application it will be possible to chat with multiple systems, where everyone is both a sender and a
receiver. The second application – in the form of a picture show – demonstrates how large data packets
can be sent to multiple clients without using a large percentage of the network bandwidth.

In particular, we will:

7



Chapter 7

254

❑ Compare unicasts, broadcasts, and multicasts

❑ Examine the architecture of multicasting

❑ Implement multicast sockets with .NET

❑ Create a multicast chat application

❑ Create a multicast picture show application

Unicasts, Broadcasts, and Multicasts
The Internet Protocol supports three kinds of IP addresses:

❑ Unicast – unicast network packets are sent to a single destination

❑ Broadcast – broadcast datagrams are sent to all nodes in a subnetwork

❑ Multicast – multicast datagrams are sent to all nodes, possibly on different subnets, that
belong to a group

The TCP protocol provides a connection-oriented communication where two systems communicate
with each other; with this protocol, we can only send unicast messages. If multiple clients connect to a
single server, all clients maintain a separate connection on the server. The server needs resources for
each of these simultaneous connections, and must communicate individually with every client. Don't
forget that the UDP protocol can also be used to send unicast messages, where, unlike TCP, connection-
less communication is used, making it is faster than TCP, although without TCP's reliability.

Sending unicast messages with TCP is covered in Chapter 5; using UDP for unicast is discussed in
Chapter 6.

Broadcast addresses are identified by IP addresses where all bits of the host are set to 1. For instance, to
send messages to all hosts in a subnet with a mask of 255.255.255.0 in a network with the address
192.168.0, the broadcast address would be 192.168.0.255.  Any host with an IP address beginning
192.168.0 will then receive the broadcast messages. Broadcasts are always performed with connection-
less communication using the UDP protocol. The server sends the data regardless of whether any client is
listening. Performance reasons mean it wouldn't be possible to set up a separate connection to every client.
Connection-less communication means that the server does not have to allocate resources for every single
client – no matter how many clients are listening, the same server resources will be consumed.

Of course, there are disadvantages to the connection-less mechanism. For one, there is no guarantee
that the data is received by anyone. If we wanted to add reliability, we would have to add a
handshaking mechanism of our own at a higher level than UDP.

Broadcasts introduce a performance issue for every system on the destination subnet, because each
system on that subnet has to check whether the receiving packet is of interest. A broadcast can be of
interest to any system in the network, and it passes all the way up to the transport layer in the protocol
stack of each system before its relevancy can be determined. There is another issue with broadcasts:
they don't cross subnets. Routers don't let broadcasts cross them – we would soon reach network
saturation if routers forwarded broadcasts, so this is desired behavior. Thus, broadcasts can be only used
inside a particular subnet.



Multicast Sockets

255

Broadcast communication is useful if multiple nodes in the same subnet should get
information simultaneously. NTP (Network Time Protocol) is an example where
broadcasts are useful.

Multicast addresses are identified by IP class D addresses (in the range 224.0.0.0 to
239.255.255.255). Multicast packets can pass across different networks through routers, so it is
possible to use multicasts in an Internet scenario as long as your network provider supports
multicasting. Hosts that want to receive particular multicast messages must register their interest using
IGMP (Internet Group Management Protocol). Multicast messages are not then sent to networks where
no host has joined the multicast group. Class D IP addresses are used for multicast groups, to
differentiate them from normal host addresses, allowing nodes to easily detect if a message is of interest.

Application Models with Multicasts
There are many types of application where multicasts are of good use. One such scenario is when every
system in a group wants to send data to every other system in the group (many-to-many). Multicasting
means that each system doesn't need to create a connection to every other system, and a multicast
address can be used instead. A peer-to-peer chat application, as seen in the picture below, would benefit
from such behavior. The chat sender sends a message to every node of the group by sending a single
message to the network:

Chat Server/Client

Chat Server/Client Chat Server/Client

Chat Server/Client Chat Server/Client



Chapter 7

256

Another scenario where multicasts play an important role is if one system wants to send data to a group of
systems (one-to-many). This can be useful for sending audio, video, or other large data types. The server only
sends the data once, to the multicast address, and a large number of systems can listen. The Rolling Stones
concert in November 1994 was the first time audio and video of a live rock concert was transmitted over the
Internet using multicast. This was a big success, and it demonstrated the usefulness of multicasting. The same
technology is used in a local network to install applications on hundreds of PCs simultaneously without the
servers having to send a big installation package to every client system separately:

Receiver

Receiver

Receiver Receiver

Receiver

Sender

Architecture of Multicast Sockets
Multicast messages are sent using the UDP protocol to a group of systems identified by a class D subnet
address. Certain class D address ranges are reserved for specific uses, as we will see soon.

In addition to UDP, the Internet Group Management Protocol (IGMP) is used to register clients that
want to receive messages for a specific group. This protocol is built into the IP module, and allows
clients to leave a group as well as join.

In this section, we'll cover foundation issues and other important factors of multicasting:

❑ The IGMP protocol

❑ Multicast addresses

❑ Routing

❑ Scoping

❑ Scalability

❑ Reliability

❑ Security



Multicast Sockets

257

The IGMP Protocol
IGMP is used by IP hosts to report group memberships to any immediately neighboring routers that are
multicast enabled. Similarly to the ICMP protocols, IGMP is implemented in the IP module as the
picture below shows. IGMP messages are encapsulated in IP datagrams with the IP protocol number 2.
In Chapter 1, we saw the protocol number listed in the IP header, where 2 denotes IGMP, 1 is for
ICMP, 6 for TCP, and 17 for UDP.

TCP UDP

ICMP IP IGMP

An IGMP v2 message consists of 64 bits, and contains the type of the message, a maximum response
time (used only for membership queries), a checksum, and the group address:

32-bit Group Address

8-bit Type
8-bit

Max Response Time 16-bit Checksum

IGMP v2 is defined in RFC 2236 (http://www.ietf.org/rfc/rfc2236.txt).

The message types used for communication between a host and a router are defined by the first 8 bits of
IGMP v2 message headers, and are described in the following table:

Hex Value Message Description

0x11 Membership Query These are used by the router to see whether any group
members exist. Two types of membership query can
be differentiated by the group address in the 32-bit
group address field. A general query has a group
address in the IGMP header of all zeros, and asks
which groups have members on an attached network.
A group-specific query returns information on whether
a particular group has members.

0x16 Version 2
Membership Report

When a host joins a multicast group, a membership
report is sent to the router to inform the router that a
system on the network is listening to multicast messages.

Table continued on following page



Chapter 7

258

Hex Value Message Description

0x17 Leave Group The last host of a multicast group inside a subnet must
send a leave group message to all routers (224.0.0.2)
when it leaves a group. A host may remember the
hosts of the multicast group (received in membership
reports in response to membership queries) so that it
knows when it is the last one in the group, but this is
not a requirement. If the group members are not
remembered, every host leaving a group sends a leave
group message. In any case the router checks if it was
the last host in the group, and stops forwarding
multicast messages if so.

0x12 Version 1
Membership Report

This report is used for compatibility reasons with
IGMP v1.

IGMP Versions
Version 2 of IGMP added the leave group message so that a client can explicitly leave the group.
Version 1 had to wait for a timeout that could take up to five minutes. During this time, unwanted
multicast transmissions are sent to the network, and for large data such as audio or video streams, this
can use up a substantial part of the available bandwidth. When leaving the group with IGMP v2, latency
is reduced to just a few seconds.

IGMP v3 is still in draft stage, but it is already available with Windows XP and adds specific joins and
leaves with the source address(es). This capability makes the Source-Specific Multicast (SSM) protocol
possible. With an IGMP v2 multicast, every member of the group can send multicast messages to every
other member. SSM makes it possible to restrict the sender (source) of the group to a specific host or
multiple hosts, which is a great advantage in the one-to-many application scenario. IGMP v3 messages
have a different layout to IGMP v2 messages, and the size of an IGMP v3 message depends on how
many source addresses are used.

At the time of writing, IGMP v3 is available as a draft version. With its release, a new RFC will
update RFC 2236.

Multicast Addresses
A class D multicast address starts with the binary values 1110 in the first four bits, making the address
range from 224.0.0.0 to 239.255.255.255.

However, not every address of this range is available for multicasting; for example, the multicast
addresses 224.0.0.0–224.0.0.255 are special purpose, and routers do not pass them across
networks. Unlike normal IP addresses, where every country has a local representation to assign IP
addresses, only the Internet Assigned Names and Numbers Authority (IANA, http://www.iana.org) is
responsible for assigning multicast addresses. RFC 3171 defines the use of specific ranges of IP multicast
addresses and their purposes.



Multicast Sockets

259

RFC 3171 uses CIDR (Classless InterDomain Routing) addresses for a shorthand notation of a
range of IP addresses. The CIDR notation 224.0.0/24 is similar to the address range with the
dotted quad-notation 224.0.0.0–224.0.0.255. In the CIDR notation, the first part shows
the fixed range of the dotted quad-notation followed by the number of fixed bits, so 232/8 is the
shorthand CIDR notation for 232.0.0.0–232.255.255.255.

As a quick overview of multicast addresses, let's look at the three main ways in which they can be allocated:

❑ Static

❑ Dynamic

❑ Scope-relative

Static Multicast Addresses
Static multicast addresses that are needed globally are assigned by IANA. A few examples are listed in
the table below:

IP Address Protocol Description

224.0.0.1 All systems on this subnet

224.0.0.2 All routers on this subnet

224.0.0.12 DHCP Server

The addresses starting with 224.0.0 belong to
the Local Network Control Block, and are
never forwarded by a router. Examples of these
are 224.0.0.1 to send a message to all
systems on the subnet, or 224.0.0.2 to send a
message to all routers on the subnet. The
DHCP server answers messages on the IP
address 224.0.0.12, but only on a subnet.

224.0.1.1 NTP, Network Time Protocol

224.0.1.24 WINS Server

The addresses in the CIDR range 224.0.1/24
belong to the Internetwork Control Block.
Messages sent to these addresses can be
forwarded by a router. Examples are the
Network Time Protocol and WINS requests.

A static address is one of global interest, used for protocols that need well-known addresses. These
addresses may be hard-coded into applications and devices.

A complete list of actually reserved multicast addresses and their owners in the ranges defined by
RFC 3171 can be found at the IANA web site at
http://www.iana.org/assignments/multicast-addresses.

The IANA web site offers a form that allows us to request multicast addresses for applications that
need a globally unique IP address; this can be found at
http://www.iana.org/cgi-bin/multicast.pl.



Chapter 7

260

Dynamic Multicast Addresses
Often, a dynamic multicast address would fit the purpose rather than a fixed static address. These
requested-on-demand addresses have a specific lifetime. The concept of requesting dynamic multicast
addresses is similar to DHCP (Dynamic Host Configuration Protocol) requests, and indeed in the first
versions of MADCAP (Multicast Address Dynamic Client Allocation Protocol) was based on DHCP. Later
MADCAP versions are completely independent of DHCP as they have quite different requirements.

With MADCAP, the client sends a unicast or a multicast message to a MADCAP server to request a
multicast address. The server answers with a lease-based address.

The MADCAP protocol is defined by RFC 2730.

A MADCAP server comes with Windows 2000 Server and can be configured as part of the DHCP
Server services.

Scope-Relative Multicast Addresses
Scope-relative multicast addresses are multicast addresses that are used only within a local group or
organization. The address range 239.0.0.0 to 239.255.255.255 is reserved for administrative
scope-relative addresses. These addresses can be reused with other local groups. Routers are typically
configured with filters to prevent multicast traffic in this address range from flowing outside of the
local network.

Administrative scope-relative addresses are defined in RFC 2365.

Another way to define the scope of multicast addresses is by using a TTL. We will look at TTLs in the
next section.

Routing
Adding multicast capabilities to the Internet was not a straightforward task. When the multicast protocol
was defined, router manufacturers didn't implement multicasting functionality because they didn't know
if multicasting had a real use. Instead, they preferred to wait until they knew whether their customers
actually wanted multicasting technology, creating a problem in that the technology couldn't take off, as
it wasn't possible to use it over the Internet. To resolve this dilemma, the Multicast Backbone (MBone)
was created in 1992. The MBone started with 40 subnetworks in four different countries, and now spans
3400 subnets in 25 countries.

The MBone connects together islands of subnetworks capable of multicasting through tunnels as can be
seen in the next figure. Multicast messages are forwarded using a unicast connection between both
tunnel ends to connect multiple islands across the Internet where multicasting is not supported:



Multicast Sockets

261

Unic
as

t T
un

ne
l Multicast

Island

Multicast
Island

Multicast
Island

Multicast
Island

Unicast Tunnel

Unicast Tunnel

Today, routers are capable of routing multicast messages, but many Internet providers still don't support
multicasts, and so the MBone is still a useful facility.

The web page reporting the actual status of multicast enabled networks in the Internet can be found at
http://www.multicasttech.com/status.

Today, the MBone is used for audio and video multicasts, technical talks and seminars, NASA Space
Shuttle missions, and so on. MBone tools (such as sdr or multikit) provide us with information about
planned multicast events.

How is a multicast packet sent to a client? The next picture shows a server that sends multicast messages
to a specific multicast group address. A client that wants to receive multicast packets for the defined
multicast address must join the multicast group. Suppose client E joins the multicast group by sending
an IGMP request to the routers on its local network. All routers of a subnet can be reached using the IP
address 224.0.0.2. In the picture, only router Z is in client E's subnet. The router registers the client
as a member of the multicast group and informs other routers using a different protocol in order to pass
information on multicast members across routers. We will discuss the multicast protocol used by routers
shortly: MOSPF, PIM, or DVRMP. Multicast-enabled routers pass the information about the member in
this group on to other routers. The server just needs to send a UDP message to the group address.
Because router X now knows that a client wants to receive those messages, it forwards the multicast
message to router Z that in turn forwards the message to the subnetwork of client E. Client E can read
the multicast message. The message is never transmitted to the network of router Y because no client of
that network joined the multicast group.



Chapter 7

262

Server (Sender)

Client B

Client A Client C Client D Client E

Router X

Router Y Router Z
IGMP

MOSPF, PIM, DVMRP

The scope of the multicast determines how many times multicast messages are forwarded by routers.
Let's look at how the scope can be influenced.

Scoping
We have already discussed scoping when looking at administrative scope-relative multicast addresses
belonging to a specific class D address range assigned by IANA, but there's another way to scope
multicast messages.

When the client sends a multicast group report to join a multicast group, it defines a TTL (time to live)
value that is sent in the IP packet. The TTL value defines by how many hops the membership report
should be forwarded. A TTL value of 1 means that the group report never leaves the local network.
Every router receiving the group report decrements the TTL value by 1 and discards the packet when
the TTL reaches 0.

There's a problem defining the exact number of hops to a sender, as different routes may need a
different number of hops, and administrative scope-relative multicast addresses have some advantages.

Routing Protocols
Different protocols can be used by routers to forward multicast membership reports and to find the best
way from the sender to the client. When the MBone was created, the Distance Vector Multicast Routing
Protocol (DVMRP) was the only protocol used. Now, Multicast Open Shortest Path First (MOSPF) and
Protocol-Independent Multicast (PIM) are also widely used protocols for multicasting.



Multicast Sockets

263

DVMRP uses a reverse path-flooding algorithm, where the router sends a copy of the network packet
out to all paths except the one from where the packet originated. If no node in a router's network is a
member of the multicast group, the router sends a prune message back to the sending router so that it
knows it does not need to receive packets for that multicast group. DVMRP periodically refloods
attached networks to reach new nodes that may be added to the multicast group. Now you can see why
DVMRP doesn't scale too well!

MOSPF is an extension of the OSPF (Open Shortest Path First) protocol. With MOSPF, all routers must
be aware of all available links to networks hosting members of multicast groups. MOSPF calculates
routes when multicast traffic is received. This protocol can only be used in networks where OSPF is
used as a unicast routing protocol because MOSPF routes are exchanged between routers using OSPF.
Also, MOSPF won't scale well if many multicast groups are used, or if the groups change often, because
this can gobble up a lot of the router's processing power.

PIM uses two different algorithms for sending messages to group members. When the members are
widely distributed across different networks, PIM-SM (Sparse Mode) is employed, and when a group
uses only a few networks, PIM-DM (Dense Mode) is used. PIM-DM uses a reverse path-flooding
algorithm similar to DVMRP, except that any unicast routing protocol can be used. PIM-SM defines a
registration point for proper routing of packets.

Scalability
A great advantage of multicasting is scalability. If, say, we send 123 bytes to 1000 clients using unicast,
the network is loaded with 123,000 bytes because the message must be sent once for every client. With
multicast, sending the same 123 bytes to 1000 clients only requires 123 bytes to be sent to the network,
because all clients will receive the same message.

On the other hand, if we send the 123 bytes using a broadcast, the network load would be low with 123
bytes similar to multicast. But broadcast not only has the disadvantage that messages can't cross
different networks, but also that all other clients not interested in the broadcast message need to handle
the broadcast packet up to the transport layer before it can determine that no socket is listening to the
message, and the packet is discarded.

Multicasting is the most efficient and scalable way to send messages to multiple clients.

Reliability
IP multicasting doesn't offer any compatible transport-level protocol that is both reliable and
implements a flow mechanism. UDP on the other hand guarantees neither that messages arrive, nor that
they arrive in the correct order. In many scenarios we don't have a problem if some messages are lost,
and when listening to a live concert on the net, users expect to miss a few packets – and it is preferable
to a faithful reproduction that pauses while data is resent. However, a high quality listening application
that caches a lot of data in advance would probably prefer a reliable mechanism. If we want to use
multicasting to install an application on multiple workstations simultaneously, a reliable mechanism is
essential. If some messages were lost, the installed application may not run, or could even produce
harmful effects.



Chapter 7

264

If guaranteed delivery is needed for a multicast, we must add custom handshaking using a reliable
protocol. One way this can be done is by adding packet numbers and a checksum to the data that is sent
as part of the multicast. If the receiver detects a corrupted packet because of an incorrect checksum, or a
packet is missing, it sends a NACK message to the sender, and the sender can resend the corrupted or
missing packet. Note that the use of NACK messages in the event of errors is far more scalable than the
alternative of sending acknowledgement messages for every packet correctly received.

Windows XP uses NACK messages in this way, as part of its reliable multicasting, provided through
Message Queuing. If we use Windows XP (or Windows .NET Server) on both the client and server, we
wouldn't need to implement a NACK mechanism ourselves.

Security
What about multicasting and security? We can differentiate multicasting security issues according to whether
the Internet or an intranet is used, and whether we're securing multicast communication within a group.

A firewall acts as a security gateway between the Internet and an intranet. We'll assume that our
Internet provider supports the MBone on the Internet side, and that multicasting is enabled in the
intranet. Our firewall would stop multicast messages passing from the Internet to the intranet, and vice
versa, and we must explicitly enable the multicast address and the port to pass through the firewall.

Regarding secure communication within a multicast group, the IETF's working group on Multicast
Security (MSEC) has made a proposal for multicasting group key management that promises to establish
a standard way for secure communication among authorized group members. This proposal would
prevent anyone outside the group reading the group's messages. At the time of writing, the IETF
already has a draft document describing secure group key management. The release of this document is
planned for December 2002.

Using Multicast Sockets with .NET
Now that we've covered the basic principles and issues of multicasting, let's start playing with the .NET
classes that support it. We'll start with a look at the code needed for a sender and a receiver.

Sender
The sending application has no special tasks that we haven't already talked about in previous chapters,
and we can simply use the UdpClient class to send multicast messages. The only difference to what
we've done in previous chapters is that we must now use a multicast address. The IPEndPoint object
remoteEP will point to the group address and the port number that will be used by the group:

   IPAddress groupAddress = IPAddress.Parse("234.5.6.11");
   int remotePort = 7777;
   int localPort = 7777;
   IPEndPoint remoteEP = new IPEndPoint(groupAddress, remotePort);
   UdpClient server = new UdpClient(localPort);
   server.Send(data, data.Length, remoteEP);



Multicast Sockets

265

The multicast group address must also be made known to clients joining the group. We can do this
using a fixed address defined in a configuration file that clients can access, but we can also use a
MADCAP server to get a multicast address dynamically. In that case, we have to implement a way to
tell the client about the dynamically assigned addresses. We could do this using a stream socket that the
client connects to, and sending the multicast address to the client. We will implement a stream socket to
tell the client about the multicast address later on, when we come to the picture show application.

Receiver
Clients have to join the multicast group. The method JoinMulticastGroup() of the UdpClient
class already implements this. This method sets the socket options AddMembership and
MulticastTimeToLive, and sends an IGMP group report message to the router. The first parameter
of JoinMulticastGroup() denotes the IP address of the multicast group, and the second parameter
represents the TTL value (the number of routers that should forward the report message).

   UdpClient udpClient = new UdpClient();
   udpClient.JoinMulticastGroup(groupAddress, 50);

To drop a group membership, we call UdpClient.DropMulticastGroup(), which takes an IP
address parameter specifying the same multicast group address as used with JoinMulticastGroup():

   udpClient.DropMulticastGroup(groupAddress);

Using the Socket Class
Instead of using the UdpClient class, we can also use the Socket class directly. The following code
does practically the same as the UdpClient class above. A UDP socket is created with the constructor
of the Socket class, and then the socket options AddMembership and MulticastTimeToLive are set
with the method SetSocketOption(). We have already used this method in Chapter 4, now we'll use
it with multicast options. The first argument we pass is SocketOptionLevel.IP, because the IGMP
protocol is implemented in the IP module. The second argument specifies a value of the
SocketOptionName enumeration. The AddMembership value is used to send an IGMP group
membership report, and MulticastTimeToLive sets the number of hops by which the multicast
report should be forwarded. For the group membership report, we also have to specify the IP address of
the multicast group. The IP address can be specified with the helper class MulticastOption:

public void SetupMulticastClient(IPAddress groupAddress, int timeToLive)
{
   Socket socket = new Socket(AddressFamily.InterNetwork,
                              SocketType.Dgram, ProtocolType.Udp);

   MulticastOption multicastOption = new MulticastOption(groupAddress);
   socket.SetSocketOption(SocketOptionLevel.IP,
                          SocketOptionName.AddMembership,
                          multicastOption);

   socket.SetSocketOption(SocketOptionLevel.IP,
                          SocketOptionName.MulticastTimeToLive,
                          timeToLive);
}



Chapter 7

266

Leaving the multicast group is done by calling SetSocketOption() with the enumeration value
SocketOptionName.DropMembership:

public void StopMulticastClient(IPAddress groupAddress, int timeToLive)
{
   Socket socket = new Socket(AddressFamily.InterNetwork,
                              SocketType.Dgram, ProtocolType.Udp);

   MulticastOption multicastOption = new MulticastOption(groupAddress);
   socket.SetSocketOption(SocketOptionLevel.IP,
                          SocketOptionName.DropMembership,
                          multicastOption);
}

The advantage of the Socket class over UdpClient is that we have more options available for
multicasting. In addition to the options we have seen for joining and dropping a group, Windows XP
has the enumeration value SocketOptionName.AddSourceGroup to join a multicast source group
using SSM.

Creating a Chat Application
Now we can start writing a full multicast application. The first of our sample applications is a simple chat
application that multiple users can use to send messages to all other chat clients. In this application, every
system acts as both client and server. Every user can enter a message that is sent to all multicast participants.

The chat application is created as a Windows Forms project called MulticastChat, creating an
executable with the name MulticastChat.exe.  The main form class in this application is
ChatForm.cs.

User Interface
The user interface of the chat application allows the user to enter a chat name, and join the network
communication by pressing the Start button. When this button is pressed, the multicast group is joined,
and the application starts listening to the group address. Messages are entered in the text box below the
Message label, and are sent to the group when the Send button is pressed:



Multicast Sockets

267

The table below shows the major controls of the form with their name and any non-default property values:

Control Type Name Properties

TextBox textName Text = ""

Button buttonStart Text = "Start"

Button buttonStop Enabled = false
Text = "Stop"

Button buttonSend Enabled = false
Text = "Send"

TextBox textMessage Multiline = true
Text = ""

TextBox textMessages Multiline = true
ReadOnly = true
Scrollbars = Vertical
Text = ""

StatusBar statusBar

ChatForm is the main class of the application as you can see in the code below. The code shows the .NET
namespaces and private fields that will be used by all the methods that we'll add to the class as we progress:

using System;
using System.Configuration;
using System.Collections.Specialized;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Windows.Forms;



Chapter 7

268

namespace Wrox.Networking.Multicast
{
   public class ChatForm : System.Windows.Forms.Form
   {
      private bool done = true;       // Flag to stop listener thread
      private UdpClient client;       // Client socket
      private IPAddress groupAddress; // Multicast group address
      private int localPort;          // Local port to receive messages
      private int remotePort;         // Remote port to send messages
      private int ttl;

      private IPEndPoint remoteEP;
      private UnicodeEncoding encoding = new UnicodeEncoding();

      private string name;           // user name in chat
      private string message;        // message to send

      //...

Configuration Settings
The multicast address and port numbers should be easily configurable, so we'll create an XML
application configuration file called MulticastChat.exe.config with the following content. This
configuration file must be placed in the same directory as the executable resides (which will be
Debug\bin when running from Visual Studio .NET with debugging).

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
   <appSettings>
      <add key="GroupAddress" value="234.5.6.11" />
      <add key="LocalPort" value="7777" />
      <add key="RemotePort" value="7777" />
      <add key="TTL" value="32" />
   </appSettings>
</configuration>

The value of the GroupAddress key must be a class D IP address as discussed earlier in the chapter.
LocalPort and RemotePort use the same values to make the chat application both a receiver and a
sender with the same port number.

To start this application twice on the same system for testing purposes, you will have to copy the
application together with the configuration file into two different directories. Because two running
applications on one system may not listen to the same port number, you will also have to change the port
numbers for LocalPort and RemotePort in the configuration file to two different ports. Each
application will need RemotePort to be set to the value of LocalPort in the second application.

We've set the TTL value in this file to 32. If you don't want to forward group membership reports across
routers in your multicast environment, change this value to 1.



Multicast Sockets

269

This configuration file is read by the ChatForm class constructor using the class
System.Configuration.ConfigurationSettings. If the configuration file doesn't exist, or it is
incorrectly formatted, an exception is thrown that we catch to display an error message:

      public ChatForm()
      {
         //
         // Required for Windows Form Designer support
         //
         InitializeComponent();

         try
         {
            // Read the application configuration file
            NameValueCollection configuration =
                                  ConfigurationSettings.AppSettings;
            groupAddress = IPAddress.Parse(configuration["GroupAddress"]);
            localPort = int.Parse(configuration["LocalPort"]);
            remotePort = int.Parse(configuration["RemotePort"]);
            ttl = int.Parse(configuration["TTL"]);
         }
         catch
         {
            MessageBox.Show(this,
                            "Error in application configuration file!",
                            "Error Multicast Chat", MessageBoxButtons.OK,
                            MessageBoxIcon.Error);
            buttonStart.Enabled = false;
         }
      }

   }
}

Joining the Multicast Group
In the Click handler of the Start button, we read the name that was entered in the text box textName
and write it to the name field. Next, we create a UdpClient object and join the multicast group by
calling the method JoinMulticastGroup(). Then we create a new IPEndPoint object referencing
the multicast address and the remote port for use with the Send() method to send data to the group:

      private void OnStart(object sender, System.EventArgs e)
      {
         name = textName.Text;
         textName.ReadOnly = true;

         try
         {
            // Join the multicast group
            client = new UdpClient(localPort);
            client.JoinMulticastGroup(groupAddress, ttl);

            remoteEP = new IPEndPoint(groupAddress, remotePort);



Chapter 7

270

In the next section of code, we create a new thread that will receive messages sent to the multicast
address because the UdpClient class doesn't support asynchronous operations. An alternative way of
achieving asynchronous operations would be to use the raw Socket class. The IsBackground
property of the thread is set to true so that the thread will be stopped automatically when the main
thread quits.

After starting the thread, we send an introduction message to the multicast group. To convert a string to
the byte array that the Send() method requires, we call UnicodeEncoding.GetBytes():

            // Start the receiving thread
            Thread receiver = new Thread(new ThreadStart(Listener));
            receiver.IsBackground = true;
            receiver.Start();

            // Send the first message to the group
            byte[] data = encoding.GetBytes(name + " has joined the chat");
            client.Send(data, data.Length, remoteEP);

The last action performed by the OnStart() method is to enable the Stop and Send buttons, and
disable the Start button. We also write a handler for the SocketException that could occur if the
application is started twice listening on the same port:

            buttonStart.Enabled = false;
            buttonStop.Enabled = true;
            buttonSend.Enabled = true;
         }
         catch (SocketException ex)
         {
            MessageBox.Show(this, ex.Message, "Error MulticastChat",
                            MessageBoxButtons.OK, MessageBoxIcon.Error);
         }
      }

Receiving Multicast Messages
In the method of the listener thread that we created earlier, we wait in the client.Receive() method
until a message arrives. With the help of the class UnicodeEncoding, the received byte array is
converted to a string.

The returned message should now be displayed in the user interface. There is an important issue to pay
attention to when using threads and Windows controls. In native Windows programming, it is possible
to create Windows controls from different threads, but only the thread that created the control may
invoke methods on it, so all function calls on the Windows control must occur in the creation thread. In
Windows Forms, the same model is mapped to the .NET Windows Forms classes. All methods of
Windows Forms controls must be called on the creation thread – with the exception of the method
Invoke() and its asynchronous variants, BeginInvoke() and EndInvoke(). These can be called
from any thread, as it forwards the method that should be called to the creation thread of the Windows
control. That creation thread then calls the method.



Multicast Sockets

271

So instead of displaying the message in the text box directly, we call the Invoke() method of the Form
class to forward the call to the creation thread of the Form class. Because this is the same thread that
created the text box, this fulfills our requirements.

The Invoke() method requires an argument of type Delegate, and because any delegate derives from
this class, every delegate can be passed to this method. We want to invoke a method that doesn't take
parameters: DisplayReceivedMessage(), and there's already a predefined delegate in the .NET
Framework to invoke a method without parameters: System.Windows.Forms.MethodInvoker. This
delegate accepts methods without parameters, such as our method DisplayReceivedMessage().

      // Main method of the listener thread that receives the data
      private void Listener()
      {
         done = false;

         try
         {
            while (!done)
            {
               IPEndPoint ep = null;

               byte[] buffer = client.Receive(ref ep);
               message = encoding.GetString(buffer);

               this.Invoke(new MethodInvoker (DisplayReceivedMessage));
            }
         }
         catch (Exception ex)
         {
            MessageBox.Show(this, ex.Message, "Error MulticastChat",
                            MessageBoxButtons.OK, MessageBoxIcon.Error);

         }
      }

In the DisplayReceivedMessage()implementation, we write the received message to the
textMessages text box, and write some informational text to the status bar:

      private void DisplayReceivedMessage()
      {
         string time = DateTime.Now.ToString("t");
         textMessages.Text = time + "  " + message + "\r\n" +
                             textMessages.Text;
         statusBar.Text = "Received last message at " + time;
      }

Sending Multicast Messages
Our next task is to implement the message sending functionality in the Click event handler of the
Send button. As we have already seen, a string is converted to a byte array using the
UnicodeEncoding class:



Chapter 7

272

      private void OnSend(object sender, System.EventArgs e)
      {
         try
         {
            // Send a message to the group
            byte[] data = encoding.GetBytes(name + ": " + textMessage.Text);
            client.Send(data, data.Length, remoteEP);
            textMessage.Clear();
            textMessage.Focus();
         }
         catch (Exception ex)
         {
            MessageBox.Show(this, ex.Message, "Error MulticastChat",
                            MessageBoxButtons.OK, MessageBoxIcon.Error);
         }
      }

Dropping the Multicast Membership
The Click event handler for the Stop button, the method OnStop(), stops the client listening to the
multicast group by calling the DropMulticastGroup() method. Before the client stops receiving the
multicast data, a final message is sent to the group saying that the user has left the conversation:

      private void OnStop(object sender, System.EventArgs e)
      {
         StopListener();
      }

      private void StopListener()
      {
         // Send a leaving message to the group
         byte[] data = encoding.GetBytes(name + " has left the chat");
         client.Send(data, data.Length, remoteEP);

         // Leave the group
         client.DropMulticastGroup(groupAddress);
         client.Close();

         // Tell the receiving thread to stop
         done = true;

         buttonStart.Enabled = true;
         buttonStop.Enabled = false;
         buttonSend.Enabled = false;
      }

Because the multicast group should be left not only when the user presses the Stop button, but also
when they exit the application, we will handle the Closing event of the form in the OnClosing()
method. If the server has not already been stopped, we again call the StopListener() method to stop
listening to the group after sending a final message to the group:



Multicast Sockets

273

      private void OnClosing(object sender,
                             System.ComponentModel.CancelEventArgs e)
      {
         if (!done)
            StopListener();
      }

Starting the Chat Application
Now we can start the chat application on multiple systems and start the conversation. Note that newer
messages appear towards the top of the chat window:

A Picture Show Application
The second application we are going to look at is a picture show application. This application illustrates
a multicast scenario where a single application sends messages to multiple clients. This application is a
little more challenging as the messages that can be sent are of larger sizes which don't necessarily fit into
datagram packets.

The picture show server allows pictures on its file system to be selected for multicasting to all clients
that have joined the multicast group.

The picture show is a large application, and so rather than try to cover it in its entirety, we'll focus
on the most important aspects related to network communication. The complete working application
is available for download from the Wrox web site.



Chapter 7

274

The Picture Show Solution
The complete picture show application consists of three Visual Studio .NET projects:

❑ PictureShowServer – a Windows server application

❑ PictureShowClient – a Windows client application

❑ PicturePackager – a class library used by both client and server

<<executable>>
PictureShowServer

<<executable>>
PictureShowClient

<<library>>
PicturePackager

To run the application, the PictureShowServer.exe executable and the PicturePackager.dll
library must be copied to the server. The client systems need PictureShowClient.exe,
PicturePackager.dll, and the application configuration file PictureShowClient.exe.config.

The server application must be started and initialized before the client applications can run. You must
also set the server name in the client application to that of your server.

The first thing to do is consider how we're going to send pictures to our application's users.

Creating a Picture Protocol
Pictures can be sent to the multicast group that are too large to fit in a datagram packet. We have to split
the picture into multiple packages. Also, we want to send some more data in addition to the picture
stream. So we need some layout of the data that are sent across the wire.

To make it easy to parse the data so that the format can easily be extended for future versions of the
application, we'll use an XML format for the packages that contain the picture data, and make use of
classes from the System.Xml namespace.

To save space, we could define a custom binary format for the data packet, but when sending a picture,
the XML overhead is not large compared to the size of the picture. Using XML gives us the advantage
of an existing parser, and this format allows us to easily add more elements in future versions.

One of our XML packages will fit into a single IP datagram. The root element is <PicturePackage>
with an attribute called Number that identifies the fragments that belong together. <Name> and <Data>
are child elements of the <PicturePackage> element. The <Name> element is informational and can
be used for a name of the picture; the <Data> element is the base-64 encoded binary data segment of
the picture. The attribute SegmentNumber allows us to work out how to put the segments together to
create a complete picture; LastSegmentNumber informs us how many segments are needed to do so:



Multicast Sockets

275

<PicturePackage Number="4">
   <Name>hello.jpg</Name>
   <Data SegmentNumber="2" LastSegmentNumber="12" Size="2400">
      <!-- base-64 encoded picture data -->
   </Data>
</PicturePackage>

The PicturePackager assembly contains two classes: the PicturePackager utility class and the
entity class PicturePackage. A single PicturePackage object corresponds to an XML
<PicturePackage> file like that we see above. We can produce the XML representation for a single
picture segment using the GetXml()method on the class.

The PicturePackage class offers two constructors. The first is for use on the server, creating a picture
fragment from native data types (int, string, and byte[]).The second constructor is designed for use
on the client, and creates a fragment from an XML source.

PicturePackager is a utility class that has static methods only. It splits up a complete picture into
multiple segments with the GetPicturePackages()method, and recreates a complete picture by
merging the constituent segments with the GetPicture()method.

Picture Packages
So, the PicturePackage class represents one segment of a complete picture, and here it is reproduced
in full. It starts by defining read-only properties that map to XML elements of the above format:

using System;
using System.Xml;
using System.Text;

namespace Wrox.Networking.Multicast
{
   public class PicturePackage
   {
      private string name;
      private int id;
      private int segmentNumber;
      private int numberOfSegments;
      private byte[] segmentBuffer;

      public string Name
      {
         get
         {
            return name;
         }
      }

      public int Id
      {
         get
         {
            return id;
         }
      }



Chapter 7

276

      public int SegmentNumber
      {
         get
         {
            return segmentNumber;
         }
      }

      public int NumberOfSegments
      {
         get
         {
            return numberOfSegments;
         }
      }

      public byte[] SegmentBuffer
      {
         get
         {
            return segmentBuffer;
         }
      }

Next, we come to the two constructors. One takes multiple arguments to create a PicturePackage
object by the sender, and the other takes XML data received from the network to recreate the object on
the receiver:

      // Creates a picture segment from data types
      // Used by the server application
      public PicturePackage(string name, int id, int segmentNumber,
                            int numberOfSegments, byte[] segmentBuffer)
      {
         this.name = name;
         this.id = id;
         this.segmentNumber = segmentNumber;
         this.numberOfSegments = numberOfSegments;
         this.segmentBuffer = segmentBuffer;
      }

      // Creates a picture segment from XML code
      // Used by the client application
      public PicturePackage(XmlDocument xml)
      {
         XmlNode rootNode = xml.SelectSingleNode("PicturePackage");
         id = int.Parse(rootNode.Attributes["Number"].Value);

         XmlNode nodeName = rootNode.SelectSingleNode("Name");
         this.name = nodeName.InnerXml;

         XmlNode nodeData = rootNode.SelectSingleNode("Data");
         numberOfSegments = int.Parse(nodeData.Attributes[
                                      "LastSegmentNumber"].Value);



Multicast Sockets

277

         segmentNumber = int.Parse(nodeData.Attributes[
                                   "SegmentNumber"].Value);
         int size = int.Parse(nodeData.Attributes["Size"].Value);
         segmentBuffer = Convert.FromBase64String(nodeData.InnerText);
      }

The only other item in this class is the GetXml() method, which converts the picture segment into an
XmlDocument object with the help of classes from the System.Xml namespace. The XML
representation is returned as a string:

      // Return XML code representing a picture segment
      public string GetXml()
      {
         XmlDocument doc = new XmlDocument();

         // Root element <PicturePackage>
         XmlElement picturePackage = doc.CreateElement("PicturePackage");

         // <PicturePackage Number="number"></PicturePackage>
         XmlAttribute pictureNumber = doc.CreateAttribute("Number");
         pictureNumber.Value = id.ToString();
         picturePackage.Attributes.Append(pictureNumber);

         // <Name>pictureName</Name>
         XmlElement pictureName = doc.CreateElement("Name");
         pictureName.InnerText = name;
         picturePackage.AppendChild(pictureName);

         // <Data SegmentNumber="" Size=""> (base-64 encoded fragment)
         XmlElement data = doc.CreateElement("Data");
         XmlAttribute numberAttr = doc.CreateAttribute("SegmentNumber");
         numberAttr.Value = segmentNumber.ToString();
         data.Attributes.Append(numberAttr);

         XmlAttribute lastNumberAttr =
                      doc.CreateAttribute("LastSegmentNumber");
         lastNumberAttr.Value = numberOfSegments.ToString();
         data.Attributes.Append(lastNumberAttr);

         data.InnerText = Convert.ToBase64String(segmentBuffer);
         XmlAttribute sizeAttr = doc.CreateAttribute("Size");
         sizeAttr.Value = segmentBuffer.Length.ToString();
         data.Attributes.Append(sizeAttr);

         picturePackage.AppendChild(data);

         doc.AppendChild(picturePackage);

         return doc.InnerXml;
      }
   }
}



Chapter 7

278

More detailed information about XML and the .NET classes that work with it can be found in the
Wrox book Professional XML for .NET Developers (ISBN 1-86100-531-8).

Picture Packager
The PicturePackager class is a utility class consisting of static methods only. It is used by both
sender and receiver. The GetPicturePackages() method splits up an image into multiple packages
in the form of an array of PicturePackage objects where every segment of the picture is represented
by a single PicturePackage object:

using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;

namespace Wrox.Networking.Multicast
{

   public class PicturePackager
   {

      protected PicturePackager()
      {
      }

      // Return picture segments for a complete picture
      public static PicturePackage[] GetPicturePackages(string name,
                                                        int id,
                                                        Image picture)
      {
         return GetPicturePackages(name, id, picture, 4000);
      }

      // Return picture segments for a complete picture
      public static PicturePackage[] GetPicturePackages(string name, int id,
                                                        Image picture,
                                                        int segmentSize)
      {
         // Save the picture in a byte array
         MemoryStream stream = new MemoryStream();
         picture.Save(stream, ImageFormat.Jpeg);

         // Calculate the number of segments to split the picture
         int numberSegments = (int)stream.Position / segmentSize + 1;

         PicturePackage[] packages = new PicturePackage[numberSegments];

         // Create the picture segments
         int sourceIndex = 0;
         for (int i=0; i < numberSegments; i++)
         {
            // Calculate the size of the segment buffer
            int bytesToCopy = (int)stream.Position - sourceIndex;
            if (bytesToCopy > segmentSize)
               bytesToCopy = segmentSize;



Multicast Sockets

279

            byte[] segmentBuffer = new byte[bytesToCopy];
            Array.Copy(stream.GetBuffer(), sourceIndex, segmentBuffer,
                       0, bytesToCopy);

            packages[i] = new PicturePackage(name, id, i + 1,
                                             numberSegments, segmentBuffer);

            sourceIndex += bytesToCopy;
         }

         return packages;
      }

The receiver uses the inverse GetPicture() method that takes all PicturePackage objects for a
single picture and returns the complete image object:

      // Returns a complete picture from the segments passed in
      public static Image GetPicture(PicturePackage[] packages)
      {
         int fullSizeNeeded = 0;
         int numberPackages = packages[0].NumberOfSegments;
         int pictureId = packages[0].Id;

         // Calculate the size of the picture data and check for consistent
         //  picture IDs
         for (int i=0; i < numberPackages; i++)
         {
            fullSizeNeeded += packages[i].SegmentBuffer.Length;
            if (packages[i].Id != pictureId)
               throw new ArgumentException(
                  "Inconsistent picture ids passed", "packages");
         }

         // Merge the segments to a binary array
         byte[] buffer = new byte[fullSizeNeeded];
         int destinationIndex = 0;
         for (int i = 0; i < numberPackages; i++)
         {
            int length = packages[i].SegmentBuffer.Length;
            Array.Copy(packages[i].SegmentBuffer, 0, buffer,
                       destinationIndex, length);
            destinationIndex += length;
         }

         // Create the image from the binary data
         MemoryStream stream = new MemoryStream(buffer);
         Image image = Image.FromStream(stream);

         return image;
      }
   }
}



Chapter 7

280

The System.Drawing and System.Xml assemblies must be referenced by the
PicturePackager assembly.

Picture Show Server
Now we've got the assembly to split and merge pictures, we can start on the implementation of the
server application. The server project is PictureShowServer, and its main form class is
PictureServerForm, contained in the file PictureShowServer.cs shown here:

The controls on this dialog are listed in the following table:

Control Type Name Comments

MainMenu mainMenu The menu has the main entries File, Configure, and Help.
The File menu has the submenus Init, Start, Stop, and
Exit. The Configure menu allows configuration of the
Multicast Session, the Show Timings, and Pictures. The
Help menu just offers an About option.

Button buttonPictures The Pictures… button will allow the user to configure the
pictures that should be presented.

Button buttonInit The Init button will publish the multicast address and port
number to clients using a TCP socket.

Button buttonStart The Start button starts sending the pictures to the
multicast group address.

Button buttonStop The Stop button stops the picture show prematurely.

PictureBox pictureBox The picture box will show the picture that is currently
being transferred to clients.



Multicast Sockets

281

Control Type Name Comments

ProgressBar progressBar The progress bar indicates how many pictures of the show
have been transferred.

StatusBar statusBar The status bar shows information about what's currently
going on.

ImageList imageList The image list holds all images that make up the show.

The PictureServerForm class contains the Main() method, and there are three other dialog classes,
and the InfoServer class.

The other three dialogs, ConfigurePicturesDialog, MulticastConfigurationDialog, and
ConfigureShowDialog, are used to configure application settings. The ConfigurePicturesDialog
dialog allows us to select image files from the server's file system to make up the picture show.
MulticastConfigurationDialog sets up the multicast address and port number, and the interface
where the pictures should be sent to in case the server system has multiple network cards.
ConfigureShowDialog allows the time between pictures to be specified.

The other class, InfoServer.cs, starts its own thread that acts as an answering server for a client
application. This thread returns information about the group address and port number to clients.

Let's have a look at the code for the start up class for the application, which is called
PictureServerForm and resides in the PictureShowServer.cs source file. Firstly, we'll see the
namespaces and fields that the class will require for the methods covered in subsequent sections:

using System;
using System.Drawing;
using System.Windows.Forms;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.IO;
using System.Xml;
using System.Threading;

namespace Wrox.Networking.Multicast
{
   public class PictureServerForm : System.Windows.Forms.Form
   {
      private string[] fileNames;     // Array of picture filenames
      private object filesLock = new object();  // Lock to synchronize
                                                //  access to filenames

      private UnicodeEncoding encoding = new UnicodeEncoding();

      // Multicast group address, port, and endpoint
      private IPAddress groupAddress = IPAddress.Parse("231.4.5.11");
      private int groupPort = 8765;
      private IPEndPoint groupEP;
      private UdpClient udpClient;



Chapter 7

282

      private Thread senderThread;    // Thread to send pictures

      private Image currentImage;     // Current image sent

      private int pictureIntervalSeconds = 3; // Time between sending
                                              // pictures
      //...

Opening Files
One of the first actions the picture show server application must do is configure the pictures that are to
be presented. OnConfigurePictures() is the handler for the Configure | Pictures menu item and the
click event of the Pictures… button:

      private void OnConfigurePictures(object sender, System.EventArgs e)
      {
         ConfigurePicturesDialog dialog = new ConfigurePicturesDialog();
         if (dialog.ShowDialog() == DialogResult.OK)
         {
            lock (filesLock)
            {
               fileNames = dialog.FileNames;
               progressBar.Maximum = filenames.Length;
            }
         }
      }

This dialog opens a configure pictures dialog, which offers a preview of the pictures in a ListView with
a LargeIcon view:

The controls used on this Form are detailed in the next table:



Multicast Sockets

283

Control Type Name Comments

Button buttonSelect

OpenFileDialog openFileDialog

The Select Pictures… button displays the
openFileDialog so the user can select the
pictures for the show.

Button buttonClear The Clear button removes all selected images.

Button buttonOK

Button buttonCancel

The OK or Cancel buttons close the dialog. If OK is
clicked, the selected files are sent to the main form,
and if Cancel is clicked, all file selections are ignored.

ImageList imageList

ListView listViewPictures

The ImageList Windows Forms component
collects all selected images for display in the
listViewPictures list view showing a preview
for the user.

OnFileOpen() is the handler for the Click event of the Select Pictures… button. It is where we
create Image objects from the files selected by OpenFileDialog for adding to the ImageList
associated with the ListView:

      private void OnFileOpen(object sender, System.EventArgs e)
      {
         if (openFileDialog.ShowDialog() == DialogResult.OK)
         {
            fileNames = openFileDialog.FileNames;

            int imageIndex = 0;
            foreach (string fileName in fileNames)
            {
               using (Image image = Image.FromFile(fileName))
               {
                  imageList.Images.Add(image);

                  listViewPictures.Items.Add(fileName, imageIndex++);
               }
            }
         }
      }

Configuring Multicasting
Another configuration dialog of the server application allows configuring of the multicast address and
multicast port number:



Chapter 7

284

This dialog also allows us to select the local interface that should be used for sending multicast
messages. This can be useful if the system has multiple network cards, or is connected both to a dial-up
network and a local network.

The combo box listing the local interfaces is filled at form startup. First we call Dns.GetHostName()
to retrieve the hostname of the local host, and then Dns.GetHostByName() to get an IPHostEntry
object containing all the IP addresses of the local host. If the host has multiple IP addresses, the string
"Any" is added to the combo box to allow the user to send multicast messages across all network
interfaces. If there is only one network interface, the combo box is disabled, as it will not be possible to
select a different interface.

Here is the constructor in MulticastConfigurationDialog.cs

      public MulticastConfigurationDialog()
      {
         //
         // Required for Windows Form Designer support
         //
         InitializeComponent();

         string hostname = Dns.GetHostName();
         IPHostEntry entry = Dns.GetHostByName(hostname);
         IPAddress[] addresses = entry.AddressList;

         foreach (IPAddress address in addresses)
         {
            comboBoxLocalInterface.Items.Add(address.ToString());
         }
         comboBoxLocalInterface.SelectedIndex = 0;

         if (addresses.Length > 1)
         {
            comboBoxLocalInterface.Items.Add("Any");
         }
         else
         {
            comboBoxLocalInterface.Enabled = false;
         }
      }



Multicast Sockets

285

Another interesting aspect of this class is the validation of the multicast address. The text box
textBoxIPAddress has the handler OnValidateMulticastAddress() assigned to the event
Validating. The handler checks that the IP address entered is in the valid range of multicast addresses:

      private void OnValidateMulticastAddress(object sender,
                             System.ComponentModel.CancelEventArgs e)
      {
         try
         {
            IPAddress address = IPAddress.Parse(textBoxIPAddress.Text);

            string[] segments = textBoxIPAddress.Text.Split('.');
            int network = int.Parse(segments[0]);

            // Check address falls in correct range
            if ((network < 224) || (network > 239))
               throw new FormatException("Multicast addresses have the" +
                                         "range 224.x.x.x to 239.x.x.x");

            // Check address is not a reserved class D
            if ((network == 224) && (int.Parse(segments[1]) == 0)
                && (int.Parse(segments[2]) == 0))
               throw new FormatException("The Local Network Control Block" +
                         "cannot be used for multicasting groups");
         }
         catch (FormatException ex)
         {
            MessageBox.Show(ex.Message);
            e.Cancel = true;
         }
      }

We now return to the events in the main PictureServerForm class in the file
PictureShowServer.cs. When the Init button is pressed on the main dialog, we want the listening
server to start up so that it can send the group address and port number to requesting clients. We do this
by creating an InfoServer object with the IP address and the port number, and then invoke Start().
This method starts a new thread to handle client requests, as we will see next. OnInit() finishes by
calling some helper methods that enable the Start button, and disable the Init button:

// PictureShowServer.cs

      private void OnInit(object sender, System.EventArgs e)
      {
         InfoServer info = new InfoServer(groupAddress, groupPort);
         info.Start();

         UIEnableStart(true);
         UIEnableInit(false);
      }



Chapter 7

286

The InfoServer class does all the work of responding to client requests by sending the multicast group
address and port number to the clients in a separate thread. The class constructor initializes the
InfoServer object with the group address and the group port. The Start() method (invoked by the
OnInit() in the PictureShowServer class) creates the new thread. The main method of the newly
created thread, InfoMain(), sets up a TCP stream socket where we simply place the multicast address
and the port number separated by a colon (:) for sending to the client as soon as one connects to
the server:

// InfoServer.cs

using System;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;

namespace Wrox.Networking.Multicast
{
   public class InfoServer
   {
      private IPAddress groupAddress;
      private int groupPort;
      private UnicodeEncoding encoding = new UnicodeEncoding();

      public InfoServer(IPAddress groupAddress, int groupPort)
      {
         this.groupAddress = groupAddress;
         this.groupPort = groupPort;
      }

      public void Start()
      {
         // Create a new listener thread
         Thread infoThread = new Thread(new ThreadStart(InfoMain));
         infoThread.IsBackground = true;
         infoThread.Start();
      }

      protected void InfoMain()
      {
         string configuration = groupAddress.Address.ToString() + ":" +
                                groupPort.ToString();

         // Create a TCP streaming socket that listens to client requests
         Socket infoSocket = new Socket(AddressFamily.InterNetwork,
                                        SocketType.Stream,
                                        ProtocolType.Tcp);

         try
         {
            infoSocket.Bind(new IPEndPoint(IPAddress.Any, 8777));
            infoSocket.Listen(5);



Multicast Sockets

287

            while (true)
            {
               // Send multicast configuration information to clients
               Socket clientConnection = infoSocket.Accept();
               clientConnection.Send(encoding.GetBytes(configuration));
               clientConnection.Shutdown(SocketShutdown.Both);
               clientConnection.Close();
            }
         }
         finally
         {
            infoSocket.Shutdown(SocketShutdown.Both);
            infoSocket.Close();
         }
      }
   }
}

Chapter 4 delved into stream sockets in more detail.

The UIEnableStart() helper method enables or disables the Start button to prevent the user pressing
the wrong button. This method is called in the method OnInit(), and, as you would expect, is very
similar to UIEnableInit:

// PictureShowServer.cs

      private void UIEnableStart(bool flag)
      {
         if (flag)
         {
            buttonStart.Enabled = true;
            buttonStart.BackColor = Color.SpringGreen;
            miFileStart.Enabled = true;
         }
         else
         {
            buttonStart.Enabled = false;
            buttonStart.BackColor = Color.LightGray;
            miFileStart.Enabled = false;
         }
      }

Sending Pictures
OnStart() is the method that handles the Click event of the Start button, and is where the sending thread
is initialized and started. The start method of this thread is SendPictures(), which we look at next.

// PictureShowServer.cs

      private void OnStart(object sender, System.EventArgs e)
      {
         if (fileNames == null)



Chapter 7

288

         {
            MessageBox.Show("Select pictures before starting the show!");
            return;
         }

         // Initialize picture sending thread
         senderThread = new Thread(new ThreadStart(SendPictures));
         senderThread.Name = "Sender";
         senderThread.Priority = ThreadPriority.BelowNormal;
         senderThread.Start();

         UIEnableStart(false);
         UIEnableStop(true);
      }

The list of filenames that we receive from the Configure Pictures dialog is used by the
SendPictures() method of the sending thread. Here we load a file from the array fileNames to
create a new Image object that is passed to the SendPicture() method. Then the progress bar is
updated with the help of a delegate to reflect the ongoing progress. When building the multicast chat
application, we discussed issues relating to the use of Windows controls in multiple threads, and now we
have to use the Invoke() method again:

// PictureShowServer.cs

      private void SendPictures()
      {
         InitializeNetwork();

         lock (filesLock)
         {
            int pictureNumber = 1;
            foreach (string fileName in fileNames)
            {
               currentImage = Image.FromFile(filename);
               Invoke(new MethodInvoker(SetPictureBoxImage);

               SendPicture(image, fileName, pictureNumber);
               Invoke(new MethodInvokerInt(IncrementProgressBar),
                                     new object[] {1});

               Thread.Sleep(pictureIntervalSeconds);
               pictureNumber++;
            }
         }
         Invoke(new MethodInvoker(ResetProgress));
         Invoke(new MethodInvokerBoolean(UIEnableStart),
                new object[] {true});
         Invoke(new MethodInvokerBoolean(UIEnableStop),
                new object[] {false});
      }



Multicast Sockets

289

We've already discussed the MethodInvoker delegate in the System.Windows.Forms namespace
when we used it in the multicast chat application. The MethodInvoker delegate allows us to call
methods that take no arguments. Now we also need methods that take an int, a string, or a bool
argument to set specific values and enable or disable certain user interface elements. The delegates for
these purposes are placed at the top of the PictureShowServer.cs file:

namespace Wrox.Networking.Multicast
{
  public delegate void MethodInvokerInt(int x);
  public delegate void MethodInvokerString(string s);
  public delegate void MethodInvokerBoolean(bool flag);
  //...

The SendPicture() method splits up a single picture image using the PicturePackager utility class.
Every individual picture package is converted to a byte array with an Encoding object of type
UnicodeEncoding. This byte array is then sent to the multicast group address by the Send() method
of UdpClient:

// PictureShowServer.cs

      private void SendPicture(Image image, string name, int index)
      {
         string message = "Sending picture " + name;
         Invoke(new MethodInvokerString(SetStatusBar),
                                        new Object[] {message});

         PicturePackage[] packages =
               PicturePackager.GetPicturePackages(name, index, image, 1024);

         // Send all segments of a single picture to the group
         foreach (PicturePackage package in packages)
         {
            byte[] data = encoding.GetBytes(package.GetXml());
            int sendBytes = udpClient.Send(data, data.Length);
            if (sendBytes < 0)
               MessageBox.Show("Error sending");

            Thread.Sleep(300);
         }

         message = "Picture " + name + " sent";
         Invoke(new MethodInvokerString(SetStatusBar),
                new object[] { message });
      }

Picture Show Client
The multicast picture show client has a simple user interface consisting of a menu, a picture box, and a
status bar on a form. The status bar has three panels showing not only status messages but also the
multicast address and port numbers. The File menu entry has Start, Stop, and Exit submenus:



Chapter 7

290

The components on this form are described in the following table:

Control Type Name Comments

MainMenu mainMenu The main menu has a single File menu entry
with Start, Stop, and Exit submenus.

PictureBox pictureBox The picture box displays a picture as soon as all
fragments that make it up have been received.

StatusBar statusBar The status bar is split into three panels with
the Panels property. The first panel
(statusBarPanelMain) shows normal status
text, the second and the third
(statusBarPanelAddress and
statusBarPanelPort) display the group
address and port number.

The form class is PictureClientForm in the file PictureShowClient.cs. It houses the methods
GetMulticastConfiguration() (to request the multicast group information from the server)
OnStart() (to join the multicast group), and Listener() (to start a new thread). It also contains the
method DisplayPicture(), which is called for each picture in the show, and OnStop(), which
terminates the listening thread.

Let's start with the namespaces and private fields that the client PictureClientForm class requires:

// PictureShowClient.cs

using System;
using System.Drawing;
using System.Collections;
using System.Windows.Forms;
using System.Collections.Specialized;
using System.Net;



Multicast Sockets

291

using System.Net.Sockets;
using System.Threading;
using System.Text;
using System.Configuration;

namespace Wrox.Networking.Multicast
{
  public delegate void MethodInvokerInt(int i);
  public delegate void MethodInvokerString(string s);

  public class PictureClientForm : System.Windows.Forms.Form
  {
    private IPAddress groupAddress; // Multicast group address
    private int groupPort;          // Multicast group port
    private int ttl;
    private UdpClient udpClient;    // Client socket for receiving
    private string serverName;      // Hostname of the server
    private int serverInfoPort;     // Port for group information

    private bool done = false;      // Flag to end receiving thread

    private UnicodeEncoding encoding = new UnicodeEncoding();

    // Array of all pictures received
    private SortedList pictureArray = new SortedList();

Receiving the Multicast Group Address
As in the multicast chat application, we use a configuration file for setting up the client picture show
application. In this case, it is used to configure the name and address of the server so clients can connect
to the TCP socket that returns the multicast address and port number:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
   <appSettings>
      <add key="ServerName" value="localhost" />
      <add key="ServerPort" value="7777" />
      <add key="TTL" value="32" />
   </appSettings>
</configuration>

The values in this configuration file are read by the PictureClientForm form class constructor, which
also invokes the GetMulticastConfiguration() method:

// PictureShowClient.cs

      public PictureClientForm()
      {
         //
         // Required for Windows Form Designer support
         //
         InitializeComponent();



Chapter 7

292

         try
         {
            // Read the application configuration file
            NameValueCollection configuration =
                  ConfigurationSettings.AppSettings;
            serverName = configuration["ServerName"];
            serverInfoPort = int.Parse(configuration["ServerPort"]);
            ttl = int.Parse(configuration["TTL"]);
         }
         catch
         {
            MessageBox.Show("Check the configuration file");
         }

         GetMulticastConfiguration();
      }

We connect to the server in the GetMulticastConfiguration() method. After connecting, we can
call Receive(), as the server immediately starts to send once a connection is received. The byte array
received is converted to a string using an object of the UnicodeEncoding class. The string contains the
multicast address and the port number separated by a colon (:), so we split the string and set the
member variables groupAddress and groupPort.

As mentioned above, the status bar has two additional panels, statusBarPanelAddress and
statusBarPanelPort, where the multicast address and multicast port number are displayed:

// PictureShowClient.cs

      private void GetMulticastConfiguration()
      {
         Socket socket = new Socket(AddressFamily.InterNetwork,
                                    SocketType.Stream, ProtocolType.Tcp);
         try
         {
            // Get the multicast configuration info from the server
            IPHostEntry server = Dns.GetHostByName(serverName);
            socket.Connect(new IPEndPoint(server.AddressList[0],
                           serverInfoPort));
            byte[] buffer = new byte[512];
            int receivedBytes = socket.Receive(buffer);
            if (receivedBytes < 0)
            {
               MessageBox.Show("Error receiving");
               return;
            }
            socket.Shutdown(SocketShutdown.Both);

            string config = encoding.GetString(buffer);
            string[] multicastAddress = config.Split(':');
            groupAddress = new IPAddress(long.Parse(multicastAddress[0]));
            groupPort = int.Parse(multicastAddress[1]);



Multicast Sockets

293

            statusBarPanelAddress.Text = groupAddress.ToString();
            statusBarPanelPort.Text = groupPort.ToString();
         }
         catch (SocketException ex)
         {
            if (ex.ErrorCode == 10061)
            {
               MessageBox.Show(this, "No server can be found on "
                              +  serverName + ", at port " + serverInfoPort,
                               "Error Picture Show", MessageBoxButtons.OK,
                               MessageBoxIcon.Error);
            }
            else
            {
               MessageBox.Show(this, ex.Message, "Error Picture Show",
                               MessageBoxButtons.OK, MessageBoxIcon.Error);
            }
         }
         finally
         {
            socket.Close();
         }
      }

Joining the Multicast Group
Once we have the multicast address and port number, we can join the multicast group. The constructor
of the UdpClient class creates a socket listening to the port of the group multicast, and then we join the
multicast group by calling JoinMulticastGroup().

The task of receiving the messages and packaging the pictures together belongs to the newly created
listener thread that invokes the Listener() method:

// PictureShowClient.cs

      private void OnStart(object sender, System.EventArgs e)
      {
         udpClient = new UdpClient(groupPort);
         try
         {
            udpClient.JoinMulticastGroup(groupAddress, ttl);
         }
         catch (Exception ex)
         {
            MessageBox.Show(ex.Message);
         }

         Thread t1 = new Thread(new ThreadStart(Listener));
         t1.Name = "Listener";
         t1.IsBackground = true;
         t1.Start();
      }



Chapter 7

294

Receiving the Multicast Picture Data
The listener thread waits in the Receive() method of the UdpClient object until data is received. The
byte array received is converted to a string with the encoding object, and in turn a PicturePackage
object is initialized, passing in the XML string that is returned from the encoding object.

We have to merge all the picture fragments of a single picture received together to create full images for the
client. This is done using the pictureArray member variable of type SortedList. The key of the sorted
list is the picture ID; the value is an array of PicturePackage objects that make up a complete picture.

We then check whether the pictureArray already contains an array of PicturePackages for the
received picture. If it does, the fragment is added to the array; if not, we allocate a new array
of PicturePackages.

After updating the status bar with information about the picture fragment, we invoke the
DisplayPicture() method if we have already received all the fragments of a picture:

// PictureShowClient.cs

      private void Listener()
      {
         while (!done)
         {
            // Receive a picture segment from the multicast group
            IPEndPoint ep = null;
            byte[] data = udpClient.Receive(ref ep);

            PicturePackage package = new PicturePackage(
                                     encoding.GetString(data));

            PicturePackage[] packages;
            if (pictureArray.ContainsKey(package.Id))
            {
               packages = (PicturePackage[])pictureArray[package.Id];
               packages[package.SegmentNumber - 1] = package;
            }
            else
            {
               packages = new PicturePackage[package.NumberOfSegments];
               packages[package.SegmentNumber - 1] = package;
               pictureArray.Add(package.Id, packages);
            }

            string message = "Received picture " + package.Id + " Segment "
                           + package.SegmentNumber;
            Invoke(new MethodInvokerString(SetStatusBar),
                                           new object[] {message});

            // Check if all segments of a picture are received
            int segmentCount = 0;
            for (int i = 0; i < package.NumberOfSegments; i++)
            {
                if (packages[i] != null)
                segmentCount++;



Multicast Sockets

295

            }

            // All segments are received, so draw the picture
            if (segmentCount == package.NumberOfSegments)
            {
               this.Invoke(new MethodInvokerInt(DisplayPicture),
                           new object[] {package.Id});
            }
         }
      }

All we have to do in DisplayPicture() is recreate the picture with the help of the
PicturePackager utility class. The picture is displayed in the picture box on the form. Because the
picture fragments are no longer needed, we can now free some memory by removing the item
representing the PicturePackage array of the sorted list collection:

      private void DisplayPicture(int id)
      {
         PicturePackage[] packages = (PicturePackage[])pictureArray[id];

         Image picture = PicturePackager.GetPicture(packages);

         pictureArray.Remove(id);

         pictureBox.Image = picture;
      }

Starting the Picture Show
Now we can start the server and client picture show applications. We first need to select the pictures
using the Select Pictures… button on the server interface. The picture below shows the Configure
Pictures dialog after some pictures have been selected:



Chapter 7

296

Pressing the Init button on the main dialog starts the InfoServer thread, listening for client requests.
Before starting this thread, the multicast addresses can be changed, but the defaults should be enough to
get going. Once the InfoServer thread is underway, clients can join the session by selecting File |
Start from their menus.

The screenshot below shows the server application in action:

The client application details picture segments as they are received in the status bar, to the right of the
multicast group address and port number:



Multicast Sockets

297

Summary
In this chapter, we've looked at the architecture and issues of multicasting, and seen how multicasting
can be implemented with .NET classes.

Multicasting is a pretty young technology, and it has a bright future. I expect many issues, such as
security and reliability, will be resolved by the standards fairly soon. For multicasting to be truly viable
across the Internet, one or two improvements are required.

However, multicasting already has many useful applications, and its usage is set to grow a great deal in
the coming years. Using multicasting to send data in a one-to-many scenario, or for many-to-many
group applications, considerably reduces the network load when compared to unicasting.

After discussing the architecture of multicasting, we implemented two multicast applications. The first
was a chat application in a many-to-many scenario; the second was a picture server in a one-to-many
scenario sending large data to the multicast group. These demonstrated how easy the built-in multicast
methods of the UdpClient class make multicasting in .NET.



Chapter 7

298


