
CLILibraryTypes.xml

	
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents the method that performs an action on the specified object.
				
				 The object on which to perform an action.
				
					
						 This delegate is used by the method
							 , and in to perform an action on each element of the collection.
					
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					
						 is the base class for all
 exceptions defined by applications.
				
				
					 This class represents application-defined errors detected during the execution of an application. It is provided as a means of differentiating between exceptions defined by applications and exceptions defined by the system. For more information on exceptions
 defined by the system, see
 .
					
					
						
							
does not provide information as to the cause of the exception. In most
scenarios, instances of this class should not be thrown. In cases where this
class is instantiated, a human-readable message describing the error should be passed to the
constructor.
					
				
			
			
				 System.Exception
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "An application error has occurred."
 This message takes into account the current system culture.
							 The property is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							
								 For information on inner exceptions,
 see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that
 occurs when an argument passed to a method is invalid.
				
				
					
						 is thrown when a method is invoked and at
 least one of the passed arguments does not meet the method's parameter specification.
					
						 The Base Class Library includes three derived types:
						
							
								
									
								
							
							
								
									
										
									
								
							
							
								
									
										
									
								
							
						
						 When appropriate, use these types instead of .
					
				
				
					 The following example demonstrates an error that causes
 a exception to be thrown by the system.
					 using System;
public class MyClass {}
public class ArgExceptionExample {
 public static void Main() {
 MyClass my = new MyClass();
 string s = "sometext";
 try {
 int i = s.CompareTo(my);
 }
 catch (ArgumentException e) {
 Console.WriteLine("Error: {0}",e);
 }
 }
}

					 The output is
					
						 Error: System.ArgumentException: Object must be of type String.
						 at System.String.CompareTo(Object value)
						 at ArgExceptionExample.Main()
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "An invalid argument was specified."
 This message takes into account the current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments. The and
 properties are
 initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and the
property using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no arguments. The
 property is initialized to

.
							
								 For information on inner exceptions, see
 .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A that contains the name of the parameter that caused the current exception.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using ,
 the property using , and the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For information on inner exceptions, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A that contains the name of the parameter that caused the exception.
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments. The property is
 initialized to .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the error message that explains the reason for the exception.
						
						
							 A containing the error message with appended, if it in not .
						
						
							
This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the parameter that caused the
 current Exception.
						
						
							 A that contains the
 name of the parameter that caused the current Exception, or
 if no value was specified to the constructor
 for
 the current instance.
						
						
							 This property is read-only.
							
								 The property
 returns the same value as was passed into the constructor.
							
							
								 Override
 the property
 to customize the content or format of the parameter name.
							
							
								
 Use this property to retrieve the name of the invalid parameter.

							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an argument passed
 to a method is invalid because it is
 .
				
				
					
						
							 is thrown when a method is
 invoked and at least one of the passed arguments is and
 should never be
 .
						
							 behaves identically to . It is provided so that
 application code can differentiate between exceptions caused by

arguments and exceptions caused by non-null arguments. For errors caused by
non-null arguments, see
.
					
				
				
					 The following example demonstrates an error that causes
 the
 class to throw a exception.
					 using System;
class ArgumentNullTest {
 public static void Main() {
 String[] s = null;
 String sep = " ";
 try {
 String j = String.Join(sep,s);
 }
 catch (ArgumentNullException e) {
 Console.WriteLine("Error: {0}",e);
 }
 }
}

					 The output is
					
						 Error: System.ArgumentNullException: Value cannot be null.
						 Parameter name: value
						 at System.String.Join(String separator, String[] value)
						 at ArgumentNullTest.Main()
					
				
			
			
				 System.ArgumentException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a
 system-supplied message that describes the error, such as "Argument cannot be
 null." This message takes into account the current system culture. The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that contains the name of the parameter that caused the exception. The content of is intended to be understood by humans.
						
							 This constructor initializes the property of the new instance using
 . The
property is initialized to the system-supplied message provided by the
constructor that takes no arguments.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that contains the name of the parameter that caused the exception. The content of is intended to be understood by humans.
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using ,
 and the property using . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an
 argument passed to a method is invalid because it is
 outside the allowable range of values as specified by the method.
				
				
					
						
							 is thrown when a method is
 invoked and at least one of the arguments passed to the method is not

 and does not contain a valid value.
						
							 behaves identically to . It is provided so that
application code can differentiate between exceptions caused by invalid
arguments that are not , and exceptions caused by
 arguments. For errors caused by
arguments, see .
					
				
				
					 The following example demonstrates an error that causes
 the
 class to throw a exception.
					 using System;
class ArgOutOfRangeExample {
 public static void Main() {
 int[] array1 = {0,0};
 int[] array2 = {0,0};
 try {
 Array.Copy(array1,array2,-1);
 }
 catch (ArgumentOutOfRangeException e) {
 Console.WriteLine("Error: {0}",e);
 }
 }
}

					 The output is
					
						 Error: System.ArgumentOutOfRangeException: Non-negative number required.
						 Parameter name: length
						 at System.Array.Copy(Array sourceArray, Int32 sourceIndex, Array
 destinationArray, Int32 destinationIndex, Int32 length)
						 at ArgOutOfRangeExample.Main()
					
				
			
			
				 System.ArgumentException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "Non-negative number required." This
 message takes into account the current system culture.
							 The and properties are initialized
to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that contains the name of the parameter that caused the current exception. The content of is intended to be understood by humans.
						
							 This constructor initializes the property of the new instance
 using . The property is
 initialized to the system-supplied message provided by the
 constructor that takes no arguments.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that contains the name of the parameter that caused the current exception. The content of is intended to be understood by humans.
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using ,
 and the property using . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that contains the name of the parameter that caused the current exception. The content of is intended to be understood by humans.
						 The value of the argument that caused the current exception.
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using ,
 the property using , and the property using . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 The parameter
contains the invalid argument that was passed to the method. Use
the property to retrieve the name of the
parameter used to pass .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets the value of the parameter that caused the current exception.
						
						
							 A that contains the
 value of the parameter that caused the current exception, or
 if no value was specified to the constructor for the current instance.
						
						
							 This property is
 read-only.
							
								

 The property returns the same
 value as
 was passed into the
 constructor.
							
							
								

 Override
 the property to customize the content or
 format of the value.
							
							
								

 Use this property to retrieve the invalid argument.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the error message that explains the reason for the exception.
						
						
							 A containing the error message. The error message should describe the expected values of the parameter that causes this exception.
						
						
							
This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an error caused by an arithmetic operation.
				
				
					
						 The Base Class Library includes two types derived from :
						
							
								
									
								
							
							
								
									
								
							
						
						 When appropriate, use these types instead of .
					
					
						 The following CIL instructions throw :
						
							
								
 ckfinite
							
							
								
 div
							
						
					
				
				
					 The following example demonstrates an error that causes the system to throw
 a error.
					 using System;
class testNan {
 public static void Main() {
 double myNan = Double.NaN;
 try {
 Math.Sign(myNan);
 }
 catch (ArithmeticException e) {
 Console.WriteLine("Error: {0}",e);
 }
 }
}

					 The output is
					
						 Error: System.ArithmeticException: Function does not accept floating point
 Not-a-Number values.
						 at System.Math.Sign(Double value)
						 at testNan.Main()
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "The arithmetic operation is not
 allowed." This message takes into account the current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to a system-supplied message. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to a system-supplied message.
							
								 For information on inner exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an attempt is made to
 store an element of the wrong type in an array.
				
				
					
						 is thrown when the system
 cannot convert the element to the type declared for the array. This exception will not be thrown if the element
 can be converted to the type declared for the array. For example, an element
 of type can
 be stored in an array declared to store values, but an element of type cannot be stored
 in a array because conversion between these types is
 not supported.
					
					
						 This exception is thrown by the method if a
 widening conversion cannot be performed on the operand
 to convert it to the array type.
						 It is generally unnecessary for applications to throw
 this exception.
						 The following CIL instructions throw
:
						
							
								

 ldelem.<type>
							
							
								

 ldelema
							
							
								

 stelem.<type>
							
						
					
				
				
					 The following example demonstrates an error that causes
 the system to throw a exception.
					 using System;
class ArrayTypeMisMatchExample {
 public static void Main() {
 string[] array1={"hello","world"};
 int[] array2 = {1,2};
 try {
 Array.Copy(array1,array2,2);
 }
 catch (ArrayTypeMismatchException e) {
 Console.WriteLine("Error: {0}",e);
 }
 }
}

					 The output is
					
						 Error: System.ArrayTypeMismatchException: Source array type cannot be
 assigned to destination array type.
						 at System.Array.Copy(Array sourceArray, Int32 sourceIndex, Array
 destinationArray, Int32 destinationIndex, Int32 length)
						 at System.Array.Copy(Array sourceArray, Array destinationArray, Int32
 length)
						 at ArrayTypeMisMatchExample.Main()
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "Source array type cannot be assigned
 to destination array type." This message takes into account the current system
 culture.
							
The
property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments. The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance
 using , and
 the property using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 For information on inner exceptions,
 see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Serves as the base class for arrays. Provides methods for creating,
 copying, manipulating, searching, and sorting arrays.
				
				
					 This class is intended to be used as a base class by
 language implementations that support arrays. Only the system can derive from
 this type: derived classes of are not to be created by the developer.
					
						 An array is a collection of
 identically typed data that are accessed and referenced by
 sets of integral .
						 The of an array is the number
 of dimensions in the array. Each dimension has its own set of indices. An array
 with a rank greater than one can have a different lower
 bound and a different number of elements for each dimension. Multidimensional
 arrays (i.e. arrays with a rank greater than one) are processed in row-major
 order.
						 The of a dimension
 is the starting index of that dimension.
						 The of an array is the total number of elements contained in all of its
dimensions.
						 A is a
one-dimensional array with a of '0'.
						 If the implementer creates a derived class of , expected behavior
cannot be guaranteed. For information on array-like objects with increased
functionality, see the and interfaces. For more information regarding the use of arrays versus the use
of collections, see Partition V of the CLI Specification.
					
					 Every specific type has three instance methods defined on it.
 While some programming languages allow direct access to these methods, they are
 primarily intended to be called by the output of compilers based on language
 syntax that deals with arrays.
					
						
							
								
									 Get: Takes as many arguments as the array
 has dimensions and returns the value stored at the given index. It throws a

exception for invalid indices.
							
						
						
							
								
									 Set: Takes as many arguments as the array
 has dimensions, plus one additional argument (the last argument) which has the
 same type as an array element. It stores the final value in the specified
 index of the array. It throws a
 exception for invalid indices.
							
						
						
							
								
									 Address: Takes as many arguments as the
 array has dimensions and returns the address of the element at the given index.
 It throws a
 exception for invalid indices.
							
						
					
					 In addition, every specific type has a constructor on it that takes as many non-negative

arguments as the array has dimensions. The arguments specify the
number of elements in each dimension, and a lower bound of 0. Thus, a
two-dimensional array of objects would have a constructor that could be called with
 (2, 4) as its arguments to create an array of eight zeros with the first dimension indexed
with 0 and 1 and the second dimension indexed with 0, 1, 2, and 3.
					 For all specific array types except vectors (i.e. those
 permitted to have non-zero lower bounds and those with more than one dimension)
 there is an additional constructor. It takes twice as many arguments as the
 array has dimensions. The arguments are considered in pairs, with the first of
 the pair specifying the lower bound for that dimension and the second specifying
 the total number of elements in that dimension. Thus, a two-dimensional array
 of

 objects would also have a constructor that could be called with (-1, 2, 1, 3) as its arguments,
specifying an array of 6 zeros, with the first dimension indexed by -1 and 0,
and the second dimension indexed by 1, 2, and 3.
					 Enumeration over an array occurs in ascending row-major order, starting from the first element. (For example, a 2x3 array is traversed in the order [0,0], [0,1], [0,2], [1,0], [1,1], and [1,2].)
					 Parallel implementation of methods taking a argument are not permitted.
				
			
			
				 System.Object
			
			
				
					 System.ICloneable
					 0
				
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
				
					 System.Collections.IList
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.IList<T>
					
					
						
					
					
						
							 Returns a read-only wrapper around the specified array.
						
						 The array to wrap in a read-only wrapper.
						
							 A read-only wrapper around the specified array.
						
						
							 is .
						
							
								 To prevent any modifications to the array, expose the array only through this wrapper.
							
							 The returned has the same enumeration order as the array it wraps.
							 A collection that is read-only is simply a collection with a wrapper that prevents modifying the underlying array; therefore, if changes are made to the underlying array, the read-only collection reflects those changes.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Searches the specified section of the specified
 one-dimensional for the specified value, using the
 specified
 implementation.
						
						 A to search.
						 A that contains the index at which searching starts.
						 A that contains the number of elements to search, beginning with .
						 A for which to search.
						
							 The implementation to use when comparing elements. Specify a null reference to use the implementation of each element.
						
						
							 A with one of the following values based on the result of the search
 operation.
							
								
									 Return Value
									 Description
								
								
									 The index of in the
 array.
									
										 was found.
								
								
									 The bitwise complement of the index of the first element that is larger than
 .
									
										 was not found, and at least one array element in the
 range of to + - 1 was greater
 than .
								
								
									 The bitwise complement of (+).
									
										 was not found, and was greater than all
array elements in the range of to +
 - 1.
								
							
							
								 If is
not found, the caller can take the bitwise complement of the return value to
determine the index of where would be found in the
range of to + - 1 if is
already sorted.
							
						
						
							 is .
						
							 has more than one dimension.
						
							
								 is less than
								 .
							 -or-
							
								 is less than zero.
						
						
							
								 + is greater than
								 +
								 .
							 -or-
							
								 .UpperBound == .
						
						
							
								 is , and both and at least one element of do not implement the interface.
						
						
							
								 is compared to each element of
 using until an element with a value greater
 than or equal to is found. If is ,
 the interface of the element being compared - or of
 if the element being compared does not implement the interface
 -- is used. If does not implement the interface and is compared to an element
 that does not implement the interface, a
 exception is thrown. If is not already
 sorted, correct results are not guaranteed.
							
								 A null reference can
 be compared with any type; therefore, comparisons with a
 null reference do not generate exceptions.
							
						
						
							 This example demonstrates the method.
							 using System;
class BinarySearchExample {
 public static void Main() {
 int[] intAry = { 0, 2, 4, 6, 8 };
 Console.WriteLine("The indices and elements of the array are: ");
 for (int i = 0; i < intAry.Length; i++)
 Console.Write("[{0}]: {1, -5}", i, intAry[i]);
 Console.WriteLine();
 SearchFor(intAry, 3);
 SearchFor(intAry, 6);
 SearchFor(intAry, 9);
 }
 public static void SearchFor(Array ar, Object value) {
 int i = Array.BinarySearch(ar, 0, ar.Length, value, null);
 Console.WriteLine();
 if (i > 0) {
 Console.Write("The object searched for, {0}, was found ", value);
 Console.WriteLine("at index {1}.", value, i);
 }
 else if (~i == ar.Length) {
 Console.Write("The object searched for, {0}, was ", value);
 Console.Write("not found,\nand no object in the array had ");
 Console.WriteLine("greater value. ");
 }
 else {
 Console.Write("The object searched for, {0}, was ", value);
 Console.Write("not found.\nThe next larger object is at ");
 Console.WriteLine("index {0}.", ~i);
 }
 }
}

							 The output is
							
								 The indices and elements of the array are:
								 [0]:0 [1]:2 [2]:4 [3]:6 [4]:8
								 The object searched for, 3, was not found.
								 The next larger object is at index 2.
								 The object searched for, 6, was found at index 3.
								 The object searched for, 9, was not found,
								 and no object in the array had greater value.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches the specified one-dimensional for the specified
 value, using the specified
 implementation.
						
						 A to search.
						 A for which to search.
						
							 The implementation to use when comparing elements. Specify a null reference to use the implementation of each element.
						
						
							 A with one of the following values based on the result of the search
 operation.
							
								
									 Return Value
									 Description
								
								
									 The index of in the
 array.
									
										 was found.
								
								
									 The bitwise complement of the index of the first element that is larger than
 .
									
										 was not found, and at least one array element was
 greater than .
								
								
									 The bitwise complement of (.GetLowerBound(0) +
 .Length).
									
										 was not found, and was greater than all
array elements.
								
							
							
								 If
is not found, the caller can take the bitwise complement of the return value to
determine the index where value would be found in if it is
already sorted.
							
						
						
							 is .
						
							 has more than one dimension.
						
							
								 is , and both and at least one element of do not implement the interface.
						
						
							 This version of is equivalent to (, .GetLowerBound(0),
 .Length, ,).
							
								 is compared to each element of
 using until an element with a value greater
than or equal to is found. If is ,
the interface of the element being compared - or of
 if the element being compared does not implement the interface
- is used. If does not implement
the
interface and is compared to an element that does not implement
the
interface, a exception is thrown. If is
not already sorted, correct results are not guaranteed.
							
								 A null reference
 can be compared with any type; therefore, comparisons
 with a null reference do not generate exceptions.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches the specified section of the specified
 one-dimensional for the specified value.
						
						 A to search.
						 A that contains the index at which searching starts.
						 A that contains the number of elements to search, beginning with .
						 A for which to search.
						
							 A with one of the following values based on the result of the search
 operation.
							
								
									 Return Value
									 Description
								
								
									 The index of in the
 array.
									
										 was found.
								
								
									 The bitwise complement of the index of the first element that is larger than
 .
									
										 was not found, and at least one array element in the
 range of to + - 1 was greater
 than .
								
								
									 The bitwise complement of (+).
									
										 was not found, and was greater than all
array elements in the range of to +
 - 1.
								
							
							
								 If
is not found, the caller can take the bitwise complement of the return value to
determine the index of the array where would be found in the
range of to + - 1 if
is already sorted.
							
						
						
							 is .
						
							 has more than one dimension.
						
							
								 < .GetLowerBound(0).
							 -or-
							
								 < 0.
						
						
							
								 and do not specify a valid range in (i.e. + > .GetLowerBound(0) + .Length).
							 -or-
							
								 .UpperBound == .
						
						
							 Either or at least one element of does not implement the interface.
						
						
							 This version of is equivalent to (, .GetLowerBound(0),
 .Length, ,
).
							
								 is compared to each element of using
the interface of the element being compared - or of
 if the element being compared does not implement the interface -
until an element with a value greater than or equal to is found.
If does not implement the interface and is compared to an element
that does not implement the interface, a
exception is thrown. If is not already sorted, correct results
are not guaranteed.
							
								 A null reference can be compared with
 any type; therefore, comparisons with a null reference do not generate
 exceptions.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the specified one-dimensional for the specified object.
						
						 A to search for an object.
						 A for which to search.
						
							 A with one of the following values based on the result of the search
 operation.
							
								
									 Return Value
									 Description
								
								
									 The index of in the
 array.
									
										 was found.
								
								
									 The bitwise complement of the index of the first element that is larger than
 .
									
										 was not found and the value of at least one element of
 was greater than .
								
								
									 The bitwise complement of (.GetLowerBound(0) +
 .Length).
									
										 was not found, and was greater than the
value of all array elements.
								
							
							
								 If
is not found, the caller can take the bitwise complement of the return value to
determine the index where value would be found in if it is sorted
already.
							
						
						
							 is .
						
							
								 has more than one dimension.
						
						
							 Both and at least one element of do not implement the interface.
						
						
							 This version of is equivalent to (, .GetLowerBound(0),
 .Length, ,
).
							
								 is compared to each element of
 using the interface of the element being
compared - or of if the element being compared does not implement the
interface - until an element with a value greater than or equal to
 is found. If does not implement the interface
and is compared to an element that does not implement the interface,
a exception is thrown. If
is not already sorted, correct results are not guaranteed.
							
								 A null reference
 can be compared with any type; therefore,
 comparisons with a null reference do not generate exceptions.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches an entire one-dimensional sorted array for a specific element, using the or interface implemented by each element of the array and by the specified object.
						
						 The one-dimensional array to search.
						 The object for which to search.
						
							 One of the following values based on the result of the search operation:
							
								
									 Return Value
									 Description
								
								
									 A non-negative index of in the array.
									
										 was found.
								
								
									 A negative value, which is the bitwise complement of the index of the first element that is larger than .
									
										 was not found and the value of at least one element of array was greater than .
								
								
									 A negative value, which is the bitwise complement of one more than the index of the final element.
									
										 was not found, and was greater than the value of all array elements.
								
							
						
						
							 is .
						
							 Neither nor the elements of the array implement the or interfaces.
						
						
							 Either or every element of must implement the or interface, which is used for comparisons. The elements of must already be sorted in increasing value according to the sort order defined by the or implementation; otherwise, the behavior is unspecified
							 Duplicate elements are allowed. If the array contains more than one element equal to , the method returns the index of only one of the occurrences, but not necessarily the first one.
							
								
									 can always be compared with any other reference type; therefore, comparisons with do not generate an exception.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches an entire one-dimensional sorted array for a value using the specified interface.
						
						 The one-dimensional array to search.
						 The object for which to search.
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the or implementation of each element.
						
						
							 One of the following values based on the result of the search operation:
							
								
									 Return Value
									 Description
								
								
									 A non-negative index of in the array.
									
										 was found.
								
								
									 A negative value, which is the bitwise complement of the index of the first element that is larger than .
									
										 was not found and the value of at least one element of array was greater than .
								
								
									 A negative value, which is the bitwise complement of one more than the index of the final element.
									
										 was not found, and was greater than the value of all array elements.
								
							
						
						
							 is .
						
							
								 is , and neither nor the elements of the array implement the or interface.
						
						
							 The comparer customizes how the elements are compared.
							 The elements of must already be sorted in increasing value according to the sort order defined by ; otherwise, the behavior is unspecified
							 If is not , the elements of are compared to the specified value using the specified implementation.
							 If is , the default comparer is used.
							 Duplicate elements are allowed. If the array contains more than one element equal to , the method returns the index of only one of the occurrences, but not necessarily the first one.
							
								
									 can always be compared with any other reference type; therefore, comparisons with do not generate an exception.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches a range of elements in a one-dimensional sorted array for a value, using the interface implemented by each element of the array and by the specified value.
						
						 The one-dimensional array to search.
						 The starting index of the range to search.
						 The length of the range to search.
						 The object for which to search.
						
							 One of the following values based on the result of the search operation:
							
								
									 Return Value
									 Description
								
								
									 A non-negative index of in the array.
									
										 was found.
								
								
									 A negative value, which is the bitwise complement of the index of the first element that is larger than .
									
										 was not found and the value of at least one element of array was greater than .
								
								
									 A negative value, which is the bitwise complement of one more than the index of the final element.
									
										 was not found, and was greater than the value of all array elements.
								
							
						
						
							
								 + is greater than
								 .
						
						
							 is .
						
							
								 is less than zero
							 -or-
							
								 is less than zero.
						
						
							 Neither nor the elements of the array implement the or interface.
						
						
							 Either or every element of must implement the interface, which is used for comparisons. The elements of must already be sorted in increasing value according to the sort order defined by the or implementation; otherwise, the behavior is unspecified
							 Duplicate elements are allowed. If the array contains more than one element equal to , the method returns the index of only one of the occurrences, but not necessarily the first one.
							
								
									 can always be compared with any other reference type; therefore, comparisons with do not generate an exception.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Searches a range of elements in a one-dimensional sorted array for a value, using the specified interface.
						
						 The one-dimensional array to search.
						 The starting index of the range to search.
						 The length of the range to search.
						 The object for which to search.
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the or implementation of each element.
						
						
							 One of the following values based on the result of the search operation:
							
								
									 Return Value
									 Description
								
								
									 A non-negative index of in the array.
									
										 was found.
								
								
									 A negative value, which is the bitwise complement of the index of the first element that is larger than .
									
										 was not found and the value of at least one element of array was greater than .
								
								
									 A negative value, which is the bitwise complement of one more than the index of the final element.
									
										 was not found, and was greater than the value of all array elements.
								
							
						
						
							
								 and do not specify a valid range in array.
						
						
							 is .
						
							
								 is less than zero
							 -or-
							
								 is less than zero.
						
						
							
								 is , and neither nor the elements of the array implement the or interface.
						
						
							 The comparer customizes how the elements are compared.
							 The elements of must already be sorted in increasing value according to the sort order defined by ; otherwise, the behavior is unspecified.
							 If is not , the elements of are compared to the specified value using the specified implementation.
							 If is , the comparison is done using the or implementation provided by the element itself or by the specified value.
							 Duplicate elements are allowed. If the array contains more than one element equal to , the method returns the index of only one of the occurrences, but not necessarily the first one.
							
								
									 can always be compared with any other reference type; therefore, comparisons with do not generate an exception.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sets the specified range of elements in the
 specified to zero, false, or to a null reference, depending on the
 element type.
						
						 The to clear.
						 A that contains the index at which clearing starts.
						 A that contains the number of elements to clear, beginning with .
						
							 is .
						
							
								 < .GetLowerBound(0).
							
								 < 0.
							
								 and do not specify a valid range in (i.e. + > .GetLowerBound(0) + .Length).
						
						
							 Reference-type elements will be set to
 . Value-type elements will be set to zero,
 except for
 elements, which will be set to
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Returns a that is a copy of the current instance.
						
						
							 A that is a copy of
 the current instance.
						
						
							
								 This method is implemented to support
 the
 interface.
							
							
								 Each of the
 elements of the current instance is copied to the clone. If the elements are
 reference types, the references are copied. If the elements are value-types, the
 values are copied. The clone is of the same type as the current
 instance.
							
							
								 As described above.
							
							
								 Override this method to return a
 clone of an array.
							
							
								 Use this method to obtain the clone of
 an array.
							
						
						
							 This example demonstrates the method.
							 using System;
public class ArrayCloneExample {
 public static void Main() {
 int[] intAryOrig = { 3, 4, 5 };
 //must explicitly convert clones object into an array
 int[] intAryClone = (int[]) intAryOrig.Clone();
 Console.Write("The elements of the first array are: ");
 foreach(int i in intAryOrig)
 Console.Write("{0,3}", i);
 Console.WriteLine();
 Console.Write("The elements of the cloned array are: ");
 foreach(int i in intAryClone)
 Console.Write("{0,3}", i);
 Console.WriteLine();
 //Clear the values of the original array.
 Array.Clear(intAryOrig, 0, 3);
 Console.WriteLine("After clearing the first array,");
 Console.Write("The elements of the first array are: ");
 foreach(int i in intAryOrig)
 Console.Write("{0,3}", i);
 Console.WriteLine();
 Console.Write("The elements of the cloned array are: ");
 foreach(int i in intAryClone)
 Console.Write("{0,3}", i);
 }
}

							 The output is
							
								 The elements of the first array are: 3 4 5
								 The elements of the cloned array are: 3 4 5
								 After clearing the first array,
								 The elements of the first array are: 0 0 0
								 The elements of the cloned array are: 3 4 5
							
						
					
					 0
				
				
					
					
					 Method
					
						 U[]
					
					
						
						
					
					
						
							 Converts an array of one type to an array of another type.
						
						 The one-dimensional array to convert.
						
							 A that converts each element from one type to another type.
						
						
							 A new array of the target type containing the converted elements from .
						
						
							 is or is .
						
							 The is a delegate that converts an array element to the target type. The elements of are individually passed to this converter, and the converted elements are saved in the new array. The source array remains unchanged.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Copies the specified number of elements from the
 specified source array to the specified destination array.
						
						 A that contains the data to copy.
						 A that receives the data.
						 A designating the number of elements to copy, starting with the first element and proceeding in order.
						
							
								 or is .
						
						
							
								 and have different ranks.
						
						
							 The elements in both arrays are built-in types, and converting from the type of the elements of into the type of the elements in requires a narrowing conversion.
							 -or-
							 Both arrays are built-in types, and one array is a value-type array and the other an array of interface type not implemented by that value-type.
							 -or-
							 Both arrays are user-defined value types and are not of the same type.
						
						
							 At least one of the elements in is not assignment-compatible with the type of .
						
						
							
								 < 0.
						
						
							
								 > .Length.
							 -or-
							
								 > .Length.
						
						
							 This version of is equivalent to (, .GetLowerBound(0), ,
 .GetLowerBound(0),).
							 If and are of different
types, performs widening conversions on the elements of
 as necessary before storing the information in
 . Value types will be boxed when being converted to a
 . If the necessary
conversion is a narrowing conversion, a exception is thrown.
For information regarding valid conversions performed by this method, see
 .
							
							 If an exception is thrown while copying, the state of
 is undefined.
							 If and are the same
array, copies the source elements safely to their
destination, as if the copy were done through an intermediate array.
						
						
							 This example demonstrates the method.
							 using System;
public class ArrayCopyExample {
 public static void Main() {
 int[] intAryOrig = new int[3];
 double[] dAryCopy = new double[3];
 for (int i = 0; i < intAryOrig.Length; i++)
 intAryOrig[i] = i+3;
 //copy the first 2 elements of the source into the destination
 Array.Copy(intAryOrig, dAryCopy, 2);
 Console.Write("The elements of the first array are: ");
 for (int i = 0; i < intAryOrig.Length; i++)
 Console.Write("{0,3}", intAryOrig[i]);
 Console.WriteLine();
 Console.Write("The elements of the copied array are: ");
 for (int i = 0; i < dAryCopy.Length; i++)
 Console.Write("{0,3}", dAryCopy[i]);
 }
}

							 The output is
							
								 The elements of the first array are: 3 4 5
								 The elements of the copied array are: 3 4 0
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
						
					
					
						
							 Copies the specified number of elements from a source
 array starting at the specified source index to a destination array
 starting at the specified destination index.
						
						 The that contains the data to copy.
						 A that contains the index in from which copying begins.
						 The that receives the data.
						 A that contains the index in at which storing begins.
						 A that contains the number of elements to copy.
						
							
								 or is .
						
						
							
								 and have different ranks.
						
						
							 The elements in both arrays are built-in types, and converting from the type of the elements of into the type of the elements in requires a narrowing conversion.
							 -or-
							 Both arrays are built-in types, and one array is a value-type array and the other an array of interface type not implemented by that value-type.
							 -or-
							 Both arrays are user-defined value types and are not of the same type.
						
						
							 At least one element in is assignment-incompatible with the type of .
						
						
							
								 < .GetLowerBound(0).
							 -or-
							
								 < .GetLowerBound(0).
							 -or-
							
								 < 0.
						
						
							 (+) > (.GetLowerBound(0) + .Length).
							 (+) > (.GetLowerBound(0) + .Length).
						
						
							 If and
are of different types, performs widening conversions on the elements of
 as necessary before storing the information in
 . Value types will be boxed when being converted to a
 . If the necessary
conversion is a narrowing conversion, a exception is thrown.
For information regarding valid conversions performed by this method, see
 .
							
							 If an exception is thrown while copying, the state of
 is undefined.
							 If and
are the same array, copies the source elements safely to their
destination as if the copy were done through an intermediate array.
						
						
							 This example demonstrates the method.
							 using System;
class ArrayCopyExample {
 public static void Main() {
 int[] intAry = { 0, 10, 20, 30, 40, 50 };
 Console.Write("The elements of the array are: ");
 foreach (int i in intAry)
 Console.Write("{0,3}", i);
 Console.WriteLine();
 Array.Copy(intAry, 2, intAry, 0, 4);
 Console.WriteLine("After copying elements 2 through 5 into elements 0 through 4");
 Console.Write("The elements of the array are: ");
 foreach (int i in intAry)
 Console.Write("{0,3}", i);
 Console.WriteLine();
 }
}

							 The output is
							
								 The elements of the array are: 0 10 20 30 40 50
								 After copying elements 2 through 5 into elements 0 through 4
								 The elements of the array are: 20 30 40 50 40 50
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies all the elements of the current zero-based instance to the specified one-dimensional array starting at the specified subscript in the destination array.
						
						 A one-dimensional that is the destination of the elements copied from the current instance.
						 A that contains the index in at which copying begins.
						
							 is .
						
							 The current instance has more than one dimension.
						
						
							 <
							 .
						
							
								 has more than one dimension.
							 -or-
							 (+ Length of the current instance) > (
								 +
).
							 -or-
							 The number of elements in the current instance is greater than the available space from to the end of .
						
						 The element type of the current instance is not assignment-compatible with the element type of .
						
							
								 is the array index in the destination array at which copying begins.
							
								 This method is implemented to support the interface. If implementing is not explicitly required, use
 to avoid an extra indirection.
								 If this method throws an exception while copying, the state of
is undefined.
							
							
								 As described
 above.
							
							
								 As described
 above.
							
							
								 Override this
 method to copy elements of the current instance to a specified
 array.
							
							
								 Use this method to
 copy elements of the current instance to a specified array.
							
						
						
							 The following example shows how to copy the elements of one into another.
							 using System;

public class ArrayCopyToExample
{
 public static void Main()
 {
 Array aryOne = Array.CreateInstance(typeof(Object), 3);
 aryOne.SetValue("one", 0);
 aryOne.SetValue("two", 1);
 aryOne.SetValue("three", 2);

 Array aryTwo = Array.CreateInstance(typeof(Object), 5);
 for (int i=0; i < aryTwo.Length; i++)
 aryTwo.SetValue(i, i);

 Console.WriteLine("The contents of the first array are:");
 foreach (object o in aryOne)
 Console.Write("{0} ", o);
 Console.WriteLine();
 Console.WriteLine("The original contents of the second array are:");
 foreach (object o in aryTwo)
 Console.Write("{0} ", o);
 Console.WriteLine();

 aryOne.CopyTo(aryTwo, 1);

 Console.WriteLine("The new contents of the second array are:");
 foreach(object o in aryTwo)
 Console.Write("{0} ", o);
 }
}

							 The output is
							
								 The contents of the first array are:
							
							
								 one two three
							
							
								 The original contents of the second array are:
							
							
								 0 1 2 3 4
							
							
								 The new contents of the second array are:
							
							
								 0 one two three 4
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Array
					
					
						
						
					
					
						
							 Creates a zero-based, multidimensional array of the
 specified and dimension lengths.
						
						 The of the elements contained in the new instance.
						 A one-dimensional array of objects that contains the size of each dimension of the new instance.
						
							 A new zero-based, multidimensional instance of the
 specified with the specified length for
 each dimension. The of the new instance is equal to
 .Length.
						
						
							
								 or is .
						
						
							
								 is not a valid .
							 -or-
							
								 .Length = 0.
						
						 A value in is less than zero.
						
							 The number of elements in is required to equal the number of
 dimensions in the new instance. Each element of specifies
 the length of the corresponding dimension in the new instance.
							 Reference-type elements will be set to . Value-type elements will be set to zero,
except for
elements, which will be set to
 .
							
								 Unlike most classes, provides the
 method, instead of public constructors, to allow
for late bound access.
							
						
						
							 The following example shows how to create and initialize a
 multidimensional .
							
using System;

public class CreateMultiDimArrayExample
{
 public static void Main()
 {
 int i, j, k;
 int[] indexAry = {2, 4, 5};
 Array ary = Array.CreateInstance(typeof(int), indexAry);
 for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
 {
 for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
 {
 for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
 {
 ary.SetValue((100*i + 10*j + k), i, j, k);
 }
 }
 }
 Console.WriteLine("The elements of the array are:");
 for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
 {
 for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
 {
 for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
 {
 Console.Write("{0, 3} ", ary.GetValue(i, j, k));
 }
 Console.WriteLine();
 }
 Console.WriteLine();
 }
 }
}

							 The output is
							 The elements of the array are:
 0 1 2 3 4
 10 11 12 13 14
 20 21 22 23 24
 30 31 32 33 34

100 101 102 103 104
110 111 112 113 114
120 121 122 123 124
130 131 132 133 134

						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Array
					
					
						
						
						
						
					
					
						
							 Creates a zero-based, three-dimensional array of the
 specified and dimension lengths.
						
						 The of the elements contained in the new instance.
						 A that contains the number of elements contained in the first dimension of the new instance.
						 A that contains the number of elements contained in the second dimension of the new instance.
						 A that contains the number of elements contained in the third dimension of the new instance.
						
							 A new zero-based, three-dimensional instance of objects with the size
 for the first dimension, for the second, and
 for the third.
						
						
							 is .
						
							 is not a valid .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
						
						
							 Reference-type elements will be set to . Value-type elements will be set to zero,
 except for
 elements, which will be set to
 .
							
								 Unlike most classes, provides the
 method, instead of public constructors, to allow
for late bound access.
							
						
						
							 The following example shows how to create and
 initialize a three-dimensional .
							
using System;

public class Create3DArrayExample
{
 public static void Main()
 {
 int i, j, k;
 Array ary = Array.CreateInstance(typeof(int), 2, 4, 3);
 for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
 {
 for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
 {
 for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
 {
 ary.SetValue((100*i + 10*j + k), i, j, k);
 }
 }
 }
 Console.WriteLine("The elements of the array are:");
 for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
 {
 for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
 {
 for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
 {
 Console.Write("{0, 3} ", ary.GetValue(i, j, k));
 }
 Console.WriteLine();
 }
 Console.WriteLine();
 }
 }
}

							 The output is
							 The elements of the array are:
 0 1 2
 10 11 12
 20 21 22
 30 31 32

100 101 102
110 111 112
120 121 122
130 131 132

						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Array
					
					
						
						
						
					
					
						
							 Creates a zero-based, two-dimensional array of the specified
and dimension lengths.
						
						 The of the elements contained in the new instance.
						 A that contains the number of elements contained in the first dimension of the new instance.
						 A that contains the number of elements contained in the second dimension of the new instance.
						
							 A new zero-indexed, two-dimensional instance of objects with the size
 for the first dimension and
for the second.
						
						
							 is .
						
							 is not a valid .
						
							
								 < 0.
							 -or-
							
								 < 0.
						
						
							 Reference-type elements will be set to . Value-type elements will be set to zero,
 except for
 elements, which will be set to
 .
							
								 Unlike most classes, provides the
 method, instead of public constructors, to allow
for late bound access.
							
						
						
							 The following example shows how to create and
 initialize a two-dimensional .
							
using System;

public class Create2DArrayExample
{
 public static void Main()
 {
 int i, j;
 Array ary = Array.CreateInstance(typeof(int), 5, 3);
 for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
 {
 for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
 {
 ary.SetValue((10*i + j), i, j);
 }
 }
 Console.WriteLine("The elements of the array are:");
 for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
 {
 for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
 {
 Console.Write("{0, 2} ", ary.GetValue(i, j));
 }
 Console.WriteLine();
 }
 }
}

							 The output is
							 The elements of the array are:
 0 1 2
10 11 12
20 21 22
30 31 32
40 41 42

						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Array
					
					
						
						
					
					
						
							 Constructs a zero-based, one-dimensional array with the specified number of elements of the specified type.
						
						 The of the elements contained in the new instance.
						 A that contains the number of elements contained in the new instance.
						
							 A zero-based, one-dimensional object containing elements of type
 .
						
						
							 is .
						
							 is not a valid .
						
							 < 0.
						
							 Reference-type elements will be set to . Value-type elements will be set to zero,
 except for
 elements, which will be set to
 .
							
								 Unlike most classes, provides the method, instead of public constructors, to allow
for late bound access.
							
						
						
							 The following example shows how to create and
 initialize a one-dimensional .
							 using System;

public class ArrayCreateInstanceExample
{

 public static void Main()
 {

 Array intAry = Array.CreateInstance(typeof(int),5);
 for (int i=intAry.GetLowerBound(0);i<=intAry.GetUpperBound(0);i++)
 intAry.SetValue(i*3,i);
 Console.Write("The values of the array are:");
 foreach (int i in intAry)
 Console.Write("{0} ",i);

 }

}

							 The output is
							
								 The values of the array are: 0 3 6 9 12
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Array
					
					
						
						
						
					
					
						
							 Creates a multidimensional array whose element type is the specified , and dimension lengths and lower bounds, as specified.
						
						 The of the elements contained in the new instance.
						 A one-dimensional array of objects that contains the size of each dimension of the new instance.
						 A one-dimensional array of objects that contains the lower bound of each dimension of the new instance.
						
							 A new multidimensional whose element type is the specified and with
 the specified length and lower bound for each dimension.
						
						
							
								 , , or is .
						
						
							
								 is not a valid .
							 -or-
							
								 .Length = 0.
							 -or-
							
								 and do not contain the same number of elements.
						
						 A value in is less than zero.
						
							 The and
are required to have the same number of elements. The number of elements in

equals the number of dimensions in the new instance
							 Each element of
specifies the length of the corresponding dimension in the new instance.
							 Each element of specifies the lower bound of the
corresponding dimension in the new instance.
							 Reference-type elements will be set to . Value-type elements will be set to zero,
except for
elements, which will be set to
 .
							
								 Unlike most classes, provides the
 method, instead of public constructors, to allow
for late bound access.
							
						
						
							 The following example shows how to create and
 initialize a multidimensional
 with specified low bounds.
							
using System;

public class MultiDimNonZeroBoundExample
{
 public static void Main()
 {
 int i, j, k;
 int[] indexAry = {4, 2, 3};
 int[] lowboundAry = {3, 2, 1};
 Array ary = Array.CreateInstance(typeof(int), indexAry, lowboundAry);
 for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
 {
 for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
 {
 for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
 {
 ary.SetValue((100*i + 10*j + k), i, j, k);
 }
 }
 }
 Console.WriteLine("The elements of the array are:");
 for(i = ary.GetLowerBound(0); i <= ary.GetUpperBound(0); i++)
 {
 for(j = ary.GetLowerBound(1); j <= ary.GetUpperBound(1); j++)
 {
 for(k = ary.GetLowerBound(2); k <= ary.GetUpperBound(2); k++)
 {
 Console.Write("{0, 3} ", ary.GetValue(i, j, k));
 }
 Console.WriteLine();
 }
 Console.WriteLine();
 }
 }
}

							 The output is
							 The elements of the array are:
321 322 323
331 332 333

421 422 423
431 432 433

521 522 523
531 532 533

621 622 623
631 632 633

						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the specified array contains any element that matches the conditions defined by the specified predicate.
						
						 The array to search.
						
							 The predicate that defines the conditions of the elements to search for.
						
						
							
								 , if the array contains one or more elements that match the conditions defined by the specified predicate; otherwise, .
						
						
							 or is .
						
							 The predicate returns if the object passed to it matches the delegate. Each element of is passed to the predicate in turn, and processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 T
					
					
						
						
					
					
						
							 Searches for an element that matches the predicate, and returns the first occurrence within the entire array.
						
						 The array to search.
						
							 The predicate that defines the conditions of the element to search for.
						
						
							 The first element that matches the conditions defined by the specified predicate, if found; otherwise, the default value for type .
						
						
							 or is .
						
							 The elements of are individually passed to the predicate, moving forward in the array, starting with the first element and ending with the last element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 T[]
					
					
						
						
					
					
						
							 Retrieves all the elements that match the conditions defined by the specified predicate.
						
						 The array to search.
						
							 The predicate that specifies the elements to search for.
						
						
							 An array containing all the elements that match the conditions defined by the specified predicate, if found; otherwise, an empty array.
						
						
							 or is .
						
							 The elements of are individually passed to the predicate, and those elements for which the predicate returns , are saved in the returned array.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches for an element that matches the predicate, and returns the zero-based index of the first occurrence within the entire array.
						
						 The array to search.
						
							 The predicate that specifies the elements to search for.
						
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							 or is .
						
							 The elements of are individually passed to the predicate. The array is searched forward starting at the first element and ending at the last element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches for an element that matches the predicate, and returns the zero-based index of the first occurrence within the range of elements in the array that extends from the specified index to the last element.
						
						 The array to search.
						
							 The zero-based starting index of the search.
						
						
							 The predicate that specifies the elements to search for.
						
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							 or is .
						
							 is less than zero or greater than
							 .
						
							 The elements of are individually passed to the predicate. The array is searched forward starting at the specified index and ending at the last element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches for an element that matches the predicate, and returns the zero-based index of the first occurrence within the range of elements in the array that starts at the specified index and contains the specified number of elements.
						
						 The array to search.
						
							 The zero-based starting index of the search
						
						
							 The number of consecutive elements to search.
						
						
							 The predicate that specifies the elements to search for.
						
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							 or is .
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
							 -or-
							
								 + is greater than
								 .
						
						
							 The elements of are individually passed to the predicate. The array is searched forward starting at the specified index and going for elements. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 T
					
					
						
						
					
					
						
							 Searches for an element that matches the predicate, and returns the last occurrence within the entire array.
						
						 The array to search.
						
							 The predicate that specifies the elements to search for.
						
						
							 The last element that matches the conditions defined by the specified predicate, if found; otherwise, the default value for type .
						
						
							 or is .
						
							 The elements of are individually passed to the predicate, moving backward in the array, starting with the last element and ending with the first element. Processing is stopped when a match is found.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches for an element that matches the predicate, and returns the zero-based index of the last occurrence within the entire array.
						
						 The array to search.
						
							 The predicate that specifies the elements to search for.
						
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							 or is .
						
							 The elements of are individually passed to the predicate. The array is searched backwards starting at the last element and ending at the first element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches for an element that matches the predicate, and returns the zero-based index of the last occurrence within the range of elements in the array that extends from the specified index to the last element.
						
						 The array to search.
						
							 The zero-based starting index of the backward search.
						
						
							 The predicate that specifies the elements to search for.
						
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							 or is .
						
							 is less than zero or greater than
							 .
						
							 The elements of are individually passed to the predicate. The array is searched backward starting at the specified index and ending at the first element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches for an element that matches the predicate, and returns the zero-based index of the last occurrence within the range of elements in the array that ends at the specified index and contains the specified number of elements.
						
						 The array to search.
						
							 The zero-based starting index of the backward search.
						
						
							 The number of consecutive elements to search.
						
						
							 The predicate that specifies the elements to search for.
						
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							 or is .
						
							
								 is less than zero or greater than
								 .
							 -or-
							
								 is less than zero.
							 -or-
							
								 is greater than + 1.
						
						
							 The elements of are individually passed to the predicate. The array is searched backward starting at the specified index and going for elements. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs the specified action on each element of the specified array.
						
						 The array on whose elements the action is to be performed.
						
							 The action to perform on each element of .
						
						
							 The first element that matches the conditions defined by the specified predicate, if found; otherwise, the default value for type .
						
						
							 or is .
						
							 The elements of are individually passed to the action. The elements of the current array are individually passed to the action delegate, sequentially, in index order, and on the same thread as that used to call . Execution stops if the action throws an exception.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						
							 Returns a for the current instance.
						
						
							 A for the current instance.
						
						
							 A grants read-access to the elements of a
 .
							
								 This method is
 implemented to support the interface. For more information regarding the use of an
 enumerator, see .
							
							
								 Enumerators can be used to read the data in the collection, but they cannot be used to modify the underlying collection.
								 Initially, the enumerator is positioned before the
 first element of the current instance. returns the enumerator to this
 position. Therefore, after an enumerator is created or after a
 , is required to be
 called to advance the enumerator to the first element of the collection before
 reading the value of .
								
									 returns the same object until either
 or
 is called. sets to the next element.
								 If passes the end of the collection, the enumerator is positioned after the last element in the collection and returns false. When the enumerator is at this position, subsequent calls to also return . If the last call to returned , is unspecified. To set to the first element of the collection again, you can call followed by .
								 An enumerator remains valid as long as the collection remains unchanged. If changes are made to the collection, such as adding, modifying, or deleting elements, the enumerator is irrecoverably invalidated and its behavior is undefined.
								 The enumerator does not have exclusive access to the collection; therefore, enumerating through a collection is intrinsically not a thread safe procedure. To guarantee thread safety during enumeration, you can lock the collection during the entire enumeration. To allow the collection to be accessed by multiple threads for reading and writing, you must implement your own synchronization.
							
							
								 Multidimensional arrays will be processed in Row-major form.
								
									 For some
 multidimensional
 objects, it can be desirable for an enumerator to process them in Column-major form.
								
							
							
								 Override this
 method to provide read-access to the current instance.
							
							
								 Use this method
 to iterate over the elements of the current instance.
							
						
						
							 This example demonstrates the method.
							 using System;
using System.Collections;
public class ArrayGetEnumerator {
 public static void Main() {
 string[,] strAry = {{"1","one"}, {"2", "two"}, {"3", "three"}};
 Console.Write("The elements of the array are: ");
 IEnumerator sEnum = strAry.GetEnumerator();
 while (sEnum.MoveNext())
 Console.Write(" {0}", sEnum.Current);
 }
}

							 The output is
							
								 The elements of the array are: 1 one 2 two 3 three
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Gets the number of elements in the specified dimension of the array.
						
						 The zero-based dimension of the array whose length is to be determined.
						
							 The number of elements in the specified dimension of the array.
						
						
							
								 is less than zero.
							 -or-
							
								 is equal to or greater than .
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the lower bound of the specified dimension in
 the current instance.
						
						 A that contains the zero-based dimension of the current instance whose lower bound is to be determined.
						
							 A that contains the lower bound of the specified dimension in the
 current instance.
						
						
							
								 < 0.
							 -or-
							
								 is equal to or greater than the property of the current instance.
						
						
							
								 For example,
 (0) returns the lower bound of the first
 dimension of the current instance, and (- 1) returns the lower bound of the last dimension of
 the current instance.
							
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the upper bound of the specified dimension in
 the current instance.
						
						 A that contains the zero-based dimension of the current instance whose upper bound is to be determined.
						
							 A that contains the upper bound of the specified dimension in the
 current instance.
						
						
							
								 < 0.
							 -or-
							
								 is equal to or greater than the property of the current instance.
						
						
							
								 For example,
(0) returns the upper bound of the first dimension of the current
instance, and (- 1) returns the upper bound of the last dimension
of the current instance.
							
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Gets the value at the specified position in the
 current multidimensional instance.
						
						 A one-dimensional array of objects that contains the indices that specify the position of the element in the current instance whose value to get.
						
							 A that contains the value at the specified position in the
 current instance.
						
						
							 is .
						 The number of dimensions in the current instance is not equal to the number of elements in .
						
							 At least one element in is outside the range of valid indices for the corresponding dimension of the current instance.
						
						
							 The number of elements in is required to be equal to the number of
 dimensions in the current instance. All elements in collectively specify the position of the
 desired element in the current instance.
							
								 Use the and
 methods to determine whether any of the values in
 are out of
bounds.
							
						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Gets the value at the specified position in the current one-dimensional
 instance.
						
						 A that contains the position of the value to get from the current instance.
						
							 A that contains the value at the specified position in the current
 instance.
						
						 The current instance has more than one dimension.
						
							
								 is outside the range of valid indices for the current instance.
						
						
							
								 Use the and
 methods to determine
 whether is out of bounds.
							
						
						
							 This example demonstrates the method.
							 using System;
public class ArrayGetValueExample {
 public static void Main() {
 String[] strAry = { "one", "two", "three", "four", "five" };
 Console.Write("The elements of the array are: ");
 for(int i = 0; i < strAry.Length; i++)
 Console.Write(" '{0}' ", strAry.GetValue(i));
 }
}

							 The output is
							
								 The elements
 of the array are: 'one' 'two' 'three' 'four' 'five'
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Gets the value at the specified position in the current
 two-dimensional instance.
						
						 A that contains the first-dimension index of the element in the current instance to get.
						 A that contains the second-dimension index of the element in the current instance to get.
						
							 A that contains the value at the specified position in the current
 instance.
						
						 The current instance does not have exactly two dimensions.
						 At least one of or is outside the range of valid indexes for the corresponding dimension of the current instance.
						
							
								 Use the and
 methods to determine
 whether any of the indices are out of bounds.
							
						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
					
					
						
							 Gets the value at the specified position in the
 current three-dimensional instance.
						
						 A that contains the first-dimension index of the element in the current instance to get.
						 A that contains the second-dimension index of the element in the current instance to get.
						 A that contains the third-dimension index of the element in the current instance to get.
						
							 A that contains the value at the specified position in the
 current instance.
						
						 The current instance does not have exactly three dimensions.
						
							 At least one of or or is outside the range of valid indexes for the corresponding dimension of the current instance.
						
						
							
								 Use the and
 methods to determine
 whether any of the indices are out of bounds.
							
						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches the specified one-dimensional , returning the index of the first
 occurrence of the specified in the specified range.
						
						 A one-dimensional to search.
						 A to locate in .
						 A that contains the index at which searching starts.
						 A that contains the number of elements to search, beginning with .
						
							 A containing the index of the first occurrence of in
 , within the range through
+ - 1, if found; otherwise,
 .GetLowerBound(0) - 1.
 For a vector, if is not
found, the return value will be -1. This provides the caller with a standard code for the failed search.
							
						
						
							
								 is .
						
						
							
								 is less than
								 .
							 -or-
							
								 is less than zero.
							 -or-
							
								 + is greater than
								 +
								 .
						
						
							 has more than one dimension.
						
							 The elements are compared using .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches the specified one-dimensional , returning the index of the first
 occurrence of the specified between the specified index and the last element.
						
						 A one-dimensional to search.
						 A to locate in .
						 A that contains the index at which searching starts.
						
							 A containing the index of the first occurrence of in
 , within the range through the last element of
 , if found; otherwise,
 .GetLowerBound(0) - 1.
 For a vector, if is not
 found, the return value will be -1. This provides the caller with a standard code for the failed search.
							
						
						
							
								 is .
						
						
							
								 is less than
								 or greater than
								 +
								 .
						
						
							 has more than one dimension.
						
							 This version of is equivalent to (, ,
 , (.Length - + .GetLowerBound(0))).
							 The elements are compared using .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the specified one-dimensional , returning the
 index of the first occurrence of the specified .
						
						 A one-dimensional to search.
						 A to locate in .
						
							 A containing the index of the first occurrence of in
 , if found; otherwise, .GetLowerBound(0) - 1. For a vector, if is not
 found, the return value will be -1. This provides the caller with a standard code for a failed search.
							
						
						
							 is .
						
							 has more than one dimension.
						
							 This version of is equivalent to (, , .GetLowerBound(0), .Length).
							 The elements are compared using .
						
						
							 The following example demonstrates the
method.
							 using System;
public class ArrayIndexOfExample {
 public static void Main() {
 int[] intAry = { 0, 1, 2, 0, 1 };
 Console.Write("The values of the array are: ");
 foreach(int i in intAry)
 Console.Write("{0,5}", i);
 Console.WriteLine();
 int j = Array.IndexOf(intAry, 1);
 Console.WriteLine("The first occurrence of 1 is at index {0}", j);
 }
}

							 The output is
							
								 The values of the array are: 0 1 2 0 1
								 The first occurrence of 1 is at index 1
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches for the specified value and returns the index of the first occurrence within the range of elements in the array starting at the specified index and continuing for, at most, the specified number of elements.
						
						 The array to search.
						 The value to locate.
						 The zero-based starting index of the search.
						 The number of consecutive elements to search.
						
							 The zero-based index of the first occurrence of within the range of elements in
 that starts at
 and contains the number of elements specified in
, if found; otherwise, -1.
						
						
							
								 is .
						
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
							 -or-
							
								 + is greater than .
						
						
							 The elements are compared using . The array is searched forward starting at and ending at + - 1. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches the specified array, returning the index of the first occurrence in the specified array starting at the specified index and including the last element.
						
						 The array to search.
						 The value to locate.
						 The zero-based starting index of the search.
						
							 The zero-based index of the first occurrence of within the range of elements in
 that extends from
 to the last element, if found; otherwise, -1. If is equal to the length of the array, -1 is returned.
						
						
							
								 is .
						
						
							
								 is less than zero or greater than
								 .
						
						
							 The elements are compared using . The array is searched forward starting at and ending at the last element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the specified array, returning the index of the first occurrence of the specified value.
						
						 The array to search.
						 The value to locate.
						
							 The zero-based index of the first occurrence of in
 , if found; otherwise, - 1.
						
						
							
								 is .
						
						
							 The elements are compared using . The array is searched forward starting at the first element and ending at the last element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Initializes every element of the current instance of
 value-type objects by calling the
 default constructor of that value type.
						
						
							 This method cannot be used on reference-type arrays.
							 If the current instance is not a value-type or if the value type does not have a default
 constructor, the current instance is not modified.
							 The current instance can have any lower bound and any number of dimensions.
							
								 This method can be used only
 on value types that have constructors.
							
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches the specified one-dimensional , returning the index of the last
 occurrence of the specified in the specified range.
						
						 A one-dimensional to search.
						 A to locate in .
						 A that contains the index at which searching starts.
						 A that contains the number of elements to search, beginning with .
						
							 A containing the index of the last occurrence of in
 , within the range through
 - + 1, if found; otherwise,
 .GetLowerBound(0) - 1.
 For a vector, if is not
 found, the return value will be -1. This provides the caller with a standard code for the failed search.
							
						
						
							
								 is .
						
						
							
								 is outside the range of valid indices for .
							 -or-
							
								 < 0.
							 -or-
							
								 is greater than + 1.
						
						
							 has more than one dimension.
						
							 The elements are compared using .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches the specified one-dimensional , returning the index of the last
 occurrence of the specified between the specified index and the first element.
						
						 A one-dimensional to search.
						 A to locate in .
						 A that contains the index at which searching starts.
						
							 A containing the index of the last occurrence of in the range
 through the lower bound of , if found; otherwise,
 .GetLowerBound(0) - 1. For a vector, if is not found, the return value will
 be -1. This provides the caller with a standard code for the failed
 search.
							
						
						
							
								 is .
						
						
							
								 is outside the range of valid indices for .
						
						
							 has more than one dimension.
						
							 This version of is equivalent to (, , , + 1 - .GetLowerBound(0)).
							 The elements are compared using .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the specified one-dimensional , returning the index of the last
 occurrence of the specified .
						
						 A one-dimensional to search.
						 A to locate in .
						
							 A containing the index of the last occurrence in of
 , if found; otherwise,
 .GetLowerBound(0) - 1.
 For a vector, if is not
 found, the return value will be -1. This provides the caller with a standard code for the failed search.
							
						
						
							 is .
						
							 has more than one dimension.
						
							 This version of is equivalent to (, , (.GetLowerBound(0) + .Length - 1), .Length).
							 The elements are compared using .
						
						
							 The following example demonstrates the method.
							 using System;

public class ArrayLastIndexOfExample {

 public static void Main() {
 int[] intAry = { 0, 1, 2, 0, 1 };
 Console.Write("The values of the array are: ");
 foreach(int i in intAry)
 Console.Write("{0,5}", i);
 Console.WriteLine();
 int j = Array.LastIndexOf(intAry, 1);
 Console.WriteLine("The last occurrence of 1 is at index {0}", j);
 }
}

							 The output is
							
								 The values of the array are: 0 1 2 0 1
								 The last occurrence of 1 is at index 4
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches for the specified value and returns the index of the last occurrence within the range of elements in the array starting at the specified index and continuing backwards for, at most, the specified number of elements.
						
						 The array to search.
						 The value to locate.
						 The zero-based starting index of the search.
						 The number of consecutive elements to search.
						
							 The zero-based index of the last occurrence of within the range of elements in
 that ends at
 and contains the number of elements specified in
, if found; otherwise, -1.
						
						
							
								 is .
						
						
							
								 is outside the range of valid indices for .
							 -or-
							
								 is less than zero.
							 -or-
							
								 is greater than + 1.
						
						
							 The elements are compared using . The array is searched backward starting at and going for count elements. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches the specified array backwards, returning the index of the last occurrence of the specified array, starting at the specified index.
						
						 The array to search.
						 The value to locate.
						 The zero-based starting index of the search.
						
							 The zero-based index of the last occurrence of within the range of elements in
 that extends from
 to the first element, if found; otherwise, -1.
						
						
							
								 is .
						
						
							
								 is outside the range of valid indices for .
						
						
							 The elements are compared using . The array is searched backward starting at and ending at the first element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the specified array, returning the index of the last occurrence of the specified value.
						
						 The array to search.
						 The value to locate.
						
							 The zero-based index of the last occurrence of in
 , if found; otherwise, - 1.
						
						
							
								 is .
						
						
							 The elements are compared using . The array is searched backward starting at the last element and ending at the first element. Processing is stopped when the predicate returns .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the total number of elements in all the dimensions
 of the current instance.
						
						
							 A that contains the total number of elements in all the dimensions of
 the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets the total number of elements in all the dimensions of the current instance.
						
						
							 A value containing the length of the array.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the rank (number of dimensions) of the current instance.
						
						
							 A that contains the rank (number of dimensions) of the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Changes the size of an array to the specified new size.
						
						
							 The array to resize.
							 -or-
							
								 to create a new array with the specified size.
						
						 The size of the new array.
						
							
								 is less than zero.
						
						
							 If array is , this method creates a new array with the specified size.
							 If array is not , then if is equal to of the old array, this method does nothing. Otherwise, this method allocates a new array with the specified size, copies elements from the old array to the new one, and then assigns the new array reference to the array parameter. If is greater than of the old array, a new array is allocated and all the elements are copied from the old array to the new one. If is less than of the old array, a new array is allocated and elements are copied from the old array to the new one until the new one is filled; the rest of the elements in the old array are ignored.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Reverses the sequence of the elements in the specified
 range of the specified one-dimensional .
						
						 The one-dimensional to reverse.
						 A that contains the index at which reversing starts.
						 A that contains the number of elements to reverse.
						
							 is .
						
							 is multidimensional.
						
							
								 < .GetLowerBound(0).
							
								 < 0.
						
						
							 and do not specify a valid range in (i.e. + > .GetLowerBound(0) + .Length).
						
							 The following example demonstrates the method.
							 using System;
public class ArrayReverseExample {
 public static void Main() {
 string[] strAry = { "one", "two", "three" };
 Console.Write("The elements of the array are:");
 foreach(string str in strAry)
 Console.Write(" {0}", str);
 Array.Reverse(strAry);
 Console.WriteLine();
 Console.WriteLine("After reversing the array,");
 Console.Write("the elements of the array are:");
 foreach(string str in strAry)
 Console.Write(" {0}", str);
 }
}

							 The output is
							
								 The elements of the array are: one two three
								 After reversing the array,
								 the elements of the array are: three two one
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reverses the sequence of the elements in the specified one-dimensional
 .
						
						 The one-dimensional to reverse.
						
							 is .
						
							 has more than one dimension.
						
							 This version of is equivalent to (, .GetLowerBound(0),
 .Length).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the value of the element at the specified position
 in the current one-dimensional instance.
						
						 A that contains the new value for the specified element.
						 A that contains the index of the element whose value is to be set.
						
							 The current instance has more than one dimension.
						
						
							
								 is outside the range of valid indices for the current instance.
						
						
							
								 is not assignment-compatible with the element type of the current instance.
						
						
							
								 Use the and methods to determine whether
 is out of bounds.
								 For more
 information regarding valid conversions that will be performed by this method,
 see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sets the value of the element at the specified position
 in the current two-dimensional instance.
						
						 A that contains the new value for the specified element.
						 A that contains the first-dimension index of the element in the current instance to set.
						 A that contains the second-dimension index of the element in the current instance to set.
						
							 The current instance does not have exactly two dimensions.
						
						 At least one of or is outside the range of valid indices for the corresponding dimension of the current instance.
						
							
								 is not assignment-compatible with the element type of the current instance.
						
						
							
								 For more information regarding valid conversions that will be performed by
 this method, see .
								 Use the and methods to determine whether any of the indices
 are out of bounds.
							
						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Sets the value of the element at the
 specified position in the current three-dimensional instance.
						
						 A that contains the new value for the specified element.
						 A that contains the first-dimension index of the element in the current instance to set.
						 A that contains the second-dimension index of the element in the current instance to set.
						 A that contains the third-dimension index of the element in the current instance to set.
						
							 The current instance does not have exactly three dimensions.
						
						 At least one of , , or is outside the range of valid indices for the corresponding dimension of the current instance.
						
							
								 is not assignment-compatible with the element type of the current instance.
						
						
							
								 For more information regarding valid conversions that will be performed by
 this method, see .
								 Use the and
 methods to determine whether any of the indices
 are out of bounds.
							
						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the value of the element at the specified position in
 the current multidimensional instance.
						
						 A that contains the new value for the specified element.
						 A one-dimensional array of objects that contains the indices that specify the position of the element in the current instance to set.
						
							 is .
						
							 The number of dimensions in the current instance is not equal to the number of elements in .
						
						
							 At least one element in is outside the range of valid indices for the corresponding dimension of the current instance.
						
						
							
								 is not assignment-compatible with the element type of the current instance.
						
						
							 The number of elements in is required to be equal to the number of
 dimensions in the current instance. All elements in collectively specify the position of the
 desired element in the current instance.
							
								 For more information regarding valid conversions that will be performed by
 this method, see .
								 Use the and methods to determine whether any
 of the values in is out of bounds.
							
						
					
					 1
					 ExtendedArray
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
						
					
					
						
							 Sorts the specified range of the specified pair of one-dimensional objects (one
 containing a set of keys and the other containing corresponding items) based on
 the keys in the first specified using the specified
 implementation.
						
						 A one-dimensional that contains the keys to sort.
						
							 A one-dimensional that contains the items that correspond to each element of . Specify a null reference to sort only .
						
						 A that contains the index at which sorting starts.
						 A that contains the number of elements to sort.
						
							 The implementation to use when comparing elements. Specify a null reference to use the implementation of each element.
						
						
							
								 is .
						
						
							
								 has more than one dimension.
							 -or-
							
								 is not a null reference and has more than one dimension.
						
						
							
								 < .GetLowerBound(0).
							 -or-
							
								 < 0.
						
						
							
								 is not a null reference, and .GetLowerBound(0) does not equal .GetLowerBound(0).
							 -or-
							
								 and do not specify a valid range in .
							 -or-
							
								 is not a null reference, and and do not specify a valid range in .
						
						
							
								 is , and one or more elements in that are used in a comparison do not implement the interface.
						
						
							 Each key in is required to have
 a corresponding item in . The sort is performed according to the
 order of . After a key is repositioned during the sort,
 the corresponding item in is similarly repositioned. Only
 .Length elements of will be sorted. Therefore,
 is sorted according to the arrangement of
 the corresponding keys in . If the sort is not successfully
 completed, the results are undefined.
							 If is a null reference, each element
of is required to implement the interface to be capable of comparisons
with every other element in .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Sorts the elements in the specified section of the
 specified one-dimensional
 using the specified
 implementation.
						
						 A one-dimensional to sort.
						 A that contains the index at which sorting starts.
						 A that contains the number of elements to sort.
						
							 The implementation to use when comparing elements. Specify a null reference to use the implementation of each element.
						
						
							 is .
						
							 has more than one dimension.
						
							
								 < .GetLowerBound(0).
							 -or-
							
								 < 0.
						
						
							
								 and do not specify a valid range in .
						
						
							
								 is , and one or more elements in that are used in a comparison do not implement the interface.
						
						
							 This version of is equivalent to (, , , ,).
							 If is a null reference, each element
of is required to implement the interface to be capable of comparisons
with every other element in . If the sort is not successfully
completed, the results are unspecified.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sorts the specified pair of one-dimensional
 objects (one
 containing a set of keys and the other containing corresponding items) based on
 the keys in the first specified using the specified implementation.
						
						 A one-dimensional that contains the keys to sort.
						
							 A one-dimensional that contains the items that correspond to each element in . Specify a null reference to sort only .
						
						
							 The implementation to use when comparing elements. Specify a null reference to use the implementation of each element.
						
						
							
								 is .
						
						
							
								 has more than one dimension.
							 -or-
							
								 is not a null reference and has more than one dimension.
						
						
							
								 is not a null reference, and .GetLowerBound(0) does not equal .GetLowerBound(0).
							 -or-
							
								 is not a null reference, and .Length > .Length.
						
						
							
								 is a , and one or more elements in that are used in a comparison do not implement the interface.
						
						
							 This version of is equivalent to (, , .GetLowerBound(0), .Length,).
							 Each key in is required to have
a corresponding item in . The sort is performed according to the order of
 . After a key is repositioned during the sort, the
corresponding item in is similarly repositioned. Only
 .Length elements of are sorted. Therefore,

is sorted according to the arrangement of the corresponding keys in
 . If
the sort is not successfully completed, the results are unspecified.
							 If is a null reference, each element
of is required to implement the interface to be capable of comparisons
with every other element in .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sorts the elements in the specified one-dimensional using the
 specified implementation.
						
						 The one-dimensional to sort.
						
							 The implementation to use when comparing elements. Specify a null reference to use the implementation of each element.
						
						
							 is .
						
							 has more than one dimension.
						
							 is a null reference, and one or more elements in that are used in a comparison do not implement the interface.
						
							 This version of is equivalent to (, , .GetLowerBound(0), .Length,
).
							 If is a null reference, each element
of is required to implement the interface to be capable of comparisons
with every other element in . If the sort is not successfully
completed, the results are unspecified.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Sorts the specified ranges of the specified pair of
 one-dimensional
 objects (one containing a set of keys and the other containing corresponding
 items) based on the keys in the first specified .
						
						 A one-dimensional that contains the keys to sort.
						 A one-dimensional that contains the items that correspond to each element in . Specify a null reference to sort only .
						 A that contains the index at which sort begins.
						 A that contains the number of elements to sort.
						
							
								 is .
						
						
							
								 has more than one dimension.
							 -or-
							
								 is not a null reference and has more than one dimension.
						
						
							
								 < .GetLowerBound(0).
							 -or-
							
								 < 0.
						
						
							
								 is not a null reference, and .GetLowerBound(0) does not equal .GetLowerBound(0).
							 -or-
							
								 and do not specify a valid range in .
							 -or-
							
								 is not a null reference, and and do not specify a valid range in .
						
						
							 One or more elements in that are used in a comparison do not implement the interface.
						
						
							 This version of is equivalent to (, , , ,).
							 Each key in is
required to have
a corresponding item in . The sort is performed according to the
order of . After a key is repositioned during the sort,
the corresponding item in is similarly
repositioned. Therefore, is sorted according to the arrangement of
the corresponding keys in . If the sort is not successfully
completed, the results are undefined.
							 Each element of is
required to implement the interface to
be capable of comparisons with every other element in .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sorts the elements of the specified one-dimensional .
						
						 A one-dimensional to sort.
						
							 is .
						
							 has more than one dimension.
						 One or more elements in that are used in a comparison do not implement the interface.
						
							 This version of is equivalent to (, , .GetLowerBound(0),
 .Length,).
							 Each element of is
required to implement
the interface to be capable of comparisons with every other
element in array.
						
						
							 This example demonstrates the method.
							 using System;
public class ArraySortExample {
 public static void Main() {
 string[] strAry = { "All's", "well", "that", "ends", "well" };
 Console.Write("The original string array is: ");
 foreach (String str in strAry)
 Console.Write(str + " ");
 Console.WriteLine();
 Array.Sort(strAry);
 Console.Write("The sorted string array is: ");
 foreach (string str in strAry)
 Console.Write(str + " ");
 }
}

							 The output is
							
								 The original string array is: All's well that ends well
								 The sorted string array is: All's ends that well well
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sorts the specified pair of one-dimensional objects (one
 containing a set of keys and the other containing corresponding items) based on
 the keys in the first specified .
						
						 A one-dimensional that contains the keys to sort.
						
							 A one-dimensional that contains the items that correspond to each of element of . Specify a null reference to sort only .
						
						
							
								 is .
						
						
							
								 has more than one dimension.
							 -or-
							
								 is not a null reference and has more than one dimension.
						
						
							
								 is not a null reference, and .GetLowerBound(0) does not equal .GetLowerBound(0).
							 -or-
							
								 is not a null reference, and .Length > .Length.
						
						
							 One or more elements in that are used in a comparison do not implement the interface.
						
						
							 This version of is equivalent to (, , .GetLowerBound(0), .Length,).
							 Each key in is required to have
a corresponding item in . The sort is performed according to the
order of . After a key is repositioned during the sort,
the corresponding item in is similarly repositioned. Only
 .Length elements of
 are sorted. Therefore,

is sorted according to the arrangement of the corresponding keys in
 . If
the sort is not successfully completed, the results are unspecified.
							 Each element of is
required to implement
the interface to be capable of comparisons with every other
element in .
						
						
							 This example demonstrates the method.
							 using System;
public class ArraySortExample {
 public static void Main() {
 string[] strAry = { "All's", "well", "that", "ends", "well" };
 int[] intAry = { 3, 4, 0, 1, 2 };
 Console.Write("The original string array is: ");
 foreach (string str in strAry)
 Console.Write(str + " ");
 Console.WriteLine();
 Console.Write("The key array is: ");
 foreach (int i in intAry)
 Console.Write(i + " ");
 Console.WriteLine();
 Array.Sort(intAry, strAry);
 Console.Write("The sorted string array is: ");
 foreach (string str in strAry)
 Console.Write(str + " ");
 }
}

							 The output is
							
								 The original string array is: All's well that ends well
								 The key array is: 3 4 0 1 2
								 The sorted string array is: that ends well All's well
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sorts the elements in the specified range of the
 specified one-dimensional .
						
						 A one-dimensional to sort.
						 A that contains the index at which sorting starts.
						 A that contains the number of elements to sort.
						
							 is .
						
							 has more than one dimension.
						
							
								 < .GetLowerBound(0).
							 -or-
							
								 < 0.
						
						
							
								 and do not specify a valid range in .
						
						
							 One or more elements in that are used in a comparison do not implement the interface.
						
						
							 This version of is equivalent to (,
 , , ,
).
							 Each element of is
required to implement
the interface to be capable of comparisons with every other
element in . If the sort is not successfully completed, the
results are unspecified.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
						
					
					
						
							 Sorts a range of elements in a pair of arrays based on the keys in the first array using the specified .
						
						
							 The array that contains the keys to sort.
						
						
							 The array that contains the items that correspond to each of the keys in .
							 -or-
							
								 to sort only the array.
						
						 The starting index of the range to sort.
						 The number of elements in the range to sort.
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the or implementation of each element.
						
						
							
								 and do not specify a valid range in .
							 -or-
							
								 is not , and and do not specify a valid range in .
						
						
							
								 is .
						
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							
								 is , and one or more elements in that are used in a comparison do not implement the or interface.
						
						
							 If is non-null, each key in is required to have
 a corresponding item in . The sort is performed according to the
 order of . After a key is repositioned during the sort,
 the corresponding item in is similarly repositioned. Only
 .Length elements of will be sorted. Therefore,
 is sorted according to the arrangement of
 the corresponding keys in . If the sort is not successfully
 completed, the results are undefined.
							 If is a null reference, each element of is required to implement the or interface to be capable of comparisons
with every other element in .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sorts a pair of arrays based on the keys in the first array, using the specified .
						
						
							 The array that contains the keys to sort.
						
						
							 The array that contains the items that correspond to each of the keys in .
							 -or-
							
								 to sort only the array.
						
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the or implementation of each element.
						
						
							
								 is .
						
						
							
								 is not , and the length of does not match the length of .
						
						
							
								 is , and one or more elements in that are used in a comparison do not implement the or interface.
						
						
							 This version of is equivalent to
								
								
								
								
								
								
								
								
								
								
								 .
							 If is non-null, each key in is required to have
 a corresponding item in . The sort is performed according to the
 order of . After a key is repositioned during the sort,
 the corresponding item in is similarly repositioned. Only
 .Length elements of will be sorted. Therefore,
 is sorted according to the arrangement of
 the corresponding keys in . If the sort is not successfully
 completed, the results are unspecified.
							 If is a null reference, each element of is required to implement the or interface to be capable of comparisons
with every other element in .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Sorts a range of elements in a pair of arrays based on the keys in the first array, using the or implementation of each key.
						
						
							 The array that contains the keys to sort.
						
						
							 The array that contains the items that correspond to each of the keys in .
							 -or-
							
								 to sort only the array.
						
						 The starting index of the range to sort.
						 The number of elements in the range to sort.
						
							
								 and do not specify a valid range in .
							 -or-
							
								 is not , and and do not specify a valid range in .
						
						
							
								 is .
						
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							 One or more elements in that are used in a comparison are the null reference or do not implement the or interface.
						
						
							 If is non-null, each key in is required to have
 a corresponding item in . When a key is repositioned during the sorting,
 the corresponding item in is similarly repositioned. Therefore, is sorted according to the arrangement of
 the corresponding keys in .
							 If the sort is not successfully completed, the results are unspecified.
							 Each key within the specified range of elements in must implement the or interface to be capable of comparisons with every other key.
							 This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sorts a pair of arrays based on the keys in the first array using the implementation of each key.
						
						
							 The array that contains the keys to sort.
						
						
							 The array that contains the items that correspond to each of the keys in .
							 -or-
							
								 to sort only the array.
						
						
							
								 is not , and the length of does not equal the length of .
						
						
							
								 is .
						
						
							 One or more elements in that are used in a comparison are the null reference or do not implement the or interface.
						
						
							 If is non-null, each key in is required to have
 a corresponding item in . When a key is repositioned during the sorting,
 the corresponding item in is similarly repositioned. Therefore, is sorted according to the arrangement of
 the corresponding keys in .
							 Each key in must implement the or interface to be capable of comparisons with every other key.
							 If the sort is not successfully completed, the results are undefined.
							 This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Sorts the elements in a range of elements in an array using the specified comparer.
						
						
							 The array to sort.
						
						 The starting index of the range to sort.
						 The number of elements in the range to sort.
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the or implementation of each element.
						
						
							
								 is .
						
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							
								 and do not specify a valid range in .
						
						
							
								 is , and one or more elements in that are used in a comparison do not implement the or interface.
						
						
							 If is null, each element within the specified range of elements in must implement the interface to be capable of comparisons with every other element in .
							 If the sort is not successfully completed, the results are undefined.
							 This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sorts the elements in an array using the specified comparer.
						
						
							 The array to sort.
						
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the or implementation of each element.
						
						
							
								 is .
						
						
							
								 is , and one or more elements in that are used in a comparison do not implement the or interface.
						
						
							 If is null, each element of must implement the or interface to be capable of comparisons with every other element in .
							 If the sort is not successfully completed, the results are undefined.
							 This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sorts the elements in an array using the specified comparison.
						
						
							 The array to sort.
						
						
							 The to use when comparing elements.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							 If the sort is not successfully completed, the results are undefined.
							 This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sorts the elements in an entire array using the or implementation of each element of that array.
						
						
							 The array to sort.
						
						
							
								 is .
						
						
							 One or more elements in that are used in a comparison are the null reference or do not implement the or interface.
						
						
							 Each element of is required to implement the or interface to be capable of comparisons with every other element in .
							 If the sort is not successfully completed, the results are undefined.
							 This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sorts an array using the or implementation of each element of that array.
						
						
							 The array to sort.
						
						 The starting index of the range to sort.
						 The number of elements in the range to sort.
						
							
								 and do not specify a valid range in .
						
						
							
								 is .
						
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							 One or more elements in that are used in a comparison do not implement the or interface.
						
						
							 Each element within the specified range of elements in must implement the or interface to be capable of comparisons with every other element in .
							 If the sort is not successfully completed, the results are undefined.
							 This implementation performs an unstable sort; that is, if two elements are equal, their order might not be preserved. In contrast, a stable sort preserves the order of elements that are equal.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
						
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether every element in the array matches the predicate.
						
						 The array to check against the conditions.
						
							 The predicate against which the elements are checked..
						
						
							
								 , if every element in matches the specified predicate; otherwise, .
						
						
							 or is .
						
							 The predicate returns if the object passed to it matches the delegate. The elements of are individually passed to the predicate, and processing is stopped when the delegate returns for any element.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This class is safe for multiple readers and no concurrent writers.
			
				
					 Implements a variable-size that uses an array of objects to store its elements.
				
				
					
						 implements a variable-size that uses an array of
 objects to store the elements. A has a ,
 which is the allocated length of the internal array. The total number of
 elements contained by a list is its . As elements are added to a list, its capacity

 is automatically increased as required
 by reallocating the internal array.
				
				
					 The following example shows how to create, initialize, and display the values of a .
					 using System;
using System.Collections;

public class SamplesArrayList {

 public static void Main() {

 // Create and initialize a new ArrayList.
 ArrayList myAL = new ArrayList();
 myAL.Add("Hello");
 myAL.Add("World");
 myAL.Add("!");

 // Display the properties and values of the ArrayList.
 Console.WriteLine("myAL");
 Console.WriteLine("Count: {0}", myAL.Count);
 Console.WriteLine("Capacity: {0}", myAL.Capacity);
 Console.Write("Values:");
 PrintValues(myAL);
 }

public static void PrintValues(IEnumerable myList) {

 IEnumerator myEnumerator = myList.GetEnumerator();
 while (myEnumerator.MoveNext())
 Console.Write(" {0}", myEnumerator.Current);
 Console.WriteLine();
 }
}

					 The output is
					
						
 myAL
					
					
						 Count: 3
					
					
						 Capacity: 16
					
					
						 Values: Hello World !
					
				
			
			
				 System.Object
			
			
				
					 System.Collections.IList
					 0
				
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
				
					 System.ICloneable
					 0
				
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class that is
 empty and has the default initial
 .
						
						
							 The default initial of a
is 16.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class that is
 empty and has the specified initial
 .
						
						 A that specifies the number of elements that the new instance is initially capable of storing.
						
							 < 0.
						
							 If
 is zero,
 the
 of the current
 instance is set to 16 when the first
 element is added.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the
 elements from the specified . The initial and of the new
 list are
 both equal to the number of elements in the specified collection.
						
						 The whose elements are copied to the new list.
						
							 is .
						
							 The elements in the new instance are in the same order as
 contained in
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.ArrayList
					
					
						
					
					
						
							 Creates a that is a wrapper for the specified .
						
						 The to wrap.
						
							 The wrapper for .
						
						
							 is .
						
							 This method returns a that contains a reference to
 the
								 . Any modifications to the elements in either
 the returned list or are reflected in the other.
							
								 The class provides generic
 , and
methods. This wrapper provides a means
to use those methods on
									 without implementing the methods for
the list. Performing these operations through the wrapper might be less
efficient than operations applied directly to the list.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Adds the specified to the end of the current instance.
						
						 The to be added to the end of the current instance.
						
							 A that specifies the index of the current instance at which has
 been added.
						
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 As described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Adds the elements of the specified to the end of the current instance.
						
						 The whose elements are added to the end of the current instance.
						
							 is .
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 As described
 above.
							
							
								 If the of the current instance plus the size of the collection being added is greater
 than the of the current instance, the
 capacity of the current instance is either doubled or increased
 to the new ,
 whichever is greater. The internal array is reallocated to accommodate the new
 elements and the existing elements are copied to the new array before the new
 elements are added.
							
							
								 For the default implementation, if the current
 instance can accommodate the new elements
 without increasing the , this method is an
 O() operation, where is the number of elements to be added.
 If the capacity needs to be increased to accommodate the new elements, this
 method becomes an O(+) operation, where is the
 number of elements to be added and is
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the current instance for the specified using the
 specified
 implementation.
						
						 The for which to search.
						
							 The implementation to use when comparing elements. Specify to use the implementation of each element.
						
						
							 A that
 specifies the results of the search as follows:
							
								
									 Return Value
									 Description
								
								
									 The index of in the current
 instance.
									
										 was found.
								
								
									 The
 bitwise
 complement of the index of the first element
 that is greater than .
									
										 was not found, and at least one
 element in the current instance is greater than .
								
								
									 The bitwise complement of the of the current instance.
									
										 was not found, and
is greater than all elements in the current
instance.
								
							
							
								 If is not found and the current instance is already sorted, the
bitwise complement of the return value indicates the index in the current instance
where would be
found.
							
						
						
							
								 is , and is not assignment-compatible with at least one element in the current instance.
						
						
							
								 is , and both and at least one element involved in the search in the current instance do not implement the interface.
						
						
							 This method performs a binary search.
							
								 A null reference can be compared with
 any type; therefore, comparisons with a null reference do not generate
 exceptions. A null reference evaluates to less than any non-null object, or
 equal to another null reference, when the two are compared.
							
							
								 As described
 above.
							
							
								 This method uses to
 search for .
								
									 is compared to elements in a binary search of the current instance until an
 element with a value greater than or equal to is found. If
 is , the implementation of the element being compared
 -- or of if the element being compared does not implement the
 interface -- is used to make the comparison. If does not implement
 the interface and is compared to an element
 that does not implement the interface,
 is thrown. If the current instance is not already sorted, correct
 results are not guaranteed.
							
							
								 For the default implementation, this method is an
 O(log
) operation where is equal to the of the
 current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Searches the current instance for the specified .
						
						 The for which to search.
						
							 A that
 specifies the results of the search as follows:
							
								
									 Return Value
									 Description
								
								
									 The index of in the current
 instance.
									
										 was found.
								
								
									 The
 bitwise complement
 of the index of the first element
 that is greater than .
									
										 was not found, and at least one
 element in the current instance is greater than
 .
								
								
									 The bitwise complement of the of the current instance.
									
										 was not found, and
is greater than all elements in the current
instance.
								
							
							
								 If is not found and the current instance is already sorted, the
bitwise complement of the return value indicates the index in the current instance
where would be
found.
							
						
						
							
								 is not assignment-compatible with at least one element in the current instance.
						
						
							 Both and at least one element involved in the search of the current instance do not implement the interface.
						
						
							 This method performs a binary search.
							
								 A null reference can be compared with
 any type; therefore, comparisons with a null reference do not generate
 exceptions. A null reference evaluates to less than any non-null object, or
 equal to another null reference, when the two are compared.
							
							
								 As described
 above.
							
							
								 This method uses to
 search for .
								
									 is compared to elements in a binary search of the current instance until an
 element with a value greater than or equal to is found. The
 implementation of the element being compared
 -- or of if the element being compared does not implement the
 interface -- is used to make the comparison. If does not implement
 the interface and is compared to an element
 that does not implement the interface, is thrown. If the
 current instance is not already sorted, correct results are not guaranteed.
							
							
								 For the default implementation, this method is an
 O(log
) operation where is equal to the of the
 current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches the specified range in the current instance
 for the specified using the specified
 implementation.
						
						
							 A that specifies the index at which searching starts. This value is greater than or equal to zero, and less than the of the current instance.
						
						 A that specifies the number of elements to search, beginning with . This value is greater than or equal to zero, and less than or equal to the of the current instance minus .
						 The for which to search.
						 The implementation to use when comparing elements. Specify to use the implementation of each element.
						
							 A that
 specifies the results of the search as follows:
							
								
									 Return Value
									 Description
								
								
									 The index of in the current
 instance.
									
										 was found.
								
								
									 The
 bitwise complement
 of the index of the first element that is
 greater than .
									
										 was not found, and at
 least one element in the range of to +
 - 1 in the current instance is greater than
 .
								
								
									 The bitwise complement of (+
)
									
										 was not found, and
 is greater than all elements in the range of
 to + - 1 in the current
instance.
								
							
							
								 If is not found and the current instance is already sorted, the
bitwise complement of the return value indicates the index in the current instance
where would be found in the range of to
 + - 1.
							
						
						
							
								 of the current instance - < .
							 -or-
							
								 is , and is not assignment-compatible with at least one element in the current instance.
						
						
							
								 < 0.
							 -or-
							 < 0.
						
							
								 is , and both and at least one element involved in the search of the current instance do not implement the interface.
						
						
							 This method performs a binary search.
							
								 A null reference can be compared with
 any type; therefore, comparisons with a null reference do not generate
 exceptions. A null reference evaluates to less than any non-null object, or
 equal to another null reference, when the two are compared.
							
							
								 As described
 above.
							
							
								 This method uses to
 search for
 .
								
									 is compared to elements in a binary search of the range of to
 + - 1 in the current instance until an element
 with a value greater than or equal to is found or the end of the
 range is reached. If is , the
 implementation of the element being compared -- or of if the element being compared does
 not implement the interface -- is used to make the comparison. If
 does not implement the interface and is compared to an element
 that does not implement the interface,
 is thrown. If the current instance is not already sorted,
 correct results are not guaranteed.
							
							
								 For the default implementation, this method is an
 O(log
) operation.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the number of elements that the current instance is
 capable of storing.
						
						
							 A that specifies the number of elements that the current instance
 is capable of storing.
						
						
							 is set to a value that is less than the of the current instance.
						
							
								 The of a is the size of
 the internal array used to hold the elements of that list. When it is set, the
 internal array is reallocated to the specified value.
							
							
								 As
 described above.
							
							
								 If an attempt is made to set to a value less or equal to 0, it
 is set
 to the default capacity of 16.
								 If the of the current instance exceeds the of the current instance while
adding elements to the current instance, the capacity of the list is doubled by
automatically reallocating the internal array before copying the old elements
and adding the new elements.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Sets the elements in the current instance to zero,
 , or , depending upon the element type.
						
						
							 The current instance is read-only or has a fixed size.
						
						
							
								
 This method is implemented to support the interface.

							
							
								
 Reference-type elements are set to . Value-type elements
 are set to zero, except for elements, which are set to .

							
							
								

 This method uses to reset the values of the current instance. is set to zero.
 is not changed.

							
							
								

 To reset the of the current instance, call or set the property directly.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Returns a that is a copy of the current instance.
						
						
							 A that is a copy of the current
 instance.
						
						
							
								 This method is implemented to support the
interface.
							
							
								 As described
 above.
							
							 This method uses
 to clone the current
 instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified is contained in the current
 instance.
						
						 The to locate in the current instance.
						
							
								 if is contained in the current instance;
 otherwise, .
						
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 This method determines equality
 by calling the implementation of the
 type of .
							
							
								 For the default implementation, this method is an O()
 operation where is equal to the of the
 current instance. If the current instance is sorted, it is more efficient
 to call method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Copies the specified range of elements from the current instance to the specified , starting at the specified index of the array.
						
						 A that specifies the index in the current instance at which copying begins. This value is greater than or equal to 0, and less than the of the current instance.
						 The one-dimensional that is the destination of the elements copied from the current instance.
						 A that specifies the first index of to which the elements of the current instance are copied. This value is greater than or equal to zero, and less than .Length minus .
						 A that specifies the number of elements to copy. This value is greater than or equal to 0, and less than both the of the current instance minus and .Length minus .
						
							 is .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
						
						
							
								 has more than one dimension.
							 -or-
							
								 >= of the current instance .
							 -or-
							
								 >= of the current instance - .
							 -or-
							
								 >= .Length - .
						
						 At least one element of the current instance is not assignment-compatible with the type of .
						
							
								 As described
 above.
							
							
								 This method uses to copy the
 current instance to .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Copies the elements from the current instance to the specified .
						
						 The one-dimensional that is the destination of the elements copied from the current instance. The of this array is greater than or equal to the of the current instance.
						
							 is .
						
							
								 has more than one dimension.
							 -or-
							
								 of the current instance > .Length.
						
						 At least one element in the current instance is not assignment-compatible with the type of .
						
							
								 As described
 above.
							
							
								 This method uses to copy the
 current instance to .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the elements from the current instance to the
 specified
 , starting at the specified index of the array.
						
						 The one-dimensional that is the destination of the elements copied from the current instance. The of this array is greater than or equal to the sum of and the of the current instance.
						 A that specifies the first index of to which the elements of the current instance are copied. This value is greater than or equal to zero, and less than .Length.
						
							 is .
						
							 < 0.
						
							
								 has more than one dimension.
							 -or-
							
								 >= .Length.
							 -or-
							
								 + of the current instance > .Length.
						
						 At least one element in the current instance is not assignment-compatible with the type of .
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 This method uses to copy the
 current instance to .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of elements contained in the
 current instance.
						
						
							 A that specifies the number of elements contained in the current
 instance.
						
						
							 This property is read-only.
							
								 is the number of elements that are
 contained by the . The count of a list is always less than or
 equal to of that list.
							
								 This property is implemented to support
 the interface.
							
							
								 As described
 above.
							
							 If the exceeds the of the current instance while
adding elements to the current instance, the capacity of the list is doubled by
automatically reallocating the internal array before copying the old elements
and adding the new elements.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.ArrayList
					
					
						
					
					
						
							 Returns a
wrapper with a fixed size.
						
						 The to wrap.
						
							 A
wrapper with a fixed size.
						
						
							 is .
						
							 This method returns a fixed-size that contains a reference to . Operations that attempt to add to or delete from
 this new list will throw . Any modifications of
 the elements in either the returned list or will be reflected in
 the other.
							
								 The property of the new list is
 . Every other property value of the new list
 references the same property value of .
								 Adding to or removing from will not throw an exception and is reflected in the returned list.
								 By performing operations on the new list, this wrapper can be used to prevent
 additions to and deletions from the
									 . The elements
 of the list can still be modified by operations
 on the returned list.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						
							 Returns a for the current
 instance.
						
						
							 A for the current instance.
						
						
							 If the the current instance is modified while an enumeration is in progress, a call to or throws .
							
								 For detailed information regarding the use of an enumerator, see
 .
								 This property is implemented to support the interface.
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
						
						
					
					
						
							 Returns a for the specified section of the
 current instance.
						
						 A that specifies the index of the current instance before which the enumerator is initially placed. This value is greater than or equal to 0, and less than the of the current instance.
						 A that specifies the number of elements, beginning with , in the current instance over which the enumerator can iterate. This value is greater than or equal to 0, and less than or equal to the of the current instance minus .
						
							 A that can iterate over the range
 of to + - 1 in the current
 instance.
						
						
							
								 < 0.
							 -or-
							
								 < 0.
						
						
							 + > of the current instance.
						
							 The enumerator
 only enumerates over the range of the current instance from to
 + - 1. If the current instance is modified while an enumeration is in progress, a call to or will throw .
							
								 For detailed information regarding the
 use of an enumerator, see .
							
							
								 As described above.
							
							
								 The enumerator is initially placed just before the
 element at position in the current instance. A call to
 returns the enumerator to this position.

								 If the elements of the current instance have not been modified while the
 enumeration was in progress, a call to
 either returns and advances the enumerator one element in
 the current instance, or returns indicating the enumerator is at the end of the specified range.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.ArrayList
					
					
						
						
					
					
						
							 Returns a that represents the specified range of the
 current instance.
						
						 A that specifies the zero-based index in the current instance at which the range starts. This value is between 0 and the of the current instance minus , inclusive.
						 A that specifies the number of elements in the range. This value is between 0 and the of the current instance minus , inclusive.
						
							 A that
 represents the range in the current instance from to
 + - 1.
						
						
							
								 < 0.
							 -or-
							
								 < 0.
						
						
							
								 of the current instance - < .
						
						
							
								 As described
 above.
							
							
								 This method does not create copies of the
 elements: the new instance is a
 view window into the source list. Therefore, all subsequent changes to the
 source list must be done through this
 view window . If changes are made directly to
 the source list, the view window list is invalidated
 and any operations on it throw
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Searches the current instance, returning the index of
 the first occurrence of the specified .

						
						 The to locate in the current instance.
						
							 A that specifies the index of the first occurrence of in the current instance, if found;
 otherwise, -1.
							
								 This provides the caller with a standard
 code for a failed search.
							
						
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 This method uses

 to search the current instance for .
							
							
								 For the default implementation, this method performs a linear search. On average,
 this is an O(/2) operation, where is . The longest
 search is an O() operation.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches the current instance, returning the index of
 the first occurrence of the specified
 in the specified range.
						
						 The to locate in current instance.
						 A that specifies the index at which to begin searching. This value is greater than or equal to zero, and less than the of the current instance.
						 A that specifies the number of elements to search. This value is between 0 and the of the current instance minus , inclusive.
						
							 A that specifies the index of the first occurrence of in
 the current instance, within the range to
 + - 1, if found; otherwise, -1.
							
								 This provides the caller with a standard
 code for a failed search.
							
						
						
							
								 >= of the current instance.
							 -or-
							
								 < 0.
							 -or-
							
								 > of the current instance - .
						
						
							
								 As described
 above.
							
							
								 This method uses

 to search the current instance for .
							
							
								 For the default implementation, this method performs a linear search. On average, this is an O(/2) operation, where is .
The longest search is an O() operation.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the current instance, returning the index of
 the first occurrence of the specified
 in the specified range.
						
						 The to locate in current instance.
						 A that specifies the index at which searching begins. This value is between 0 and the of the current instance minus 1, inclusive.
						
							 A that specifies the index of the first occurrence of in the current
 instance, if found within the range
 to the end of the current instance; otherwise, -1.
							
								 This provides the caller with a standard
 code for a failed search.
							
						
						
							
								 < 0.
							 -or-
							
								 >= of the current instance.
						
						
							
								 As described
 above.
							
							
								 This method uses

 to search the current instance for .
							
							
								 For the default implementation, this method performs a linear search. On average,
 this is an O(/2) operation, where is . The longest
 search is an O() operation.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Inserts the specified into the current
 instance
 at the specified index.
						
						 A that specifies the index in the current instance at which is inserted. This value is between 0 and the of the current instance, inclusive.
						
							 The to insert.
						
						
							
								 < 0.
							 -or-
							
								 > of the current instance.
						
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 If the of the current instance is equal to the of the current instance, the
 capacity of the list is doubled by automatically reallocating the internal array
 before the new element is inserted. If
 is equal to the of the
 current instance, is added to the end of the
 current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Inserts the elements of the specified at the specified
 index of the current instance.
						
						 A that specifies the index in the current instance at which the new elements are inserted. This value is between 0 and the of the current instance, inclusive.
						 The whose elements are inserted into the current instance.
						
							 is .
						
							
								 < 0.
							
								 > of the current instance.
						
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 As described
 above.
							
							
								 If the of the current instance plus the
 size of
									 is greater
 than the of
 the current instance, the capacity of the current instance is either
 doubled or increased to the new count, whichever yields a greater capacity. The internal array
 is reallocated to accommodate the new elements. If is equal to the of the current
 instance, the elements of are added to the end of the current
 instance.
								 The order of the elements in the
									 is preserved in the current
instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a indicating whether the of the current instance cannot be changed.
						
						
							
								 if the
 of the current instance cannot be changed;
 otherwise, .
						
						
							 This property is read-only.
							
								 Elements cannot be added or removed from a with a fixed size, while
 existing elements can be modified.
								 An attempt to add to or remove from a fixed size ArrayList will throw . However, the size of a fixed size ArrayList will change to reflect the additions or removals from the ArrayList that was used to create the fixed size ArrayList.
								 This property is implemented to support the interface.
							
							
								 As described
 above.
							
							
								 The default value for this
 property is .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance is read-only.
						
						
							
								 if the
 current instance is read-only; otherwise,
 .
						
						
							 This property is read-only.
							
								 The elements of a that is read-only cannot be modified, nor
 can elements be added to or removed from that list.
								 An attempt to add to, remove from, or modify a read-only ArrayList will throw . However, changes to the ArrayList that was used to create the read-only ArrayList are reflected in the read-only ArrayList.
								 This property is implemented to support the interface.
							
							
								 As described
 above.
							
							
								 The default value of this
 property is .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether access to the current
 instance is synchronized (thread-safe).
						
						
							
								 if access to
 the current instance is synchronized
 (thread-safe); otherwise, .
						
						
							 This property is read-only.
							 To guarantee the thread safety of the , all operations must be
 done through the wrapper returned by the method.
							
								 This property is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 The default value of this
 property is .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
						
					
					
						
							 Gets or sets the element at the specified index of the current instance.
						
						 A that specifies the zero-based index of the element in the current instance to get or set. This value is greater than or equal to 0, and less than the of the current instance.
						
							 The element at the specified index of the current instance.
						
						
							
								 < 0.
							 -or-
							
								 >= of the current instance.
						
						
							
								 This property provides the ability to access a specific element in the
 collection by using the following syntax: myCollection[index] .
								 This property is implemented to support the interface.
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Searches the current instance, returning the index of
 the last occurrence of the specified .

						
						 The to locate in the current instance.
						
							 A that specifies the index of the last occurrence of in the current
 instance, if found; otherwise, -1.
							
								 This provides the caller with a standard
 code for a failed search.
							
						
						
							
								 As described
 above.
							
							
								
									 The ArrayList is searched backward starting at the last element and ending at the first element.
									 This method uses
 to search the current instance for
 .
								
							
							
								 For the default implementation, this method performs a linear search. On average, this is an
 O(/2) operation, where is of the current instance. The longest search is
 an O()
 operation.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the current instance, returning the index of
 the last occurrence of the specified in
 the specified range of the current instance.
						
						 The to locate in the current instance.
						 A that specifies the index at which searching starts. This value is between 0 and the of the current instance - 1, inclusive.
						
							 A that specifies the index of the last occurrence of in
 the range of
 through the first element of the current
 instance, if found; otherwise, -1.
							
								 This provides the caller with a standard
 code for a failed search.
							
						
						
							
								 < 0.
							 -or-
							
								 >= of the current instance.
						
						
							
								 As described
 above.
							
							
								
									 The ArrayList is searched backward starting at .
									 This method uses
 to search the current instance for
 .
								
							
							
								 For the default implementation, this method performs a linear search. On average, this is an
 O(/2)
 operation. The longest search is
 an O() operation.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches the current instance, returning the index of
 the last occurrence of the specified in the specified range.
						
						 The to locate in the current instance.
						 A that specifies the index at which searching starts.
						 A that specifies the number of elements to search, beginning with .
						
							 A that specifies the index of the last occurrence of value in the current
 instance, within the range through
 - + 1, if found; otherwise, -1.
							
								 This provides the caller with a standard
 code for a failed search.
							
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 >= of the current instance.
							 -or-
							
								 >= of the current instance.
							 -or-
							
								 > + 1.
						
						
							
								 As described
 above.
							
							
								
									 The ArrayList is searched backward starting at and ending at - + 1.
									 This method uses
 to search the current instance for
 .
								
							
							
								 For the default implementation, this method
 performs a linear search. On average, this is an O(/2)
 operation. The longest search is an O() operation.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.ArrayList
					
					
						
					
					
						
							 Returns a read-only
wrapper.
						
						 The to wrap.
						
							 A read-only
wrapper around .
						
						
							 is .
						
							 This method returns a read-only that contains a reference to . Operations that attempt add to, delete from, or
 modify the elements of this new list will throw . Any modifications of the
 elements will be reflected in the new list.
							
								 The and properties of the new list are . Every other property value of the new list
 references the same property value of .
								 By performing operations on the new list, this wrapper can be used to prevent
 additions to, deletions from, and modifications of the
									 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the first occurrence of the
 specified from
 the current instance.
						
						 The to remove from the current instance.
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 This method determines equality by calling .
								 If is found in the current
 instance, is removed from the current instance, the rest of the
 elements are shifted down to fill the position vacated by , the of the current instance is
 decreased by one, and the position that was previously the last element in the
 current instance is set to . If is not found in the
 current instance, the current instance remains
 unchanged.
							
							
								 For the default implementation, this method performs a linear search.
 On average, this is an O(/2) operation, where is of the current instance.
 The longest search is an O() operation.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the element at the specified index from the
 current instance.
						
						 A that specifies the zero-based index of the element to remove from the current instance. This value is between 0 and the of the current instance, inclusive.
						
							
								 < 0.
							 -or-
							
								 >= of the current instance.
						
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 The element at position is removed from
 the current instance, the rest of the elements are shifted down to fill the
 position vacated by that element, the of the current instance is
 decreased by one, and the position that was previously the last element in the current instance is set to .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Removes the specified range of elements from the current instance.
						
						 A that specifies the zero-based index of the first element of the range of elements in the current instance to remove. This value is between 0 and the of the current instance minus , inclusive.
						 A that specifies the number of elements to remove. This value is between 0 and the of the current instance minus , inclusive.
						
							
								 < 0.
							 -or-
							
								 < 0.
						
						
							 of the current instance - < .
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 As described
 above.
							
							
								 The elements in the range of to +
 - 1 are removed from the current instance, the rest of the
 elements are shifted down to fill the position vacated by those elements, the
 of the current instance is
 decreased by , and the positions that were
 previously the last elements in the current instance are set to

.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.ArrayList
					
					
						
						
					
					
						
							 Returns a new whose elements are copies of the specified
 .
						
						
							 The used to initialize the new instance.
						
						 A that specifies the number of times is copied into the new instance.
						
							 A new
with number of elements, all of which are copies of
 .
						
						
							 < 0.
						
							 If is less than the default initial capacity, 16,
 the of the new instance is set to the default initial
 capacity. Otherwise, the capacity is set to
 . The of the new instance is set
 to .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Reverses the sequence of the elements in the current
 instance.
						
						 The current instance is read-only.
						
							
								 As described
 above.
							
							
								 This method uses to modify the ordering of
 the elements in the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Reverses the sequence of the elements in the specified range of the
 current instance.
						
						 A that specifies the zero-based index in the current instance at which reversing starts. This value is between 0 and the of the current instance minus , inclusive.
						 A that specifies the number of elements to reverse. This value is between 0 and the of the current instance minus , inclusive.
						
							
								 < 0.
							 -or-
							
								 < 0.
						
						
							
								 of the current instance - < .
						
						 The current instance is read-only.
						
							
								 As described
 above.
							
							
								 This method uses to modify
 the ordering of the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the elements of the specified to a
 range in the current instance.
						
						 A that specifies the zero-based index in the current instance at which to start copying the elements of . This value is between 0 and the of the current instance minus .Count, inclusive.
						 The whose elements to copy to the current instance.
						
							
								 < 0.
							 -or-
							
								 of the current instance - < .Count.
						
						
							 is .
						 The current instance is read-only.
						
							
								 As described
 above.
							
							
								 This method uses
 the implementation of
									 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sorts the elements in the specified range of the current instance
 using the specified implementation.
						
						 A that specifies the zero-based index at which sorting starts. This value is between 0 and the of the current instance minus , inclusive.
						 A that specifies the number of elements to sort. This value is between 0 and the of the current instance minus , inclusive.
						
							 The implementation to use when comparing elements. Specify to use the implementation of each element in the current instance.
						
						
							
								 < 0.
							 -or-
							
								 < 0.
						
						
							
								 of the current instance - < .
						
						
							 is , and one or more elements in the current instance do not implement the interface.
						 The current instance is read-only.
						
							
								 As described
 above.
							
							
								 If is , the implementation of
 each element in the current instance is used to make the sorting comparisons. If
 the sort is not successfully completed, the results are unspecified.
							
							
								 For the default implementation, this method uses , which
uses the Quicksort algorithm. This is an O(log
)
operation, where is the number of elements to sort.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sorts the elements of current instance using the specified .
						
						
							 The implementation to use when comparing elements. Specify to use the implementation of each element in the current instance.
						
						
							 is , and one or more elements in the current instance do not implement the interface.
						 The current instance is read-only.
						
							
								 As described
 above.
							
							
								 If is , the implementation of
 each element in the current instance is used to make the sorting comparisons. If
 the sort is not successfully completed, the results are unspecified.
							
							
								 For the default implementation, this method uses , which
uses the Quicksort algorithm. This is an O(log
)
operation, where is the number of elements to sort.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Sorts the elements of the current instance.
						
						 The current instance is read-only.
						
							 The implementation of each element in the current instance is used to make the sorting comparisons.
							
								 As described
 above.
							
							
								 If the sort is not successfully completed, the results are unspecified.
							
							
								 For the default implementation, this method uses , which uses the Quicksort algorithm. This is
an O(log
) operation, where is the number of elements to sort.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.ArrayList
					
					
						
					
					
						
							 Returns a wrapper around the specified
that is synchronized (thread-safe).
						
						 The to synchronize.
						
							 A wrapper that is
 synchronized (thread-safe).
						
						
							 is .
						
							 This method returns a thread-safe that contains a reference to . Any modifications of the elements in either
 the returned list or will be reflected in the other.
							
								 The property of the new list is
 . Every other property value of the new list
 references the same property value of .
								 By performing operations on the new list, this wrapper can be used to
 guarantee thread-safe access to the
									 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets an object that can be used to synchronize access to
 the current instance.
						
						
							 A that can be used to synchronize access to the
 current instance.
						
						
							 This property is read-only.
							 Program code must perform synchronized operations
 on the of
 the current instance, not directly on the current instance. This ensures proper
 operation of collections that are derived from other objects. Specifically, it
 maintains proper synchronization with other threads that might be simultaneously
 modifying the current instance.
							
								 As described
 above.
							
							
								 This method
 returns a reference to the current
 instance.
							
							
								 This property is implemented to support the
interface.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Object[]
					
					
					
						
							 Copies the elements of the current instance
 to a new array.
						
						
							 A array containing
 copies of the elements of the current instance.
						
						
							
								 As described
 above.
							
							
								 The elements are copied using .
							
							
								 For the default implementation, this method is an O() operation, where
 is
the of the
current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Array
					
					
						
					
					
						
							 Copies the elements of the current instance to a new
 array
 of the specified .
						
						 The of the to create and copy the elements of the current instance.
						
							 An array of
								 containing copies of the elements of the current
instance.
						
						
							 is .
						 At least one element of the current instance cannot be cast to the
							 .
						
							
								 As described
 above.
							
							
								 The elements are copied using .
							
							
								 For the default implementation, this method is
 an O() operation, where is
 the of the
 current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Sets the of the current instance to
 the of
 the current instance.
						
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 This method can be used to minimize the memory overhead of the current
 instance if no new elements will be added to it.
								 To completely clear all elements from the current instance, call the method before calling .
							
							
								 As described
 above.
							
							
								 If the of the current instance is
zero, the of the
current instance is set to the default initial
capacity of 16.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an ASCII character implementation of .
				
				
					
						 encodes characters as single 7-bit ASCII characters.
 This encoding supports Unicode code points between U+0000 and U+007F, inclusive.
					
						 The limited range of code points supported by makes ASCII
inadequate for many internationalized applications. and provide encodings that are more
suitable for internationalized applications.
					
				
			
			
				 System.Text.Encoding
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Determines the exact number of bytes required to encode
 the specified range of the specified array of characters as ASCII-encoded
 characters.

						
						 A array containing the characters to encode as ASCII-encoded characters.
						 A that specifies the first index of to encode.
						 A that specifies the number of elements in to encode.
						
							 A containing
 the number of bytes required to encode the range in from to + -1 as ASCII-encoded
 characters.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+ - 1) > .Length).
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Determines the exact number of bytes required to encode
 the specified string as ASCII-encoded characters.
						
						 A to encode as ASCII-encoded characters.
						
							 A containing the number of bytes required to encode as
 ASCII-encoded characters.

						
						
							 is .
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Encodes the specified range of the specified string into the
 specified range of the specified array of bytes as ASCII-encoded characters.
						
						 A to encode as ASCII-encoded characters.
						 A that specifies the first index of from which to encode.
						 A that specifies the number of elements in to encode.
						 A array to encode.
						 A that specifies the first index of to encode into.
						
							 A whose
 value equals the number of bytes encoded into as ASCII-encoded
 characters.
						
						
							 (.Length -) < .
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							 (.Length -) < .
							 -or-
							
								 < 0.
							 -or-
							
								 >= .Length.
						
						
							 Every object in
 that is encoded into and that does not have an ASCII
 equivalent (i.e. has a code point greater than U+007f) will be encoded as a
 question mark ('?').
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Encodes the specified range of the specified array of characters
 into the specified range of the specified array of bytes as ASCII-encoded
 characters.
						
						 A array containing the characters to encode as ASCII-encoded characters.
						 A that specifies the first index of to encode.
						 A that specifies the number of elements in to encode.
						 A array to encode.
						 A that specifies the first index of to encode into.
						
							 A whose value equals
 the number of bytes encoded into as
 ASCII-encoded characters.
						
						
							 (.Length -) < .
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							 (.Length -) < .
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length.
						
						
							 Every object in
 that is encoded into and that does not have
 an ASCII equivalent (i.e. has a code point greater than U+007f) will be encoded
 as a question mark ('?').
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Determines the exact number of characters that will be
 produced by decoding the specified range of the specified array of bytes as
 ASCII-encoded characters.
						
						 A array to decode as ASCII-encoded characters.
						 A that specifies the first index in to decode.
						 A that specifies the number elements in to decode.
						
							 A whose value
 equals the number of characters a call to will produce if presented with the
 specified range of .
							
								 This value does not
 take into account the state in which the current instance was left following the
 last call to . This
 contrasts with , which
 maintains state information across calls.
							
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							 (.Length -) < .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Decodes the specified range of the specified array of bytes into the
 specified range of the specified array of characters as ASCII-encoded
 characters.
						
						 A array to decode as ASCII-encoded characters.
						 A that specifies the first index of from which to decode.
						 A that specifies the number elements in to decode.
						 A array of characters to decode into.
						 A that specifies the first index of to store the decoded bytes.
						
							 A whose
 value equals the number of characters decoded into as
 ASCII-encoded characters.
						
						
							 (.Length -) < .
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							 (.Length -) < .
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length.
						
						
							
								 This method overrides .
								
									 can be used to determine the exact number of
 characters that will be produced for a specified range of bytes. Alternatively,
 the
 method can be used to determine the
 maximum number of characters that will be produced for a specified number of
 bytes, regardless of the actual byte values.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the maximum number of bytes required to encode the specified number of characters as ASCII-encoded characters, regardless
 of the actual character values.
						
						 A that specifies the number of characters to encode as ASCII-encoded characters.
						
							 A
containing the maximum number of bytes required to encode
characters as ASCII-encoded characters.
						
						
							 < 0.
						
							
								 This method overrides .
								 Use this method to determine a minimum
 buffer size for byte arrays passed to the or method for the current instance.
 Using this minimum buffer size can help ensure that buffer
 overflow exceptions do not occur.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Gets the maximum number of characters produced by decoding a specified number of bytes
 as ASCII-encoded characters, regardless of the actual byte values.

						
						 A that specifies the number of bytes to decode as ASCII-encoded characters.
						
							 A
containing the maximum number of characters that would be produced by
decoding bytes as ASCII-encoded characters.
						
						
							 < 0.
						
							
								 This method overrides .
								 Use this method to determine the minimum
 buffer size for character arrays passed to the or the
 methods. Using this minimum buffer size can help ensure that buffer
 overflow exceptions do not occur.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Decodes the specified range of the specified array of bytes as a string of
 ASCII-encoded characters.
						
						 A array to decode as ASCII-encoded characters.
						
							 A that specifies the first index of from which to decode.
						
						
							 A that specifies the number of elements in to decode.
						
						
							 A object containing
 the decoded representation of the range in from
 to + -1 as
 ASCII-encoded characters.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							 (.Length -) < .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Decodes the specified array of bytes as a string of ASCII-encoded characters.
						
						 A array to decode as ASCII-encoded characters.
						
							 A containing the decoded representation of as ASCII-encoded
 characters.
						
						
							 is .
						
							
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 References one or more methods called when an asynchronous operation completes.
				
				 A object containing information about the asynchronous operation that has completed.
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Serves as the base class for custom attributes.
				
				
					 All attributes, whether built-in or user-defined, derive
 directly or indirectly from . Attributes inherit certain default behaviors: the
 attribute might be associated with any target element (see); might
 or might not be inherited by a derived element; and multiple instances might or might
 not be allowed on the same target element. These behaviors are specified using
 .
					
						
 An attribute is an annotation that can be placed on an element of source code
 and used to store application-specific information at compile time. This
 information is stored in the metadata and can be accessed either during
 application execution, through a process known as reflection, or when another
 tool reads the metadata. Attributes might change the behavior of the application
 during execution, provide transaction information about an object, or convey
 organizational information to a designer.

					
					 The CLI predefines some attribute types and
 uses them to control runtime behavior. Some languages predefine attribute types
 to represent language features not directly represented in the Common Language
 Specification (CLS). User-defined attribute classes, inheriting from , can also be
 created. The definition of such a class includes the name of the attribute, its
 default behavior, and the information to be stored.
				
				
					 The following
 example creates and assigns multiple custom attributes to a class. The attribute contains the
 name of the programmer and the version number of the class.
					 using System;

[AttributeUsage(AttributeTargets.Class|
 AttributeTargets.Struct,
 AllowMultiple=true)]
public class Author : Attribute
{
 string authorName;
 public double verSion;

 public Author(string name)
 {
 authorName = name;
 verSion = 1.0;
 }

 public string getName()
 {
 return authorName;
 }
}

[Author("Some Author")]
class FirstClass
{
 /*...*/
}

class SecondClass // no Author attribute
{
 /*...*/
}

[Author("Some Author"),
 Author("Some Other Author", verSion=1.1)]
class ThirdClass
{
 /*...*/
}

class AuthorInfo
{
 public static void Main()
 {
 PrintAuthorInfo(typeof(FirstClass));
 PrintAuthorInfo(typeof(SecondClass));
 PrintAuthorInfo(typeof(ThirdClass));
 }
 public static void PrintAuthorInfo(Type type)
 {
 Console.WriteLine("Author information for {0}",
 type);
 Attribute[] attributeArray =
 Attribute.GetCustomAttributes(type);
 foreach(Attribute attrib in attributeArray)
 {
 if (attrib is Author)
 {
 Author author = (Author)attrib;
 Console.WriteLine(" {0}, version {1:f}",
 author.getName(),
 author.verSion);
 }
 }
 Console.WriteLine();
 }
}

					 The output is
					
						 Author information for FirstClass
						 Some Author, version 1.00
						 Author information for SecondClass
						 Author information for ThirdClass
						 Some Author, version 1.00
						 Some Other Author, version 1.10
					
				
			
			
				 System.Object
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.All, AllowMultiple=false, Inherited=true)
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same type and
 value.
						
						 The to compare to the current instance.
						
							 A where indicates
represents the same type and value as the current instance. If is a null reference or is not an instance of
 , returns .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Attribute
					
					
						
						
					
					
						
							 Returns an instance of a specified custom attribute if a single instance of
 the attribute is in the metadata for the specified assembly.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							 The single instance of of type that is applied to Returns if the
 specified attribute was not found.

						
						
							 or is .
						
							 is not a type derived from .
						 More than one instance of the specified custom attribute was found.
						
							
								 If multiple instances of can be
 applied to , use .
							
						
					
					 1
					 RuntimeInfrastructure
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute
					
					
						
						
					
					
						
							 Returns an instance of a specified custom attribute if a single instance of
 the attribute is in the metadata for the specified module.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							 The single instance of of type that is applied to Returns if the
 specified attribute was not found.

						
						
							 or is .
						
							 is not a type derived from .
						 More than one instance of the specified custom attribute was found.
						
							
								 If multiple instances of can be
 applied to , use .
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute
					
					
						
						
					
					
						
							 Returns an instance of a specified custom attribute if a single instance of
 the attribute is in the metadata for the specified parameter.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							 The single instance of of type that is applied to Returns if the
 specified attribute was not found.

						
						
							 or is .
						
							 is not a type derived from .
						 More than one instance of the specified custom attribute was found.
						
							
								 If multiple instances of can be
 applied to , use .
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute
					
					
						
						
					
					
						
							 Returns an instance of a specified custom attribute if a single instance of
 the attribute is in the metadata for the specified member.
						
						 An instance of a type derived from that describes a type member.
						 The of the custom attribute for which to check.
						
							 The single instance of of type that is applied to Returns if the
 specified attribute was not found.

						
						
							 or is .
						
							 is not a type derived from .
						
							 does not represent a constructor, method, property, event, type, or field member.
						 More than one instance of the specified custom attribute was found.
						
							
								 If multiple instances of can be
 applied to , use .
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute[]
					
					
						
					
					
						
							 Returns an array of all
 custom attributes in the metadata for the specified assembly.
						
						 A instance.
						
							 A array containing
 all custom attributes that are applied to
 The
 array includes any inherited custom attributes. Returns
 an empty array if no custom attributes were found in the metadata for

.
						
						
							 is .
					
					 1
					 RuntimeInfrastructure
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute[]
					
					
						
					
					
						
							 Returns an array of all
 custom attributes in the metadata for the specified module.
						
						 A instance.
						
							 A array containing
 all custom attributes that are applied to
 The array includes any inherited custom attributes. Returns
 an empty array if no custom attributes were found in the metadata for

.
						
						
							 is .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute[]
					
					
						
					
					
						
							 Returns an array of all
 custom attributes in the metadata for the specified parameter.
						
						 A instance.
						
							 A array containing
 all custom attributes that are applied to The array includes any inherited custom
 attributes. Returns
 an empty array if no custom attributes were found in the metadata for

.
						
						
							 is .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute[]
					
					
						
						
					
					
						
							 Returns an array of the instances of a specified custom attribute if the
 attribute is in the metadata for the specified assembly.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							 An array of type containing the instances that are applied to The array includes any inherited instances
 of . Returns an empty array if the
 specified attribute was not found.

						
						
							 or is .
						
							 is not a type derived from .
					
					 1
					 RuntimeInfrastructure
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute[]
					
					
						
						
					
					
						
							 Returns an array of the instances of a specified custom attribute if the
 attribute is in the metadata for the specified module.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							 An array of type containing the instances that are applied to The array includes any inherited instances
 of . Returns an empty array if the
 specified attribute was not found.

						
						
							 or is .
						
							 is not a type derived from .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute[]
					
					
						
						
					
					
						
							 Returns an array of the instances of a specified custom attribute if the
 attribute is in the metadata for the specified parameter.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							 An array of type containing the instances that are applied to The array includes any inherited instances
 of . Returns an empty array if the
 specified attribute was not found.

						
						
							 or is .
						
							 is not a type derived from .
						
							 If represents a
 method parameter, the array returned by
 includes any instances
 for the parameter in the base methods.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute[]
					
					
						
					
					
						
							 Returns an array of all
 custom attributes in the metadata for the specified member.
						
						 An instance of a type derived from that describes a type member.
						
							 A array containing
 all custom attributes that are applied to The array includes custom attributes that are inherited by
 , if any. Returns
 an empty array if no custom attributes were found in the metadata for

.
						
						
							 is .
						
							 does not represent a constructor, method, property, event, type, or field member.
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Attribute[]
					
					
						
						
					
					
						
							 Returns an array of the instances of a specified custom attribute if the
 attribute is in the metadata for the specified member.
						
						 An instance of a type derived from that describes a type member.
						 The of the custom attribute for which to check.
						
							 An array of type containing the instances that are applied to The array includes instances
 of that are inherited by
 , if any. Returns an empty array if the
 specified attribute was not found.

						
						
							 or is .
						
							 is not a type derived from .
						
							 does not represent a constructor, method, property, event, type, or field member.
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							
 The algorithm used to generate the hash code is
 unspecified.

							
								
 This method overrides .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether a specified custom
 attribute is present in the metadata for the specified member.
						
						 An instance of a type derived from that describes a type member.
						 The of the custom attribute for which to check.
						
							
								 if a custom attribute of type
 is applied to either directly or through inheritance; otherwise,
 .
						
						
							 or is .
						
							 is not derived from .
						
							 is not a constructor, method, property, event, type, or field.
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether a specified custom attribute is present in the
 metadata for the specified parameter.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							
								 if a custom attribute of type
 is applied to either directly or through
 inheritance; otherwise, .
						
						
							 or is .
						
							 is not derived from .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether a specified custom attribute is present in
 the metadata for the specified module.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							
								 if a custom attribute of type
 is applied to
; otherwise, .
						
						
							 or is .
						
							 is not derived from .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether a specified custom attribute is present in the metadata for the
 specified assembly.
						
						 A instance.
						 The of the custom attribute for which to check.
						
							
								 if a custom attribute of type
 is applied to ; otherwise,
 .
						
						
							 or is .
						
							 is not derived from .
					
					 1
					 RuntimeInfrastructure
					 Reflection
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Enumerates the application elements to which it is valid to attach
 an attribute.
				
				
					
						 is used as a parameter for to enable an attribute to be
 associated with one or more kinds of application elements.
				
				
					 The following example demonstrates how can be
 used with so that a user-defined attribute class, ,
 can be applied to structures and classes. The attribute is then
 applied to a class.
 There is no output.
					 using System;

[AttributeUsageAttribute(AttributeTargets.Class|
 AttributeTargets.Struct)]
public class Author : Attribute {

 public Author(string Name) {

 this.name = Name; }
 string name;
 }

[Author("John Q Public")]
class JohnsClass {

 public static void Main() {
 }
}

				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 All
					
						
							 Attribute can be applied to any element.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Assembly
					
						
							 Attribute can be applied to an assembly.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Class
					
						
							 Attribute can be applied to a class.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Constructor
					
						
							 Attribute can be applied to a constructor.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Delegate
					
						
							 Attribute can be applied to a delegate.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Enum
					
						
							 Attribute can be applied to an enumeration.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Event
					
						
							 Attribute can be applied to an event.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Field
					
						
							 Attribute can be applied to a field.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Interface
					
						
							 Attribute can be applied to a generic Parameter.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Interface
					
						
							 Attribute can be applied to an interface.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Method
					
						
							 Attribute can be applied to a method.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Module
					
						
							 Attribute can be applied to a module.

						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Parameter
					
						
							 Attribute can be applied to a parameter.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Property
					
						
							 Attribute can be applied to a property.

						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 ReturnValue
					
						
							 Attribute can be applied to a return value.
						
					
					 0
				
				
					
					
					 Field
					
						 System.AttributeTargets
					
					
					 Struct
					
						
							 Attribute can be applied to a value type.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Specifies the behavior of
 a custom attribute when that attribute is defined.
				
				
					
						 Custom attributes
 can be applied to various application ("target") elements, such as classes,
 parameters, and structures (see for the full list). The
 class contains three properties that govern custom attribute behavior: the kinds
 of application elements the attribute can be associated with; whether the
 attribute can or cannot be inherited by derived elements; and whether multiple
 instances of the attribute can or cannot be allowed on the
 same target element.
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Class, AllowMultiple=false, Inherited=true)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 The set of application elements to which the attribute will be applied. When indicating multiple application elements, is a bitwise OR combination of enumeration values.
						
							 The new instance will be constructed with the specified
 value of and the properties and set to their default values (and

 respectively).
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether more than one instance of a specified attribute is permitted to be applied
 to any given program element.
						
						
							 A where indicates more than one instance of the
 attribute is permitted to be applied; otherwise, . The
 default is .
						
						
							
								 It is expected that compilers will
 validate this property; this property is not validated during execution.
							
						
						
							
								
							
							 The following example demonstrates the use of . If
 for an attribute is set to , more
than one of those attributes can be assigned to any given program element.
							 using System;

[AttributeUsageAttribute(AttributeTargets.Class |
 AttributeTargets.Struct,
 AllowMultiple = true)]
public class Author : Attribute {

 public Author(string name) { this.name = name; }
 public string name;
}

[Author("John Doe")]
[Author("John Q Public")]
class JohnsClass {

 public static void Main() {}
}

							
								
							
							 The following example demonstrates an error that is expected to be
 caught by compilers: the sample attempts to assign multiple instances of
 an attribute for which
 was set to .
							 using System;

[AttributeUsageAttribute(AttributeTargets.Class |
 AttributeTargets.Struct,
 AllowMultiple = false)]
public class Author : Attribute {

 public Author(string name) { this.name = name; }
 public string name;
}

[Author("John Doe")]
[Author("John Q Public")]
class JohnsClass {

 public static void Main() {}
}

							 This should throw an error similar to:
							 error CS0579: Duplicate 'Author' attribute
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether the attribute can be inherited by
 subclasses of the class to which the attribute is applied.
						
						
							
								 indicates the attribute is inherited by subclasses;
 otherwise, . The default is .
						
						
							 Information on an inherited attribute will be included in the metadata for
 the class on which it is applied, but will not be included in the metadata for
 classes that derive from it. A metadata consumer (such as reflection) is
 required therefore to traverse up the inheritance chain of a class if that
 consumer is interested in data that is marked inherited, but applied to an
 ancestor class. There is nothing for the compiler to validate at compile
 time.
						
					
					 0
				
				
					
					
					 Property
					
						 System.AttributeTargets
					
					
					
						
							 Gets the set of values sent to the constructor that indicate to which targets the custom attribute can be applied.
						
						
							 One or more of the
values sent to the constructor, combined by a bitwise OR operation.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents a Boolean value.
				
				
					 The value type represents the logical values
 and . The size of this type is 8 bits, the representation of is all-bits-zero, and the representation of is unspecified except that it shall have at least one bit set.
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IComparable<System.Boolean>
					 0
				
				
					 System.IEquatable<System.Boolean>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 .
						
						 A to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Condition
								
								
									 A negative number
									 Current instance is and
 is .
								
								
									 Zero
									 Current instance ==
.
								
								
									 Any
 positive number
									 Current instance is and
 is .
								
							
						
						
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 .
						
						 A to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Condition
								
								
									 A negative number
									 Current instance is and
 is .
								
								
									 Zero
									 Current instance ==
.
								
								
									 Any
 positive number
									 Current instance is and
 is , or is a null
 reference.
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same value.
						
						 The to compare to the current instance.
						
							
								 if has the same value as
 the current instance; otherwise, .
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same type and
 value.
						
						 The to compare to the current instance.
						
							
								 if is a with the same value as
 the current instance. If is a null reference or is not an instance
 of ,
 returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 False
					
						
							 Contains a representation of the logical value
 .
						
						
							 This field is read-only.
							 The value of this is "False".
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A value containing a hash code for the current
 instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is equivalent to either or , can contain leading and/or trailing whitespace, and is parsed in a case-insensitive manner.
						
							
								 if is equivalent to
 ; otherwise, .
						
						
							 is a null reference.
						
							 is not equivalent to either or .
						
							 The following example demonstrates the method.
							 using System;
public class BoolParse {
 public static void Main() {
 Boolean b = Boolean.Parse(" true ");
 Console.WriteLine("\" true \" parses to \"{0}\".", b);
 }
}

							 The output is
							
								 " true "
 parses to "True".
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts the value of this instance to its equivalent
representation.
						
						 (Reserved) A object.
						
							
								 if the
 value of this instance is , or
 if the value of this instance is
 .
						
						
							 The parameter is reserved. It does not participate in the
 execution of this method.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current
 instance.
						
						
							
								 if the value of the current instance is
 ; otherwise, .
						
						
							
								 This method
 overrides
 .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 True
					
						
							 Contains a representation of the logical value
 .
						
						
							 This field is read-only.
							 The value of this is "True".
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents an 8-bit unsigned integer.
				
				
					 The data type represents integer values ranging from 0
 to positive 255 (hexadecimal 0xFF).
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.Byte>
					 0
				
				
					 System.IEquatable<System.Byte>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified unsigned byte.
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 object.
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > , or
 is a null reference.
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same value as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same type and
 value.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same type and value as the current instance. If is a null reference
 or is not an instance of , returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Byte
					
					
					 255
					
						
							 Contains the maximum value for the type.
						
						
							 The value of this constant is 255 (hexadecimal 0XFF).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Byte
					
					
					 0
					
						
							 Contains the minimum value for the type.
						
						
							 The value of this constant is 0.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,
).
							 The string is parsed using the formatting information in a initialized for the current system
culture. For more information, see
 .
							
						
						
							 The following example demonstrates the method.
							 using System;
public class ByteParseClass {
public static void Main() {
 string str = " 100 ";
 Console.WriteLine("String: \"{0}\" <Byte> {1}",str,Byte.Parse(str));
}
}

							 The output is
							
								 String: "
 100 " <Byte> 100
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The value obtained from
.
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (,
 ,).
							 The string is parsed using the formatting
information in a initialized for the current system culture. For more information, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from
.
						
						
							 is a null reference.
						
							 represents a number greater than or less than .
						
							 is not in the correct style.
						
							 This version of is equivalent to (,
,).
							 The string is parsed using the
culture-specific formatting information from the
instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from
.
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 The string is parsed using the culture-specific
 formatting information from the instance supplied by .
 If is
 or a cannot be obtained from
 , the formatting information for the current system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the
 current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 information in the instance supplied by .
						
						
							 This version of is equivalent to ("G",
).
							 If is
 or a cannot
be obtained from , the formatting information for the current system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of
 the current instance.
						
						
							 A containing a character that specifies the format of the returned string.
						
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the information in
 the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot
 be obtained from
 , the formatting information for the current system culture is
 used.
							 If is a
 reference, the general format specifier "G" is
used.
							 The following table lists the characters that are valid for the type:
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "D", "d"
									 Decimal format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "X", "x"
									 Hexadecimal format.
								
							
							
								 For a detailed description of formatting, see the
interface.
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current
 instance.
						
						
							 A representation of the current
 instance formatted using the general format specifier ("G"). The string takes into account the current
 system culture.
						
						
							 This version of is equivalent to (,).
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system
 culture.
						
						
							 is invalid.
						
							 This version of is equivalent to
(,

).
							 If
is
, the general format specifier "G" is used.
						
						
							 The following example demonstrates the method.
							 using System;
public class ByteToStringExample {
 public static void Main() {
 Byte b = 8;
 Console.WriteLine(b);
 String[] formats = {"c", "d", "e", "f", "g", "n", "p", "x" };
 foreach(String str in formats)
 Console.WriteLine("{0}: {1}", str, b.ToString(str));
 }
}

							 The output is
							
								 8
								 c: $8.00
								 d: 8
								 e: 8.000000e+000
								 f: 8.00
								 g: 8
								 n: 8.00
								 p: 800.00 %
								 x: 8
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents a Unicode character.

				
				
					 The value
 type represents Unicode characters, with
 code points ranging from 0 to 65,535.

					
						 The of a Unicode
character is that character's 2-byte, encoded value.
					
					
						 The enumeration describes the categories that
a Unicode character can be mapped to. For information on mapping specific Unicode
characters to Unicode categories, see the UnicodeData.txt file in the
Unicode Character Database at http://www.unicode.org/Public/UNIDATA/UnicodeCharacterDatabase.html. The
UnicodeData.txt file format is described at http://www.unicode.org/Public/3.1-Update/UnicodeData-3.1.0.html.
					
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IComparable<System.Char>
					 0
				
				
					 System.IEquatable<System.Char>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							 The comparison performed by this method is based on the
 code points of the current instance and , not necessarily their
 lexicographical characteristics.
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									
										 Current instance > , or
 is a null reference.
									
								
							
						
						
							 is not a and is not a null reference.
						
							 The comparison performed by this method is based on the
 code points of the current instance and , not necessarily their
 lexicographical characteristics.
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same value as the current instance; otherwise, .
						
						
							 The comparison performed by this method is based on the
 code points of the current instance and , not necessarily their
 lexicographical characteristics.
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same type and
 value.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same type and value as the current instance. If is a null reference
 or is not an instance of , returns .
						
						
							 The comparison performed by this method is based on the
 code points of the current instance and , not necessarily their
 lexicographical characteristics.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A value containing a hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the numeric value associated with the Unicode
 character at the specified position in the specified .
						
						 A .
						 A that specifies the position of a character in .
						
							 A representing the numeric value associated with the
 at position
 in if and only if that
has an associated numeric value; otherwise, -1.0.
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
						
							 A character has an associated numeric value if and only
 if it is a member of one of the following categories in : , , or .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the numeric value associated with the specified
 Unicode character.
						
						 A Unicode character.
						
							 A representing the numeric value associated with
 if and only if has an associated numeric value;
 otherwise, -1.0.
						
						
							 A character has an associated numeric value if and only
 if it is a member of one of the following categories in : , , or .
						
						
							 The following example demonstrates the
method.
							 using System;
public class GetNumericValueExample {
public static void Main() {
 Char[] cAry = {'8', 'V', Convert.ToChar(0X00BC)};
 //Unicode U+00BC is the code point for the character
 //representation of 1/4
 foreach(Char c in cAry) {
 Console.Write("Numeric value of Unicode " +
 "character {0} ", c);
 Console.WriteLine(" is {0}",
 Char.GetNumericValue(c));
 }
}
}

							 The output is
							
								 Numeric value of Unicode character 8 is 8
								 Numeric value of Unicode character V is -1
								 Numeric value of Unicode character is 0.25
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Globalization.UnicodeCategory
					
					
						
						
					
					
						
							 Determines the of the character at the specified
 position in the specified .
						
						 A .
						 A that specifies the position of a character in .
						
							 The of the at position index in .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
						
							
								 For more
 information regarding Unicode categories, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Globalization.UnicodeCategory
					
					
						
					
					
						
							 Determines the of the specified Unicode character.
						
						 A Unicode character.
						
							 The of .
						
						
							
								 For more
 information regarding Unicode categories, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a control character.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a member of the following category in : ; otherwise,
 .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character
 is a control character.
						
						 A Unicode character.
						
							 true if is a member of the following category
 in : ; otherwise,
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a decimal digit.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a member of the following category in : ; otherwise,
 .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
						
							
								
									 determines
 if a is a
 radix-10 digit. This contrasts with , which determines if a is of any numeric Unicode category.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether a Unicode character is a
 decimal digit.
						
						 A Unicode character.
						
							
								 if is a member of the
 following category in : ; otherwise, .
						
						
							
								
									 determines
 if a Char is a radix-10 digit. This contrasts with , which
 determines if a is of any numeric Unicode category.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is
 a letter.
						
						 A Unicode character.
						
							
								 if is a member of one
 of the following categories in : , , , , or ; otherwise,
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a letter.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a member of one of the following categories in
 : , , , , or ; otherwise, .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is either a letter or a decimal digit.
						
						 A Unicode character.
						
							
								 if is a member of one
 of the following categories in : , , , , , or ; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is either a letter or a decimal digit.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a member of one of the following categories in
 : , , , , , or ; otherwise,
 .
							
								
							
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is a lowercase letter.
						
						 A Unicode character.
						
							
								 if is a member of the
 following category in : ; otherwise, .

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a lowercase letter.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a member of the following category
 in : ;
 otherwise, .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified
 Unicode character is a number.
						
						 A Unicode character.
						
							
								 if is a member of one
 of the following categories in : , , or ; otherwise,
 .
						
						
							
								
									 determines
 if a is of
 any numeric Unicode category. This contrasts with , which
 determines if a is a radix-10 digit.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a number.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the
 character at position in is a member of one of the
 following categories in : , , or ; otherwise,
 .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
						
							
								
									 determines
 if a is of
 any numeric Unicode category. This contrasts with , which
 determines if a
 is a radix-10 digit.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is a punctuation mark.
						
						 A Unicode character.
						
							
								 if is a member of one
 of the following categories in : , , , , , , or ;
 otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a punctuation mark.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a
 member of one of the following categories in : , , , , , , or ;
 otherwise, .

						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a separator character.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a member of one of the following categories in
 : , , or ;
 otherwise, .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is a
 separator character.
						
						 A Unicode character.
						
							
								 if is a member of one
 of the following categories in : , , or ;
 otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a surrogate character.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a member of the following category in : ; otherwise,
 .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is a
 surrogate character.
						
						 A Unicode character.
						
							
								 if is a member of the
 following category in : ; otherwise,
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is a
 symbol character.
						
						 A Unicode character.
						
							
								 if is a member of one
 of the following categories in : , , , or ; otherwise, .

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a symbol character.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in is a member of one of the following categories in
 : , , , or ; otherwise, .

						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is an uppercase letter.
						
						 A .
						 A that specifies a character position in s.
						
							
								 if the character at position
 in is a member of the following category in : ; otherwise,
 .
						
						
							 is a null reference.
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is an uppercase letter.
						
						 A Unicode character.
						
							
								 if is a member of the
 following category in : ;
 otherwise, .

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the character at the specified
 position in the specified is a whitespace character.
						
						 A .
						 A that specifies a character position in .
						
							
								 if the character at position
 in either has a code point of 0x0009, 0x000a, 0x000b,
 0x000c, 0x000d, 0x0085, 0x2028, or 0x2029; or is a member of the following
 category in :
 ;
 otherwise, .
						
						
							
								 is a null reference.
						
						 The value of is less than zero, or greater than or equal to the length of .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified Unicode character is a whitespace character.
						
						 A Unicode character.
						
							
								 if either has a code
 point of 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x0085, 0x2028, or 0x2029; or
 is a member of the following category in :
 ; otherwise,
 .

						
					
					 0
				
				
					
					
					 Field
					
						 System.Char
					
					
					
						
							 Contains the maximum code point for the type.
						
						
							 The numeric value of this constant is 65,535.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Char
					
					
					
						
							 Contains the minimum code point for the type.
						
						
							 The numeric value of this constant is 0.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing a single Unicode character.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 does not contain exactly one character.
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a
to its lowercase equivalent.
						
						 A Unicode character.
						
							 The lowercase equivalent of , or the value of
 if and only if is already lowercase or does not have a
 lowercase equivalent.
						
						
							 The following example demonstrates the method.
							 using System;
public class CharToLower {
 public static void Main() {
 Char[] cAry = {'A', 'c', '*'};
 foreach (Char c in cAry) {
 Console.Write("Char '{0}' ToLower is ", c);
 Console.WriteLine("{0}", Char.ToLower(c));
 }
 }
}

							 The output is
							
								 Char 'A' ToLower is a
								 Char 'c' ToLower is c
								 Char '*' ToLower is *
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current
 instance.
						
						
							 A
representation of the current instance.
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts the value of this instance to its equivalent
 representation using the specified culture-specific
 format information.
						
						 (Reserved) An interface implementation that supplies culture-specific formatting information.
						
							 The representation of the value of this instance as
 specified by .
						
						
							
								 is ignored; it does not participate in this operation.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a
to its uppercase equivalent.
						
						 A Unicode character.
						
							 The uppercase equivalent of , or the value of if and
 only if is already uppercase or does not have an uppercase
 equivalent.
						
						
							 The following example demonstrates the method.
							 using System;
public class CharToUpper {
 public static void Main() {
 Char[] cAry = {'A', 'c', '*'};
 foreach (Char c in cAry) {
 Console.Write("Char '{0}' ToUpper is {1}",
 c, Char.ToUpper(c));
 Console.WriteLine();
 }
 }
}

							 The output is
							
								 Char 'A' ToUpper is A
								 Char 'c' ToUpper is C
								 Char '*' ToUpper is *
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Supports iteration over and provides read-only access to
 the individual characters in a .
				
				
					
						
							 is used to support the statement of the C# programming

 language.
						 Several independent instances of across
 one or more threads can have access to a single instance of .
						 For more information regarding the use of an enumerator,
 see .
					
				
			
			
				 System.Object
			
			
				
					 System.Collections.IEnumerator
					 0
				
				
					 System.ICloneable
					 0
				
			
			
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Creates a copy of the current instance.
						
						
							 A with the same state as the current instance.
						
						
							 The return value is a containing a copy of the state of the
 current instance when this method is invoked. This must be cast explicitly to a to be
 made usable as one.
							
								 This method is useful for saving the state of a object
 while iterating through the characters of a .
								 This method is implemented to support the
interface.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Char
					
					
					
						
							 Gets the element in the over which the current instance is
 positioned.
						
						
							 The in the over which the current instance is
 positioned.
						
						
							 The current instance is positioned before the first element or after the last element of the .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Advances the current instance to the next element of the
 if and
 only if the current instance is not already placed beyond the final element of
 the .
						
						
							
								 if the enumerator was successfully
 advanced to the next element; otherwise, .
						
						
							 If the enumerator is positioned after the final element
 of the
 when this method is called, the current instance remains in its current position
 and is returned.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Repositions the current instance to its initial
 position, immediately before the first character in the .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates whether the target of the current attribute complies with the
 Common Language Specification (CLS).
				
				
					 If no is associated with a given assembly, that assembly is
 assumed not to be CLS-compliant.
					 A type is assumed to be CLS-compliant if and only if its
 enclosing type (for nested types) or assembly (for top-level types) is
 CLS-compliant. Other members (methods, fields, properties and events) are
 CLS-compliant if and only if the type in which they are
 defined is CLS-compliant.
					
						 The CLS is a subset of CLI features that is supported by a
 broad set of compliant languages and tools. CLS-compliant languages and tools
 are guaranteed to interoperate with other CLS-compliant languages and tools.
						 Because the CLS defines the rules for language interoperability, its rules
 apply only to "externally visible" items. The CLS assumes that language
 interoperability is important only across the assembly boundary - that is,
 within a single assembly there are no restrictions as to the programming
 techniques that are used. Thus, the CLS rules apply only to items that are
 visible outside of their defining assembly and have public, family, or
 family-or-assembly accessibility.
						 For more information on CLS compliance,
 see Partition I of the CLI Specification.
						 This attribute can be applied to any valid attribute
 target. For a complete list of valid targets, see .
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.All, AllowMultiple=false, Inherited=true)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 if the target of the new instance complies with the CLS; otherwise, .
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a indicating whether the target of the
 current instance is CLS-compliant.
						
						
							
								 if the target
 of
 the current instance complies with
 the CLS; otherwise, .
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Serves as
 the base class for all code access permissions.
				
				
					
						 Classes derived from are required to override the following methods of the
 class:
						
							
								
									 - Creates a object of the
 same type and containing the same values as the current instance.
							
							
								
									 - Reconstructs the
 state of a object
 using an XML encoding.
							
							
								
									 - Returns a object that is
 the intersection of the current instance and the specified object.
							
							
								
									 - Determines if the
 current instance is a subset of the specified object.
							
							
								
									 - Creates an XML
 encoding of the current instance.
							
							
								
									 - Returns a object that is the
 union of the current instance and the specified
 object.
							
						
						 In addition, classes derived from are required to implement a constructor that takes a as
its only parameter.
					
					 The XML encoding of a instance is defined below in
 EBNF format. The following conventions are used:
					
						
							
								 All non-literals in the grammar below are shown in normal type.
							
						
						
							
								 All literals are in bold font.
							
						
					
					 The following meta-language symbols are used:
					
						
							

 '*' represents a meta-language symbol suffixing an
 expression that can appear zero or more times.
						
						
							

 '?' represents a meta-language symbol suffixing an
 expression that can appear zero or one time.
						
						
							

 '+' represents a meta-language symbol suffixing an
 expression that can appear one or more times.
						
						
							

 '(',')' is used to group literals, non-literals, or a
 mixture of literals and non-literals.
						
						
							

 '|' denotes an exclusive disjunction between two
 expressions.
						
						
							

 '::= ' denotes a production rule where a left hand
 non-literal is replaced by a right hand expression containing literals,
 non-literals, or both.
						
					
					 ClassName is the name of the class implementing the permission, such as
 .
					 AssemblyName is the name of the assembly that contains the class implementing
 the permission, such as mscorlib.
					 Version is the three part version number indicating the version of the
 assembly implementing the permission, such as 1.0.1.
					 StrongNamePublicKeyToken is the strong name public key token constituting the
 strong name of the assembly that implements the permission.
					 PermissionAttributes is any attribute and attribute value on the
element used by the permission to represent a particular permission state, for
example, unrestricted="true".
					 PermissionXML is any valid XML used by the permission to represent permission
 state.
					 The XML encoding of a instance is as
follows:
					
						 CodeAccessPermissionXML::=
						
							
						
						 ClassName
						
						 AssemblyName
						
						
							 Version
						
						
							
						
						
							 StrongNamePublicKeyToken
						
						
							
						
						 (PermissionAttributes)*
						 >
						 (PermissionXML)?
						
							
						
					
				
			
			
				 System.Object
			
			
				
					 System.Security.IPermission
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Asserts that calling code can access the resource identified by the current instance through the code that
 calls this method, even if callers have not been granted permission to
 access the resource.
						
						 The calling code does not have .
						
							 Calling stops the
 permission
 check on callers that are after the code performing the assert. An assertion is effective only if the code that
 calls passes the security check
 for the permission that it is asserting.
							
								 Even if the callers that are after the code performing
 the assert do not have the requisite permissions, they can still access
 resources through the code that calls this method. Because the assertion only
 applies to the callers of the code performing the assert, a security check for
 the asserted permission can still fail if the code calling

 has not itself been granted that permission.
								 A call to is effective until the code containing
 the call returns to its caller.
								 Caution:
 Because calling
 removes the
 requirement that all code be granted permission to access the specified resource, it can
 open up security vulnerabilities if used incorrectly or inappropriately.

							
						
						 Requires permission to call . See .
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a containing the same
 values as the current instance.
						
						
							 A new instance that is value
 equal to the current instance.
						
						
							
								 This method is implemented to support
 the interface.
							
							
								 The object returned by this
 method is required be the same type as the current instance and to represent the same access
 to resources as the current instance.
							
							
								 Override this
 method to create a copy an instance in a type derived from .

							
							
								 Use this method to obtain a copy of the
 current instance that has values identical to those of the current
 instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Forces a if all callers do not have the permission
 specified by the current instance.
						
						
							 A caller does not have the permission specified by the current instance.
							 -or-
							 A caller has called for the resource protected by the current instance.
						
						
							 The permissions of the code that calls this method are
 not examined; the check begins from the immediate caller of that code and
 continues until all callers have been checked, one of the callers
 invokes
 , or a caller has been found that is not granted the
 demanded permission, in which case a is thrown.
							
								
									 is typically used by shared
 libraries to ensure that callers have permission to access a resource.
 For example, a method in a shared library calls for the necessary before
 performing a file operation requested by the caller.
								 This method is implemented to support
 the interface.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Denies access
 to the resources specified by the current instance through the code that calls
 this method.
						
						
							 This method prevents callers from accessing the protected resource through
 the code that calls this method, even if those callers have been granted
 permission to access it.
							 The call to
is effective until the calling
code returns.
							
								
									 is ignored for a
 permission not granted because a demand for that permission will not
 succeed.
								
									 can
limit the liability of the programmer or prevent accidental security vulnerabilities because it
prevents the method that calls from being used to access
the resource protected by the denied permission.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reconstructs the state of a object using the specified XML encoding.
						
						 A instance containing the XML encoding to use to reconstruct the state of a object.
						
							
								 does not contain the XML encoding for a instance of the same type as the current instance.
							 -or-
							 The version number of is not valid.
						
						
							
								 The values of the
 current instance are set to the values of the permission object encoded in

 .
							
							
								 Override this
 method to reconstruct subclasses of .
							
							
								 This method is called
 by the system.
							
							
								 For the XML encoding for this class, see the
class page.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a object that is the
 intersection of the current instance and the specified
 object.
						
						 A instance to intersect with the current instance.
						
							 A new instance
 that represents the intersection of the current instance and
 . If the intersection is empty or
 is , returns .
						
						
							 is not and is not a object.
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described above.
							
							
								 Override this
 method to provide a mechanism for creating an intersection of two objects that are of the same type and are
 derived from
 .
							
							
								 The intersection
 of two permissions is a permission that secures the resources and operations
 secured by both permissions. Specifically, it represents the minimum permission
 such that any demand that passes both permissions will also pass their
 intersection.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of the specified
 object.
						
						
							 A instance that is to be tested for the subset relationship.
						
						
							
								 if the current instance is a
 subset of ; otherwise, . If the current
 instance is unrestricted, and is not, returns
 . If is unrestricted, returns
 .
							
						
						
							 is not and is not of type .
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described above.
							
							
								 Override this
 method to implement the test for the subset relationship in types derived from

.
							
							
								 The current
 instance is a subset of if the current instance specifies a set
 of accesses to resources that is wholly contained by . For example, a permission that
 represents read access to a file is a subset of a permission that represents
 read and write access to the file.
								 If this method returns , the current
 instance does not describe a level of access to a set of resources that is
 not already described by .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns the XML representation
 of the state of the current instance.
						
						
							 A containing the XML
 representation of the state of the current instance.
						
						
							
								 The XML representation of the current instance is
 obtained by first calling , then calling on the
 object returned by that
 method.
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.SecurityElement
					
					
					
						
							 Returns
 the XML encoding of the current instance.
						
						
							 A containing an XML encoding of the state of the
 current instance.
						
						
							
								 The object
 returned by this method is required to use the XML encoding for the class as defined on the class page. The state of
 the current instance is required to be reproducible by invoking on an instance
 of using the object returned by this
 method.
							
							
								 Override this
 method to return an object containing the XML encoding for types derived from
 .
							
							
								 This method is called by the system.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a object that is the union
 of the current instance and the specified object.
						
						 A object of the same type as the current instance to be combined with the current instance.
						
							 If is , returns a copy of the current
 instance using the method.
						
						
							 is not of type .
						
							 is not .
						
							
								 This method is implemented to support
 the interface.
							
							
								 This method
 returns a new instance that represents the union of the
 current instance and . If the current instance or is
 unrestricted, returns a instance that is
 unrestricted. If is , returns a copy
 of the current instance using the method.
							
							
								 If is not , this method
throws a exception; otherwise,
returns a copy of the current
instance.
							
							
								 Override this method to provide a mechanism for
 creating the union of two objects that are of the same type and are
 derived from .
							
							
								 The result of a call to is a permission that represents all
of the access to resources represented by both the current instance and
 . Any demand that passes either permission passes their
union.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 This is the base class for code access security
 attributes.
				
				
					
						 The types that derive from are
 used to secure access
 to resources or securable operations.
						 The security information declared by a security attribute is stored
 in the metadata of the attribute target, and is accessed by the system
 at run-time. Security attributes are used for declarative security only. Use the
 corresponding permission class derived from
 for imperative security.
					
				
			
			
				 System.Security.Permissions.SecurityAttribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of with the specified value.
						
						 A value.
						
							 is not a valid value.
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides the default implementation of the
interface.
				
			
			
				 System.Object
			
			
				
					 System.Collections.IComparer
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the sort order of two instances.
						
						 The first to compare.
						 The second to compare.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Condition
								
								
									 A negative number
									
										 <

									
								
								
									 Zero
									
										 ==

									
								
								
									 A positive number
									
										 >

									
								
							
							
								 A null reference is considered to
 compare less than any other non-null object, and equal to any other null
 reference, independent of the underlying of either object.
							
						
						
							 Both and are not and do not implement the interface.
							 -or-
							 Both and are not and are not assignment-compatible types.
						
						
							 The behavior of this method is as follows:
							
								
									
										 If implements the
 interface, returns
 .CompareTo().
									
								
								
									
										 If does not
 implement the interface but
 does, returns the negated result of .CompareTo().
									
								
								
									
										 If and both are not
 and do not implement the interface, is
 thrown.
									
								
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Collections.Comparer
					
					
					
						
							 Returns a new instance containing the default implementation of the
interface.
						
						
							 This field is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents the method that compares two objects of the same type.
				
				 The first object to compare.
				 The second object to compare.
				
					 A containing a value that reflects the sort order of the objects.
					
						
							 Value
							 Condition
						
						
							 Less than zero
							
								 is less than .
						
						
							 Zero

							
								 equals .
						
						
							 Greater than zero
							
								 is greater than .
						
					
				
				
					
						 This delegate is used by the method
							 , and in to sort the elements of the collection.
					
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates to compilers that a method is callable if and only if a specified
 pre-processing identifier has been defined on the method.
				
				
					
						 A , which has an
 associated condition , can be attached to the
 definition of a method, creating a
							
 . Thereafter, when a compiler encounters
 a call to that method, it might choose to ignore the call unless a compilation
 variable is defined at the site of the call, with a value that matches
 in a case-sensitive manner the supplied to the

 .
						 Note that compilers might provide several techniques to define such compilation variables, such
 as:
						
							
								
									 compiler command-line switches (for
 example, /define:DEBUG)
								
							
							
								
									 environment variables in the operating system shell
 (for example, SET
 DEBUG=1)
								
							
							
								
									 as pragmas in the source code (for example, #define DEBUG, to define the
 compilation variable, or #undef DEBUG to
 undefine it)
								
							
						
						 CLS-Compliant compilers are permitted to ignore uses of the
.
					
				
				
					 The following example demonstrates the use of
 with a
 particular compiler that supports the use of this
 attribute. The property of the current
 attribute is initialized as "DEBUG".
					
						 using System;
using System.Diagnostics;

public class MyClass {

 [ConditionalAttribute("DEBUG")]
 public static void Display() {

 Console.WriteLine("Compiled with DEBUG");
 }
}

public class TestCondition {

 public static void Main() {

 Console.WriteLine("How was this compiled?");
 MyClass.Display();
 Console.WriteLine("<eop>");
 }
}

					
					 When this code is compiled with the
 compilation-variable DEBUG defined at the callsite, the
 output when run is
					
						
How was this compiled?
						 Compiled with DEBUG
						 <eop>

					
					 When this code is
 compiled without the compilation-variable DEBUG defined at the callsite, the
 output when run is
					
						
How was this compiled?
						 <eop>

					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Method, AllowMultiple=true, Inherited=true)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that contains the pre-processing identifier that makes callable the target method of the current instance.
						
							 This constructor initializes the property of the current instance using
 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the that contains
 the pre-processing identifier that makes callable the target method of the current instance.
						
						
							 A
that contains the pre-processing identifier that makes callable the target
method of the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents the standard input, output, and error streams
 for console applications.
				
				
					 The
class provides basic input and output support for applications that
read from and write characters to the console. If the console does not exist,
as in a GUI application, writing to the console produces
no result, and no exception is raised.
					
 The standard input, output, and
 error streams are represented by properties, and are automatically associated with
 the console when the application starts. Applications can redirect these properties to other streams;
 for example, streams associated with files instead of the console. For additional information see the , , and
 methods. By default, the read
methods in this class use the standard input stream and the write methods use
the standard output
stream.
					 The
 write methods support writing data with or without automatically appending carriage
 return and linefeed characters. This enables the writing of strings, formatted strings, arrays of characters,
 instances of primitive types, and arbitrary objects without first having to convert them
 to strings.
					 This class uses synchronized and
 instances. Multiple threads can concurrently read
from and/or write to an instance of this
type.
				
				
					 The following example demonstrates the use of basic input and output
 functions. The program waits for the user to enter a name.
					
using System;

public class ConsoleTest {
 public static void Main() {
 Console.Write("Hello ");
 Console.WriteLine("World!");
 Console.Write("What is your name: ");
 string name = Console.ReadLine();
 Console.Write("Hello, ");
 Console.Write(name);
 Console.WriteLine("!");
 }
}

					 The output for a user who entered the name "Fred" is
					
						 Hello World!
						 What is your name: Fred
						 Hello, Fred!
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Property
					
						 System.IO.TextWriter
					
					
					
						
							 Gets the system's standard error output stream.
						
						
							 A synchronized object where error
 output is sent.
						
						
							 This property is read-only.
							 This property can be redirected using the method.
							
								
 If the application does not have a , behaves
 like .

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.IO.TextReader
					
					
					
						
							 Gets the system's standard input stream.
						
						
							 A synchronized object from which user input is received.
						
						
							 This property is read-only.
							 This property can be redirected using the method.
							
								

 If the application does not have a , behaves like .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
					
						
							 Returns the standard error stream.
						
						
							 A new synchronized object that writes to the console.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
						
					
					
						
							 Returns the standard error stream.
						
						 A that specifies the desired internal stream buffer size.
						
							 A new synchronized object that writes to the console.
						
						
							 Buffering console streams is not required to be
 supported. If it is not supported, the parameter is ignored,
 and this method behaves identically to (). If buffering is supported, the buffering behavior of
 the
 class is implementation-specific.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
					
						
							 Returns the standard input stream.
						
						
							 A new synchronized object that reads from the console.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
						
					
					
						
							 Returns the standard input stream.
						
						 A that specifies the desired internal stream buffer size.
						
							 A new synchronized object that reads from the console.
						
						
							 Buffering console streams is not required to be
 supported. If it is not supported, the parameter is ignored,
 and this method behaves identically to (). If buffering is supported, the buffering behavior of
 the
 class is implementation-specific.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
					
						
							 Returns the standard output stream.
						
						
							 A new synchronized object that writes to the console.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
						
					
					
						
							 Returns the standard output stream. The desired size of the internal buffer
 for the stream is specified.
						
						 A that specifies the desired internal stream buffer size.
						
							 A new synchronized object that writes to the console.
						
						
							 Buffering console streams is not required to be
 supported. If it is not supported, the parameter is ignored,
 and this method behaves identically to (). If buffering is supported, the buffering behavior of
 the
 class is implementation-specific.
						
					
					 0
				
				
					
					
					 Property
					
						 System.IO.TextWriter
					
					
					
						
							 Gets the system's standard output stream.
						
						
							 A synchronized object where normal output is sent.
						
						
							 This property is read-only.
							 This property can be redirected using the method.
							
								

 If the application does not have a , behaves like .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Reads the next character from the standard input
 stream.
						
						
							 The next character from the character source represented
 as a
 , or -1 if at the
 end of the
 stream.
						
						 An I/O error occurred.
						
							 This method will not return until the read operation is
 terminated; for example, by the user pressing the enter key. If data is
 available, the input stream contains what the user entered, suffixed with the
 environment dependent newline character.

						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the next line of characters from the
								 .
						
						
							 A containing the next line from the input stream, or

if the end of the input stream has already been reached.

						
						 An I/O error occurred.
						 There is insufficient memory to allocate a buffer for the returned string.
						
							 A line is defined as a sequence of characters followed
 by a carriage return (Unicode 0x000d), a line feed (Unicode 0x000a), or a . The returned string
 does not contain the terminating character(s).

						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sets the property to the specified .
						
						 A that becomes the new standard error output stream.
						 The caller does not have the required permission.
						
							 is .
						
							 This method replaces the property
 with a synchronized returned by ().
							
								 By default, the property is set
to the system's standard error stream.
							
						
						 Requires permission.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sets the property to the specified .
						
						 A that becomes the new standard input stream.
						
							 is .
						
							 This method replaces the property with a synchronized returned
 by ().
							
								 By
 default, the property
 is set
 to the system's standard input stream.
							
						
						 Requires permission to execute unmanaged code. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sets the property to the specified
.
						
						 A that becomes the new standard output stream.
						
							 is .
						
							 This method replaces the property with a synchronized returned
 by ().
							
								 By default, the property is set to
the system's standard output stream.
							
						
						 Requires permission to execute unmanaged code. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Writes a formatted string to the
								
.
						
						 A that specifies the format string.
						 An array of objects referenced in the format string.
						
							
								 or is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to .Length.
						
						
							
								 If a specified object is not referenced in , it is ignored.
								 For more information on format strings, see the class overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Writes a formatted string to the
								
.
						
						 A that specifies the format string.
						 The first object referenced in the format string.
						 The second object referenced in the format string.
						 The third object referenced in the format string.
						
							
								 is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (3).
						
						
							
								 If a specified
 object is not referenced in the format string, it is ignored.
							
							
								 For more
 information on format strings see the
 class overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a formatted string to the
								
.
						
						 A that specifies the format string.
						 The first object referenced in the format string.
						 The second object referenced in the format string.
						
							 is .
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (2).
						
						
							
								 If a specified object is not referenced in , it is ignored.
								 For more information on format strings, see the class overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes a formatted string to the
								
.
						
						 A that specifies the format string.
						 An object referenced in the format string.
						
							 is .
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (1).
						
						
							
								 If the specified object is not referenced in , it is ignored.
								 For more information on format strings, see the class overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a to the

								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
 .ToString ()).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a character to the
								 .
						
						 The Unicode character to write to the text stream.
						 An I/O error occurred.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a character array to the
								 .
						
						 The Unicode character array to write to the text stream. If is , nothing is written.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a subarray of characters to the
								
.
						
						 The Unicode character array from which characters are read.
						 A that specifies the starting offset in at which to begin reading.
						 A that specifies the number of characters to write.
						
							 (+) is greater than the length of .
						
						 An I/O error occurred.
						
							 or is negative.
						
							 is .
						
							 This version of is equivalent to . (,
 ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified to the
								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (.ToString()).

						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified to the
								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (.ToString()).

						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified to the
								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
.ToString()).

						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified to the

								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
 .ToString()).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified to the

								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This version of is equivalent to . (
 . ()).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified to the

								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
 .ToString()).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified
 to the
								

 .

						
						 The to write.
						 An I/O error occurred.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This version of is equivalent to . (
 .ToString()).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified object to the

								
.
						
						 The object to write. If is , is written.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
 .ToString ()).
							
								 If is , no exception is thrown and nothing
is written. Otherwise, the object's method is called to
produce the string representation, and the resulting string is written to the
output stream.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a specified string to the
								
.
						
						 The to write. If is , the string is written.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
).
							
								 If specified value is , nothing is written to the output stream.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a followed by
 a line terminator to the
								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
 .ToString()).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Writes a line terminator to the
								
.
						
						 An I/O error occurred.
						
							 The default line terminator is the value of the property. The line terminator can be set using the
 property of the stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Writes a formatted string and a new line to the

								
.
						
						 A that specifies the format string.
						 An array of objects referenced in the format string.
						
							
								 or is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to .Length .
						
						
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
							
								 If a specified object is not referenced in , it is ignored.
								 For more information on format strings, see the class overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Writes a formatted string and a new line to the

								
.
						
						 A that specifies the format string.
						 The first object referenced in the format string.
						 The second object referenced in the format string.
						 The third object referenced in the format string.
						
							 is .
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (3).
						
						
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
							
								 If a specified object is not referenced in , it is ignored.
								 For more information on format strings, see the class overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a formatted string and a new line to the

								
.
						
						 A that specifies the format string.
						 The first object referenced in the format string.
						 The second object referenced in the format string.
						
							 is .
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (2).
						
						
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
							
								 If a specified object is not referenced in , it is ignored.
								 For more information on format strings, see the class overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes a formatted string and a line terminator to
 the
								 .

						
						 A that specifies the format string.
						 An object referenced in the format string.
						
							 is .
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (1).
						
						
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
							
								 If the specified object is not referenced in , it is ignored.
								 For more information on format strings, see the class overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a specified followed by a line terminator
 to the
								
.
						
						 The to write. If is , only the line terminator is written.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified object followed by a line terminator to the
								
 .

						
						 The object to write. If is , only the line terminator is written.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
 .ToString()).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified followed by a
 line terminator to the
								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This version of is equivalent to . (
 .ToString()).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified followed by a line
 terminator to the
								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
 .ToString()).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified followed by a
 line terminator to the
								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This version of is equivalent to . (
 .ToString()).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified followed by a line terminator to the

								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
 .ToString ()).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified followed by a line terminator to the

								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (.ToString ()).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the stream.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified followed by a line terminator to the

								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (.ToString ()).
							 The default line terminator is the value of the property. The
line terminator can be set using the property of the stream.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified followed by a line terminator to the

								
.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to . (.ToString ()).
							 The default line terminator is the value of the property. The
line terminator can be set using the property of the stream.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a subarray of characters followed by a line
 terminator to the
								
 .

						
						 The Unicode character array from which data is read.
						 A that specifies the index into at which to begin reading.
						 A that specifies the number of characters to write.
						
							 (+) is greater than the length of .
						
						 An I/O error occurred.
						
							 or is negative.
						
							 is .
						
							 This version of is equivalent to . (
 , ,).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes an array of characters followed by a line
 terminator to the
								
 .

						
						 The Unicode character array to write. If is , only the line terminator is written.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a character followed by a line terminator to the

								
.
						
						 The Unicode character to write to the text stream.
						 An I/O error occurred.
						
							 This version of is equivalent to . (
).
							 The default line terminator is the value of the
property. The line terminator can be set using the property
of the
stream.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Performs conversions between base data types.
				
				
					 The following table shows conversions from source types
 to destination types. The first column contains the source types. The remaining
 columns indicate the destination types the source can be converted to. An 'x'
 indicates the

 class implements the conversion. the
 column headers correspond precisely, in order, to the source types in the first
 column, but have been abbreviated to fit.
					
					
						
							 Type
							 Bool
							 Byte
							 Char
							 DT
							 Dec
							 Dou
							 I16
							 I32
							 I64
							 SBy
							 Sin
							 Str
							 UI16
							 UI32
							 UI64
						
						
							 Boolean
							 x
							 x
							
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 Byte
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 Char
							
							 x
							 x
							
							
							
							 x
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
						
						
							 DateTime
							
							
							
							 x
							
							
							
							
							
							
							
							 x
							
							
							
						
						
							 Decimal
							 x
							 x
							
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 Double
							 x
							 x
							
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 Int16
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 Int32
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 Int64
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 SByte
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 Single
							 x
							 x
							
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 String
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 UInt16
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 UInt32
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
						
							 UInt64
							 x
							 x
							 x
							
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
							 x
						
					
					 If the conversion of a numeric type results in a loss of precision, no
 exception is thrown. However, an exception is thrown if the conversion result is
 a value that is larger than that which can be represented by the destination
 type. For example, when a is converted to a , a loss of precision might occur but no
 exception is thrown. However, if the magnitude of the is too large to
 be represented by a , a is thrown.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 decimal decimal0 = 0m;
 decimal decimal1 = 1m;
 decimal decimal2 = -2m;
 bool bool0 = Convert.ToBoolean(decimal0);
 bool bool1 = Convert.ToBoolean(decimal1);
 bool bool2 = Convert.ToBoolean(decimal2);
 Console.WriteLine("(decimal) {0} as bool = {1}",decimal0,bool0);
 Console.WriteLine("(decimal) {0} as bool = {1}",decimal1,bool1);
 Console.WriteLine("(decimal) {0} as bool = {1}",decimal2,bool2);
 }
}

							 The output is
							
								 (decimal) 0 as bool = False
								 (decimal) 1 as bool = True
								 (decimal) -2 as bool = True
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 double double0 = 0.0;
 double double1 = 1.0;
 double double2 = -2.0;
 bool bool0 = Convert.ToBoolean(double0);
 bool bool1 = Convert.ToBoolean(double1);
 bool bool2 = Convert.ToBoolean(double2);
 Console.WriteLine("(double) {0} as bool = {1}",double0,bool0);
 Console.WriteLine("(double) {0} as bool = {1}",double1,bool1);
 Console.WriteLine("(double) {0} as bool = {1}",double2,bool2);
 }
}

							 The output is
							
								 (double) 0 as bool = False
								 (double) 1 as bool = True
								 (double) -2 as bool = True
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 float float0 = 0.0f;
 float float1 = 1.0f;
 float float2 = -2.0f;
 bool bool0 = Convert.ToBoolean(float0);
 bool bool1 = Convert.ToBoolean(float1);
 bool bool2 = Convert.ToBoolean(float2);
 Console.WriteLine("(float) {0} as bool = {1}",float0,bool0);
 Console.WriteLine("(float) {0} as bool = {1}",float1,bool1);
 Console.WriteLine("(float) {0} as bool = {1}",float2,bool2);
 }
}

							 The output is
							
								 (float) 0 as bool = False
								 (float) 1 as bool = True
								 (float) -2 as bool = True
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted.
						
							
								 if equals ;
 if equals .
						
						
							 is a null reference.
						
							 is not equal to or .
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 string string0 = Boolean.TrueString;
 string string1 = Boolean.FalseString;
 string string2 = "foo"; //This is an invalid Boolean.
 bool bool0 = Convert.ToBoolean(string0);
 bool bool1 = Convert.ToBoolean(string1);
 Console.WriteLine("(string) {0} as bool = {1}",string0,bool0);
 Console.WriteLine("(string) {0} as bool = {1}",string1,bool1);
 bool bool2 = Convert.ToBoolean(string2); //Throws an exception.
 Console.WriteLine("(string) {0} as bool = {1}",string2,bool2);
 }
}

							 The output is
							
(string) True as bool = True
(string) False as bool = False
Unhandled Exception: System.FormatException: String was not recognized as a valid Boolean.
 at System.Boolean.Parse(String value)
 at Convert.ToBoolean(String value)
 at ConvertBoolTest.Main() in C:\ECMAExamples\ConvertString.cs:line 12

						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 ulong ulong0 = 0;
 ulong ulong1 = 1;
 bool bool0 = Convert.ToBoolean(ulong0);
 bool bool1 = Convert.ToBoolean(ulong1);
 Console.WriteLine("(ulong) {0} as bool = {1}",ulong0,bool0);
 Console.WriteLine("(ulong) {0} as bool = {1}",ulong1,bool1);
 }
}

							 The output is
							
								 (ulong) 0 as bool = False
								 (ulong) 1 as bool = True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit signed integer value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 long long0 = 0;
 long long1 = 1;
 long long2 = -2;
 bool bool0 = Convert.ToBoolean(long0);
 bool bool1 = Convert.ToBoolean(long1);
 bool bool2 = Convert.ToBoolean(long2);
 Console.WriteLine("(long) {0} as bool = {1}",long0,bool0);
 Console.WriteLine("(long) {0} as bool = {1}",long1,bool1);
 Console.WriteLine("(long) {0} as bool = {1}",long2,bool2);
 }
}

							 The output is
							
								 (long) 0 as bool = False
								 (long) 1 as bool = True
								 (long) -2 as bool = True
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 uint uint0 = 0;
 uint uint1 = 1;
 bool bool0 = Convert.ToBoolean(uint0);
 bool bool1 = Convert.ToBoolean(uint1);
 Console.WriteLine("(uint) {0} as bool = {1}",uint0,bool0);
 Console.WriteLine("(uint) {0} as bool = {1}",uint1,bool1);
 }
}

							 The output is
							
								 (uint) 0 as bool = False
								 (uint) 1 as bool = True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 int int0 = 0;
 int int1 = 1;
 int int2 = -2;
 bool bool0 = Convert.ToBoolean(int0);
 bool bool1 = Convert.ToBoolean(int1);
 bool bool2 = Convert.ToBoolean(int2);
 Console.WriteLine("(int) {0} as bool = {1}",int0,bool0);
 Console.WriteLine("(int) {0} as bool = {1}",int1,bool1);
 Console.WriteLine("(int) {0} as bool = {1}",int2,bool2);
 }
}

							 The output is
							
								 (int) 0 as bool = False
								 (int) 1 as bool = True
								 (int) -2 as bool = True
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 ushort ushort0 = 0;
 ushort ushort1 = 1;
 bool bool0 = Convert.ToBoolean(ushort0);
 bool bool1 = Convert.ToBoolean(ushort1);
 Console.WriteLine("(ushort) {0} as bool = {1}",ushort0,bool0);
 Console.WriteLine("(ushort) {0} as bool = {1}",ushort1,bool1);
 }
}

							 The output is
							
								 (ushort) 0 as bool = False
								 (ushort) 1 as bool = True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 The following example demonstrates converting values to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 short short0 = 0;
 short short1 = 1;
 short short2 = -2;
 bool bool0 = Convert.ToBoolean(short0);
 bool bool1 = Convert.ToBoolean(short1);
 bool bool2 = Convert.ToBoolean(short2);
 Console.WriteLine("(short) {0} as bool = {1}",short0,bool0);
 Console.WriteLine("(short) {0} as bool = {1}",short1,bool1);
 Console.WriteLine("(short) {0} as bool = {1}",short2,bool2);
 }
}

							 The output is
							
								 (short) 0 as bool = False
								 (short) 1 as bool = True
								 (short) -2 as bool = True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 The following example demonstrates converting values to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 byte byte0 = (byte) 0;
 byte byte1 = (Byte) 1;
 bool bool0 = Convert.ToBoolean(byte0);
 bool bool1 = Convert.ToBoolean(byte1);
 Console.WriteLine("(byte) {0} as bool = {1}",byte0,bool0);
 Console.WriteLine("(byte) {0} as bool = {1}",byte1,bool1);
 }
}

							 The output is
							
								 (byte) 0 as bool = False
								 (byte) 1 as bool = True
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The 8-bit signed integer value to be converted.
						
							
								 if is non-zero;
 if is zero.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
						
							 The following example demonstrates converting values to values.
							 using System;
class ConvertBoolTest {
 static public void Main() {
 sbyte sbyte0 = (sbyte) 0;
 sbyte sbyte1 = (sbyte) 1;
 sbyte sbyte2 = (sbyte) -2;
 bool bool0 = Convert.ToBoolean(sbyte0);
 bool bool1 = Convert.ToBoolean(sbyte1);
 bool bool2 = Convert.ToBoolean(sbyte2);
 Console.WriteLine("(sbyte) {0} as bool = {1}",sbyte0,bool0);
 Console.WriteLine("(sbyte) {0} as bool = {1}",sbyte1,bool1);
 Console.WriteLine("(sbyte) {0} as bool = {1}",sbyte2,bool2);
 }
}

							 The output is
							
								 (sbyte) 0 as bool = False
								 (sbyte) 1 as bool = True
								 (sbyte) -2 as bool = True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is provided for
 completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a representation of a number to a
.
						
						 The to be converted. The string is in the style.
						
							
								 as a .
						
						
							 is a null reference.
						
							 does not consist of an optional sign followed by one or more digits (zero through nine).
						 The numeric value of is greater than or less than .
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertByteTest {
 static public void Main() {
 string string0 = "+22";
 string string1 = "0";
 string string2 = "-1";
 byte byte0 = Convert.ToByte(string0);
 byte byte1 = Convert.ToByte(string1);
 Console.WriteLine("(string) {0} as byte = {1}",string0,byte0);
 Console.WriteLine("(string) {0} as byte = {1}",string1,byte1);
 byte byte2 = Convert.ToByte(string2);
 Console.WriteLine("(string) {0} as byte = {1}",string2,byte2);
 }
}

							 The output is
							
								 (string) +22 as byte = 22
								 (string) 0 as byte = 0
								 Exception occurred: System.OverflowException: Value was either too large or
 too small for an unsigned byte.
								 at System.Byte.Parse(String s, NumberStyles style, IFormatProvider
 provider)
								 at System.Byte.Parse(String s)
								 at Convert.ToByte(String value)
								 at ConvertByteTest.Main() in
 C:\ECMAExamples\ConvertToByte\ConvertString.cs:line 11
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a , rounded to the nearest integer.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6. This process is known as banker's rounding.
							
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertByteTest {
 static public void Main() {
 decimal decimal0 = 0.0m;
 decimal decimal1 = 1.5m;
 decimal decimal2 = 2.5m;
 decimal decimal3 = -1.0m;
 byte byte0 = Convert.ToByte(decimal0);
 byte byte1 = Convert.ToByte(decimal1);
 byte byte2 = Convert.ToByte(decimal2);
 Console.WriteLine("(decimal) {0} as byte = {1}",decimal0,byte0);
 Console.WriteLine("(decimal) {0} as byte = {1}",decimal1,byte1);
 Console.WriteLine("(decimal) {0} as byte = {1}",decimal2,byte2);

 byte byte3 = Convert.ToByte(decimal3); //Throws an exception.
 Console.WriteLine("(decimal) {0} as byte = {1}",decimal3,byte3);
 }
}

							 The output is
							
								 (decimal) 0 as byte = 0
								 (decimal) 1.5 as byte = 2
								 (decimal) 2.5 as byte = 2
								 Exception occurred: System.OverflowException: Value was either too large or
 too small for an unsigned byte.
								 at System.Decimal.ToByte(Decimal value)
								 at Convert.ToByte(Decimal value)
								 at ConvertByteTest.Main() in
 C:\ECMAExamples\ConvertToByte\ConvertDecimal.cs:line 15
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a , rounded to the nearest integer.
						
						
							 is greater than or less than , or is equal to one of , , or .
						
							 Prior to the conversion, if is halfway
 between two numbers, it is rounded to the number that has an even digit in the
 rightmost decimal position. For example, when rounded to two decimals, the value
 2.345 becomes 2.34 and the value 2.355 becomes 2.36
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertByteTest {
 static public void Main() {
 double double0 = 0.0;
 double double1 = 1.5;
 double double2 = 2.5;
 double double3 = -1.0;
 byte byte0 = Convert.ToByte(double0);
 byte byte1 = Convert.ToByte(double1);
 byte byte2 = Convert.ToByte(double2);
 Console.WriteLine("(double) {0} as byte = {1}",double0,byte0);
 Console.WriteLine("(double) {0} as byte = {1}",double1,byte1);
 Console.WriteLine("(double) {0} as byte = {1}",double2,byte2);

 byte byte3 = Convert.ToByte(double3); //Throws an exception.
 Console.WriteLine("(double) {0} as byte = {1}",double3,byte3);
 }
}

							 The output is
							
								 (double) 0 as byte = 0
								 (double) 1.5 as byte = 2
								 (double) 2.5 as byte = 2
								 Exception occurred: System.OverflowException: Value was either too large or
 too small for an unsigned byte.
								 at Convert.ToByte(Int32 value)
								 at Convert.ToByte(Double value)
								 at ConvertByteTest.Main() in
 C:\ECMAExamples\ConvertToByte\ConvertDouble.cs:line 15
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a , rounded to the nearest integer.
						
						
							 is greater than or less than , or is equal to one of , , or .
						
							 Prior to the conversion, if is halfway between two whole
 numbers, it is rounded to the nearest even integer. For example, 4.5 is rounded
 to 4, and 5.5 is rounded to 6.
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertByteTest {
 static public void Main() {
 float float0 = 0.0f;
 float float1 = 1.5f;
 float float2 = 2.5f;
 float float3 = -1.0f;
 byte byte0 = Convert.ToByte(float0);
 byte byte1 = Convert.ToByte(float1);
 byte byte2 = Convert.ToByte(float2);
 Console.WriteLine("(float) {0} as byte = {1}",float0,byte0);
 Console.WriteLine("(float) {0} as byte = {1}",float1,byte1);
 Console.WriteLine("(float) {0} as byte = {1}",float2,byte2);

 byte byte3 = Convert.ToByte(float3); //Throws an exception.
 Console.WriteLine("(float) {0} as byte = {1}",float3,byte3);
 }
}

							 The output is
							
								 (float) 0 as byte = 0
								 (float) 1.5 as byte = 2
								 (float) 2.5 as byte = 2
								 Exception occurred: System.OverflowException: Value was either too large or
 too small for an unsigned byte.
								 at Convert.ToByte(Int32 value)
								 at Convert.ToByte(Single value)
								 at ConvertByteTest.Main() in
 C:\ECMAExamples\ConvertToByte\ConvertFloat.cs:line 15
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertByteTest {
 static public void Main() {
 ulong ulong0 = 0;
 ulong ulong1 = 32000;
 byte byte0 = Convert.ToByte(ulong0);
 Console.WriteLine("(ulong) {0} as byte = {1}",ulong0,byte0);
 byte byte1 = Convert.ToByte(ulong1); //Throws an exception.
 Console.WriteLine("(ulong) {0} as byte = {1}",ulong1,byte1);
 }
}

							 The output is
							
								 (ulong) 0 as byte = 0
								 Exception occurred: System.OverflowException: Value was either too large or
 too small for an unsigned byte.
								 at Convert.ToByte(UInt64 value)
								 at ConvertByteTest.Main() in
 C:\ECMAExamples\ConvertToByte\ConvertUInt64.cs:line 8
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a .
						
						
							 is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a .
						
						
							 is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertByteTest {
 static public void Main() {
 ushort ushort0 = 0;
 ushort ushort1 = 32000;
 byte byte0 = Convert.ToByte(ushort0);
 Console.WriteLine("(ushort) {0} as byte = {1}",ushort0,byte0);
 byte byte1 = Convert.ToByte(ushort1); //Throws an exception.
 Console.WriteLine("(ushort) {0} as byte = {1}",ushort1,byte1);
 }
}

							 The output is
							
								 (ushort) 0 as byte = 0
								 Exception occurred: System.OverflowException: Value was either too large or
 too small for an unsigned byte.
								 at Convert.ToByte(UInt16 value)
								 at ConvertByteTest.Main() in
 C:\ECMAExamples\ConvertToByte\ConvertUInt16.cs:line 8
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a .
						
						
							 is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 8-bit signed integer to be converted.
						
							
								 as a .
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 If equals , returns
 1; if equals , returns 0.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a .
						
						 The Unicode character to be converted interpreted as an unsigned value.
						
							
								 as a .
						
						 The numeric value of is greater than .
						
							 The following example demonstrates converting values
 to values.
							 using System;
class ConvertByteTest {
 static public void Main() {
 char char0 = '0';
 char char1 = '1';
 char char2 = 'a';
 byte byte0 = Convert.ToByte(char0);
 byte byte1 = Convert.ToByte(char1);
 byte byte2 = Convert.ToByte(char2);
 Console.WriteLine("(char) {0} as byte = {1}",char0,byte0);
 Console.WriteLine("(char) {0} as byte = {1}",char1,byte1);
 Console.WriteLine("(char) {0} as byte = {1}",char2,byte2);
 }
}

							 The output is
							
								 (char) 0 as byte = 48
								 (char) 1 as byte = 49
								 (char) a as byte = 97
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a .
						
						
							 is a null reference.
						
							 does not consist of an optional sign followed by one or more digits (zero through nine).
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The is required to contain a single character.
						
							
								 as a .
						
						
							 does not contain exactly one character.
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a .
						
						
							 is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 is greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a .
						
						
							 is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a .
						
						
							 is less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
						 value is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a .
						
						 The Unicode character to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Converts a to a structure.
						
						 The to be converted. The string is in a form allowed by the () method.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
					
					
						
							 Converts a to a
structure.
						
						 The to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a .
						
							 This method parses using the information
 in the instance supplied by . If
 is or if a cannot be obtained from
 , the string is parsed using the formatting information of the
 current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.

						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the
 current system culture.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted. The string is in the style.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a . The contains 15 significant digits and is
 rounded using banker's rounding.
						
						 The numeric value of is greater than or less than .
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a . The contains 7 significant digits and is
 rounded using banker's rounding.
						
						 The numeric value of is greater than or less than .
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.

						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.

						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a . is rounded using
 banker's rounding.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the | style.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information in
 a instance initialized for the current system culture.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the | style.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the
 current system culture.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 16-bit signed integer. is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						
							
								 as a 16-bit signed
 integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a 16-bit signed integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 16-bit signed integer. is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 16-bit signed integer. is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a 16-bit signed integer.

						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a 16-bit signed integer.
						
						 value is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a 16-bit signed integer.
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a 16-bit signed integer.
						
						
							 is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a 16-bit signed integer.
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 16-bit signed integer.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 16-bit signed integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted interpreted as an unsigned value.
						
							
								 as a 16-bit signed integer.
						
						 The numeric value of is greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a 32-bit signed integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is

or if a cannot be obtained from
 , the string is parsed using the formatting information of the
current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						
							
								 as a 32-bit signed integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 32-bit signed integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 32-bit signed integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 32-bit signed integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a 32-bit signed integer.
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a 32-bit signed integer.

						
						
							 is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a 32-bit signed integer.
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a 32-bit signed integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a 32-bit signed
 integer.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 32-bit signed integer.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 32-bit signed integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted interpreted as an unsigned value.
						
							
								 as a 32-bit signed integer.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted interpreted as an unsigned value.
						
							
								 as a 64-bit signed integer.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.

						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 64-bit signed integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 64-bit signed integer.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a 64-bit signed integer.

						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a 64-bit signed integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a 64-bit signed integer.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a 64-bit signed integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a 64-bit signed integer.
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit signed integer value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 64-bit signed integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 64-bit signed integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 64-bit signed integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						
							
								 as a 64-bit signed
 integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a 64-bit signed integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the
 current system culture.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 If is true 1; if
 is returns 0.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 is returned unchanged.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							
								 This method is
 provided for completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted interpreted as an unsigned value.
						
							
								 as a .
						
						 The numeric value of is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a .
						
						
							 is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a .
						
						
							 is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant
 alternative, use ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a .

						
						
							 is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a , rounded to the nearest integer.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a , rounded to the nearest integer.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a , rounded to the nearest integer.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a representation of a number to a

.
						
						 The to be converted. The string is in the style.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value in the specified format.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a .
						
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the current system culture.
							 This member is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the | style.
						 A that supplies a containing culture-specific formatting information.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the
 current system culture.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the | style.
						
							
								 as a .
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a . is rounded using
 banker's rounding.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a .
						
						
							 is greater than or less than .
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a .

						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a
.

						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.

						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
							 This method converts using the
 information in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This method converts using the
 information in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
							 This method converts using the
 information in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This method converts using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This method converts using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This method converts using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a value to a
.
						
						 The value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a value to a
.
						
						 The value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This method converts using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit signed integer value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This method converts using the
 information in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit signed integer value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The 16-bit unsigned integer value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
							 This method converts using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 16-bit unsigned integer value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The 16-bit signed integer value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This method converts using the
 information in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 16-bit signed integer value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This method converts using the
 information in the instance supplied by . If
 is or if a cannot be obtained from
 , the string is formatted in accordance with the current system
 culture.
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						 A that supplies a containing culture-specific formatting information.
						
							 Returns the value returned by
 .ToString().
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
							 This method converts using the
 information in the instance supplied by . If
 is
 or if a cannot be obtained from

, the string is formatted in
accordance with the current system culture.
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted.
						
							
								 as a .
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							 Returns the value returned by
 .ToString().
						
						
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the specified string.
						
						 A .
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 An object that implements the interface and supplies a instance containing culture-specific formatting information.
						
							
								 as a 16-bit unsigned
 integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the
 current system culture.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						
							
								 as a 16-bit unsigned
 integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 16-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant
 alternative, use ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 16-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 16-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a 16-bit unsigned
 integer.
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a 16-bit unsigned
 integer.
						
						
							 is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a 16-bit unsigned
 integer.
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							 value as a 16-bit unsigned integer.
						
						
							 is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant
 alternative, use ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a 16-bit unsigned integer.
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 16-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 16-bit unsigned integer.
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted interpreted as an unsigned value.
						
							
								 as a 16-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.

						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted interpreted as an unsigned value.
						
							
								 as a 32-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 32-bit unsigned integer.
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 32-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a 32-bit unsigned integer.
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a 32-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a 32-bit unsigned integer.
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a 32-bit unsigned
 integer.
						
						
							 is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 as a 32-bit unsigned
 integer.
						
						
							 is greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 32-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 32-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 32-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						
							
								 as a 32-bit unsigned
 integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 An object that implements the interface and supplies a instance containing culture-specific formatting information.
						
							
								 as an 32-bit unsigned
 integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the
 current system culture.
							 This member is not CLS-compliant. For a CLS-compliant
 alternative, use (,
).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						 A that implements the interface and supplies a instance containing culture-specific formatting information.
						
							
								 as a 64-bit unsigned
 integer.
						
						
							 is a null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in the instance supplied by . If
 is
 or if a cannot be obtained from
 , the string is parsed using the formatting information of the
 current system culture.
							 This member is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The to be converted. The string is in the style.
						
							
								 as a 64-bit unsigned
 integer.
						
						
							 is null reference.
						
							 cannot be converted to a numeric value.
						 The numeric value of is greater than or less than .
						
							 This method parses using the information
 in a instance initialized for the current system culture.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 64-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 64-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							
								 as a 64-bit unsigned integer.
 is rounded prior to conversion.
						
						
							 is greater than or less than .
						
							 Prior to the conversion, if is halfway
 between two whole numbers, it is rounded to the nearest even integer. For
 example, 4.5 is rounded to 4, and 5.5 is rounded to 6.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a .
						
						 The 64-bit unsigned integer value to be converted.
						
							
								 is returned unchanged.
						
						
							
								 This method is
 provided for completeness.
							
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The 64-bit signed integer value to be converted.
						
							
								 as a 64-bit unsigned
 integer.
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit unsigned integer value to be converted.
						
							
								 as a 64-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a .
						
						 The 32-bit signed integer value to be converted.
						
							
								 as a 64-bit unsigned integer.
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit unsigned integer value to be converted.
						
							
								 as a 64-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a .
						
						 The 16-bit signed integer value to be converted.
						
							
								 as a 64-bit unsigned integer.
						
						
							 is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 64-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a .
						
						 The value to be converted.
						
							
								 as a 64-bit unsigned integer.
						
						 value is less than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a .
						
						 The to be converted interpreted as an unsigned value.
						
							
								 as a 64-bit unsigned integer.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a
.
						
						 The value to be converted.
						
							 If is returns 1; if
 is returns 0.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents the method that converts an object from one type to another.
				
				 The object to convert.
				
					 The object converted to the target type.
				
				
					
						 This delegate is used by the method
							 , and in to convert each elements of the collection from one type to another.
					
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the formatting options that customize how the

 and methods parse a string.
				
				
					
						 See the class for the list of white space characters.
						 Only the option affects the method.
 always
 ignores leading, inner, and trailing white spaces.
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Globalization.DateTimeStyles
					
					
					 AdjustToUniversal
					
						
							 Specifies that the date and time must be converted to
 universal time coordinate time or Greenwich mean time (GMT)
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.DateTimeStyles
					
					
					 AllowInnerWhite
					
						
							 Specifies that extra white space characters not specified
 in the format patterns are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.DateTimeStyles
					
					
					 AllowLeadingWhite
					
						
							 Specifies that leading white space characters are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.DateTimeStyles
					
					
					 AllowTrailingWhite
					
						
							 Specifies that trailing white space characters are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.DateTimeStyles
					
					
					 AllowWhiteSpaces
					
						
							 Specifies that white space characters anywhere in the
 string are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.DateTimeStyles
					
					
					 NoCurrentDateDefault
					
						
							 Specifies that there is no current date default. If a
 string contains only the time and not the date, and this option is used with the
 or methods, a Gregorian year 1, month 1, day
 1 date is assumed. In all other cases the methods assume the current local system date.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.DateTimeStyles
					
					
					 None
					
						
							 Specifies that the default formatting options are to be used.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an instant in time, expressed
 as a date and time of day.
				
				
					 The value
 type represents dates and times with values ranging from 00:00:00, 1/1/0001 (Common Era)
 to 23:59:59 PM, 12/31/9999.
					
						 Time values are measured in 100-nanosecond units,
 , and a particular date is the number of ticks since 12:00
 Midnight, January 1, 1 in the Gregorian
 calendar. For example, a ticks value of 31241376000000000L represents the date, Friday, January
 01, 0100 12:00:00 AM.
						 Time values can be added to, or subtracted from, an
 instance of . Time values can be negative or positive, and expressed
 in units such as ticks, seconds, or instances of . Methods and properties in this value
 type take into account details such as leap years and the number of
 days in a month.
						 12:00:00 AM is Midnight.
					
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.DateTime>
					 0
				
				
					 System.IEquatable<System.DateTime>
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the structure with a
 specified year, month, day, hour, minute, second, and millisecond.
						
						 A containing the year (1 through 9999).
						 A containing the month (1 through 12).
						 A containing the day (1 through the number of days in).
						 A containing the hours (0 through 23).
						 A containing the minutes (0 through 59).
						 A containing the seconds (0 through 59).
						 A containing the milliseconds.
						
							 is less than 1 or greater than 9999 -or-
							
								 is less than 1 or greater than 12
							 -or-
							
								 is less than 1 or greater than the number of days in
							
							 -or-
							
								 is less than 0 or greater than 23
							 -or-
							
								 is less than 0 or greater than 59
							 -or-
							
								 is less than 0 or greater than 59
							 -or-
							
								 is less than 0 or greater than 999
						
						 The specified parameters evaluate to a date less than or greater than .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the structure with a
 specified year, month, day, hour, minute, and second.
						
						 A containing the year (1 through 9999).
						 A containing the month (1 through 12).
						 A containing the day (1 through the number of days in).
						 A containing the hours (0 through 23).
						 A containing the minutes (0 through 59).
						 A containing the seconds (0 through 59).
						
							 is less than 1 or greater than 9999 -or-
							
								 is less than 1 or greater than 12
							 -or-
							
								 is less than 1 or greater than the number of days in
							
							 -or-
							
								 is less than 0 or greater than 23
							 -or-
							
								 is less than 0 or greater than 59
							 -or-
							
								 is less than 0 or greater than 59
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the structure with
 the date and time expressed in 100-nanosecond units.
						
						 A containing the date and time expressed in 100-nanosecond units.
						 The date and time represented by is less than or greater than .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the structure with a specified year, month, and day.
						
						 A containing the year (1 through 9999).
						 A containing the month (1 through 12).
						 A containing the day (1 through the number of days in).
						
							
								 is less than 1 or greater than 9999
							 -or-
							
								 is less than 1 or greater than 12
							 -or-
							
								 is less than 1 or greater than the number of days in
							
						
						
							 The time of day for the resulting is midnight (00:00:00).
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds the value of a specified instance to the current instance.
						
						 A instance.
						
							 A instance set to the sum of the date and time of the
 current instance and the time interval represented by .
						
						 The resulting is less than or greater than .
						
							 A specified is added to the current instance of
 , and
 the result is returned as a new .
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds a specified number of days to the value of the current instance.
						
						 A containing the number of whole and fractional days. For example, 4.5 is equivalent to 4 days, 12 hours, 0 minutes, 0 seconds, 0 milliseconds, and 0 ticks. can be negative or positive.
						
							 A instance set to the sum of the date and time represented
 by the current instance and the number of days represented by
 .
						
						 The resulting is less than or greater than .
						
							
								
									 is rounded to the nearest tick.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds a specified number of hours to the value of the current instance.
						
						 A containing the number of whole and fractional hours. For example, 4.5 is equivalent to 4 hours, 30 minutes, 0 seconds, 0 milliseconds, and 0 ticks. can be negative or positive.
						
							 A instance set to the sum of the date and time represented
 by the current instance and the number of hours represented by
 .
						
						 The resulting is less than or greater than .
						
							
								
									 is rounded to the nearest tick.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds a specified number of milliseconds to the value of the current instance.
						
						 A containing the number of whole and fractional milliseconds. For example, 4.5 is equivalent to 4 milliseconds and 5,000 ticks. can be negative or positive.
						
							 A instance set to the sum of the date and time represented
 by the current instance and the number of milliseconds represented by
 .
						
						 The resulting is less than or greater than .
						
							
								
									 is rounded to the nearest tick.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds a specified number of minutes to the value of the current instance.
						
						 A containing the number of whole and fractional minutes. For example, 4.5 is equivalent to 4 minutes, 30 seconds, 0 milliseconds, and 0 ticks. can be negative or positive.
						
							 A instance set to the sum of the date and time represented
 by the current instance and the number of minutes represented by
 .
						
						 The resulting is less than or greater than .
						
							
								
									 is rounded to the nearest tick.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds a specified number of months to the value of the current instance.
						
						 A containing the number of months. can be positive or negative, and can be greater than the number of months in a year.
						
							 A instance set to the sum of the date and time represented
 by the current instance and .
						
						
							 The resulting is less than or greater than .
							 -or-
							 The parameter is less than -120,000 or greater than 120,000
						
						
							 This method does not change the value of the current instance. Instead, a new instance is returned whose value is the result of this operation.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds a specified number of seconds to the value of the current instance.
						
						 A containing the number of whole and fractional seconds. For example, 4.5 is equivalent to 4 seconds, 500 milliseconds, and 0 ticks. can be positive or negative.
						
							 A instance set to the sum of the date and time represented
 by the current instance and the number of seconds represented by
 .
						
						 The resulting is less than or greater than .
						
							
								
									 is rounded to the nearest tick.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds a specified number of ticks to the value of the current
 instance.
						
						 A containing the number of 100-nanosecond ticks. can be positive or negative.
						
							 A instance set to the sum of the date and time represented
 by the current instance and the time represented by .
						
						 The resulting is less than or greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Adds a specified number of years to the value of the current instance.
						
						 A containing the number of years. can be positive or negative.
						
							 A instance set to the sum of the date and time represented
 by the current instance and the number of years represented by
 .
						
						 The resulting is less than or greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the sort order of the two specified instances of

 .
						
						 The first .
						 The second .
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the two specified instances of . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value Type
									 Condition
								
								
									 Any
 negative
 number
									
										 < .
								
								
									 Zero
									
										 == .
								
								
									 Any
 positive
 number
									
										 >

.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > , or value is a
 null reference.
								
							
						
						
							 is not a and is not a null reference.
						
							 Any instance of , regardless of its value, is considered
 greater than a null reference.
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.DateTime
					
					
					
						
							 Gets the date component of the current instance.
						
						
							 A new instance with the same date as the current instance,
 and the time value set to midnight (00:00:00).
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the day of the month represented by the current instance.
						
						
							 A between 1 and 31 set to the day of the month component of the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the day of the year represented by the current instance.
						
						
							 A between 1 and 366 set to the day of the year component of the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the number of days in a specified month
 of a specified year.
						
						 A containing the year.
						 The month (a between 1 and 12).
						
							 A set to the number of days in the specified month for the
 specified year. If the specified month is February, the return value is 28 or 29
 depending upon whether the specified year is a leap year.
						
						
							 is less than 1 or greater than 12.
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a indicating whether the current instance is equal to the specified
 DateTime.
						
						 A to compare with the current instance.
						
							
								 if is equal to the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a indicating whether the current instance is equal to a specified
 object.
						
						 A to compare with the current instance.
						
							
								 if is a specified

instance is equal to the current instance; otherwise,
 .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a indicating whether two specified
 instances of are equal.
						
						 The first .
						 The second .
						
							
								 if the two
 values are
 equal; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code
 for this instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the hour represented by the current instance.
						
						
							 A between 0 and 23 set to the hour component
 of the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value indicating whether a specified year is a leap year.
						
						 A representing the year. can be positive or negative.
						
							
								 if the specified year is a leap
 year; otherwise, .
						
					
					 0
				
				
					
					
					 Field
					
						 System.DateTime
					
					
					
						
							 A constant representing the largest possible value of
 .
						
						
							 This field is read-only.
							 The value of this field is equivalent to
 23:59:59.9999999, 12/31/9999, exactly one 100-nanosecond tick before 00:00:00,
 01/01/10000.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the milliseconds component of the date represented by the current instance.
						
						
							 A between 0 and 999 set to the milliseconds component of
 the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the minute component of the date represented by the current instance.
						
						
							 A between 0 and 59 set to the minute component of the
 current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Field
					
						 System.DateTime
					
					
					
						
							 A constant representing the smallest possible value of
 .
						
						
							 This field is read-only.
							 The value of this field is equivalent to 00:00:00.0000000, 1/1/0001.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the month component of the date represented by the current instance.
						
						
							 A between 1 and 12 set to the month component of the
 current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.DateTime
					
					
					
						
							 Gets a representing the current local date and time.
						
						
							 The resolution of this property depends on the system timer.
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
					
					
						
							 Adds a specified value to a specified
value.
						
						
						 A value.
						 A value.
						
							 A instance that is the sum of the values of and
 .
						
						 The resulting date and time is less than or greater than .
						
							 The returned value is equivalent to
 (.Ticks + .Ticks).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether the two
 specified instances of
 are equal.
						
						
						 The first to compare.
						 The second to compare.
						
							
								 if
 .Ticks value is equal to the
 .Ticks value; otherwise,
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether one specified
 is
 greater than another specified .
						
						
						
							 A .
						
						 A .
						
							
								 if
 .Ticks value is greater than the
 .Ticks value; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether one specified
 is
 greater than or equal to another specified .
						
						
							 A .
						
						 A .
						
							
								 if
 .Ticks value is greater than or equal to
 .Ticks value; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether two specified
 instances of
 are not equal.
						
						 A .
						 A .
						
							
								 if
 .Ticks value is not equal to
 .Ticks value; otherwise, .

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether one specified
 is less
 than another specified .
						
						
						
							 A .
						
						 A .
						
							
								 if
 .Ticks value is less than
 .Ticks value; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether one specified
 is less
 than or equal to another specified .
						
						
						
							 A .
						
						 A .
						
							
								 if
 .Ticks value is less than or equal to
 .Ticks value; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
					
					
						
							 Subtracts a specified from a specified
.
						
						 A .
						 A .
						
							 A whose value is the value of minus the value
 of
 .
						
						 The resulting date and time is less than or greater than .
						
							 The returned value is equivalent to (.Ticks -
 .Ticks
).
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
						
					
					
						
							 Subtracts a specified from another specified
value, producing a time interval.
						
						 A (the minuend).
						 A (the subtrahend).
						
							 A that is the time interval between and
 .
						
						 The resulting date and time is less than or greater than .
						
							 The returned value is equivalent to (.Ticks -
 .Ticks).
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing a value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 does not contain a valid string representation of a time or date and time.
						
							 This version of is equivalent to (, ,
).
							 The string is parsed using the formatting
information in a
initialized for the current
system culture.
							 In order for the string to be successfully parsed, it is
 required to represent a date and time value in one of the standard patterns
 described in
 .
							 If the string contains only a time, and no date, then the
 current date () is
 used. If the string contains only a date and no time, this method assumes
 12 a.m.
							 Any leading, trailing, and inner white space characters
 are ignored.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a object containing culture-specific format information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 does not contain a valid string representation of a time or date and time.
						
							 This version of is equivalent to (, ,
).
							 The string is parsed using the
culture-specific formatting information from the
instance supplied by . If
is or a cannot be
obtained from , the formatting information for the current
system culture is used.
							 In order for the string to be successfully parsed, it is
 required to represent a date and time value in one of the standard patterns
 described in
 .
							 If the string contains only a time, and no date, then the
 current date () is used. If the string
 contains only a date and no time, this method assumes 12 a.m.
							 Any leading, trailing, and inner white space characters are ignored.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert.
						 A that supplies a object containing culture-specific format information about .
						 One or more values that specify the style of . Specify multiple values for using the bitwise OR operator.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 does not contain a valid string representation of a time or date and time.
						
							 The string is parsed using the culture-specific
 formatting information from the instance supplied by
 . If is or a cannot be obtained from ,
 the formatting information for the current system culture is
 used.
							 In order for the string to be successfully parsed, it is
 required to represent a date and time value in one of the standard patterns
 described in
 .
							 If the string contains only a time, and no date, and if
 the parameter is set to the Gregorian year 1, month 1, day 1 are used. In all
 other cases where a date is not specified, the current date (
) is used.
							 If the string
 contains only a date and no time, this method assumes 12 a.m.
							 For all settings of the
parameter, any leading, trailing, and inner white space characters are ignored.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
						
						
					
					
						
							 Converts the representation of a date and time to
 its
 equivalent using a specified style, the expected format, and
 culture-specific format information.
						
						 A containing a date and time to convert. The format of the string is required to match the specified format exactly.
						 A containing the expected format of . For a list of valid values, see .
						
						 A that supplies a object containing culture-specific format information about .
						
							 One or more values that specify the style of . Specify multiple values for using the bitwise OR operator.
						
						
							 A equivalent to the date and time contained in
 .
						
						
							 or is a null reference.
						
							
								 or format is an empty string.
							 -or-
							
								 does not contain a date and time that were recognized as one of the patterns specified in
							
						
						
							
								 constructs a from the string . The string is required to specify a date and,
 optionally, a time in the provided format.
							 The string is parsed using the culture-specific
formatting information from the instance supplied by
 . If is or a cannot be obtained from , the formatting information
for the current system culture is used.
							 If the string contains only a time, and no date, and if
the parameter is set to the Gregorian year 1, month 1, day 1 are used, and no
leading, trailing, or inner white space characters are allowed. In all other
cases where a date is not specified, the current date () is
used.
							 If the string contains only a date and no time,
this method assumes 12 a.m.
							
								 For information
 on formatting system-supplied data types, see the
 interface.
							
						
						
							 This example demonstrates the method.
							 using System;
using System.Globalization;

public class DateTimeTest {
 public static void Main() {
 DateTimeFormatInfo dtfi = new DateTimeFormatInfo();

 DateTime dt = DateTime.ParseExact(" January 22 ", dtfi.MonthDayPattern, null, DateTimeStyles.AllowWhiteSpaces);
 Console.WriteLine(dt);
 }
}

							 The output is
							
								 1/22/2001
 12:00:00 AM
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
						
						
					
					
						
							 Converts the representation of a date and time to
 its
 equivalent using a specified style, an array
 of expected formats, and culture-specific format information.
						
						 A containing one or more dates and times to convert. The format of the string is required to match the specified format exactly.
						 A array containing the expected formats of
							 For a list of valid values, see .
						
						 A that supplies a object containing culture-specific format information about .
						
							 One or more values that specify the style of . Specify multiple values for using the bitwise OR operator.
						
						
							 A equivalent to the date and time contained in
 .
						
						
							 or is a null reference.
						
							
								 or is an empty string.
							 -or-
							
								 does not contain a date and time that were recognized as the pattern specified in
							
						
						
							
								
constructs a from the
								 . The string is
required to specify a date and, optionally, a
time in the provided format.
							 The string is parsed using the culture-specific
formatting information from the instance supplied by
 . If is or a cannot be obtained from ,
the formatting information for the
current system culture is used.
							 If the string contains only a time, and no date, and if the
parameter is set to the Gregorian year 1, month 1, day 1 are
used, and no leading, trailing, or inner white space characters are allowed. In
all other cases where a date is not specified, the current date () is
used.
							 If the string contains only a date and no time, this method assumes
12 a.m.
							
								 For information
 on formatting system-supplied data types, see the
 interface.
							
						
						
							 This example demonstrates the method.
							 using System;
using System.Globalization;

public class DateTimeTest {
 public static void Main() {
 DateTimeFormatInfo dtfi = new DateTimeFormatInfo();
 string [] patterns = {dtfi.LongTimePattern, dtfi.ShortTimePattern};

 DateTime dt = DateTime.ParseExact("10:11:12", patterns, null, DateTimeStyles.NoCurrentDateDefault);
 Console.WriteLine(dt);
 }
}

							 The output is
							
								 1/1/0001
 10:11:12 AM
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
						
					
					
						
							 Converts the specified representation of a date and time to
 its
 equivalent using a specified format and
 .
						
						 A containing a date and time to convert. The format of the string is required to match the specified format exactly.
						 A containing the expected format of . For a list of valid values, see .
						
						 A that supplies a object containing culture-specific format information about .
						
							 A equivalent to the date and time contained in
 .
						
						
							 or is a null reference.
						
							
								 or is an empty string.
							 -or-
							
								 does not contain a date and time that were recognized as the pattern specified in .
						
						
							
								 constructs a from the string . The string is required to specify a date and,
 optionally, a time in the specified format.
							 The string is parsed using the culture-specific
formatting information from the instance supplied by
 . If is or a cannot be obtained from , the formatting information
for the current system culture is
used.
							 If the string contains only a time, and no date, then
the current date () is used. If the string contains only a date and
no time, this method assumes 12
a.m.
							 Leading, trailing, and inner white space characters are
 not
 allowed.
							
								 For information on formatting system-supplied
 data types, see the
 interface.
							
						
						
							 This example demonstrates the method.
							 using System;
using System.Globalization;

public class DateTimeTest {
 public static void Main() {
 DateTimeFormatInfo dtfi = new DateTimeFormatInfo();

 DateTime dt = DateTime.ParseExact("January 22", dtfi.MonthDayPattern, null);
 Console.WriteLine(dt);
 }
}

							 The output is
							
								 1/22/2001
 12:00:00 AM
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the seconds component of the date represented by the current instance.
						
						
							 A between 0 and 59 set to the seconds component of the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Subtracts a specified from the current instance.
						
						 An instance of .
						
							 A new instance equal to the date and time represented by the
 current instance minus the time interval of the specified .
						
						 The resulting date and time is less than or greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Subtracts a specified date and
 time from the current instance.
						
						 An instance of .
						
							 A interval equal to
 the date and time represented by the current instance minus the date and time
 represented by the specified .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets the number of 100-nanosecond ticks that represent the date and time of the current instance.
						
						
							 A set to the number of ticks that represent the date and
 time of the current instance.
						
						
							 The value of this property is the number of
 100-nanosecond intervals that have elapsed since 00:00:00, 1/1/0001. The value
 of the property is between and

 .
							 This
 property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.TimeSpan
					
					
					
						
							 Gets the
 time of day of the current instance.
						
						
							 A instance set to the
 time component of the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.DateTime
					
					
					
						
							 Gets
 the current date.
						
						
							 A instance set to the date of the current instance, with the time set to
 00:00:00.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
					
						
							 Converts the universal time coordinate (UTC) time value in the current instance to local time.

						
						
							 An instance of equivalent of the time value in the
 current instance, adjusted to the local time zone and daylight saving time. If
 the result is too large or too small to be represented as a , this
 method returns a set to or

 .
						
						
							 This method assumes that the current instance of holds the
 UTC time value, and not a local time. Each time it is invoked, this method
 performs the necessary modifications on the to derive the local time, whether the
 current holds the UTC time or not.
							 The local time zone information is obtained from the operating system.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Converts the date denoted by the current instance to its
 equivalent long date representation.
						
						
							 A containing the same value as a returned by
 ("D",

).
						
						
							 The value of the current instance is formatted using the
 long date format
 specifier, 'D'.
							
								 This format uses the culture of the current thread. To
 specify formatting using a different culture, use
 .
								 For more information regarding the long date specifier,
 see
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Converts the time denoted by the current instance to its
 equivalent long time representation.
						
						
							 A containing the same value as a returned by
 ("T",

).
						
						
							 The value of the current instance is formatted using the
 long time format specifier, 'T'.
							
								 This format uses the culture of the current thread. To
 specify formatting using a different culture, use .
								 For more information regarding the long time specifier,
 see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Converts the date denoted by the current instance to its
 equivalent short date representation.
						
						
							 A containing the same value as a returned by
 ("d",

).
						
						
							 The value of the current instance is formatted using the
 short date format specifier,
 'd'.
							
								 This format uses the culture of the current thread. To specify formatting
 using a different culture, use .
								 For more information regarding the short date specifier, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Converts the time denoted by this instance to its
 equivalent short time representation.
						
						
							 A containing the same value as a returned by
 ("t",

).
						
						
							 The value of the current instance is formatted using the
 short time format specifier,
 't'.
							
								 This format uses the culture of the current thread. To specify formatting
 using a different culture, use .
								 For more information regarding the short time specifier, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of
 the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see .
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system
 culture.
						
						
							 The length of the string is 1, and it is not one of the format specifier characters defined for .
							 -or-
							 The string does not contain a valid custom format pattern.
						
						
							 This version of is equivalent to (,

).
							 If is a null reference, the general
format specifier "G" is used.
							
								 This method uses the culture information of the current
 thread.
								 For information on formatting system-supplied data
 types, see the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes
 into account the current system culture.
						
						
							 This version of is equivalent to ("G",
).
							
								 For more information about the general format specifier
 ("G") see .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of
 the current instance.
						
						 A containing a character that specifies the format of the returned string. For a list of valid values, see .
						
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the information in
 the supplied by .
						
						
							 The length of the string is 1, and it is not one of the format specifier characters defined for .
							 -or-
							 The string does not contain a valid custom format pattern.
						
						
							 If is
 or a
cannot be obtained from , the formatting information for the
current system culture is used.
							 If is a null reference, the general
format specifier "G" is used.
							
								 For more information regarding the standard format
 specifier, see . For
 information on formatting system-supplied data types, see the
 interface.
								 This method is implemented to support the
interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of
 the current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to
(" ",
).
							 If is
 or the
cannot be obtained from , the formatting information for the current system culture
is
used.
							
								 The general format specifier ("G") provides the general
 date pattern including the long time form, equivalent to combined with . For more information on format specifiers, see . For
 information on formatting system-supplied data types, see the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
					
						
							 Converts the current value to coordinated universal time (UTC).
						
						
							 The UTC equivalent of the current value. If the
 result is too large or too small to be represented as a , the current
 function returns a set to or
 .
						
						
							 This method assumes that the current instance of holds the
 local time value, and not a UTC time. Therefore each time it is run, this
 method performs the necessary modifications on the to derive the
 UTC time, whether the current holds the local time or not.

							 The local time zone information is obtained from the
 operating system.

						
					
					 0
				
				
					
					
					 Property
					
						 System.DateTime
					
					
					
						
							 Gets the current
 time converted to coordinated
 universal time (UTC).
						
						
							 A instance set to the current date and time in coordinated universal time (UTC).
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the year component of the date represented by the current instance.
						
						
							 A between 1 and 9999 set to the year component of the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Defines culture-specific formats and patterns for
 values.
				
				
					
						 values are formatted by the and
 methods according to standard or custom patterns stored
 in the properties of a instance. The standard patterns can be
 accessed and modified through the associated properties.
 The format patterns and properties of a
 read-only instance cannot be changed. To determine
 whether a instance is read-only, use the property.
					
					 Date and time format patterns are specified using
 strings called . A string is interpreted as standard
 format specifier if it contains exactly one standard format specifier character.
 If the string contains a single character and that character is not one of the
 standard format specifiers, an exception is thrown. If the string contains two
 or more characters, even if the extra characters are white spaces, the string is
 interpreted as a custom format specifier. Format specifiers and format patterns
 are case-sensitive; for example, 'g' and 'G' represent different

 patterns.
					 The following table shows the standard format specifiers and the associated
 format pattern defined for the invariant culture. The exact pattern produced by
 a format specifier is influenced by culture-specific date and/or time settings
 on the current system; computers with different date and time settings might
 display different patterns. The asterisk at the end of a format pattern
 indicates that the preceding character can be repeated without changing the
 meaning of the pattern. For example, the pattern "HH*" indicates that the
 strings "HH", "HHH", "HHHH", and "HHHHH" produce the same result when used with
 and methods.
					
						
							 Format Specifier
							 Format Pattern
							 Description
						
						
							 d
							 MM/dd/yyyy
							 The full date in numeric format (
).
						
						
							 D
							 dddd*, dd MMMM* yyyy
							 The full date including the day of the week and the
 name of the month (
).
						
						
							 f
							 dddd*, dd MMMM* yyyy HH*:mm*
							 The full date and time, including the day of the week
 and the name of the month (combined with
).
						
						
							 F
							 dddd*, dd MMMM* yyyy HH*:mm*:ss*
							 The full date and time, including the seconds
 (equivalent to
 combined with
).
						
						
							 g
							 MM/dd/yyyy HH*:mm*
							 A
 general date pattern including the short time form (combined with

).
						
						
							 G
							 MM/dd/yyyy HH*:mm*:ss*
							 A
 general date pattern including the long time form (combined with
).
						
						
							 m, M
							 MMMM* dd
							 The full name of the month and the date ().
						
						
							 t
							 HH*:mm*
							 The time in short format ().
						
						
							 T
							 HH*:mm*:ss*
							 The time in long format ().
						
						
							 U
							 dddd*, dd MMMM* yyyy HH*:mm*:ss*
							 The
 full date and time, including the seconds, in the Gregorian calendar (

).
						
						
							 y, Y
							 yyyy MMMM*
							 The full name of the month and the year in four-digit
 format (
).
						
					
The following table lists custom format specifiers that can be combined to
construct custom patterns. If the custom pattern contains white space
characters, characters enclosed in single or double quotation marks, or
characters not defined in the following table, these characters are considered
literals and are included in the output string unchanged.
 See the class for the
list of white space characters.
					
						
							 Format Pattern
							 Description
							 Examples
						
						
							 d
							 The
 day of the month as a value in the range 1-31, inclusive. Single-digit days do
 not have a leading zero.
							
								 1
								 22
							
						
						
							 dd
							 The
 day of the month as a value in the range 1-31, inclusive. Single-digit days have a leading zero.
							
								 01
								 22
							
						
						
							 ddd
							 The abbreviated name of the day of the week, as
 defined in
 .
							 Mon
						
						
							 dddd*
							 The full name of the day of the week, as defined in
 .
							 Monday
						
						
							 M
							 The
 numeric month as a value in the range 1-12, inclusive. Single-digit months do not have a leading zero.
							
								 2
								 11
							
						
						
							 MM
							 The
 numeric month as a value in the range 1-12, inclusive. Single-digit months have a leading zero.
							
								 02
								 11
							
						
						
							 MMM
							 The abbreviated name of the month, as defined in

 .
							 Feb
						
						
							 MMMM*
							 The full name of the month, as defined in .
							 February
						
						
							 y
							 The year without the century (two-digit). If the value is less than
 10, the year is displayed with no leading zero.
							
								 0
								 3
							
						
						
							 yy
							 The year without the century (two-digit). If the year without the
 century is less than 10, the year is displayed with a leading zero.
							
								 00
								 03
							
						
						
							 yyyy
							 The year including the century in four digits.
							
								 2000
								 2003
							
						
						
							 g*
							 The name of a period or era (such as "A.D." or "B.C."). This pattern
 is ignored if the date to be formatted does not have an associated period
 or era string.
							 A.D.
						
						
							 h
							 The hour
 within a 12-hour range as a value in the range 1-12, inclusive. Single-digit
 hours do not have a leading zero. The value represents whole hours passed since either midnight
 (12) or noon (12). To distinguish between values occurring before and after noon, include the "t" or "tt*" custom
 format specifier.
							
							
								 3
								 11
							
						
						
							 hh*
							 The
 hour within a 12-hour range as a value in the range 1-12, inclusive.
 Single-digit hours have a leading zero. The value represents whole hours passed since either midnight
 (12) or noon (12). To distinguish between values occurring before and after noon, include the "t" or "tt*" custom format
 specifier.
							
							
								 03
								 11
							
						
						
							 H
							 The hour as a value in the range 0-23, inclusive.
 Single-digit hours do not have a leading zero. The value represents whole hours passed since
 midnight.
							
							
								 3
								 13
							
						
						
							 HH*
							 The hour as a value in the range 0 and 23, inclusive.
 Single-digit hours have a leading zero. The value represents whole hours passed since
 midnight.
							
							
								 03
								 13
							
						
						
							 m
							 The minute
 as a value in the range 0-59, inclusive. Single-digit minutes do not
 have a leading zero. The value
 represents whole minutes passed since the last hour.
							
							
								 5
								 15
							
						
						
							 mm*
							 The minute
 as a value in the range 0-59, inclusive. Single-digit minutes have a
 leading zero. The value represents
 whole minutes passed since the last hour.
							
							
								 05
								 15
							
						
						
							 s
							 The
 second as a value in the range 0-59, inclusive. Single-digit seconds do
 not have a leading zero. The
 value represents whole seconds passed since the last minute.
							
							
								 1
								 30
							
						
						
							 ss*
							 The
 second as a value in the range 0-59, inclusive. Single-digit seconds have
 a leading zero. The value represents
 whole seconds passed since the last minute.
							
							
								 01
								 30
							
						
						
							 f
							 Displays fractional
 seconds represented in one digit.
							 1
						
						
							 ff
							 Displays fractional seconds represented in two digits.
							 01
						
						
							 fff
							 Displays fractional seconds represented in three digits.
							 001
						
						
							 ffff
							 Displays fractional seconds represented in four digits.
							 0001
						
						
							 fffff
							 Displays fractional seconds represented in five digits.
							 00001
						
						
							 ffffff
							 Displays fractional seconds represented in six digits.
							 000001
						
						
							 fffffff
							 Displays fractional seconds represented in seven digits.
							 0000001
						
						
							 t
							 The
 first character of the AM/PM designator defined in the property or . If the total number of hours passed since midnight is less
 than 12, the A.M. designator is used; otherwise the P.M. designator is
 used.
							
							
								 A
								 P
							
						
						
							 tt*
							 The AM/PM designator defined in the property or . If the total number of hours passed since midnight is less
 than 12, the A.M. designator is used; otherwise the P.M. designator is
 used.
							
							
								 AM
								 PM
							
						
						
							 z
							 The time zone offset (hour only) from the universal
 time coordinate (UTC) time (Greenwich Mean Time) as a value in the range
 -12 to +13, inclusive. Single-digit hours do not have a leading zero.
 The value always includes a leading sign (zero is '+0'), indicating hours ahead of UTC time (+) or hours behind UTC time
 (-). The offset takes Daylight Savings Time into account.
							
							 -8
						
						
							 zz
							 The time zone offset (hour only) from the UTC time
 (Greenwich Mean Time) as a value in the range -12 to +13, inclusive.
 Single-digit hours have a leading zero. The value always includes a leading sign (zero is
 '+0'), indicating hours ahead of UTC time (+) or hours behind UTC time (-). The
 offset takes Daylight Savings Time into account.
							
							 -08
						
						
							 zzz*
							 The full time zone offset (hour and minutes) from the
 UTC time (Greenwich Mean Time) as a value in the range -12:00 to +13:00,
 inclusive. Single-digit hours and minutes have leading zeros. The value always includes a leading sign (zero is '+0'), indicating hours ahead of UTC time (+) or hours behind
 UTC time (-). The offset takes Daylight Savings Time
 into account.
							
							 -08:00
						
						
							 :
							 The
 invariant culture time separator defined in
 .
							 :
						
						
							 /
							 The
 invariant culture date separator defined in the
 .
							 /
						
						
							
								
							
							
								 represents a single custom format character.
 Produces the custom format pattern associated with the format character
 . The % specifier provides a mechanism for specifying
 a single custom format character and having it recognized as a custom
 specifier. This format is intended for characters that define both a
 custom and a standard format. Note that a format string containing
 exactly one such character will be interpreted as a standard format
 specifier unless prefaced with the %. For example, for the invariant culture, "%d" produces the
 single or double digit date, while "d" produces the date
 in "MM/dd/yyyy" format. Without the %, a format string containing one
 character would have to include leading or trailing white space
 to be interpreted as a custom specifier because custom formats are required to have two
 or more characters.
							
							 "%y" produces a two digit year without a leading zero, and not the
 "MMMM, yyyy" pattern.
						
						
							
								
							
							
								 represents any character predefined as part of
 a format specifier. Prevents the character from being interpreted as a
 format specifier (the character is treated as a literal). In
 programming languages where the backslash ('\') character is used to
 specify control sequences such as newline (\n), the backslash character is required to be
 specified twice. For example, in C#, "\d" is coded as
 "\\d".
							
							 "\d" produces the character 'd', and not the day of the
 month.
						
						
							 ' ' or " "
							
								 represents a string of characters of any length. The
 characters are treated as literals.
							 "'d'" produces the character 'd', and not the day of the
 month.
						
					
				
			
			
				 System.Object
			
			
				
					 System.ICloneable
					 0
				
				
					 System.IFormatProvider
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class that is culture-independent (invariant).
						
						
							 The new instance of is not read-only, and its properties can be modified with user-defined patterns.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String[]
					
					
					
						
							 Gets or sets a one-dimensional array of type
containing the
culture-specific abbreviated names of the days of the week.
						
						
							 A one-dimensional array of type
containing the culture-specific abbreviated names of the days of the week.
						
						 The value specified for a set operation is a null reference.
						 The value specified for a set operation is not an array with exactly 7 elements.
						 The current instance is read-only and a set operation was attempted.
						
							 The array specified in a set operation is required
 to be one-dimensional and have exactly seven elements. The first element of the
 array is the abbreviated day name for Sunday, and the last element is the name for Saturday.
							 The property value of the culture invariant is a array that contains "Sun", "Mon", "Tue", "Wed", "Thu", "Fri" and "Sat".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String[]
					
					
					
						
							 Gets or sets a one-dimensional array of type
containing the culture-specific abbreviated names of the months.
						
						
							 A one-dimensional array of type
containing the abbreviated names of the months. For
cultures with 12-month calendars the 13th element of the array is an empty string.
						
						 The value specified for a set operation is a null reference.
						 The value specified for a set operation is not an array with exactly 13 elements.
						 The current instance is read-only and a set operation was attempted.
						
							 The specified in a set operation is required
 to be one-dimensional and have exactly 13 elements.
							 The property value of the culture invariant is a array that contains
"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" and "".
							
								 The array returned
 by this property has 13 elements to support calendars with 13 months.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the culture-specific
 designator for hours that are "ante meridiem" (before noon).
						
						
							 The designator for hours that are before noon.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The property value of the culture invariant returns the "AM".
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Creates a copy of the current instance.
						
						
							 A new instance with property
 values equal to the property values of the original instance.
						
						
							 The method creates a new instance of the same type as the
 current instance, and then copies the contents of each of the current instance's non-static fields.
							 The new instance is not read-only, and its properties can be modified with user-defined patterns.
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Globalization.DateTimeFormatInfo
					
					
					
						
							 Gets a read-only instance that formats values based on the current culture.
						
						
							 A read-only instance based on the
 culture of the current thread.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the culture-specific to use to separate the year, month, and day components of a date.
						
						
							 The to use to separate the year, month and day components of a date.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The property value of the culture invariant is "/".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String[]
					
					
					
						
							 Gets or sets a one-dimensional array of type
containing the culture-specific full names of the days of the week.
						
						
							 A one-dimensional array of type containing the full names of the days of the week.
						
						 The value specified for a set operation is a null reference.
						 The value specified for a set operation is not an array with exactly 7 elements.
						 The current instance is read-only and a set operation was attempted.
						
							 The array specified in a set operation is required
 to be one-dimensional and have exactly seven elements. The first element of the
 array is the abbreviated day name for Sunday, and the last element is the name for Saturday.
							 The property value of the culture invariant is a array that contains "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" and "Saturday".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the format pattern for a long date and long time value.
						
						
							 A containing the format pattern for a long date and long time value.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The and methods associate the
 format pattern returned by this property with the 'F' format character.
							 The property value of the culture invariant is "dddd, dd MMMM yyyy HH:mm:ss".
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Gets the abbreviated name of the specified month based
 on the culture of the current thread.
						
						 A from 1 through 13 representing the month name to retrieve.
						
							 A containing the abbreviated name of the month represented by
 . For cultures with 12-month calendars, the empty string is
 returned as the name of the 13th month.
						
						
							 is less than 1 or greater than 13.
						
							 For the default (culture-invariant) instance, this method returns one of the
 following strings:
							
								
									
										
									
									 Return Value
								
								
									 1
									 "Jan"
								
								
									 2
									 "Feb"
								
								
									 3
									 "Mar"
								
								
									 4
									 "Apr"
								
								
									 5
									 "May"
								
								
									 6
									 "Jun"
								
								
									 7
									 "Jul"
								
								
									 8
									 "Aug"
								
								
									 9
									 "Sep"
								
								
									 10
									 "Oct"
								
								
									 11
									 "Nov"
								
								
									 12
									 "Dec"
								
								
									 13
									 ""
								
							
							
								 This method supports calendars with 13 months.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Gets a representing the specified era.
						
						 A containing the name of the era.
						
							 A representing the era. If is invalid, returns -1.
						
						
							 is a null reference.
						
							 The value specified for is case-insensitive.
							
								 An era name is a
 culturally specific name for a period of time marked by distinctive characters or
 reckoned from a fixed point or event. For example "A.D." and "B.C." are two eras of the Gregorian calendar.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Gets the containing the name of the specified era.
						
						 A representing the era.
						
							 A containing the name of the era.
						
						
							 does not represent a valid era in calendar for the current thread.
						
							
								 An era name is a
 culturally specific name for a period of time marked by distinctive characters or
 reckoned from a fixed point or event. For example "A.D." and "B.C." are two eras
 of the Gregorian calendar.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Returns an object of the specified type that provides formatting services.
						
						 The of the formatting object to be returned.
						
							 The current instance, if is of type ; otherwise, a null reference.
						
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Gets the full name of the specified month based on the
 culture of the current thread.
						
						 A from 1 through 13 representing the month name to retrieve.
						
							 A containing the full name of the month represented by
 . For cultures with 12-month calendars the empty string is
 returned as the name of the 13th month.
						
						
							 is less than 1 or greater than 13.
						
							 For the default (culture invariant) instance, this method returns one of the
 following strings:
							
								
									
										
									
									 Return Value
								
								
									 1
									 "January"
								
								
									 2
									 "February"
								
								
									 3
									 "March"
								
								
									 4
									 "April"
								
								
									 5
									 "May"
								
								
									 6
									 "June"
								
								
									 7
									 "July"
								
								
									 8
									 "August"
								
								
									 9
									 "September"
								
								
									 10
									 "October"
								
								
									 11
									 "November"
								
								
									 12
									 "December"
								
								
									 13
									 ""
								
							
							
								 This method supports calendars with 13 months.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Globalization.DateTimeFormatInfo
					
					
					
						
							 Gets a culture invariant instance of that is read-only.
						
						
							 A read-only instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current
 instance is read-only.
						
						
							
								 if the is read-only; otherwise, .
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the format pattern for a long date value.
						
						
							 A containing the format pattern for a long date value.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The and methods associate the format
 pattern returned by this property with the 'D' format character.
							 The property value of the culture invariant is "dddd, dd MMMM yyyy".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the format pattern for a long time value.
						
						
							 A containing the format pattern for a long time value.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The and methods associate the format
 pattern returned by this property with the 'T' format character.
							 The property value of the culture invariant is "HH:mm:ss".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the format pattern for a month and day value.
						
						
							 A containing the format pattern for a month and day value.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The and methods associate the format
 pattern returned by this property with the 'm' and 'M' format characters.
							 The property value of the culture invariant is "MMMM dd".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String[]
					
					
					
						
							 Gets or sets a one-dimensional array of type
containing the culture-specific full names of the months.
						
						
							 A one-dimensional array of type
containing the full names of the months. For
cultures with 12-month calendars the 13th element of the array is an empty string.
						
						 The value specified for a set operation is a null reference.
						 The value specified for a set operation is not an array with exactly 13 elements.
						 The current instance is read-only and a set operation was attempted.
						
							 The array specified in a set operation is required
 be one-dimensional and have exactly 13 elements.
							 The property value of the culture invariant is a array that contains
 "January", "February", "March", "April", "May", "June", "July", "August",
 "September", "October", "November", "December" and "".
							
								 The array
 returned by this property has 13 elements to support calendars with 13 months.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the culture-specific designator for hours that are "post meridiem" (after noon).
						
						
							 The designator for hours that are after noon.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The property value of the culture invariant is "PM".
						
					
					 0
				
				
					
					
					 Method
					
						 System.Globalization.DateTimeFormatInfo
					
					
						
					
					
						
							 Returns a read-only copy of the specified instance of
 .
						
						 The to copy.
						
							 A read-only instance of that is a copy of .
						
						
							 is a null reference.
						
							
								 Use a read-only copy to prevent modifications to the
 specified instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the format pattern for a short date value.
						
						
							 A containing the format pattern for a short date value.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The and methods associate the format
 pattern returned by this property with the 'd' format character.
							 The property value of the culture invariant is "MM/dd/yyyy".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the format pattern for a short time value.
						
						
							 A containing the format pattern for a short time value.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The and methods associate the format
 pattern returned by this property with the 't' format character.
							 The property value of the culture invariant is "HH:mm".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the culture-specific to use to separate the components of time values (hour, minutes, seconds).
						
						
							 The to use to separate the components of time; that is, the hour, the minutes and the seconds.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The property value of the culture invariant is ":".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the format pattern for a year and month value.
						
						
							 The format pattern for a year and month value.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The and
methods associate the format pattern returned by this property with the
'y' and 'Y' format character.
							 The property value of the culture invariant is "yyyy MMMM".
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Converts blocks of bytes into blocks of characters,
 maintaining state across successive calls for reading from a .

				
				
					
						 Following instantiation of a decoder,
 sequential blocks of bytes are converted into blocks of characters through calls
 to the method. The decoder maintains state between the
 conversions, allowing it to correctly decode a character whose bytes span
 multiple blocks. This greatly assists decoding streams of bytes into
 characters. An instance of a specific implementation of the

 class is typically obtained through a call to the
 method of a object.
					
				
				
					 The following example demonstrates using the
implementation of the class to convert two byte arrays to a character
array, where one character's bytes span multiple byte arrays. This demonstrates
how to use a
in streaming-like situations.
					
using System;
using System.Text;

public class DecoderExample
{
 public static void Main()
 {
 // These bytes in UTF-8 correspond to 3 different
 // Unicode characters - A (U+0041), # (U+0023),
 // and the biohazard symbol (U+2623). Note the
 // biohazard symbol requires 3 bytes in UTF-8
 // (in hex, e2, 98, a3). Decoders store state across
 // multiple calls to GetChars, handling the case
 // when one char spans multiple byte arrays.

 byte[] bytes1 = { 0x41, 0x23, 0xe2 };
 byte[] bytes2 = { 0x98, 0xa3 };
 char[] chars = new char[3];

 Decoder d = Encoding.UTF8.GetDecoder();
 int charLen = d.GetChars(bytes1, 0, bytes1.Length,
 chars, 0);
 // charLen is 2.

 charLen += d.GetChars(bytes2, 0, bytes2.Length,
 chars, charLen);
 // charLen is now 3.

 foreach(char c in chars)
 Console.Write("U+{0:x} ", (ushort)c);
 }
}

					 The output is
					
						 U+41 U+23 U+2623
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.

						
						
							 This constructor is called only by classes that inherit from the class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Determines the exact number of characters that will be produced by
 decoding the specified range of the specified array of
 bytes.

						
						 A array to decode.
						 A that specifies the first index in to decode.
						 A that specifies the number elements in to decode.
						
							 A containing
 the number of characters the next call to will produce if presented with the
 specified range of
 .
							
								 This value takes into account the state in which the current instance was
 left following the last call to . This
 contrasts with , which does not maintain state information
 across subsequent calls.
							
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
						
						
							
								 As described
 above.
							
							
								 Override this
 method

 to return the appropriate value for a
 particular encoding.
							
							
								 Use this method to
 determine the appropriate size of a buffer to contain the
 decoded values.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Decodes the specified range of the specified array of bytes into the specified range
 of the specified array of characters for a particular encoding.

						
						 A array to decode.
						 A that specifies the first index of from which to decode.
						 A that specifies the number elements in to decode.
						 A array of characters to decode into.
						 A that specifies the first index of to store the decoded bytes.
						
							 A containing
 the number of characters decoded into for a
 particular encoding.

						
						
							
								 does not contain sufficient space to store the decoded characters.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
							 -or-
							
								 > .Length.
						
						
							
								
									 can be used to determine the exact number of
 characters that will be produced for a specified range of bytes.
 Alternatively, of the object that produced the current instance can be used to
 determine the maximum number of characters that might be produced for a specified
 number of bytes, regardless of the actual byte values.
							
							
								 As described above.
							
							
								 Override this method to decode the values of a array for a
particular encoding.
							
							
								 Use this method to
 decode the elements of a byte array for a particular encoding.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 A class used to create types that invoke methods.
				
				
					 Delegate types derive from the class. The declaration of a delegate type
 establishes a contract that specifies the signature of one or more methods. For an example of a delegate type
 declaration, see the examples at the end of this topic.
					
					 Delegate types are implicitly sealed: it is not permissible to derive a new
 type from a delegate type. The class is not
 considered a delegate type; it is a class used to derive delegate
 types.
					
					
						 For information on subclassing the Delegate class,
 see Partition II of the CLI Specification.
					
					 A delegate is an instance of a delegate type. A non-null
 delegate references an , which is made up of one or more
 entries. Each entry consists of a pair of values: a non-null method, and a
 corresponding object, called the . If the method is static, the
 corresponding target is
 , otherwise the target is the instance
 on which the method is to be called.
					 The signature of each method in the invocation list is required to exactly
 match the signature specified by the delegate's type.
					 When a delegate is invoked, the methods in the corresponding invocation list
 are invoked in the order in which they appear in that list. A delegate attempts
 to invoke every method in its invocation list, with duplicate methods being
 invoked once for each occurrence in that list.
					 Delegates are immutable; once created, the invocation list of a delegate does
 not change. Combining operations, such as and
 , cannot alter existing delegates. Instead, such operations
 result in the return of either a new delegate that contains the results
 of the operation, an existing delegate, or the null value. A combining operation returns the null value when the
 result of the operation is an empty invocation list. A combining operation
 returns an existing delegate when the requested operation has no effect (for
 example, if an attempt is made to remove a nonexistent entry).
					
					 If an invoked method throws an exception, the
 method stops executing and the exception is passed back to the caller of the
 delegate. The delegate does not continue invoking methods from its invocation
 list. Catching the exception in the caller does not alter this behavior. It is
 possible that non-standard methods that implement combining operations allow the
 creation of delegates with different behavior. When this is the case, the
 non-standard methods are required to specify the behavior.
					 When the signature of the methods invoked by a delegate includes a return value,
 the delegate returns the return value of the last element in the invocation
 list. When the signature includes a parameter that is passed by reference,
 the final value of the parameter is the result of every method in the invocation
 list executing sequentially and updating the parameter's value.
 For an example that
 demonstrates this behavior, see Example 2.
					
				
				
					
						
					
					 The following example creates two delegates. The first
 delegate invokes a static method, and the second invokes an instance method on a target object.
					 using System;
public delegate string DelegatedMethod(string s);
class MyClass {
 public static string StaticMethod(string s) {
 return ("Static method Arg=" + s);
 }
 public string InstanceMethod(string s) {
 return ("Instance method Arg=" + s);
 }
}
class TestClass {
 public static void Main() {
 MyClass myInstance = new MyClass();
 //Create delegates from delegate type DelegatedMethod.
 DelegatedMethod delStatic = new DelegatedMethod(MyClass.StaticMethod);
 DelegatedMethod delInstance = new DelegatedMethod(myInstance.InstanceMethod);
 //Invoke the methods referenced by the delegates.
 Console.WriteLine (delStatic("Call 1"));
 Console.WriteLine (delInstance ("Call 2"));
 }
}

					 The output is
					
						 Static method Arg=Call 1
						 Instance method Arg=Call 2
					
					
						
					
					 The following example shows the return value and the
 final value of a parameter that is passed by reference to a delegate that invokes multiple methods.
					 using System;
class MyClass {
 public int Increment(ref int i) {
 Console.WriteLine("Incrementing {0}",i);
 return (i++);
 }
 public int Negate(ref int i) {
 Console.WriteLine("Negating {0}",i);
 i = i * -1;
 return i;
 }
}

public delegate int DelegatedMethod(ref int i);
class TestClass {
 public static void Main() {
 MyClass myInstance = new MyClass();
 DelegatedMethod delIncrementer = new DelegatedMethod(myInstance.Increment);
 DelegatedMethod delNegater = new DelegatedMethod(myInstance.Negate);
 DelegatedMethod d = (DelegatedMethod) Delegate.Combine(delIncrementer, delNegater);
 int i = 1;
 Console.WriteLine("Invoking delegate using ref value {0}",i);
 int retvalue = d(ref i);
 Console.WriteLine("After Invoking delegate i = {0} return value is {1}",i, retvalue);
 }
}

					 The output is
					
						 Invoking delegate using ref value 1
						 Incrementing 1
						 Negating 2
						 After Invoking delegate i = -2 return value is -2
					
				
			
			
				 System.Object
			
			
				
					 System.ICloneable
					 0
				
			
			
			
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Creates a copy of the current instance.
						
						
							 A that is a copy of the current instance.
						
						
							 The method creates a new instance of the
 same type as the current instance and then copies the contents of each of the current instance's non-static fields.
							
								 This method is
 implemented to support the interface.
							
							
								 The returned object must have the exact same type and invocation list as the current instance.
							
							
								
 The default implementation of the method creates a new instance, which is the
 exact same type as the current instance, and then copies the contents of each of
 the current instance's non-static fields. If the field is a value type, a
 bit-by-bit copy of the field is performed. If the field is a reference type, the
 object referenced by the field is not copied; instead, the returned object
 contains a copy of the reference. This behavior is identical to .

							
							
								
 Subclasses of
 should
 override to customize the way in which copies of the subclass are constructed.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Delegate
					
					
						
						
					
					
						
							 Concatenates the invocation lists of the specified
 delegates.
						
						 The delegate whose invocation list will be first in the invocation list of the new delegate.
						 The delegate whose invocation list will be last in the invocation list of the new delegate.
						
							 A delegate, or .
							 The following table describes the value returned
 when or is

.
							
								
									 a
									 b
									 Return Value
								
								
									 null
									 null
									 null
								
								
									 null
									 non-null
									
										
									
								
								
									 non-null
									 null
									
										
									
								
							
							 When and are non-null, this method
returns a new delegate with the concatenated invocation lists of and
 .
						
						
							
								 and are not and not of the same type.
						
						
							 Unless or is , and
 are required
 to be the exact same type.
							 Consider the following situation, in which D1, D2, D3, D4, and D5 are
 delegate instances of the same type, D1's invocation list has one entry, E1, and
 D2's invocation list has one entry, E2.
							 Then, D3 = Combine(D1, D2) results in D3's having an invocation list of E1 +
 E2.
							 Then, D4 = Combine(D2, D1) results in D4's having an invocation list of E2 +
 E1.
							 Then, D5 = Combine(D3, D4) results in D5's having an invocation list of E1 +
 E2 + E2 + E1.
							
								 The invocation list of the returned
 delegate can contain duplicate methods.

								
									 is useful for creating event handlers that call multiple
 methods each time an event occurs.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Delegate
					
					
						
					
					
						
							 Concatenates the invocation lists of the specified
 delegates.
						
						 An array of delegates of the exact same type.
						
							 A new delegate, or if is or has only

elements.
						
						
							 The non- delegates in are not of the same type.
						
						
							 The invocation list of the returned delegate is
 constructed by concatenating the invocation lists of the delegates in
 , in increasing subscript order. For example, consider the
 following situation, in which the elements of delegates have the following
 invocation lists (where En represents an entry in an invocation list, and null
 represents an empty invocation list): [0] = E1, [1] = null, [2] = E2 + E3, and
 [3] = E4 + E5 + E6. When these elements are combined, the resulting delegate
 contains the invocation list E1 + E2 + E3 + E4 + E5 + E6.
							 Null elements in are not included in the returned
 delegate.
							
								 The invocation list of the returned
 delegate can contain duplicate methods.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Delegate
					
					
						
						
						
					
					
						
							 Returns a new delegate with the specified target
 and instance method as its invocation list.
						
						 The of the delegate to return. This is required to derive from .
						 An instance of an object that implements .
						 A containing the name of the instance method to be invoke on .
						
							 A of type
 that invokes on .
						
						
							
								 is .
						
						
							
								 does not derive from .
							 -or-
							
								 is not an instance method.
							 -or-
							
								 does not implement .
						
						
							 The caller does not have the required permission.
						
						
							
								 This method is used to dynamically
 create delegates that invoke instance methods. To create a delegate that invokes
 static methods, see (, ,).
							
						
						 Requires permission to access type information. See
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Delegate
					
					
						
						
						
					
					
						
							 Returns a new delegate with the specified
 static method as its invocation list.
						
						 The of delegate to return. This is required to derive from .
						 A representing the class that implements .
						 A containing the name of the static method implemented by .
						
							 A of type that invokes
							
						
						
							
								 is .
						
						
							
								 does not derive from .
							 -or-
							
								 is not a static method.
							 -or-
							
								 does not implement .
						
						
							 The caller does not have the required permission.
						
						
							
								 This method is used to dynamically
 create delegates that invoke static methods. To create a delegate that invokes
 instance methods, see (, ,).
							
						
						 Requires permission to access type information. See
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Delegate
					
					
						
						
					
					
						
							 Returns a new delegate with the specified static
 method as its invocation list.
						
						 The of to return. This is required to derive from .
						 A that reflects a static method.
						
							 A of type that invokes
							
						
						
							 or is .
						
							
								 does not derive from .
							 -or-
							
								 does not reflect a static method.
						
						
							 The method of the delegate was not found.
						
						
							 The caller does not have the required permission.
						
						
							
								 This method is used to dynamically
 create delegates that invoke static methods. To create a delegate that invokes
 instance methods, see (, ,).
							
						
						 Requires permission to access type information. See
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Causes a delegate to invoke the methods in its invocation
 list using the specified arguments.
						
						
							 An array of instances that are to be passed to the methods in the invocation list of the current instance. Specify if the methods invoked by the current instance do not take arguments.
						
						
							 The returned by the
 last method in the invocation list of the current instance.
						
						
							 The type of one or more elements in is invalid as a parameter to the methods implemented by the current instance.
						
						
							 The caller does not have the required permissions.
							 -or-
							 The number, order or type of parameters listed in is invalid.
						
						
							 A method in the invocation list of the current instance is an instance method and its target object is .
							 -or-
							 A method in the invocation list of the current instance was invoked on a target object or a class that does not implement it.
						
						
							 The number of elements in is not equal to the number of parameters required by the methods invoked by the current instance.
						
						 A method in the invocation list of the current instance threw an exception.
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the
 specified object is equal to the current instance.
						
						 The to compare with the current instance.
						
							
								 if is equal to the
 current instance, otherwise .
						
						
							 Two delegates are equal if they are not null and are of
 the exact same type, their invocation lists contain the same number of elements,
 and every element in the invocation list of the first delegate is equal to
 the element in the corresponding position in the invocation list of the second delegate.
							 Two invocation list elements are equal if they invoke the same
 instance method on the same target instance, or they invoke the same static method.
							
								 This method
 overrides
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for this instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides

 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Delegate[]
					
					
					
						
							 Returns the invocation list of the current delegate.
						
						
							 An ordered set of instances whose invocation lists collectively match those of the current delegate.
						
						
							
								
 The
 array contains a set of delegates, each having an invocation list of one
 entry. Invoking these delegates sequentially, in the order in which they appear in the
 array, produces the same results as invoking the current delegate.

							
							
								
 Override
 when subclassing Delegate.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Reflection.MethodInfo
					
					
					
						
							 Gets the last method in a delegate's invocation
 list.
						
						
							 A
.
						
						 The caller does not have the required permissions.
						
							 This property is read-only.
						
						 Requires permission to access type information. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the specified delegates are equal.
						
						 The first delegate to compare.
						 The second delegate to compare.
						
							
								 if
 .Equals() returns ;
 otherwise, .
						
						
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the specified Delegates are not equal.
						
						 The first delegate to compare.
						 The second delegate to compare.
						
							
								 if
 .Equals() returns
 ; otherwise, .
						
						
							
								 See .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Delegate
					
					
						
						
					
					
						
							 Removes the invocation list of a from the
 invocation list of another delegate.
						
						 The delegate from which to remove the invocation list of .
						 The delegate that supplies the invocation list to remove from .
						
							 Returns a new delegate, , or .
							 If and are not , are not equal, and the
invocation list of is contained in the invocation list of source,
returns a new delegate with the invocation list of removed from
the invocation list of .
							 If the invocation lists of and are equal,
returns
.
							 If the invocation list of is not found in the invocation list
of , returns .
							 The following table describes the value returned when or
 is
 .
							
								
									
										
									
									
										
									
									 Return value
								
								
									 null
									 null
									 null
								
								
									 null
									 non-null
									 null
								
								
									 non-null
									 null
									
										
									
								
							
						
						
							 The invocation list of is required to be
 an exact match of a contiguous set of elements in the invocation list of
 . If the invocation list of occurs more than once
 in the invocation list of , the last occurrence is removed.
						
						
							 The following example demonstrates the method.
							 using System;
class MyClass {
 public string InstanceMethod(string s) {
 return ("Instance String " + s);
 }
}
class MyClass2 {
 public string InstanceMethod2(string s) {
 return ("Instance String2 " + s);
 }
}
public delegate string DelegatedMethod(string s);

class TestClass {
 public static void WriteDelegate (string label, Delegate d) {
 Console.WriteLine("Invocation list targets for {0}:",label);
 foreach(Delegate x in d.GetInvocationList())
 Console.WriteLine("{0}",x.Target);
 }

 public static void Main() {
 MyClass myInstance = new MyClass();
 DelegatedMethod delInstance = new DelegatedMethod(myInstance.InstanceMethod);
 MyClass2 myInstance2 = new MyClass2();
 DelegatedMethod delInstance2 = new DelegatedMethod(myInstance2.InstanceMethod2);
 DelegatedMethod [] sourceArray = {delInstance, delInstance2, delInstance2, delInstance};
 DelegatedMethod [] remove1 = {delInstance};
 DelegatedMethod [] remove2 = {delInstance2, delInstance2};
 DelegatedMethod [] remove3 = {delInstance2, delInstance};
 DelegatedMethod [] remove4 = {delInstance, delInstance2};
 DelegatedMethod [] remove5 = {delInstance, delInstance};
 Delegate source = Delegate.Combine(sourceArray);
 // Display invocation list of source
 TestClass.WriteDelegate("source", source);
 //Test 1: value occurs in source twice.
 Delegate value1 = Delegate.Combine(remove1);
 Delegate result1 = Delegate.Remove(source, value1);
 TestClass.WriteDelegate("value1", value1);
 if (result1==null) {
 Console.WriteLine("removal test 1 result is null");
 } else {
 TestClass.WriteDelegate("result1", result1);
 }
 //Test 2: value matches the middle two elements of source.
 Delegate value2 = Delegate.Combine(remove2);
 Delegate result2 = Delegate.Remove(source, value2);
 TestClass.WriteDelegate("value2", value2);
 if (result2==null) {
 Console.WriteLine("removal test 2 result2 is null");
 } else {
 TestClass.WriteDelegate("result2", result2);
 }
 //Test 3: value matches the last two elements of source.
 Delegate value3 = Delegate.Combine(remove3);
 Delegate result3 = Delegate.Remove(source, value3);
 TestClass.WriteDelegate("value3", value3);
 if (result3==null) {
 Console.WriteLine("removal test 3 result3 is null");
 } else {
 TestClass.WriteDelegate("result3", result3);
 }
 //Test 4: value matches the first two elements of source.
 Delegate value4 = Delegate.Combine(remove4);
 Delegate result4 = Delegate.Remove(source, value4);
 TestClass.WriteDelegate("value4", value4);
 if (result4==null) {
 Console.WriteLine("removal test 4 result4 is null");
 } else {
 TestClass.WriteDelegate("result4", result4);
 }
 //Test 5: value does not occur in source.
 Delegate value5 = Delegate.Combine(remove5);
 Delegate result5 = Delegate.Remove(source, value5);
 TestClass.WriteDelegate("value5", value5);
 if (result5==null) {
 Console.WriteLine("removal test 5 result5 is null");
 } else {
 TestClass.WriteDelegate("result5", result5);
 }
 //Test 6: value exactly matches source.
 Delegate result6 = Delegate.Remove(source, source);
 TestClass.WriteDelegate("value=source", source);
 if (result6==null) {
 Console.WriteLine("removal test 6 result6 is null");
 } else {

 TestClass.WriteDelegate("result6", result6);
 }
}
}

							 The output is
							
								 Invocation list targets for source:
								 MyClass
								 MyClass2
								 MyClass2
								 MyClass
								 Invocation list targets for value1:
								 MyClass
								 Invocation list targets for result1:
								 MyClass
								 MyClass2
								 MyClass2
								 Invocation list targets for value2:
								 MyClass2
								 MyClass2
								 Invocation list targets for result2:
								 MyClass
								 MyClass
								 Invocation list targets for value3:
								 MyClass2
								 MyClass
								 Invocation list targets for result3:
								 MyClass
								 MyClass2
								 Invocation list targets for value4:
								 MyClass
								 MyClass2
								 Invocation list targets for result4:
								 MyClass2
								 MyClass
								 Invocation list targets for value5:
								 MyClass
								 MyClass
								 Invocation list targets for result5:
								 MyClass
								 MyClass2
								 MyClass2
								 MyClass
								 Invocation list targets for value=source:
								 MyClass
								 MyClass2
								 MyClass2
								 MyClass
								 removal test 6 result6 is null
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Delegate

					
					
						
						
					
					
						
							 Removes all matching occurrences of the invocation list of a from the invocation list of another delegate.

						
						 The delegate from which to remove all matching occurrences of the invocation list of .
						 The delegate that supplies the invocation list to remove from .
						
							 Returns a new delegate, , or .
							 If and are not , are not equal, and the invocation list of is contained in the invocation list of source, returns a new delegate with all matching occurrences of the invocation list of removed from the invocation list of .

							 If the invocation lists of and are equal, or if contains only a succession of invocation lists equal to , returns .
							 If the invocation list of is not found in the invocation list of , returns .
							 The following table describes the value returned when or is .
							
								
									
										
									
									
										
									
									 Return value
								
								
									 null
									 null
									 null
								
								
									 null
									 non-null
									 null
								
								
									 non-null
									 null
									
										
									
								
							
						
						
							 The invocation list of is required to be an exact match of a contiguous set of elements in the invocation list of . If the invocation list of occurs more than once in the invocation list of , all occurrences are removed.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets the last object upon which a delegate invokes an
 instance method.
						
						
							 A instance, or
 if the delegate invokes only static methods.
						
						
							 This property is read-only.
							 If the delegate invokes only static methods, this
 property returns
 . If the delegate invokes one or more instance methods, this property returns the target of the last instance method/target pair in the invocation list.
						
						
							 Example 1:
							 The following example gets the property values
 for two delegates. The first delegate invokes a static method, and the second
 invokes an instance method.
							 using System;
public delegate string DelegatedMethod(string s);
class MyClass {
 public static string StaticMethod(string s) {
 return ("Static method Arg=" + s);
 }
 public string InstanceMethod(string s) {
 return ("Instance method Arg=" + s);
 }
}
class TestClass {
 public static void Main() {
 MyClass myInstance = new MyClass();
 //Create delegates from delegate type DelegatedMethod.
 DelegatedMethod delStatic = new DelegatedMethod(MyClass.StaticMethod);
 DelegatedMethod delInstance = new DelegatedMethod(myInstance.InstanceMethod);
 object t = delStatic.Target;
 Console.WriteLine ("Static target is {0}", t==null ? "null":t);
 t = delInstance.Target;
 Console.WriteLine ("Instance target is {0}", t==null ? "null":t);
 }
}

							 The output is
							
								 Static target is null
								 Instance target is MyClass
							
							 Example 2:
							 The following example gets the property value for three delegates
created using instance methods, static methods, and a combination of the two.
							 using System;
class MyClass {
 public static string StaticMethod(string s) {
 return ("Static String " + s);
 }
 public string InstanceMethod(string s) {
 return ("Instance String " + s);
 }
}
class MyClass2 {
 public static string StaticMethod2(string s) {
 return ("Static String2 " + s);
 }
 public string InstanceMethod2(string s) {
 return ("Instance String2 " + s);
 }
}
public delegate string DelegatedMethod(string s);

class TestClass {
 public static void Main() {
 DelegatedMethod delStatic = new DelegatedMethod(MyClass.StaticMethod);
 DelegatedMethod delStatic2 = new DelegatedMethod(MyClass2.StaticMethod2);

 MyClass myInstance = new MyClass();
 DelegatedMethod delInstance = new DelegatedMethod(myInstance.InstanceMethod);

 MyClass2 myInstance2 = new MyClass2();
 DelegatedMethod delInstance2 = new DelegatedMethod(myInstance2.InstanceMethod2);

 Delegate d = Delegate.Combine(delStatic, delInstance);
 Delegate e = Delegate.Combine(delInstance,delInstance2);
 Delegate f = Delegate.Combine(delStatic, delStatic2);
 if (d!=null) {
 Console.WriteLine("Combined 1 static, 1 instance, same class:");
 Console.WriteLine("target...{0}", d.Target == null ? "null" : d.Target);
 foreach(Delegate x in d.GetInvocationList())
 Console.WriteLine("invoke element target: {0}",x.Target);

 }
 Console.WriteLine("");
 if (e!=null) {
 Console.WriteLine("Combined 2 instance methods, different classes:");
 Console.WriteLine("target...{0}", e.Target == null ? "null" : e.Target);
 foreach(Delegate x in e.GetInvocationList())
 Console.WriteLine("invoke element target: {0}",x.Target);
 }
 Console.WriteLine("");
 if (f!=null) {
 Console.WriteLine("Combined 2 static methods, different classes:");
 Console.WriteLine("target...{0}", f.Target == null ? "null" : f.Target);
 foreach(Delegate x in f.GetInvocationList())
 Console.WriteLine("invoke element target: {0}",x.Target);
 }

 }
}

							 The output is
							
								 Combined 1 static, 1 instance, same class:
								 target...MyClass
								 invoke element target:
								 invoke element target: MyClass
								 Combined 2 instance methods, different classes:
								 target...MyClass2
								 invoke element target: MyClass
								 invoke element target: MyClass2
								 Combined 2 static methods, different classes:
								 target...null
								 invoke element target:
								 invoke element target:
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 Static members of this type are thread safe. Any instance members are not guaranteed to be thread safe. A dictionary can support multiple readers concurrently, as long as the collection is not modified. Even so, enumerating through a collection is intrinsically not a thread-safe procedure. To guarantee thread safety during enumeration, you can lock the collection during the entire enumeration. To allow the collection to be accessed by multiple threads for reading and writing, you must implement your own synchronization.
			
				
					 Represents a collection of key/value pairs that are organized based on the key.
				
				
					 Each element is a key/value pair that can be retrieved as a object.
					
						 requires an equality comparer implementation to perform comparisons. If no equality comparer is provided, the following default equality comparer approach is used: If type implements , that implementation is used; otherwise, 's implementations of and are used. In any case, you can specify a implementation in a constructor overload that accepts an equality comparer parameter.
					 After its insertion in a dictionary, changes to the value of a key that affect the equality comparer render the dictionary's behavior unspecified. Every key in a dictionary must be unique according to the equality comparer. A key cannot be , but a value can be, if the value type is a reference type.
					 The capacity of a dictionary is the number of elements that dictionary can hold. As elements are added to a dictionary, the capacity is automatically increased.
					 This type contains a member that is a nested type, called . Although is a member of this type, is not described here; instead, it is described in its own entry, .
				
			
			
				 System.Object
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IDictionary
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
				
					 System.Collections.Generic.ICollection<KeyValuePair<TKey,TValue>>
					 0
				
				
					 System.Collections.Generic.IDictionary<TKey,TValue>
					 0
				
				
					 System.Collections.Generic.IEnumerable<KeyValuePair<TKey,TValue>>
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Initializes a new dictionary that is empty, has the default initial capacity, and uses the default equality comparer.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Initializes a new dictionary that is empty, has the default initial capacity, and uses the specified equality comparer.
						
						
							 The equality comparer implementation to use when comparing keys.
							 -or-
							
								 to use the default equality comparer for the type of the key.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Initializes a new dictionary that contains elements copied from the specified dictionary, has sufficient capacity to accommodate the number of elements copied, and uses the default equality comparer.
						
						
							 The dictionary whose elements are to be copied to the new dictionary.
						
						
							 contains one or more duplicate keys.
						
							
								 is .
						
						
							 Every key in a dictionary must be unique according to the default equality comparer; otherwise, a is thrown; likewise, every key in the source dictionary must also be unique according to the default equality comparer.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Initializes a new dictionary that is empty, has the specified initial capacity, and uses the default equality comparer.
						
						 The initial number of elements that the dictionary can contain.
						
							 is less than zero.
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Initializes a new dictionary that contains elements copied from the specified dictionary, has sufficient capacity to accommodate the number of elements copied, and uses the specified equality comparer.
						
						
							 The dictionary whose elements are to be copied to the new dictionary.
						
						
							 The equality comparer implementation to use when comparing keys.
							 -or-
							
								 to use the default equality comparer for the type of the key.
						
						
							 contains one or more duplicate keys.
						
							
								 is .
						
						
							 Every key in a dictionary must be unique according to the specified; otherwise, a is thrown; likewise, every key in the source dictionary must also be unique according to the specified equality comparer.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Initializes a new dictionary that is empty, has the specified initial capacity, and uses the specified equality comparer.
						
						
							 The initial number of elements that the dictionary can contain.
						
						
							 The equality comparer implementation to use when comparing keys.
							 -or-
							
								 to use the default equality comparer for the type of the key.
						
						
							 is less than zero.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Adds an element with the specified key and value to the dictionary.
						
						 The key of the element to add to the dictionary.
						 The value of the element to add to the dictionary.
						 An element with the same key already exists in the dictionary.
						
							
								 is .
						
						
							 You can also use the
								 property to add new elements by setting the value of a key that does not exist in the dictionary. However, if the specified key already exists in the dictionary, setting the
								 property overwrites the old value. In contrast, the
								 method does not modify existing elements.
							 If already equals the capacity, the capacity of the dictionary is increased.
							 A key cannot be , but a value can be, if the value type TValue is a reference type.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Removes all elements from the dictionary.
						
						
							
								
									 This method is implemented to support the interface.
								
							
							
								 gets set to zero, and references to other objects from elements of the collection are also released. The capacity remains unchanged.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the dictionary contains an element with a specific key.
						
						 The key to locate in the dictionary.
						
							
								 , if an element whose key is is found in the dictionary; otherwise, .
						
						
							
								 is .
						
						
							 This implementation is close to O(1) in most cases.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the dictionary contains an element with a specific value.
						
						 The value to locate in the dictionary.
						
							
								 , if an element whose value is is found in the dictionary; otherwise, .
						
						
							 This method determines equality using the default equality comparer for the value type TValue. If TValue implements , that type is used. Otherwise, is used.
							 This method performs a linear search; therefore, the average execution time is proportional to . That is, this method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of key/value pairs contained in the dictionary.
						
						
							 The number of key/value pairs contained in the dictionary.
						
						
							 This property is read-only.
							 Retrieving the value of this property is an O(1) operation.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Collections.Generic.Dictionary<TKey,TValue>.Enumerator
					
					
					
						
							 Returns an enumerator that can be used to iterate over the dictionary.
						
						
							 An enumerator for the dictionary.
						
						
							
								 For a detailed description regarding the use of an enumerator, see .
							
						
					
					 0
				
				
					
					
					 Property
					
						 TValue
					
					
						
					
					
						
							 Gets or sets the value associated with the specified key.
						
						 The key whose value is to be gotten or set.
						
							 The value associated with the specified key. On a get attempt, if the specified key is not found, a is thrown. On a set attempt, if the specified key is not found, a new element using the specified key is created.
						
						
							
								 is .
						
						
							 During a get attempt, is not found in the dictionary.
						
						
							 The default value for value types is zero while that for reference types is .
							 You can also use the
								 property to add new elements by setting the value of a key that does not exist in the dictionary. However, if the specified key already exists in the dictionary, setting the
								 property overwrites the old value. In contrast, the
								 method does not modify existing elements.
							 A key cannot be , but a value can be, if the value type TValue is a reference type.
							 Retrieving the value of this property is an O(1) operation; setting the property is also an O(1) operation.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.Generic.ICollection<TKey>
					
					
					
						
							 Gets a collection that contains the keys in the dictionary.
						
						
							 A collection of the keys in the dictionary.
						
						
							 This property is read-only.
							 The order of the keys in the key collection is unspecified, but it is the same order as the associated values in the value collection returned by the property.
							 If the dictionary is modified, or the value of any key in the dictionary is modified, the behavior of the key collection is unspecified.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Removes the element with the specified key from the dictionary.
						
						 The key of the element to be removed from the dictionary.
						
							
								 if the element containing is successfully removed; otherwise, . This method also returns if was not found in the dictionary.
						
						
							
								 is .
						
						
							 If the dictionary does not contain an element with the specified key, the dictionary remains unchanged. No exception is thrown.
							 This method shall be implemented with efficiency that is at least an O(1) operation.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.Generic.ICollection<TKey>
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.Generic.ICollection<TValue>
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.IEnumerator<T>
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IDictionaryEnumerator
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Gets the value associated with the specified key.
						
						 The key of the element to locate in the dictionary.
						 When this method returns, the value associated with the specified key, if the key is found; otherwise, the default value for the type of this parameter.
						
							
								 if the dictionary contains an element with the specified key; otherwise, .
						
						
							
								 is .
						
						
							 This method combines the functionality of the method and the property.
							 The default value for value types is zero while that for reference types is .
							 This method is an O(1) operation.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.Generic.ICollection<TValue>
					
					
					
						
							 Gets a collection that contains the values in the dictionary.
						
						
							 A collection of the values in the dictionary.
						
						
							 This property is read-only.
							 The order of the values in the value collection is unspecified, but it is the same order as the associated values in the key collection returned by the property.
							 The returned value collection is not a static copy; instead, it refers back to the values in the original dictionary. Therefore, changes to the dictionary continue to be reflected in the value collection.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 Static members of this type are thread safe. Any instance members are not guaranteed to be thread safe.
			
				
					 Enumerates the elements of a dictionary.
				
				
					 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
					 For information on the behavior of enumerators, see the Description section of .
					 Default implementations of collections in are not synchronized.
					 This type is a member of type .
				
			
			
				 System.ValueType
			
			
				
					 System.IDisposable
					 0
				
				
					 System.Collections.IDictionaryEnumerator
					 0
				
				
					 System.Collections.IEnumerator
					 0
				
				
					 System.Collections.Generic.IEnumerator<TKey>
					 0
				
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Initializes a new dictionary enumerator for the specified dictionary.
						
						 The dictionary to enumerate.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.Generic.KeyValuePair<!0,!1>
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 This method is implemented to support the and interfaces.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.DictionaryEntry
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.IDictionaryEnumerator.Key
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.IDictionaryEnumerator.Value
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 Static members of this type are thread-safe. Any instance members are not guaranteed to be thread-safe.
			
				
					 Represents a read-only collection of keys in a dictionary.
				
				
					 The property returns an instance of this type, containing all the keys in that dictionary. The order of the keys in the key collection is unspecified, but it is the same order as the associated values in the value collection returned by the property.
					 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the key collection is unspecified.
				
			
			
				 System.Object
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
				
					 System.Collections.Generic.ICollection<TKey>
					 0
				
				
					 System.Collections.Generic.IEnumerable<TKey>
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Initializes a new key collection to reflect the keys from the specified dictionary.
						
						
							 The dictionary whose keys are to be reflected in the key collection.
						
						
							
								 is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the elements of the key collection to a , starting at a particular index.
						
						 A one-dimensional, zero-based that is the destination of the elements copied from the key collection.
						 The zero-based index in at which copying begins.
						
							
								 is multidimensional.
							 -or-
							
								 does not have zero-based indexing.
							 -or-
							
								 is greater than the length of .
							 -or-
							 The number of elements in the key collection is greater than the available space from to the end of the destination .
							 -or-
							 Some element of the key collection is not assignable to the element type of the array.
						
						
							
								 is .
						
						
							
								 < 0.
						
						
							 The elements are copied onto the array in the same order in which the enumerator iterates through the key collection.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of elements contained in the key collection.
						
						
							 The number of elements in the key collection.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Collections.Generic.Dictionary<TKey,TValue>.KeyCollection.Enumerator GetEnumerator()
					
					
					
						
							 Returns an enumerator that can be used to iterate over the key collection.
						
						
							 An enumerator for the key collection.
						
						
							 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
							
								 For a detailed description regarding the use of an enumerator, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 This method is implemented to support the interface. This method throws an exception of type .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface. This method throws an exception of type .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface. This property returns true.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 This method is implemented to support the interface. This method throws an exception of type .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.IEnumerator<K>
					
					
					
						
							 This method is implemented to support the interface.
						
						
							 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface. This property returns false.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This property is implemented to support the interface.
						
						
							 This read-only property returns the property of the underlying dictionary.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						
							 This method is implemented to support the interface.
						
						
							 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 Static members of this type are thread safe. Any instance members are not guaranteed to be thread safe.
			
				
					 Enumerates the elements of a key collection.
				
				
					 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
					 For information on the behavior of enumerators, see the Description section of .
					 Default implementations of collections in are not synchronized.
				
			
			
				 System.ValueType
			
			
				
					 System.IDisposable
					 0
				
				
					 System.Collections.IEnumerator
					 0
				
				
					 System.Collections.Generic.IEnumerator<TKey>
					 0
				
			
			
			
				
					
					
					 Property
					
						 TKey
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 This method is implemented to support the and interfaces.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 Static members of this type are thread-safe. Any instance members are not guaranteed to be thread-safe.
			
				
					 Represents a read-only collection of values in a dictionary.
				
				
					 The property returns an instance of this type, containing all the values in that dictionary. The order of the values in the value collection is unspecified, but it is the same order as the associated values in the key collection returned by the property.
					 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the value collection is unspecified.
				
			
			
				 System.Object
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
				
					 System.Collections.Generic.ICollection<TKey>
					 0
				
				
					 System.Collections.Generic.IEnumerable<TKey>
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Initializes a new value collection to reflect the values from the specified dictionary.
						
						
							 The dictionary whose values are to be reflected in the value collection.
						
						
							
								 is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the elements of the value collection to a , starting at a particular index.
						
						 A one-dimensional, zero-based that is the destination of the elements copied from the value collection.
						 The zero-based index in at which copying begins.
						
							
								 is multidimensional.
							 -or-
							
								 does not have zero-based indexing.
							 -or-
							
								 is greater than the length of .
							 -or-
							 The number of elements in the value collection is greater than the available space from to the end of the destination .
							 -or-
							 Some element of the value collection is not assignable to the element type of the array.
						
						
							
								 is .
						
						
							
								 < 0.
						
						
							 The elements are copied into the array in the same order in which the enumerator iterates through the value collection.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of elements contained in the value collection.
						
						
							 The number of elements in the value collection.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Collections.Generic.Dictionary<TKey,TValue>.ValueCollection.Enumerator GetEnumerator()
					
					
					
						
							 Returns an enumerator that can be used to iterate over the value collection.
						
						
							 An enumerator for the value collection.
						
						
							 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
							
								 For a detailed description regarding the use of an enumerator, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 This method is implemented to support the interface. This method throws an exception of type .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface. This method throws an exception of type .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface. This property returns true.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 This method is implemented to support the interface. This method throws an exception of type .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.IEnumerator<K>
					
					
					
						
							 This method is implemented to support the interface.
						
						
							 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface. This property returns false.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This property is implemented to support the interface.
						
						
							 This read-only property returns the property of the underlying dictionary.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						
							 This method is implemented to support the interface.
						
						
							 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 Static members of this type are thread safe. Any instance members are not guaranteed to be thread safe.
			
				
					 Enumerates the elements of a value collection.
				
				
					 If the underlying dictionary is modified, or the value of any key in that dictionary is modified, the behavior of the enumerator is unspecified.
					 For information on the behavior of enumerators, see the Description section of .
					 Default implementations of collections in are not synchronized.
				
			
			
				 System.ValueType
			
			
				
					 System.IDisposable
					 0
				
				
					 System.Collections.IEnumerator
					 0
				
				
					 System.Collections.Generic.IEnumerator<TValue>
					 0
				
			
			
			
				
					
					
					 Property
					
						 TValue
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 This method is implemented to support the and interfaces.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a dictionary entry consisting of a

 and an associated .
				
				
					
						 Some types that manage or access collections of
 objects, such as and , rely on the use
 of one or more pairs of a key object and an associated value object. provides this functionality.
						 This structure supports the C#
 semantics for .
					
				
			
			
				 System.ValueType
			
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the
 specified key and value objects.

						
						 The defined to reference a dictionary entry.
						 The that contains the content associated with .
						
							 is .
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets or sets an object representing the key of the current
.
						
						
							 A representing the
 key of the current .
						
						 Set is .
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets or sets an object representing the content of the current .
						
						
							 A representing the
 content of the current .
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides information and performs operations
 on directories.
				
				
					 Implementations are required to preserve
 the case of file and directory path strings, and to be case
 sensitive if and only if the current platform is case-sensitive.
					
						 In most
 methods that accept
 arguments, the path can refer to a file or a directory.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Deletes the specified directory and, if indicated, any subdirectories in the directory.
						
						 A containing the name of the directory to delete. This directory must be writable and cannot contain files unless is true.
						 Specify to delete subdirectories and files in ; otherwise, specify .
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The specified was not found.
						 The directory specified by is read-only, or is and is not an empty directory.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to write to the specified directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Deletes the empty directory
 specified in .
						
						 A containing the name of the directory to delete. This directory must be writable and empty.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The specified was not found.
						 The directory specified by is read-only or is not empty.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method behaves identically to (,).
							 The
argument is permitted to specify relative or absolute path
information. Relative path information is interpreted as relative to the current
working directory. To obtain the current
working directory, see .
							
						
						 Requires permission to write to the specified directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a indicating whether
 the
 specified directory exists.
						
						 A containing the name of the directory to check.
						
							
								 if the caller
 has the required permissions and contains the name of an existing directory; otherwise, . If is , a zero-length string, or contains the
 name of
 a file, returns .
						
						
							 If the caller does not have sufficient permissions to read the files
 in the directory specified by , no
 exception is thrown and the method returns
 regardless of the existence of .
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Returns the creation date and time of the specified file or directory.
						
						 A containing the name of the file or directory for which to obtain creation date and time information.
						
							 A structure set to
 the creation date and time for the specified directory. This value is expressed in local time.
							 Platforms that do not
 support this feature return .
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The directory specified by was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to
().
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns the application's current working directory.
						
						
							 A containing the path of the current working directory.
							 Platforms that do not
 support this feature return .
						
						 The caller does not have the required permission.
						
						 Requires permission to access path information for the current directory. See
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
					
					
						
							 Returns the names of subdirectories in the specified directory.
						
						 A containing the name of the directory for which an array of subdirectory names is returned.
						
							 A array containing the names
 of subdirectories in .
						
						
							 is .
						
							 is a zero-length string, contains only white space, or contains implementation-specific invalid characters.
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							 is a file name.
						 The caller does not have the required permission.
						
							 This method is identical to (
, "*").
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
							 The names returned by this method are prefixed with the directory information
provided in .
						
						 Requires permission to access path information for the specified directory and its subdirectories. See .
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
						
					
					
						
							 Returns the names of subdirectories in the specified
 directory that match the specified search pattern.
						
						 A containing the starting location for the search.
						 A containing the text pattern to match against the names of subdirectories of . cannot end with "..", or contain ".." followed by or .
						
							 A array
 containing the names of subdirectories of that match
 .
						
						
							 or is .
						
							
								 is a zero-length string, contains only white space, or contains implementation-specific invalid characters.
							
								 does not contain a valid pattern.
						
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							 is a file name.
						 The caller does not have permission to access the requested information.
						
							 The following wild card specifiers are permitted in
 :
							
								
									 Wild card
									 Description
								
								
									 *
									 Zero or more characters.
								
								
									 ?
									 Exactly one character.
								
							
							 The period (".") character, if immediately followed by a wild card specifier,
 indicates that the period or the empty string matches the
 pattern. For example, "foo.*" and "foo.?" match "foo". Note that
 "foo.*" and "foo*" behave identically. If the period is not immediately followed
 by a wildcard, it has no special meaning (it represents a period).
							 Characters other than the wild card specifiers represent themselves, for example, the string "*t" searches for all names in ending with the letter "t". The string
 "s*" searches for all names in beginning with the letter "s".
							 The argument is permitted to specify relative or absolute path
information. Relative path information is interpreted as relative to the current
working directory. To obtain the current
working directory, see .
							
						
						 Requires permission to access path information for the specified directory and its subdirectories. See .
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the
 path root component of the specified path.
						
						 A containing the name of a file or directory.
						
							 A containing
 the root information for the specified path.
							 Platforms that do not
 support this feature return .
						
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
						
							 is .
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method obtains the full path information for , as returned by () and returns the path root component. The specified path is not required to exist.
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						
							 The following example demonstrates the method.
							 using System;
using System.IO;
class GetDirectoryTest {
 public static void Main() {
 string [] paths = {

@"\ecmatest\examples\pathtests.txt",
 "pathtests.xyzzy",
 @"\",
 @"C:\",
 @"\\myserver\myshare\foo\bar\baz.txt"
 };
 foreach (string pathString in paths) {
 string s = Directory.GetDirectoryRoot(pathString);
 Console.WriteLine("Path: {0} Directory Root is {1}",pathString, s== null? "null":s);
 }
 }
}

							 The output is
							
								 Path: \ecmatest\examples\pathtests.txt Directory Root is C:\
								 Path: pathtests.xyzzy Directory Root is C:\
								 Path: \ Directory Root is C:\
								 Path: C:\ Directory Root is C:\
								 Path: \\myserver\myshare\foo\bar\baz.txt
 Directory Root is \\myserver\myshare
							
						
						 Requires permission to access path information for the specified file or directory. See
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
						
					
					
						
							 Returns the names of files in
 the specified directory that match the
 specified search pattern.
						
						 A containing the name of the directory to search.
						 A containing the text pattern to match against the names of files in . cannot end with "..", or contain ".." followed by or .
						
							 A
array containing the names of files in the specified directory that match the
specified search pattern.
						
						
							 or is .
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
							 -or-
							
								 does not contain a valid pattern.
						
						
							 is an existing file name.
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The following wild card specifiers are permitted in :
							
								
									 Wild
 card
									 Description
								
								
									 *
									 Zero
 or more characters.
								
								
									 ?
									 Exactly one character.
								
							
							 The period (".") character, if immediately followed by a wild card specifier,
 indicates that the period or the empty string matches the
 pattern. For example, "foo.*" and "foo.?" match "foo". Note that
 "foo.*" and "foo*" behave identically. If the period is not immediately followed
 by a wildcard, it has no special meaning (it represents a period).
							 Characters other than the wild card specifiers and the period always represent themselves, for example, the
 string "*t" searches for all
 names in ending with the letter "t". The string "s*" searches for all
 names in beginning with the
 letter "s".
							 The argument is permitted to specify relative or absolute path
information. Relative path information is interpreted as relative to the current
working directory. To obtain the current
working directory, see .
							
						
						 Requires permission to access path information for the specified directory and the files in that directory. See
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
					
					
						
							 Returns the names of all files in the specified directory.
						
						 A containing the name of the directory for which file names are returned.
						
							 A array
 containing the names of the files in the specified directory.
							 Platforms that do not support this feature
 return .
						
						
							
								 is null.
						
						
							 path is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
						
							 was not found.
						
							 is a file name.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is identical to (, "*").
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to access path information for the specified directory and the files in that directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
					
					
						
							 Returns the names of all files and subdirectories in the specified directory.
						
						 A containing the name of the directory for which file and subdirectory names are returned.
						
							 A array containing the names of file system entries in the specified directory.
						
						
							 is .
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							 is a file name.
						 The caller does not have the required permission.
						
							 This method is identical to
(, "*").
							 The names returned by this method are prefixed with the
 directory information provided in . The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see

 .
							
						
						 Requires permission to access path information for the specified directory. See
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
						
					
					
						
							 Returns an
 array of file and directory names matching the specified search criteria.
						
						 A containing the name of the directory to search.
						 A containing the text pattern for which to search. cannot end with "..", or contain ".." followed by or .
						
							 A array
 containing
 file and directory names matching the specified search criteria.
						
						
							 or is .
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
							 -or-
							
								 does not contain a valid pattern.
						
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							 is a file name.
						 The caller does not have the required permission.
						
							 The following wild card specifiers are permitted in :
							
								
									 Wild
 card
									 Description
								
								
									 *
									 Zero
 or more characters.
								
								
									 ?
									 Exactly one character.
								
							
							 The period (".") character, if immediately followed by a wild card specifier,
 indicates that the period or the empty string matches the
 pattern. For example, "foo.*" and "foo.?" match "foo". Note that
 "foo.*" and "foo*" behave identically. If the period is not immediately followed
 by a wildcard, it has no special meaning (it represents a period).
							 Characters other than the wild card specifiers represent themselves, for example, the
 string "*t" searches for all names in
 ending with the letter "t". The string "s*" searches for all names in beginning with the letter "s".
							 The names returned by this method are prefixed with the
 directory information provided in . The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to access path information for the specified directory. See
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Returns the date and time the specified file or directory was last accessed.
						
						 A containing the name of the file or directory for which to obtain access date and time information.
						
							 A structure set to
 the date and time the specified file or directory was last accessed. This value is expressed in local time.
							 Platforms that do not
 support this feature return .
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The specified path was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to ().
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Returns the date and time the specified file or directory was last written to.
						
						 A containing the name of the file or directory for which to obtain modification date and time information.
						
							 A structure set to
 the date and time the specified file or directory was last written to. This value is expressed in local time.
							 Platforms that do not
 support this feature return .
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The specified path was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to
().
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Moves a file or a directory and its contents to a new location.
						
						 A containing the name of the file or directory to move.
						 A containing the new location for . This string cannot identify an existing file or directory.
						
							 or is a zero-length string, contains only white space, or contains implementation-specific invalid characters.
						
							 or is .
						 The caller does not have the required permission.
						
							 An attempt was made to move a directory to a different volume,
							 -or-
							
								 already exists.
							 -or-
							
								 and refer to the same file or directory.
						
						
							 was not found.
						 The length or absolute path information for or exceeds the system-defined maximum length.
						
							 The argument
 cannot specify a location on a different disk or volume than
 . The
and arguments cannot identify the same file
or directory.
							
								 This method throws
 a if, for example, you try
 to move "\mydir" to "\public", and "\public" already exists. You must specify
 "\public\mydir" as the .
							
							 The and
 arguments are permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read from
							 and write to and . See , .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the creation date and time for the specified file or directory.
						
						 A containing the name of the file or directory for which to set the creation date and time information.
						 A containing the value to set for the creation date and time of . This value is expressed in local time.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 specifies a value outside the range of date/times permitted for this operation.
						
							 is .
						
							 was not found.
						 An I/O error occurred while performing the operation.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
							 On platforms that do not
 support this feature, this method has no effect. If this feature is
 supported, the range of dates that is valid for this operation
 is implementation-specific.
						
						 Requires permission to write to the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sets the application's current working directory to the specified directory.
						
						 A containing the path to which the current working directory is set.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 was not found.
						 An I/O error occurred while performing the operation.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission to access unmanaged code.
						
							 When the application terminates, the working directory is restored
 to its original location (the directory where the process was started).
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
							 On platforms that do not support this feature,
 this method has no effect.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the date and time the specified file or directory was last accessed.
						
						 A containing the name of the file or directory for which to set the access date and time information.
						 A containing the value to set for the access date and time of . This value is expressed in local time.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 specifies a value outside the range of date/times permitted for this operation.
						
							 was not found.
						 An I/O error occurred while performing the operation.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
							 On platforms that do not
 support this feature, this method has no effect. If this feature is
 supported, the range of dates that is valid for this operation
 is implementation-specific.
						
						 Requires permission to write to the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the date and time a directory was last written to.
						
						 A containing the name of the directory for which to set the date and time information.
						 A containing the value to set for the last write date and time of . This value is expressed in local time.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 specifies a value outside the range of date/times permitted for this operation.
						
							 was not found.
						 An I/O error occurred while performing the operation.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							
 Relative path information is interpreted as relative to the current working directory. To obtain the current working directory, see .
							
							 On platforms that do not
 support this feature, this method has no effect. If this feature is
 supported, the range of dates that is valid for this operation
 is implementation-specific.
						
						 Requires permission to write to the specified file. See .
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when part of a file or directory argument
 cannot be found.
				
				
					 The following example demonstrates an error that causes
 the exception to be
 thrown.
							 In this case, the /Mistake/examples/
 directory does not exist and therefore cannot be
 located.
					
					 using System;
using System.IO;
class DirectoryNotFoundExample {
 public static void Main () {
 string badPath = "/Mistake/examples/";
 try {
 Directory.GetFiles(badPath);
 }
 catch (DirectoryNotFoundException e) {
 Console.WriteLine("Caught: {0}",e.Message);
 }
 }
}

					 The output is
					
						 Caught: Could not find a
 part of the path "C:\Mistake\examples".
					
				
			
			
				 System.IO.IOException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message
that describes the error, such as "Could not find the specified
directory." This message takes into account the current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to
 the system-supplied message provided by the constructor that takes no arguments.
							
 The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of
 the new instance using and the property using . If is
 , the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							
								 For more
 information on inner exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that is caused by an attempt to divide a
 number by zero.
				
				
					
						 The following CIL instructions throw :
						
							
								
 div
							
							
								
 div.un
							
							
								
 rem
							
							
								 rem.un
							
						
					
				
				
					 The following example demonstrates an error that causes
 a exception.
					 using System;
public class DivideZeroTest {
 public static void Main() {
 int x = 0;
 try {
 int y = 100/x;
 }
 catch (DivideByZeroException e) {
 Console.WriteLine("Error: {0}",e);
 }
 }
}

					 The output is
					
Error: System.DivideByZeroException: Attempted to divide by zero.
 at DivideZeroTest.Main()

				
			
			
				 System.ArithmeticException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "Attempted to divide by zero." This
 message takes into account the current system culture.
							 The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For information on inner exceptions,
 see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an object appears
 more than once in an array of
 instances.
				
				
					
						 It is generally
 unnecessary for applications to throw
 . This exception is thrown by
 thread synchronization methods, such as and
 .
					
				
			
			
				 System.ArgumentException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new
 instance to a system-supplied message that describes the error, such as
 "Duplicate objects in argument." This message takes into account the current
 system culture. The and properties are initialized
 to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that contains the name of the parameter that caused the exception. The content of is intended to be understood by humans.
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error. This message takes into account the current
 system culture. The property is initialized to
 .
							 This constructor initializes the property of the new instance using
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that contains the name of the parameter that caused the exception. The content of is intended to be understood by humans.
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new
 instance using , and the property using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property is initialized to
 .
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Converts blocks of characters into blocks of bytes.
				
				
					
						 Following instantiation of a , sequential
 blocks of characters are converted into blocks of bytes through calls to the
 method. The encoder maintains state between the
 conversions, allowing it to correctly encode character sequences that span
 adjacent blocks. An instance of a specific implementation of the

class is typically obtained
through a call to the .
					
				
				
					 The following example demonstrates using the class to convert one character array to two byte
arrays.
					 using System;
using System.Text;

public class EncoderExample
{

 public static void Main()
 {

 string str = "Encoder";
 char[] cAry = str.ToCharArray();
 UTF8Encoding utf = new UTF8Encoding();

 Encoder e = utf.GetEncoder();
 int count1 =
 e.GetByteCount(cAry,0,cAry.Length-4,false);
 int count2 =
 e.GetByteCount(cAry,cAry.Length-4,4,true);
 byte[] bytes1 = new byte[count1];
 byte[] bytes2 = new byte[count2];

 e.GetBytes(cAry,0,cAry.Length-4,bytes1,0,false);
 e.GetBytes(cAry,cAry.Length-4,4,bytes2,0,true);

 Console.Write("Bytes1: ");
 foreach (byte b in bytes1)
 Console.Write(" '{0}' ", b);
 Console.WriteLine();

 Console.Write("Bytes2: ");
 foreach (byte b in bytes2)
 Console.Write(" '{0}' ", b);
 Console.WriteLine();

 }

}

					 The output is
					
						 Bytes1: '69' '110' '99'
						 Bytes2: '111' '100' '101' '114'
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.

						
						
							 This constructor is called only by classes that inherit from the class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Determines the exact number of bytes required to
 encode the specified range in the specified array of

 characters.

						
						 A array of characters to encode.
						 A that specifies the first index of to encode.
						 A that specifies the number of elements in to encode.
						 A value that determines whether the current instance flushes its internal state following a conversion. Specify to flush the internal state of the current instance following a conversion; otherwise, specify .
						
							 A containing the
 number of bytes required to encode the range in from
 to

+ -1 for a particular encoding.
							
								 This value takes
 into account the state in which the current instance was left following the last
 call to
 .
							
						
						
							 is .
						
							 Return value is greater than .
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
						
						
							 The state of the current instance is not affected by a call to this
 method.

							
								 As described
 above.
							
							
								 Override this
 method to retrieve the exact number of bytes required to encode a
 specified range of an array of objects
 for a particular encoding.
							
							
								 Use this method to determine the
 exact number of bytes required to encode the specified range of an array
 of objects for a particular
 encoding.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
						
					
					
						
							 Encodes the specified range of the specified array
 of characters into the specified range of the specified array of bytes.
						
						 A array of characters to encode.
						 A that specifies the first index of to encode.
						 A that specifies the number of elements in to encode.
						 A array to encode into.
						 A that specifies the first index of to encode into.
						
							 A value. Specify to flush the internal state of the current instance following a conversion; otherwise, specify . To ensure correct termination of a sequence of blocks of encoded bytes, it is recommended that the last call to specify .
							
						
						
							 A containing the number of bytes encoded into for a
 particular encoding.

						
						
							
								 does not contain sufficient space to store the encoded characters.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							 (.Length -) < .
							 -or-
							
								 > .Length.
						
						
							 The encoding takes into account the state in which the
 current instance was left following the last call to this method if
 was specified as
 for that call.
							
								 As described above.
							
							
								 Override
 this method to encode the values of an array of objects as an array of objects for a particular
 encoding.
							
							
								 Use this method to encode the values of an array
 of objects as an array
 of
 objects for a particular encoding.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents a character
 encoding.
				
				
					 Characters are abstract entities that can be represented using
 many different character schemes or codepages. For example, Unicode UTF-16 encoding
 represents, or encodes, characters as sequences of 16-bit integers while
 Unicode UTF-8 represents the same characters as sequences of 8-bit bytes.
					 The BCL includes the following types derived
 from :
					
						
							
								
									 - encodes Unicode characters as
 7-bit ASCII characters. This encoding only supports code points between U+0000
 and U+007F inclusive.
							
						
						
							
								
									 - encodes each
 Unicode character as two consecutive bytes. Both little-endian and big-endian byte
 orders are supported.
							
						
						
							
								
									 - encodes Unicode characters using
 the UTF-8 (UCS Transformation Format, 8-bit form) encoding. This encoding
 supports all Unicode character values.
							
						
					
					 An application can use the
 properties of this class such as , , ,
 and to obtain encodings. Applications can
 initialize new instances of objects through the
 , , and
classes.
					 Through an encoding, the method is used to convert
arrays of Unicode characters to arrays of bytes, and the method is used to convert arrays of bytes
to arrays of Unicode characters. The and methods maintain no state between
conversions. When the data to be converted is only available in sequential
blocks (such as data read from a stream) or when the amount of data is so large
that it needs to be divided into smaller blocks, an application can choose to
use a or a
 to perform
the conversion. Decoders and encoders allow sequential blocks of data to be
converted and they maintain the state required to support conversions of data
that spans adjacent blocks. Decoders and encoders are obtained using
the and methods.
					 The core and methods require the caller to provide the
destination buffer and ensure that the buffer is large enough to hold the entire
result of the conversion. When using these methods, either directly on a
 object or on an associated or
 , an
application can use one of two methods to allocate destination buffers.
					
						
							
								 The and methods can be used to
 compute the exact size of the result of a particular conversion, and an
 appropriately sized buffer for that conversion can then be allocated.
							
						
						
							
								 The and methods can
 be used to compute the maximum possible size of a conversion of a given
 number of characters or bytes, regardless of the actual character or byte values, and a
 buffer of that size can then be reused for multiple conversions.
							
						
					
					 The first method generally uses less memory, whereas the second method
 generally executes faster.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.

						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets an encoding for the ASCII (7-bit) character set.

						
						
							 This property is read-only.
							
								 ASCII characters can represent Unicode characters from U+0000 to U+007f,
 inclusive.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets an encoding for the Unicode format in big-endian
 byte order.

						
						
							 A for the Unicode format in big-endian byte order.
						
						
							 This property is read-only.
							
								 Unicode characters can be stored in two different byte orders, big-endian and little-endian. On little-endian platforms such as those
 implemented on Intel processors, it is generally more efficient to
 store Unicode characters in little-endian byte order. However, many other
 platforms can store Unicode characters in big-endian byte order. Unicode files
 can be distinguished by the presence of the byte order mark (U+FEFF), which will
 be written as either 0xfe 0xff or 0xff 0xfe.
								 This encoding automatically detects a byte order mark and, if necessary,
 switches byte orders.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
						
						
						
					
					
						
							 Converts the specified range of the specified array from one specified encoding to another specified
 encoding.

						
						 The that is in.
						 The desired for the returned array.
						 The array containing the values to convert.
						 A containing the first index of from which to convert.
						 A containing the number of bytes to convert.
						
							 A array
 containing the result of the conversion.
						
						
							
								 , , or is .
						
						
							 and do not denote a valid range in .
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
						
					
					
						
							 Converts the specified array from one specified encoding to another specified encoding.

						
						 The that is in.
						 The desired for the returned array.
						 The array containing the values to convert.
						
							 A array containing the result
 of the conversion.

						
						
							 , or is .
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets an encoding for the ANSI code page of the current system.

						
						
							 A for the ANSI code page of the current system.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same
 type and value.
						
						 The to compare to the current instance.
						
							
								 if represents the same type and value as
 the current instance. If is a null reference or is not an
 instance of , returns .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the number of bytes required to encode the
 specified
 array.

						
						 The array to encode.
						
							 A containing the number of bytes needed to encode
 .

						
						
							 is .
						
							
								 As described
 above.
							
							
								 This
 method is overridden by types derived from to return the
 appropriate number of bytes for the particular encoding.

							
							
								
									 can be used to determine the
 exact number of bytes that will be produced from encoding the given array of
 characters. An appropriately sized buffer for that conversion can then be
 allocated.
								 Alternatively, can be used to determine the maximum number of bytes that will
 be produced from converting a given number of characters, regardless of the actual character
 values. A buffer of that size can then be reused for multiple conversions.
								
									 generally uses less memory and
 generally executes faster.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the number of bytes required to encode the specified .
						
						 The to decode.
						
							 A containing the number of bytes needed to encode .
						
						
							 is .
						
							
								 As described
 above.
							
							
								 This
 method is overridden by types derived from to return the
 appropriate number of bytes for the particular encoding.

							
							
								
									 can
 be used to determine the exact number of bytes that will be produced from
 encoding the given
 . An appropriately sized buffer for that conversion can then be
 allocated.
								 Alternatively, can be used to determine the maximum number of bytes that will
 be produced from converting a given number of characters, regardless of the actual character
 values. A buffer of that size can then be reused for multiple conversions.
								
									 generally uses less memory and
 generally executes faster.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the number of bytes required to encode the specified range of
 characters in the specified Unicode character array.
						
						 The array to encode.
						 A containing the first index of to encode.
						 A containing the number of characters to encode.
						
							 A containing the number of bytes required to encode the range
 in from to +
 - 1.

						
						
							 is .
						
							 The number of bytes required to encode the specified elements in is greater than .
							 -or-
							
								 or is less than zero.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
						
						
							
								
 As described above.

							
							
								 This
 method is overridden by types derived from to return the
 appropriate number of bytes for the particular encoding.

							
							
								
									 can be used to determine the exact
 the number of bytes that will be produced from encoding a given range of
 characters. An appropriately sized buffer for that conversion can
 then be allocated.

								 Alternatively, can be used to determine the maximum number of bytes that will
 be produced from converting a given number of characters, regardless of the actual character
 values. A buffer of that size can then be reused
 for multiple conversions.
								
									
generally uses less memory and
generally executes faster.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
					
					
						
							 Encodes the specified
array.
						
						 The array to encode.
						
							 A array containing
 the encoded representation of .
						
						
							 is .
						
							
								 As described
 above.
							
							
								 This method is overridden by
 types derived from to perform the encoding.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
						
					
					
						
							 Encodes the specified range of the
 specified
 array.

						
						 The array to encode.
						 A containing the first index of to encode.
						 A containing the number of characters to encode.
						
							 A array containing
 the encoded representation of the range in
 from to + - 1.
						
						
							 is .
						
							 and do not denote a valid range in .
						
							
								 As described
 above.
							
							
								 This method is overridden by
 types derived from to perform the encoding.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Encodes the specified range of the
 specified array into the specified range of the
 specified
 array.

						
						 A array to encode.
						 A containing the first index of to encode.
						 A containing the number of characters to encode.
						 A array to encode into.
						 A containing the first index of to encode into.
						
							 The number of bytes encoded into .

						
						
							
								 does not contain sufficient space to store the encoded characters.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							 (.Length -) < .
							 -or-
							
								 > .Length.
						
						
							
								 As described above.
							
							
								 This
 method is overridden by types derived from
 to perform the encoding.

							
							
								
									 can be used to determine the exact number of bytes
 that will be produced for a given range of characters. Alternatively, can be used to
 determine the maximum number of bytes that will be produced for a given number
 of characters, regardless of the actual character values.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
					
					
						
							 Encodes the specified .

						
						 The to encode.
						
							 A array
 containing the encoded representation of .
						
						
							 is .
						
							
								 As described
 above.
							
							
								 This
 method is overridden by types derived from
 to perform the encoding.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Encodes the specified range of the
 specified into the specified range of the specified
 array.
						
						 A to encode.
						 A containing the first index of from which to encode.
						 A containing the number of characters of to encode.
						 The array to encode into.
						 A containing the first index of to encode into.
						
							 A containing the number of bytes encoded into .
						
						
							
								 does not contain sufficient space to store the encoded characters.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							 (.Length -) < .
							 -or-
							
								 >= .Length.
						
						
							
								 As described
 above.
							
							
								 This
 method is overridden by types derived from
 to perform the encoding.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Determines the exact number of characters that will
 be produced by decoding the specified array.
						
						 The array to decode.
						
							 A containing the number of characters produced by decoding
 .

						
						
							 is .
						
							
								 As described
 above.
							
							
								 This
 method is overridden by types derived from to return the appropriate number of bytes for
 the particular encoding.
							
							
								 Use to determine the exact number
 of characters that will be produced from converting a given byte array. An
 appropriately sized buffer for that conversion can then be allocated.
								 Alternatively, use to determine the maximum number of
 characters that will be produced for
 a given number of bytes, regardless of the actual byte values. A buffer of that
 size can then be reused for multiple conversions.
								
									 generally uses less memory and generally executes faster.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Determines the exact number of characters that will be produced by decoding
 the specified range of the specified array.
						
						 The array to decode.
						 The first index in to decode.
						 The number of bytes to decode.
						
							 A containing the number of characters the next call to will produce if presented with the
 specified range of .
						
						
							 is .
						
							 and do not specify a valid range in (i.e. (+) > .Length).
						
							
								 As described above.
							
							
								 This
 method is overridden by types derived from to return the appropriate number of bytes for
 the particular encoding.
							
							
								 Use to determine the exact number
 of characters that will be produced from converting a given range of bytes. An
 appropriately sized buffer for that conversion can
 then be
 allocated.

								 Alternatively, use to determine the maximum number of
characters that will be produced for
a given number of bytes, regardless of the actual byte values. A buffer of that size
can then be reused
for multiple
conversions.
								
									 generally uses less memory and
generally executes
faster.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char[]
					
					
						
					
					
						
							 Decodes a array.

						
						 The array to decode.
						
							 A array produced by
 decoding

 .
						
						
							 is .
					
					 0
				
				
					
					
					 Method
					
						 System.Char[]
					
					
						
						
						
					
					
						
							 Decodes the specified range of the
 specified array.

						
						 The array to decode.
						 A containing the first index of to decode.
						 A containing the number of bytes to decode.
						
							 A array containing the
 decoded representation of the range in between to
 +
.
						
						
							 is .
						
							 and do not denote a valid range in the byte array.
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Decodes the specified range of the specified array into the specified range of the specified array.
						
						 The array to decode.
						 A containing the first index of to decode.
						 A containing the number of bytes to decode.
						 The array to decode into.
						 A containing the first index of to decode into.
						
							 The number of characters stored in .

						
						
							
								 does not contain sufficient space to store the decoded characters.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
							 -or-
							
								 > .Length.
						
						
							
								 This method requires the caller to provide the destination
 buffer and ensure that the buffer is large enough to hold the entire result of
 the conversion.
							
							
								 This
 method is overridden by types derived from to perform the particular decoding.
							
							
								 When using this method directly on a object or on an associated or , use
 or to allocate destination
 buffers.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.Decoder
					
					
					
						
							 Returns a for the current instance.

						
						
							 A for
 the current
 instance.
						
						
							
								 As described
 above.
							
							
								 The default implementation returns a that
 forwards calls made to the and methods to the corresponding methods of the
 current instance.

							
							
								 Encoding that requires
 state to be maintained between successive conversions should override this
 method and return an instance of an appropriate implementation.
							
							
								

 Unlike the methods, a can convert partial
 sequences of bytes into partial sequences of characters by maintaining the
 appropriate state between the conversions.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.Encoder
					
					
					
						
							 Returns a
for the current instance.
						
						
							 A for
 the current
 encoding.
						
						
							
								 As described above.
							
							
								 The default implementation returns a that
forwards calls made to the and methods to the
corresponding methods of the
current instance.
							
							
								 Types derived from override this method to
return an instance of an appropriate .
							
							
								

 Unlike the method, a can convert partial
 sequences of characters into partial sequences of bytes by maintaining the
 appropriate state between the conversions.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the maximum number of bytes required to encode the specified number of characters, regardless of
 the actual character values.

						
						 A containing the number of characters to encode.
						
							 A containing the maximum number of bytes required to encode

characters.
						
						
							
								
 As described above.

							
							
								 This
 method is overridden by types derived from to return the appropriate number of bytes for
 the particular encoding.
							
							
								
									 can be used to determine the
 minimum buffer size for byte arrays passed to the of the
 current encoding. Using this minimum buffer size ensures that no buffer overflow
 exceptions occur.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the maximum number of characters produced by decoding the specified number of bytes,
 regardless of the actual byte values.

						
						 A containing the number of bytes to decode.
						
							 A containing the maximum number of characters that would be produced
 by decoding
 bytes.

						
						
							
								 As described
 above.
							
							
								 This
 method is overridden by types derived from to return the appropriate number of bytes for
 the particular encoding.
							
							
								
									 can be used to determine the minimum
 buffer size for byte arrays passed to the of the current encoding.
 Using this minimum buffer size ensures that no buffer overflow exceptions will
 occur.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
					
						
							 Returns the bytes used at the beginning of a to determine
 which
 the stream was created with.
						
						
							 A
array that identifies the encoding used on a stream.
						
						
							
								 The preamble can be the Unicode
 byte order mark (U+FEFF written in the appropriate encoding) or any other type
 of identifying marks. This method can return an empty array.
							
							
								 As described
 above.
							
							
								 The default
 implementation returns an empty
 array.
							
							
								 Override this
 method to return a
 array containing the preamble appropriate for the
 type derived from
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Decodes the specified array.

						
						 The array to decode.
						
							 A containing the decoded representation of .
						
						
							 is .
						
							
								 As described
 above.
							
							
								 This method is overridden by
 particular character encodings.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Decodes the specified range of the specified array.
						
						 The array to decode.
						 A containing the starting index of to decode.
						 A containing the number of bytes to decode.
						
							 A containing the decoded representation of the range
 of from to + .

						
						
							 is .
						
							 and do not denote a valid range in .
						
							
								 As described
 above.
							
							
								 This method is overridden by
 particular character encodings.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets an encoding for the Unicode format in little-endian
 byte order.

						
						
							 A for the Unicode format in little-endian byte
 order.
						
						
							 This property is read-only.
							
								 Unicode characters can be stored in two different byte orders, big-endian and little-endian. On little-endian platforms such as those
 implemented on Intel processors, it is generally more efficient to
 store Unicode characters in little-endian byte order. However, many other
 platforms can store Unicode characters in big-endian byte order. Unicode files
 can be distinguished by the presence of the byte order mark (U+FEFF), which will
 be written as either 0xfe 0xff or 0xff 0xfe.
								 This encoding automatically detects a byte order mark and, if
 necessary, switches byte orders.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets an encoding for the UTF-8 format.

						
						
							 A for the UTF-8 format.
						
						
							 This property is read-only.
							
								 For detailed information regarding UTF-8 encoding, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an attempt is made to read past the
 end of a stream.
				
			
			
				 System.IO.IOException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to
 a system-supplied message that describes the error, such as "Attempted to read
 past the end of the stream." This message takes into account the current system
 culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the
 new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the
 new instance using and the property using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Controls access to environment variables.
				
				
					
						
							 objects
 describe protected operations on environment variables. This permission
 distinguishes between the following types of access provided by :
						
							
								
									 : Read
 values from environment variables.
							
							
								
									 : Write
 values to environment variables. Also allows for creating and deleting values.
							
							
								
									 : No
 access to environment variables.
							
							
								
									 : Full
 access to environment variables. Identical to specifying
 and
 access.
							
						
						 These access levels are independent, meaning that rights
 to one do not imply rights to another. For example, permission does not imply permission to
 . values
 can be combined using a bitwise OR operator.
						 The class is
used to access environment variables, subject to the permissions defined by
 .
Environment variables are case-insensitive.
					
					
					 The XML encoding of a instance is defined below in
 EBNF format. The following conventions are used:
					
						
							
								 All non-literals in the grammar below are shown in
 normal type.
							
						
						
							
								 All literals are in bold font.
							
						
					
					 The following meta-language symbols are used:
					
						
							

 '*' represents a meta-language symbol suffixing an
 expression that can appear zero or more times.
						
						
							

 '?' represents a meta-language symbol suffixing an
 expression that can appear zero or one time.
						
						
							

 '+' represents a meta-language symbol suffixing an
 expression that can appear one or more times.
						
						
							

 '(',')' is used to group literals, non-literals or a
 mixture of literals and non-literals.
						
						
							

 '|' denotes an exclusive disjunction between two
 expressions.
						
						
							

 '::=' denotes a production rule where a left hand
 non-literal is replaced by a right hand expression containing literals,
 non-literals or both.
						
					
					 BuildVersion refers to the build version of the shipping
 CLI. This is specified as a dotted build number such as '2412.0' .
					 ECMAPubKeyToken ::=
					
					 EnvironmentVariable refers to the name of a single environment variable,
 such as 'PROMPT'.
					 The XML encoding of an
 instance
 is as follows:
					
						 EnvironmentPermissionXML ::=
						
							
						
						
							
						
						
							
						
						
							
						
						
							 BuildVersion
						
						
							
						
						
							 ECMAPubKeyToken
						
						
							
						
						 (
						
							
						
)
						 |
						 (
						 (
EnvironmentVariable (
EnvironmentVariable)*)?
						 (EnvironmentVariable (
EnvironmentVariable)*)?
)
						
							
						
					
				
			
			
				 System.Security.CodeAccessPermission
			
			
				
					 System.Security.IPermission
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified value.
						
						 A value.
						
							 is not a valid value.
						
							
								 The instance returned by this constructor has either
 fully restricted () or unrestricted
 () access to all environment
 variables.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs a new instance of the
class with the specified access to
the specified environment variables.
						
						 One of values defined by .
						 A containing one or more case-insensitive environment variable names separated by .
						
							
								 is .
						
						
							
								 specifies a value not defined in .
						
						
							 The specified access is applied to all environment
 variables in .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new object
 containing the same values as the current instance.
						
						
							 A new
containing the
same values as the current instance.
						
						
							
								 The object returned by this method represents the
 same level of access to the same environment variables as the current instance.
							
							 This method overrides and is implemented to
 support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reconstructs the state of a object
 using the specified XML encoding.
						
						 A instance containing the XML encoding to use to reconstruct the state of a object.
						
							 is .
						
							
								 does not contain the encoding for a instance.
							 The version number of is not valid.
						
						
							 The state of the current instance is changed to the
 state encoded in .
							
								 For the XML encoding for this class, see the class
 page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a new object that is the intersection of
 the current instance and the specified object.
						
						 A instance to intersect with the current instance.
						
							 A new instance that
 represents the intersection of the current instance and . If the intersection is empty or
 is , returns . If the current instance is unrestricted, returns a copy of . If
 is unrestricted, returns a copy of the current instance.
						
						
							 is not and is not of type .
						
							
								 The intersection of two permissions is a permission that secures the
 resources and operations secured by both permissions. Specifically, it
 represents the minimum permission such that any demand that passes both
 permissions will also pass their intersection.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of the specified
 object.
						
						 A instance that is to be tested for the subset relationship.
						
							
								 if the
 current instance is a subset of
 ; otherwise, . If the current instance is unrestricted, and is
 not, returns . If is
 unrestricted, returns . If
 is and no environment variables are
 secured by the current instance, returns . If target is
 , and the current instance secures one or more environment
 variables, returns .
						
						
							 is not and is not of type .
						
							
								 The current instance is a subset of if the current instance
 specifies a set of accesses to resources that is wholly contained by
 . For example, a permission that represents read access to a file
 is a subset of a permission that represents read and write access to the file.
								 If this method returns , the current instance describes a
 level of access to a set of environment variables that is also described by
 .
								 This method overrides and is implemented to
support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.SecurityElement
					
					
					
						
							 Returns the XML encoding of the current instance.
						
						
							 A containing the XML encoding of the state of the current instance.
						
						
							
								 For the XML encoding for this class, see the class
 page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a new that is the union of the
 current instance and the specified object.
						
						 A instance to combine with the current instance.
						
							 A new instance that represents the union
 of the current instance and . If the current
 instance or is unrestricted, returns a

instance that is unrestricted. If is ,
returns a copy of the current instance via the method.
If the current instance and do not specify any environment
variables, returns
.
						
						
							 is not and is not of type .
						
							
								 The result of a call to is
 a permission that represents the access to
 environment variables represented by the current instance as well as the access to
 environment variables represented by . Any demand that passes either the current
 instance or passes their union.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Provides support for all enumeration types. Serves as
 the base
 class for all enumeration types.
				
				
					 A is a distinct type
 with named constant members. Each enumeration type has a corresponding integral
 type called the of the enumeration
 type.

 This underlying type is required
 to be a system-supplied integer type that is large enough to represent all values
 defined in the enumeration; the field that holds the underlying type must be called . A declaration is allowed to
 explicitly declare any integral type other
 than
 as an underlying type. This includes , , , , , , , and . A declaration that does not explicitly declare an
 underlying type has an underlying type of

 .
					
						 derives from but is not a value type.
Programming languages typically provide syntax to declare sets of a specified
enumeration type consisting of named constants and their values.
					 It is possible to treat instances of a as bit fields containing multiple values. For more information, see
.
					
						
							 provides
methods to compare instances of enumeration types, convert the value of an
instance to its representation, convert the representation of
a number to an instance of the enumeration type, and create an instance of a
specified enumeration and value.
					
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 An object to compare the current instance to.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									
 A negative
 integer
									 The value of the current instance is less than
 the value of .
								
								
									 Zero
									 The value of the current instance is equal to the
 value of .
								
								
									 Any
 positive integer
									 The value of the current instance is greater than the
 value of , or is
 .
								
							
						
						
							 and the current instance are not of the same enumeration type.
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same type and
 value.
						
						 An object to compare the current instance to.
						
							
								 if is of the same
 enumeration type and represents the same value as the current instance;
 otherwise, .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Converts the specified element of the specified
 enumeration type to its
 representation using the specified format.
						
						 A that specifies the type of the enumeration of which is a member.
						 The enumeration element to be converted.
						 A that specifies the output format to use.
						
							 The representation of the value of the enumeration
 element.
						
						
							 , or is a null reference.
						
							
								 is not a .
							 -or-
							
								 is neither of type nor does it have the same underlying type as .
						
						
							 contains an invalid value.
						
							 For cross-platform portability, the only valid values for
 are:

							
								
									 Format
									 Description
								
								
									 "G" or "g"
									
										 If value is equal to a defined value of

 , returns the element name defined for value. If the
 attribute is set on the declaration and is
 a built-in integer type and is equal to a summation of
 enumeration elements, the return value contains the element names in an
 unspecified order, separated by commas (e.g. "Red, Yellow").
 Otherwise, is returned in

 decimal format.
									
								
								
									 "X" or "x"
									 Returns
 in hexadecimal format, without a leading 0x. The value is padded
 with leading zeroes to ensure the returned value is
 at least eight digits in length.
								
								
									 "F" or "f"
									 Behaves identically to "G", except the
 is not required to be present
 on the
 declaration.
								
								
									 "D" or "d"
									 Returns in decimal
 format with no leading zeroes.
								
							
						
						
							 The following example demonstrates formatting enumeration values.
							 using System;
public enum Signs {
 Stop = 1,
 Yield = 2,
 Merge = 4
};
[Flags]
public enum Lights {
 Red = 1,
 Yellow = 2,
 Green = 4
};
public class EnumCompTo {
 public static void Main() {
 Console.WriteLine(Signs.Format(typeof(Signs), Signs.Merge, "d"));
 Console.WriteLine(Signs.Format(typeof(Signs), 7, "g"));
 Console.WriteLine(Lights.Format(typeof(Lights), Lights.Yellow, "x"));
 Console.WriteLine(Lights.Format(typeof(Lights), 7, "g"));
 }
}

							 The output is
							
								 4
								 7
								 00000002
								 Red, Yellow, Green
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing a hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Retrieves the name of the constant of the
 specified enumeration type that has the
 specified value.

						
						 A that specifies the type of the enumeration.
						 A that contains the integral value or the name of an enumeration constant.
						
							 A containing the name of the enumerated constant
 in whose value is , or a null reference
 if no such constant is found. If multiple constants have the same value, as to which name is returned for that value, is unspecified.
						
						
							 or is a null reference.
						
							
								 is not a that describes a .
							 -or-
							
								 is neither of type nor does it have the same underlying type as .
						
						
							 The following example demonstrates the method.
							 using System;
public enum Signs {
 Stop = 1,
 Yield = 2,
 Merge = 4
};
public class EnumCompTo {
 public static void Main() {
 Console.Write("The name of the constant with the value 4 is: ");
 Console.WriteLine("{0}.", Signs.GetName(typeof(Signs), 4));
 Console.Write("The name of the constant with the value Stop is: ");
 Console.WriteLine("{0}.", Signs.GetName(typeof(Signs), Signs.Stop));
 }
}

							 The output is
							
								 The name of the constant with the value 4 is: Merge.
								 The name of the constant with the value Stop is: Stop.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
					
					
						
							 Returns a zero-based, one-dimensional array that contains the names of the constants of the specified enumeration type.
						
						 A that specifies the type of an enumeration.
						
							 A vector of the names of the constants in
 . The elements of the vector
 are sorted by the values of the enumerated constants. If multiple constants have the same value, the order in which their names appear in the vector, relative to each other, is unspecified.
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
						
							 The following example demonstrates the method.
							 using System;

public enum Colors {
 Red,
 White,
 Blue
};

public class enumGetNames {

 public static void Main() {
 int i = 0;
 String[] strAry = Colors.GetNames(typeof(Colors));
 foreach (String str in strAry) {
 Console.Write("The value indexed '{0}' ", i++);
 Console.WriteLine("is {0}.", str);
 }
 }
}

							 The output is
							
								 The value indexed '0' is Red.
								 The value indexed '1' is White.
								 The value indexed '2' is Blue.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Type
					
					
						
					
					
						
							 Returns the underlying type of the specified enumeration type.

						
						 The of an enumeration.
						
							 A instance that describes the underlying type of .
						
						
							 is a null reference.
						
							
								 is not an enumeration type.
						
						
							 The following example demonstrates the
method.
							 using System;
public enum Colors {
 Red,
 White,
 Blue
}
public class EnumUnderlyingTypeTest {
 public static void Main() {
 Type t = Colors.GetUnderlyingType(typeof(Colors));
 Console.WriteLine("The underlying type of Colors is {0}.", t.ToString());
 }
}

							 The output is
							
								 The underlying type of Colors is System.Int32.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Array
					
					
						
					
					
						
							 Returns a zero-based, one-dimensional array of the values of the constants of the
 specified enumeration type.
						
						 The of an enumeration.
						
							 A vector of the enumeration type specified by
 containing the values of the
 constants in . The elements of the array
 are sorted by the values of the enumeration constants. If multiple constants have the same value, the value of each is included in the array.

						
						
							 is a null reference.
						
							
								 is not an enumeration type.
						
						
							 The following example demonstrates the method.
							 using System;
public enum Colors {
 Red = 1,
 White = 2,
 Blue = 4
}
public class enumGetValues {
 public static void Main() {
 Array valueAry = Enum.GetValues(typeof(Colors));
 foreach (int i in valueAry) {
 Console.WriteLine("The value of element {0} is {1}",
 Enum.Format(typeof(Colors), i, "g"),i);
 }
 }
}

							 The output is
							
								 The value of element Red is 1.
								 The value of element White is 2.
								 The value of element Blue is 4.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a indicating whether a constant with the specified value exists
 in the specified enumeration type.
						
						 A that describes an enumeration.
						 The constant or value being searched for in .
						
							
								 if a constant
 in the enumeration described by
 has a value equal to ; otherwise,
 .
						
						
							 or is a null reference.
						
							
								 is not an enumeration type.
							 -or-
							 The type of is not an or an underlying type of .
						
						
							 The following example demonstrates the method.
							 using System;
public enum Colors {
 Red = 1,
 White = 2,
 Blue = 4
}
public class enumIsDefined {
 public static void Main() {
 Console.Write("It is {0} ", Enum.IsDefined(typeof(Colors), 1));
 Console.WriteLine("that '1' is defined in 'Colors'.");
 Console.Write("It is {0} ", Enum.IsDefined(typeof(Colors), 3));
 Console.WriteLine("that '3' is defined in 'Colors'.");
 }
}

							 The output is
							
								 It is True that '1' is defined in 'Colors'.
								 It is False that '3' is defined in 'Colors'.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Converts the specified representation of one or more
 enumerated constants of a specified enumeration type to an equivalent enumerated
 object.
						
						 The of an enumeration.
						 A containing one or more names or a single numeric value to convert. If the string contains more than one name, each name is required to be separated by a comma (','). The names are parsed in a case-sensitive manner. The names or number can be surrounded by any amount of white space.
						
							 A of type
 whose values are
 represented by .
						
						
							 or is a null reference.
						
							
								 is not a that describes a .
							 -or-
							
								 is either equal to or contains only white space.
							 -or-
							
								 represents one or more names, and at least one name represented by is not of type .
						
						
							 This version of is equivalent to
(, ,).
						
						
							 The following example demonstrates the method.
							 using System;
public enum Colors {
 Red = 1,
 Blue = 2
}
public class enumTest {
 public static void Main() {
 object o = Enum.Parse(typeof (Colors), "Red, Blue");
 Type oType = o.GetType();
 Console.WriteLine("The type of the object returned is {0}",oType.ToString());
 Array values = Enum.GetValues(oType);
 foreach (Colors c in values) {
 Console.WriteLine(Enum.Format(oType,c,"D"));
 }
 }
}

							 The output is
							
								 The type of the object returned is Colors
								 1
								 2
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
					
					
						
							 Converts the specified
representation of one or more enumerated constants of a specified enumeration type to an
equivalent enumerated object. This method behaves in a case-sensitive or
insensitive manner according to the specified .
						
						 The of an enumeration.
						
							 A containing one or more names or a single numeric value to convert. If the string contains more than one name, each name is required to be separated by a comma (','). The names or number can be surrounded by any amount of white space.
						
						 A value. Specify to have names in parsed in a case-insensitive manner. Specify to have names parsed in a case-sensitive manner.
						
							 A of type

whose values are represented by .
						
						
							 or is a null reference.
						
							
								 is not a that describes a .
							 -or-
							
								 is either equal to or contains only white space.
							 -or-
							
								 represents one or more names, and at least one name represented by is not of type .
						
						
							 For an example that demonstrates parsing strings
 containing enumeration values, see (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set to the specified value.

						
						 The of the enumeration.
						 The value to set.
						
							 An enumeration object of type whose value is
 .

						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set
 to the specified value.

						
						 The of an enumeration.
						 The value to set.
						
							 An enumeration object of type whose value is .
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set
 to the specified value.

						
						 The of an enumeration.
						 The value to set.
						
							 An enumeration object of type whose
 value is .
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set
 to the specified value.

						
						 The of an enumeration.
						 The value to set.
						
							 An enumeration object of type whose
 value is .
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set
 to the specified value.

						
						 The of an enumeration.
						 The value to set.
						
							 An enumeration object of type whose
 value is .
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set
 to the specified value.

						
						 The of an enumeration.
						 The value to set.
						
							 An enumeration object of type whose
 value is .
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set
 to the specified value.

						
						 The of an enumeration.
						 The value to set.
						
							 An enumeration object of type whose value is .
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set
 to the specified value.

						
						 The of an enumeration.
						 The value to set.
						
							 An enumeration object of type whose
 value is .
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Returns an instance of the specified enumeration type set
 to the specified value.

						
						 The of an enumeration.
						 The value to set.
						
							 An enumeration object of type whose value is .
						
						
							 is a null reference.
						
							
								 is not a that describes a .
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts the value of the current instance to its
 equivalent representation using the specified format.
						
						 A that specifies the format to use when converting the current instance to a . Specify one of the following values in upper or lowercase: "G", "D", "X", or "F" .
						
							 The representation of the value of the current
 instance as specified by .
						
						
							 contains an invalid value.
						
							 If
 is a null
 reference or an empty string, the return value is formatted using the general
 format specifier ("G").
							
								 For details on the format specifiers
 used with an enumeration object, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Converts the name of the value of the current instance to
 its equivalent representation.
						
						
							 The representation of the named constant specified by the current instance.
						
						
							 This version of is equivalent to ("G",
).
							 This method returns the same value as
with the "g" or "G" format option.
							 An instance of an enumeration is set to
 a named constant value. This method returns the name of the constant an instance
 is set to, not the value itself.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts the numeric value of the current instance to
 its equivalent representation using the specified format.
						
						 A that specifies the format to use when converting the current instance to a . Specify one of the following values in upper or lowercase: "G", "D", "X", or "F" .
						 An object that implements the interface or a null reference. The is not used in the implementation of this method. There is no that corresponds to a object; therefore, is not utilized by this method, and any can be passed as a parameter.
						
						
							 The representation of the value of the current instance as specified by .
						
						
							 does not contain a valid format specifier.
						
							 If
 is a null
 reference or an empty string, the return value is formatted using the general
 format specifier ("G").
							
								 For details on the
 format specifiers used with an enumeration object, see
 .
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts the name of the value of the current instance to
 its equivalent
 representation.
						
						 An object that implements the interface or a null reference. The is not used in the implementation of this method. There is no that corresponds to a object; therefore, is not utilized by this method, and any can be passed as a parameter.
						
						
							 The representation of
 the name of the value of the current instance.

						
						
							 This method is equivalent to the version of
that takes no arguments.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides the current settings for, and information about, the execution environment.
				
				
					
						 Use this class to retrieve the following
 information:
						
							
								 Command line arguments
							
							
								 Exit codes
							
							
								 Environment variable settings
							
							
								 Contents of the call stack
							
							
								 Time since last system boot
							
							
								 Version of the execution engine
							
						
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the information entered on the command line when the current process was
 started.
						
						
							 A containing
 the command line arguments.
						
						
							 This property is read-only.
							 This property provides access to the program name and
 any arguments specified on the command line when the current process was
 started.
							 If the environment does not support a program name, as
 can be the case with compact devices, then the program name is equal to .
							 The format of the information returned by this property is implementation-specific.
							
							
								 The program name can, but is not required to, include
 path information.
								 Use the method to retrieve the command line information parsed
 and stored in an array of strings.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Terminates the current process and sets the process exit code to the specified value.
						
						 A value that is provided to the operating system.
						 The immediate caller does not have the required permission.
						
							 This method causes an executing program to halt.
						
						 Requires unmanaged code permission. See .
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					 0
					
						
							 Gets or sets the exit code of a process.
						
						
							 A
value returned by a process. The default value is zero.
						
						
							 When a process exits, if the process does not return a
 value, the value of
 is returned. If the value of this property is not set by
 an application, zero is returned.
							 On operating systems that do
 not support process exit codes, CLI implementations are required to fully support getting and
 setting values for this property.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
					
						
							 Returns the arguments specified on the command
 line.
						
						
							 Returns a array. Each in the array
 contains a single command line argument.
						
						
							 The first element in the array contains the filename of
 the executing program. If the filename is not available, the first element is
 equal to . The remaining elements contain any additional tokens
 entered on the command line.
							
								 The program filename can, but is not required to,
 include path information.
								 To obtain the command line as a single , use the
 property.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the value of
 the specified environment variable.
						
						 A containing the name of an environment variable.
						
							 A containing the current setting of , or
 .
						
						
							 is a null reference.
						 The caller does not have the required permission.
						
							 If contains a valid name for an environment variable, and
 if the caller has sufficient permissions, this method returns the current
 setting for . Environment variable names are
 case-insensitive.
							 If specifies an
invalid name or the system does not support environment variables, this method
returns
.
							
								 To obtain names and settings for all
 environment variables, use the method.
							
						
						 Requires permission to read environment variables. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IDictionary
					
					
					
						
							 Returns all
 environment variables and their current settings.
						
						
							 A object containing environment variable names
 and settings, or
 if
 the system does not
 support environment variables.
						
						 The caller does not have the required permission.
						
							 The names and settings for the environment variables are
 stored in the returned object as keys and values, respectively.
							
								 To obtain the
 setting of a single environment variable, use the method.
							
						
						
							 The following example prints the names and values of all
 environment variables defined in the environment.
							 using System;
using System.Collections;

class EnvTest:Object {
 public static void Main() {
 Console.WriteLine("Environment Variables");
 IDictionary envars =
 Environment.GetEnvironmentVariables();
 IDictionaryEnumerator varEnumerator =
 envars.GetEnumerator();
 while(varEnumerator.MoveNext() != false) {
 Console.WriteLine("{0}={1}",
 varEnumerator.Key,
 varEnumerator.Value);
 }
 }
}

							 The output will vary depending on your system.
						
						 Requires permission to read environment variables. See .
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether an application has started to shut down.
						
						
							 A where indicates the shutdown
 process has started; otherwise .
						
						
							 This property is read-only.
							
								 This property is for use inside the finalizer of an application. If the
 shutdown process has started, static members should not be accessed; they
 might have been cleaned up by the garbage collector. If the member has been
 cleaned up, any access attempt will cause an exception to be thrown.
								
									 is a special case that is always available after the
 shutdown process has started.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the newline string for the current platform.
						
						
							 A containing the characters required to write a newline.
						
						
							 This property is read-only.
							
								 This property is
 intended for platform-independent formatting of multi-line strings. This value
 is automatically appended to text when using methods,
 such as
 .
							
						
						
							 The following example demonstrates using the
property. The string returned by is inserted between "Hello" and
"World", causing a line break between the words in the output.
							 using System;
class TestClass {
 public static void Main() {
 Console.WriteLine("Hello,{0}World",
 Environment.NewLine);
 }
}

							 The output is
							
								 Hello,
								 World
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Returns a string representation of the state of the call stack.
						
						
							 A containing a description of the methods currently in the
 call stack. This value can be .
						
						
							 This property is read-only.
							
								 An example of how the returned by this property might be
 formatted follows, where one line of information is provided for each method on
 the call stack:
								
									 at
 . () in
 :line
									
								
								
									 , ,
 , , and are defined as
follows:
								
									
										 Item
										 Description
									
									
										
											
										
										 The fully qualified name of the
 class.
									
									
										
											
										
										 The name of the method.
									
									
										
											
										
										 The list of parameter type/name pairs. Each pair is
 separated by a comma (,). This information is omitted if

takes zero
parameters.
									
									
										
											
										
										 The name of the source file where the
 method is declared.
 This information is omitted if debug symbols are not available.
									
									
										
											
										
										 The number of the line in that
contains the source code from
for the instruction that is on the call stack. This information
is omitted if debug symbols are not available.
									
								
								 The literal "at" is preceded by a single space.
								 The literals "in" and ":line" are omitted if debug
 symbols are not available.
								 The method calls are described in reverse chronological
 order (the most recent method call is described first).
								
									 might not report as many method
calls as expected, due to code transformations that occur during
optimization.
							
						
						
							 The following example gets the
property from within a series of nested calls.
							 using System;
public class TestCallStack {
 public void MyMethod1 () {
 MyMethod2();
 }
 public void MyMethod2 () {
 MyMethod3();
 }
 public void MyMethod3 () {
 Console.WriteLine("TestCallStack: {0}",
 Environment.StackTrace);
 }
 public static void Main() {
 TestCallStack t = new TestCallStack();
 t.MyMethod1();
 }
}

							 Without debug symbols the output is
							
								 TestCallStack: at System.Environment.GetStackTrace(Exception e)
								 at System.Environment.GetStackTrace(Exception e)
								 at System.Environment.get_StackTrace()
								 at TestCallStack.Main()
							
							 With debug symbols the output is
							
								 TestCallStack: at System.Environment.GetStackTrace(Exception e)
								 at System.Environment.GetStackTrace(Exception e)
								 at System.Environment.get_StackTrace()
								 at TestCallStack.MyMethod3() in c:\ECMAExamples\envstack.cs:line 10
								 at TestCallStack.MyMethod2() in c:\ECMAExamples\envstack.cs:line 8
								 at TestCallStack.MyMethod1() in c:\ECMAExamples\envstack.cs:line 5
								 at TestCallStack.Main() in c:\ECMAExamples\envstack.cs:line 15
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					 496190500
					
						
							 Gets the number of milliseconds elapsed since the system was
 started.
						
						
							 A value containing the amount of time in milliseconds that
 has passed since the last time the computer was started.
						
						
							 This property is
 read-only.
							 The resolution of the
property cannot be less than 500
milliseconds.
							 The value of this property is derived from the system
 timer.
							 The property handles an overflow condition by
resetting its value to zero. The minimum value returned by
is
0.
							
								
									
is measured in milliseconds, not in
"ticks".
								 The
reaches its maximum value after approximately 24.8 days of continuous up
time.
								 For applications that require a finer granularity or a
 larger maximum time than supports, see

 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Version
					
					
					
						
							 Gets the current version of
 the execution engine.
						
						
							 A object that contains the major, minor, build, and
 revision numbers of the execution engine.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents access to
 environment variables.
				
				
					
						 This enumeration is used by the
class.
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Security.Permissions.EnvironmentPermissionAccess
					
					
					 AllAccess
					
						
							 Specifies read and write access to one or more environment variables.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.EnvironmentPermissionAccess
					
					
					 NoAccess
					
						
							 Specifies no access to one or more environment variables.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.EnvironmentPermissionAccess
					
					
					 Read
					
						
							
 Specifies read access to one or more environment variables
							
								 Changing, deleting and creating
 environment variables is not included in this access level.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.EnvironmentPermissionAccess
					
					
					 Write
					
						
							 Specifies write access to one or more environment variables. Write
 access includes creating and deleting environment variables as well as changing existing values.
							
								 Reading environment variables is not
 included in this access level.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Used to declaratively specify security actions to control
 access to environment variables.
				
				
					 Environment variable names are case-insensitive. Multiple environment variable names are specified by separating the names
 using the
 string.
					
						 The level of access to one or more environment variables is
 specified using the members of the current instance. For example, to specify
 read permissions for an environment variable, set the property equal
 to the name of the environment variable.
						 The security information declared by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time.
 Security attributes are used for declarative security only. For imperative
 security, use the corresponding permission class,
 .
						 The allowable targets are determined by the
 passed to the constructor.
					
				
				
					 The following example shows a declarative request for
 the ability to read the specified environment variables. The
 security action indicates
 that this is the minimum permission required for the target assembly to be able
 to execute.
					
						 [assembly:EnvironmentPermissionAttribute(SecurityAction.RequestMinimum, Read="COMPUTERNAME;USERNAME;USERDOMAIN")]

					
					 The following example shows how to demand that the
 calling code has unrestricted access to all environment variables. Demands are
 typically made in managed libraries to protect methods or classes from
 malicious code.
					
						 [EnvironmentPermissionAttribute(SecurityAction.Demand, Unrestricted=true)]

					
				
			
			
				 System.Security.Permissions.CodeAccessSecurityAttribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified value.
						
						 A value.
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Property
					
						 System.Void
					
					
						
					
					
						
							 Sets the environment variables for which full access is
 secured.
						
						
							 A
containing one or more environment variables for which full access is
secured.
						
						
							 This property is write-only.
							 Multiple environment variable names are specified by separating the names
 using the string. Environment variable names are
 case-insensitive.
							
								 The
 security action passed to the constructor of the current instance determines how the specified
 environment variables are secured. For example, if the action is , then
 the target of the current instance requires full access to the specified variables
 in order to execute. If the action is ,
 then the system does not allow the target any access to the specified
 variables.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new
 that
 contains the security information of the current instance.
						
						
							 A new
object with the security information of the current
instance.
						
						
							
								 Applications typically do not call this method; it is intended for use by the
 system.
								 The security information described by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time. The
 system uses the object returned by this method to convert the security
 information of the current instance into the form stored in metadata.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the environment variables for which read access is
 secured.
						
						
							 A
containing one or more environment variables for which read access is secured.
						
						
							 Multiple environment variable names are specified by separating the names
 using the string. Environment variable names are
 case-insensitive.
							
								 The security action passed to the constructor of the current instance determines how
 the specified environment variables are secured. For example, if the action is
 , then the target
 of the current instance requires read access to the specified variables in order to
 execute. If the action is , then the
 system does not allow the target to read the specified
 variables.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets
 the environment variables for which write access is secured.
						
						
							 A containing one or more environment variables for which write access is secured.
						
						
							 Multiple environment variable names are specified by separating the names
 using the string. Environment variable names are
 case-insensitive.
							
								 The security action passed to the
 constructor of the current instance determines how the specified environment
 variables are secured. For example, if the action is , then the target of
 the current instance requires write access to the specified variables in order
 to execute. If the action is ,
 then the system does not allow the target to write the specified
 variables.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					
						 is the
 base class
 for classes containing event data.
				
				
					
						 This class contains no event data; it is used by events
 that do not pass state information to an event handler when an event is raised.
 If the event handler requires state information, the application must create a
 subclass of this class to hold the data. For example, the
 class is used to hold the data for assembly load events, and contains a
 object that describes the loaded assembly.
						 For details on events, see .
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
 class.
						
					
					 0
				
				
					
					
					 Field
					
						 System.EventArgs
					
					
					
						
							 Returns a new instance for use with events that have no state information.

						
						
							 This field is read-only.
							 Accessing this field is equivalent to calling the constructor.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the shape of methods that are called in response to an event.
				
				 The object that raised the event.
				 A instance that contains the event data.
				
					
						 A instance is used to specify the methods that
 are invoked in response to an event. To associate an instance of
 with an event, add the
 instance to the event. The methods referenced by the
 instance are invoked
 whenever the event is raised, until the

 instance is removed from the event.
						 If the event does not generate data, applications use the base
 class for the event data object
 . For more information, see . For additional information about events, see Partitions I and II of the CLI Specification.
					
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents errors that occur during application execution.
				
				
					 This class is
 the base class for all Exceptions.
					 When an error occurs, either the system or the currently executing
 application reports it by throwing an Exception containing information about the
 error. Once thrown, an Exception is handled by the application or by the default
 exception handler.
					
						 For a description of the exception handling model,
 see Partition I of the CLI Specification.
					
					
						 If an application handles exceptions that occur during the execution of a
 block of application code, the code is required to be placed within a
 statement. Application code within a statement is a
 . Application code that handles Exceptions thrown by a
 try block is placed within a statement, and is
 called a
 . Zero or more catch blocks are associated with a try block, and each
 catch block includes a type filter that determines the types of Exceptions it
 handles.
						 When an Exception occurs in a try block, the system
 searches the associated catch blocks in the order they appear in application
 code, until it locates a catch block that handles the Exception. A catch block
 handles an exception of type , if the type filter of the catch block
 specifies or any type that

 derives from. The system stops searching after it finds the first catch block
 that handles the Exception. For this reason, in application code, a catch block
 that handles a type must be specified before a catch block that handles its base
 types, as demonstrated in the example that follows this section. A catch block
 that handles is specified last.
						 If the catch blocks associated with the current try block do not handle the
 Exception, and the current try block is nested within other try blocks in the
 current call, the catch blocks associated with the next enclosing try block are
 searched. If no catch block for the Exception is found, the system searches
 previous nesting levels in the current call. If no catch block for the Exception
 is found in the current call, the Exception is passed up the call stack, and the
 previous stack frame is searched for a catch block that handles the Exception.
 The search of the call stack continues until the Exception is handled or there
 are no more frames in the call stack. If the top of the call stack is reached
 without finding a catch block that handles the Exception, the default exception
 handler handles it and the application terminates.
					
					
						 types support the following features:
					
						
							
 Human-readable text that describes the error. See property.
							
						
						
							
 The state of the call stack when the Exception was thrown. See the property.
							
						
						
							
 When there is a causal relationship between two or more Exceptions, this
 information is maintained via the property.
						
					
					 The Base Class Library provides two types that inherit
 directly from
 :
					
						
							
								
							
						
						
							
								
							
						
					
					
						 Most user-defined
 exceptions derive from . For more information, see

and
.
					
				
				
					 The following example demonstrates a catch block that is
 defined to handle errors. This catch block also catches
 errors because derives from , and there is no catch block explicitly
 defined for errors.
					 using System;
class ExceptionTestClass {
 public static void Main() {
 int x = 0;
 try {
 int y = 100/x;
 }
 catch (ArithmeticException e) {
 Console.WriteLine("ArithmeticException Handler: {0}", e.ToString());
 }
 catch (Exception e) {
 Console.WriteLine("Generic Exception Handler: {0}", e.ToString());
 }
 }
}

					 The output is
					
ArithmeticException Handler: System.DivideByZeroException: Attempted to divide by zero.
 at ExceptionTestClass.Main()

				
			
			
				 System.Object
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a
 system-supplied message that describes the error and takes into account the
 current system culture. The property is initialized to
 and the property is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the
property of the new instance using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no arguments. The property is initialized to
 and the property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using
 , and the property using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							 The property is initialized to .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Exception
					
					
					
						
							 Returns the that is the root cause of one or more subsequent Exceptions.
						
						
							 Returns the first Exception thrown in a chain of
 Exceptions. If the property
 of the current Exception is , returns the current Exception.
						
						
							
								 A chain of
 Exceptions consists of a set of Exceptions such that each Exception in the chain
 was thrown as a direct result of the Exception referenced in its
 property. For a given chain, there can be exactly one Exception that is the root
 cause of all other Exceptions in the chain. This Exception is called the

									 and its
property always contains a null reference.
							
							
								

 For all Exceptions in a chain of Exceptions, the method is required to return the same object (the
).
							
							
								
 The method is overridden in classes
 that require control over the exception content or format.

							
							
								
 Use the method when you want to find the root cause of an
 Exception but do not need information about Exceptions that might have
 occurred between the current Exception and the first Exception.

							
						
						
							 The following example shows an implementation of the
 method.
							 public virtual Exception GetBaseException() {
 Exception inner = InnerException;
 Exception back = this;
 while (inner != null) {
 back = inner;
 inner = inner.InnerException;
 }
 return back;
}

						
					
					 0
				
				
					
					
					 Property
					
						 System.Exception
					
					
					
						
							 Gets the instance that caused the current Exception.
						
						
							 An instance of that describes the error that caused the current Exception.
						
						
							 This property is read-only.
							
								 When an Exception
 is thrown as a direct result of a previous exception
 , the property of
 should contain a reference to
.
							
							 The property returns the same value as was passed
into the constructor, or
if the
inner exception value was not supplied to the constructor.
							
								 Using the
property, you can obtain the set of Exceptions that led to the current
Exception. includes an
example that demonstrates this procedure.
							
						
						
							 The following example demonstrates throwing and catching
 an Exception that references an inner Exception.
							 using System;
public class MyAppException:ApplicationException {
 public MyAppException (String message) : base (message) {}
 public MyAppException (String message, Exception inner) : base(message,inner) {}
}
public class ExceptExample {
 public void ThrowInner () {
 throw new MyAppException("ExceptExample inner exception");
 }
 public void CatchInner() {
 try {
 this.ThrowInner();
 }
 catch (Exception e) {
 throw new MyAppException("Error caused by trying ThrowInner.",e);
 }
 }
}
public class Test {
 public static void Main() {
 ExceptExample testInstance = new ExceptExample();
 try {
 testInstance.CatchInner();
 }
 catch(Exception e) {
 Console.WriteLine ("In Main catch block. Caught: {0}", e.Message);
 Console.WriteLine ("Inner Exception is {0}",e.InnerException);
 }
}
}

							 The output is
							
In Main catch block. Caught: Error caused by trying ThrowInner.
Inner Exception is MyAppException: ExceptExample inner exception
 at ExceptExample.ThrowInner()
 at ExceptExample.CatchInner()

						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets a containing a message that describes the current Exception.
						
						
							 A that contains a detailed description of the error, or
 .
 This value is intended to be understood by humans.
						
						
							
								 The text of
 should completely describe the error and should, when
 possible, explain how to correct it.
								 The value of the
property is included in the information returned by
.
							
							
 This property is read-only.
							
								 The
property is set
only when creating an Exception instance.
								 If no message was supplied to the constructor
 for the current instance, the system supplies a default message that is
 formatted using the current system culture.
							
							
								 The
property is overridden in classes that require
control over message content or format.
							
							
								 Application code typically
 accesses this property when there is a need to display information about
 an exception that has been caught.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets a representation of the frames on the call stack at the time the
 current Exception was thrown.
						
						
							 A that describes the contents of the call stack.
						
						
							
								
									
might not report as many method calls as expected, due to code transformations, such
as inlining, that occur during optimization.
							
							
 This property is read-only.
							
								 The format of the information returned by this property
 is required to be identical to the format of the information returned by

 .
							
							
								 The
property is overridden in classes that require control over
the stack trace content or format.
							
							
								 Use the
property to obtain a string representation of the contents of the call stack at
the time the exception was thrown.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Creates and returns a
representation of the current
Exception.
						
						
							 A
representation of the current Exception.
						
						
							
								
									 returns a representation of the current
 Exception that is intended to be understood by humans. Where the Exception
 contains culture-sensitive data, the string representation returned by is
 required to take into account the current system culture. Although there are no exact requirements for the
 format of the returned string, it should as much as possible reflect the value
 of the object as perceived by the user.
								
								
									 This method
 overrides .
								
							
							
								 The implementation obtains the fully
 qualified name of the current Exception, the message, the result of calling
 on the inner exception, and the result of calling
 . If any of these
 members is or equal to , its value is not
 included in the returned string.
							
							
								 It is recommended, but not required, that be
 overridden to return information about members declared in the derived class.
 For example, the class overrides so
 that it returns the value of the property, if that value is not
 .
							
							
								 Use the method to obtain a string
 representation of an Exception.
							
						
						
							 The following example causes an Exception and displays
 the result of calling on that Exception.
							 using System;
public class MyClass {}
public class ArgExceptionExample {
 public static void Main() {
 MyClass my = new MyClass();
 string s = "sometext";
 try {
 int i = s.CompareTo(my);
 }
 catch (Exception e) {
 Console.WriteLine("Error: {0}",e.ToString());
 }
 }
}

							 The output is
							
Error: System.ArgumentException: Object must be of type String.
 at System.String.CompareTo(Object value)
 at ArgExceptionExample.Main()

						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an internal error in the execution engine.
				
				
					
						 Execution engine errors are fatal errors that should
 never occur. Such errors occur mainly when the execution engine has been corrupted or data
 is missing.
						 The system can throw this exception at any time. When possible, the system
 throws an exception that provides more information than the
 exception.
						 For information on conditions under
 which the CLI throws exceptions, see Partition II of the CLI
 Specification.

						 Applications should not throw .
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "Internal error occurred." This
 message takes into account the current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using
 . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 For information on
 inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides information and performs operations on
 files
 .
					
				
				
					 Implementations of this class are required to
 preserve the case of path strings. Implementations are required to be case
 sensitive if and only if the platform is case-sensitive.
					 The following table describes the enumerations that are
 used to customize the behavior of various methods.
					
						
							 Enumeration
							 Description
						
						
							
								
							
							 Specifies read and write access to a
 file.
						
						
							
								
							
							 Specifies the level of access permitted for a file that is already in
 use.
						
						
							
								
							
							 Specifies whether the contents of an existing file are preserved or
 overwritten, and whether requests to create an existing file cause an
 exception.
						
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.IO.StreamWriter
					
					
						
					
					
						
							 Appends UTF-8 encoded text to an existing file.
						
						 A containing the name of the file to append to.
						
							 A that appends UTF-8 encoded text to the
 specified file.
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The directory information specified in was not found.
						 A general I/O exception occurred, such as trying to access a CD-ROM drive whose tray is open.
						
							 is in an implementation-specific invalid format.
						 The length of or the absolute path information for exceeds the implementation-specific maximum length.
						 Access is denied. The caller does not have the required permission.
						
							 This method is equivalent to (,
). If the file specified by does not exist, it is created. If the file does
exist, writes to the append
text to the
file. Additional threads are permitted to read the file while it is
open.
							 The argument is permitted
to specify relative or absolute path information. Relative path information is
interpreted as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to write to the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the specified file to a new location.
						
						 A containing the name of the file to copy.
						 A containing the name of the destination file. Cannot specify a directory or an existing file.
						
							
								 or is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
							 -or-
							
								 or specifies a directory.
						
						
							 or is .
						 Directory information in or was not found.
						
							 was not found.
						
							
								 exists.
							 -or-
							 An I/O error occurred.
						
						 The length or the absolute path information for or exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to
(, ,).
							 The and arguments are permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the source file and write the destination file. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Copies the specified file to a new location.
						
						 A containing the name of the file to copy.
						 A containing the name of the destination file. Cannot specify the name of a directory.
						 A value. Specify if the destination file can be overwritten; otherwise .
						
							
								 or is a zero-length string, contains only white space, or contains one or more invalid characters.
							 -or-
							
								 or specifies a directory.
						
						
							 or is .
						 Directory information in or was not found.
						
							 was not found.
						
							
								 is read-only (write-protected), or exists and is .
							 -or-
							 An I/O error occurred.
						
						 The length or the absolute path information for or exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The and arguments are
 permitted to specify relative or absolute path information. Relative path
 information is interpreted as relative to the current working directory.
 To obtain the current working directory,
 see .
							
						
						 Requires permission to read the source file and write the destination file. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.FileStream
					
					
						
					
					
						
							 Creates or overwrites the specified file.
						
						 A containing the name of the file.
						
							 A that provides read/write access to the specified file.
						
						
							 is .
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
						
							 specified a file that is read-only (write-protected).
						 The directory information specified in was not found.
						 An I/O error occurred while creating the file.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 If the specified file does not exist, it is created; if it does exist and it is not read-only, the
 contents are overwritten.
							 The
argument is permitted to specify relative or absolute path
information. Relative path information is interpreted as relative to the current
working directory. To obtain the current
working directory, see .
							
						
						 Requires permission to write the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.FileStream
					
					
						
						
					
					
						
							 Creates or overwrites the specified file.
						
						 A containing the name of the file.
						 A containing the number of bytes buffered for reads and writes to the file.
						
							 A that provides read/write access to the specified file.
						
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
						
							 is .
						
							 specified a file that is read-only (write-protected).
						 The directory information specified in was not found.
						 An I/O error occurred while creating the file.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to (, , ,

,).
							 If the specified file does not exist, it is created; if it does exist and it is
 not read-only, the contents are
 overwritten.
							 The
argument is permitted to specify relative or absolute path
information. Relative path information is interpreted as relative to the current
working directory. To obtain the current
working directory, see .
							
						
						 Requires permission to write the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.StreamWriter
					
					
						
					
					
						
							 Creates or opens a file for writing UTF-8 encoded text.
						
						 The file to be opened for writing.
						
							 A that writes to the specified file using UTF-8 encoding.
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The directory information specified in was not found.
						 A general I/O exception occurred, such as trying to access a CD-ROM drive whose tray is open.
						
							 is in an implementation-specific invalid format.
						 The length of or the absolute path information for exceeds the implementation-specific maximum length.
						 Access is denied. The caller does not have the required permission.
						
							 This method is equivalent to (,
). If the file specified by
does not exist, it is created. If
the file does exist, its contents are overwritten. Additional threads are permitted
to read the file while it is open.
							 The
argument is permitted to specify relative or absolute path
information. Relative path information is interpreted as relative to the current
working directory. To obtain the current working directory, see .
						
						 Requires permission to write the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Deletes the specified file.
						
						 A containing the name of the file to be deleted.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							
								 identifies a directory.
							 -or-
							
								 specifies a file that is read-only.
						
						 The directory information specified in was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The
argument is permitted to specify relative or absolute path
information. Relative path information is interpreted as relative to the current
working directory. To obtain the current
working directory, see .
							
							
								 Some implementations might throw to cover such implementation-specific conditions as "file in use".
							
						
						 Requires permission to write to the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a indicating whether the specified file exists.
						
						 A containing the name of the file to check.
						
							
								 if the caller
 has the required permissions and contains the name of an existing file; otherwise, . If is or a
 zero-length string, returns .
						
						
							 If the caller does not have sufficient permissions to
 read the specified file, no exception is thrown and the method returns regardless of the existence of .
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Returns the creation date and time of the specified file or directory.
						
						 A containing the name of the file or directory for which to obtain creation date and time information.
						
							 A structure set
 to the creation date and time for the specified file or directory. This value is expressed in local time.
							 Platforms that do not
 support this feature return .
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Returns the date and time the specified file or directory was last accessed.
						
						 A containing the name of the file or directory for which to obtain access date and time information.
						
							 A structure set to
 the date and time the specified file or directory was last accessed. This value is expressed in local time.
							 Platforms that do not
 support this feature return .
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Returns the date and time the specified file or directory was last written to.
						
						 A containing the name of the file for which to obtain write date and time information.
						
							 A structure set to
 the date and time the specified file or directory was last written to. This value is expressed in local time.
							 Platforms that do not
 support this feature return .
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Moves the specified file to a new location.
						
						 A containing the name of the file to move.
						 A containing the name of the new location for the file.
						
							
								 or is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
						
							 or is .
						 The directory information in or was not found.
						
							 was not found or specifies a directory.
						
							 already exists or is a directory.
						 The length or absolute path information for or exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method does not throw an exception if the source and destination are the same.
							 The and arguments are
 permitted to specify relative or absolute path information. Relative path
 information is interpreted as relative to the current working directory.
 To obtain the current working directory,
 see .
							
						
						 Requires permission to read from
							 and write to and . See and .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.FileStream
					
					
						
						
						
						
					
					
						
							 Opens a on the specified file.
						
						 A containing the name of the file to open.
						 A value that specifies whether a file is created if one does not exist, and determines whether the contents of existing files are retained or overwritten.
						 A value that specifies the operations that can be performed on the file.
						 A value specifying the type of access other threads have to the file.
						
							 A
that provides access to the specified file.
						
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
							 -or-
							
								 specified and specified , , or .
						
						
							 is .
						
							 , , or specified an invalid value.
						
							 specified a read-only file and is not , or specified a directory.
						 The directory information specified in was not found.
						
							 was not found.
						 An I/O error occurred while opening the file.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to (,
 , ,).
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read and might also require permission to write the file. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.FileStream
					
					
						
						
						
					
					
						
							 Opens a on
 the specified file.
						
						 A containing the name of the file to open.
						 A value that specifies whether a file is created if one does not exist, and determines whether the contents of existing files are retained or overwritten.
						 A value that specifies the operations that can be performed on the file.
						
							 A
that provides access to the specified file.
						
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
							 -or-
							
								 specified and specified , , or .
						
						
							 is .
						
							 or specified an invalid value.
						
							 specified a read-only file and is not , or specified a directory.
						 The directory information specified in was not found.
						
							 is or , but the specified file was not found. If a different mode is specified and the file was not found, a new one is created.
						 An I/O error occurred, such as specifying when the file specified by path already exists.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							 This method is equivalent to (,
 , ,).
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read and might also require permission to write to the file. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.FileStream
					
					
						
						
					
					
						
							 Opens a on the specified file
 with read/write access.
						
						 A containing the name of the file to open.
						 A value that specifies whether a file is created if one does not exist, and determines whether the contents of existing files are retained or overwritten.
						
							 A that provides read/write access to the specified file.
						
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
						
							 is .
						
							 specified an invalid value.
						
							
								 specified a read-only file (this method attempts to open the file with read/write access).
							 -or-
							 This operation is not supported on the current platform.
							 -or-
							
								 specified a directory.
						
						 The directory information specified in was not found.
						
							 was not found.
						 An I/O error occurred while opening the file.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to (,
 , ,

).
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read and write the file. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.FileStream
					
					
						
					
					
						
							 Opens an
 existing file for reading.
						
						 A containing the name of the file to be opened for reading.
						
							 A read-only containing the contents of the specified file.
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 specified a directory.
						 The directory information specified in was not found.
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to (, , ,
).
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to read the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.StreamReader
					
					
						
					
					
						
							 Opens an existing UTF-8 encoded text file
 for reading.
						
						 A containing the name of the file to be opened for reading.
						
							 A containing the contents of the
 specified file.
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The directory information specified in was not found.
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to
().
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to write to the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.IO.FileStream
					
					
						
					
					
						
							 Opens an
 existing file for writing.
						
						 A containing the name of the file to be opened for writing.
						
							 A writable that writes to the file specified by
 .
						
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 specified a read-only file or a directory.
						 The directory information specified in was not found.
						
							 was not found.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 This method is equivalent to (, , ,
).
							 The argument is permitted to specify
relative or absolute path information. Relative path information is interpreted
as relative to the current working directory. To obtain the current working directory, see .
							
						
						 Requires permission to write the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the creation date and time for the specified file.
						
						 A containing the name of the file for which to set the creation date and time information.
						 A containing the value to set for the creation date and time of . This value is expressed in local time.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 specifies a value outside the range of date/times permitted for this operation.
						
							 is .
						
							 was not found.
						 An I/O error occurred while performing the operation.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
							 On platforms that do not support
 this feature, this method has no effect. If this feature is supported, the range of dates that
 is valid for this operation
 is implementation-specific.
						
						 Requires permission to write to the specified file or directory. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the date and time the specified file was last accessed.
						
						 A containing the name of the file for which to set the access date and time information.
						 A containing the value to set for the access date and time of . This value is expressed in local time.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 specifies a value outside the range of date/times permitted for this operation.
						
							 was not found.
						 An I/O error occurred while performing the operation.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
							 On platforms that do not
 support this feature, this method has no effect. If this feature is
 supported, the range of dates that is valid for this operation
 is implementation-specific.
						
						 Requires permission to write to the specified file. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the date and time a file was last written to.
						
						 A containing the name of the file for which to set the date and time information.
						 A containing the value to set for the last write date and time of . This value is expressed in local time.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						
							 specifies a value outside the range of date/times permitted for this operation.
						
							 was not found.
						 An I/O error occurred while performing the operation.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						 The caller does not have the required permission.
						
							 The argument is permitted to specify
 relative or absolute path information. Relative path information is interpreted
 as relative to the current working directory. To obtain the current working directory, see .
							
							 On platforms that do not
 support this feature, this method has no effect. If this feature is
 supported, the range of dates that is valid for this operation
 is implementation-specific.
						
						 Requires permission to write to the specified file. See .
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines constants used to specify the level of file access being requested.
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.IO.FileAccess
					
					
					 Read
					
						
							 Specifies read access for a file.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileAccess
					
					
					 ReadWrite
					
						
							
 Specifies read and write access for a file.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileAccess
					
					
					 Write
					
						
							 Specifies write access for
 a file.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents access to files and
 directories.
				
				
					
						 This enumeration is used by the class.
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Security.Permissions.FileIOPermissionAccess
					
					
					 AllAccess
					
						
							 Specifies ,
, , and
 access to a file or directory.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.FileIOPermissionAccess
					
					
					 Append
					
						
							 Specifies append access to a file or directory. Append
 access includes the ability to create a new file or directory.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.FileIOPermissionAccess
					
					
					 NoAccess
					
						
							 Specifies no access to a file or directory.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.FileIOPermissionAccess
					
					
					 PathDiscovery
					
						
							 Specifies access to the path information for a file or directory. does not
 include access to the
 contents of a file or directory.
							
								 This permission is used to protect
 sensitive information in the path, such as user names, as well as information
 about the directory structure revealed in the
 path.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.FileIOPermissionAccess
					
					
					 Read
					
						
 Specifies read access to a file or directory.

					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.FileIOPermissionAccess
					
					
					 Write
					
						
							 Specifies write access to a file or
 directory. Write access includes deleting and overwriting files or directories.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Used to declaratively specify security actions to control
 access to files and directories.
				
				
					
						 The level of access to a file or directory is specified using the members of the
 current instance. For example, to specify read permissions for a file, set the
 property
 equal to the name of the file.
						 The security information declared by a
 security attribute is stored in the metadata of the attribute target, and is accessed by
 the system at run-time. Security attributes are used for
 declarative security only. For imperative security, use the corresponding
 permission class, .
						 The allowable targets are
 determined by the passed to the constructor.
					
					 Case-sensitivity of file and directory names is
 platform dependent. The set of characters that are valid for use in file and
 directory names is determined by the current file system.
				
				
					 The following example shows a declarative request for full access to the
 specified file. The security action
 indicates that this is the minimum permission required for the target assembly
 to be able to execute.
					
						 [assembly:FileIOPermissionAttribute(SecurityAction.RequestMinimum, All="\\example\\sample.txt")]

					
					 The following example shows how to demand that the
 calling code has unrestricted access to files and directories. Demands are
 typically made to protect methods or classes from malicious code.
					
						 [FileIOPermissionAttribute(SecurityAction.Demand, Unrestricted=true)]
					
				
			
			
				 System.Security.Permissions.CodeAccessSecurityAttribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified value.
						
						 A value.
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Property
					
						 System.Void
					
					
						
					
					
						
							 Sets the name of a file or directory for which full access is
 secured.
						
						
							 A containing
 the absolute path of the file or directory for which full access is secured.
						
						
							 This property is write-only.
							
								 This property sets
 full access for a single file or directory; use additional

 attributes to specify additional files
 and directories.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the name of a file or directory for which append access is secured.
						
						
							 A containing
 the absolute path of the file or directory for which append access is secured.
						
						
							
								 This property sets
 append access for a single file or directory; use additional

 attributes to specify additional files
 and directories.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new that contains the security
 information of the current instance.
						
						
							 A new object with the security
 information of the current instance.
						
						
							
								 Applications typically do not call this method; it is intended for use by the
 system.
								 The security information declared by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time. The
 system uses the object returned by this method to convert the security
 information of the current instance into the form stored in metadata.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the name of a file or directory for which path discovery
 access is secured.
						
						
							 A containing
 the absolute path of the file or directory for which access to the
 contents of the path is secured.
						
						
							
								 This property sets path discovery access for a single
 file or directory; use additional
 attributes to specify additional files and
 directories.
								 Path discovery controls access to the information in the path itself. This
 protects sensitive information in the path, such as user names, as well as
 information about the directory structure revealed in the path. This value does
 not secure access to files or folders represented by the path.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the name of a file or directory for which read access is
 secured.
						
						
							 A containing
 the absolute path of the file or directory for which read access is secured.
						
						
							
								 This property sets
 read access for a single file or directory; use additional

 attributes to specify
 additional files and directories.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the name of a
 file or directory for which write access is secured.
						
						
							 A containing
 the absolute path of the file or directory for which write access is secured.
						
						
							
								 This property sets
 write access for a single file or directory; use additional
 attributes to
 specify additional files and directories.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when a file is found
 but cannot be loaded.
				
				
					
						 The exception is thrown when
 the file fails to load because it cannot be located. If the file is located, but
 cannot be loaded due to insufficient permissions, a
 is
 thrown.
					
				
			
			
				 System.IO.IOException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the
 new instance to a system-supplied message that describes the error, such as
 "Could not load the specified file." This message takes into account the current
 system culture.
							 The property and property of the new instance are initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class with the specified error message.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the
 new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property and property of the new instance are initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new
 instance using and the property using
 . If is ,
 the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							 The property of the new
instance is initialized to .
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A containing the name of the file that was not loaded.
						
							 This constructor initializes the property of the
 new instance using and the property using
 . If is ,
 the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							 The property of the
new instance is initialized to .
							
								
									 is not required to be a file stored
 on disk; it can be any part of a system that supports access via streams. For
 example, depending on the system, this class might be able to access a physical
 device.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A containing the name of the file that was not loaded.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the
 new instance using , the property using
 , and the property using
 . If is ,
 the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							
								
									 is not required to be a file stored
 on disk; it can be any part of a system that supports access via streams. For
 example, depending on the system, this class might be able to access a physical
 device.
								 For more information on inner exceptions, see .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the file that caused the current exception.
						
						
							 A containing the name of the file that caused the
 current exception.
						
						
							 This property is read-only.
							 This property returns the name of the file supplied to the constructor for the
 current instance, if any. If the file name was not specified or is a null
 reference, this property returns .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the error message that describes the current exception.
						
						
							 A containing a
 message that describes the error that caused the current exception.
						
						
							 If the message supplied to the constructor for the current
 instance was not ,

 this property returns that message. Otherwise, this property
 returns a system-supplied message that includes the name of the
 file that was not loaded, for example, "Unable to load file a
 ." (a represents the value returned by .) If is
 , this is indicated in the system-supplied
 message as "(null)". The system-supplied message takes into account the current system culture.
							 This property is read-only.
							
								 This property
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a string representation of the current exception.
						
						
							 A
representation of the current exception.
						
						
							 The string representation returned by this method includes the value of the
 property, the value
 of the property, the result of calling
 on the exception returned by , and the result of calling .
 If any of these members is , its value is not included in
 the returned string.
							
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies how the operating system opens a file.
				
				
					
						 values specify whether a
 file is created if one does not exist, and determine whether the contents of existing
 files are retained or overwritten.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.IO.FileMode
					
					
					 Append
					
						
							 Requests a file be opened. If the file exists, its contents
 are preserved. This value is valid only for
 access. Attempts to read from a file opened with
 cause an
 exception.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileMode
					
					
					 Create
					
						
							 Requests a new file be created if it does not exist. The
 file contents are overwritten if it does exist. This value is equivalent to
 requesting that if the file does not exist, use ;
 otherwise, use .
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileMode
					
					
					 CreateNew
					
						
							 Requests a new file be created. An exception
 is thrown if the file already exists.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileMode
					
					
					 Open
					
						
							 Requests an existing file be opened. An exception is
 thrown if the file does not exist.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileMode
					
					
					 OpenOrCreate
					
						
							 Requests a file be opened. The file is
 created if it does not exist.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileMode
					
					
					 Truncate
					
						
							 Requests an existing file be opened; existing contents
 are deleted. This value is valid only for
 access. Attempts to read from a file opened with
 cause
 an exception.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when a file path
 argument specifies a file that does not exist.
				
				
					 The following example demonstrates an error that causes
 the
 exception to be thrown.
					 using System;
using System.IO;
class FileNotFoundExample {
 public static void Main () {
 string badPath = "/Eccma/examples/FileTest.cs";
 string goodPath = "/Ecma/examples2/FileTest.cs";
 try {
 File.Copy(badPath,goodPath);
 }
 catch (FileNotFoundException e) {
 Console.WriteLine("Caught: {0}",e.Message);
 }
 }
}

					 The output is
					
						 Caught: Could not find file "/Eccma/examples/FileTest.cs".
					
				
			
			
				 System.IO.IOException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message that
describes the error, such as "Could not find the specified
file." This message takes into account the current system culture.
							
The and properties of the new instance are initialized
to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the
 new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							 The and properties of the new instance are initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the
 new instance using and the property using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							 The property of the new instance is
initialized to .
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A containing the name of the file that was not found.
						
							 The constructor initializes the property of the
 new instance using and the property using
 . If is ,
 the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							 The property of the new instance is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 The name of the file that was not found.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the
 new instance using , the property using
 , and the property using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the file that cannot be found.
						
						
							 A containing the name of the file, or
 if no file
 name was passed to the constructor for the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the error message that explains the reason for the exception.
						
						
							 A containing the
 error message. This string includes the if a value for that property was supplied to the
 constructor for the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the current instance.
						
						
							 A
representation of the current Exception.
						
						
							 The string representation returned
 by this method includes the fully qualified name of the current Exception,
 the message, the result of calling on the inner
 Exception, the file name, and the result of calling . Null values are omitted from the returned string.
							
								 This method overrides .
							
						
						
							 The following example causes a exception and displays the result
 of calling on that Exception.
							 using System;
using System.IO;
class FileNotFoundExample {
 public static void Main () {
 string badPath = "/Eccma/examples/FileTest.cs";
 string goodPath = "/Ecma/examples2/FileTest.cs";
 try {
 File.Copy(badPath,goodPath);
 }
 catch (FileNotFoundException e) {
 Console.WriteLine("Caught: {0}",e.ToString());
 }
 }
}

							 The output is
							
Caught: System.IO.FileNotFoundException: Could not find file "/Eccma/examples/FileTest.cs".
File name: "/Eccma/examples/FileTest.cs"
 at System.IO.__Error.WinIOError(Int32 errorCode, String str)
 at System.IO.File.InternalCopy(String sourceFileName, String destFileName,
 Boolean overwrite)
 at FileNotFoundExample.Main()

						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the level of
 access permitted for a file that is already in use.
				
				
					 This enumeration is used to specify the way
 in which multiple threads access the same file. The level of access is set by the
 first thread that requests access to the file. For example, if a thread opens a
 file and specifies ,
 other
 threads are permitted to open the file for reading but not for writing.
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.IO.FileShare
					
					
					 None
					
						
							 Specifies that the file cannot be accessed by
 additional threads.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileShare
					
					
					 Read
					
						
							 Specifies that additional threads can
 share read access to the file. This value does not determine whether such
 access is granted, however.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileShare
					
					
					 ReadWrite
					
						
							 Specifies that additional threads can
 share read and/or write access to the file. This value does not determine whether
 such access is granted, however.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.IO.FileShare
					
					
					 Write
					
						
							
 Specifies that additional threads can share write access to the file. This value does
 not determine whether such access is granted, however.

						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Exposes a around a file,
 supporting both synchronous and asynchronous read and write operations.
				
				
					
						 is used for reading and writing files on
 a file system, as well as other file-related operating system handles
 such as pipes, standard input, standard output.
 buffers input and output for better performance.
					 The
class can open a file in one of two modes, either synchronously or
asynchronously, with significant performance consequences for the
synchronous methods (and
) and the asynchronous
methods (and
). Both sets
of methods will work in either mode; however, the mode will affect the
performance of these methods. defaults
to opening files synchronously, but provides a constructor to open
files asynchronously.
					 When accessing files, a security check is performed when
 the file is created or opened. The security check is typically not done again unless
 the file is closed and reopened. Checking
 permissions when the file is first accessed minimizes the impact of the security
 check on application performance (since opening a file happens once, while
 reading and writing can happen multiple times). Note that if an
opened file is passed to an untrusted caller, the security system can, but is
not required to prevent the caller from accessing the file.
					
						 objects support random access to files using the
 method, and the properties
of instances encapsulating files are set to . The method allows the
read/write position to be moved to any position within the file. This is done
with byte offset reference point parameters. The byte offset is relative to the
seek reference point, which can be the beginning, the current position, or the
end of the underlying file, as represented by the three values of the
 enumeration.
					 If a encapsulates a device that does not support
seeking, its property is . For additional information, see .
					
					
						 The
 class provides
 methods for the creation of
 objects
 based on file paths. The class creates a stream from a byte array and
 functions similarly to a .
					
				
				
					 The following example demonstrates the use of a
object.
					 using System;
using System.IO;

class Directory {
 public static void Main(String[] args) {
 FileStream fs = new FileStream("log.txt", FileMode.OpenOrCreate, FileAccess.Write);
 StreamWriter w = new StreamWriter(fs);
 w.BaseStream.Seek(0, SeekOrigin.End); // Set the file pointer to the end.

 Log ("Test1", w);
 Log ("Test2", w);

 w.Close(); // Close the writer and underlying file.

 fs = new FileStream("log.txt", FileMode.OpenOrCreate, FileAccess.Read);

 StreamReader r = new StreamReader(fs);
 r.BaseStream.Seek(0, SeekOrigin.Begin);
 DumpLog (r);
 }

 public static void Log (String logMessage, StreamWriter w) {
 w.Write("Log Entry : ");
 w.WriteLine("{0} {1}", DateTime.Now.ToLongTimeString(), DateTime.Now.ToLongDateString());
 w.WriteLine(":");
 w.WriteLine(":{0}", logMessage);
 w.WriteLine ("-------------------------------");
 w.Flush();
 }

 public static void DumpLog (StreamReader r) {
 while (r.Peek() > -1) { // While not at the end of the file, write to standard output.
 Console.WriteLine(r.ReadLine());
 }

 r.Close();
 }
}

					 Some example output is
					
						 Log Entry : 9:26:21 AM Friday, July 06, 2001
						 :
						 :Test1

						 Log Entry : 9:26:21 AM Friday, July 06, 2001
						 :
						 :Test2

				 System.IO.Stream
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A containing the relative or absolute path for the file that the new object will encapsulate.
						 A value that determines how to open or create the file.
						 A value that determines how the file can be accessed by the object. This parameter is used to specify the initial values of the and properties.
						 A value that determines how the file will be shared by processes.
						 A containing the desired buffer size in bytes.
						 A value that specifies whether to use asynchronous I/O or synchronous I/O. If the underlying operating system does not support asynchronous I/O, the ignores this parameter and uses synchronous I/O.
						
							 is .
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							
								 is less than or equal to zero.
							 -or-
							
								 , , or contain an invalid value.
						
						
							
								 is or , but the specified file cannot be found. If a different mode is specified and the file cannot be found, a new one is created.
						
						 An I/O error occurred, such as specifying and the file specified by already exists.
						 The caller does not have the required permission.
						 The directory information specified by does not exist.
						 The requested is not permitted by the operating system for the specified .
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							 This constructor sets read/write access to the file.
							
								
									 is not required to be a file
 stored on disk; it can be any part of a system that supports access via streams.
 For example, depending on the system, this class might be able to access a
 physical device.
							
							
								 is for all objects
that encapsulate files. If indicates a device that does not support
seeking, the property on the resulting is required to be
 . For additional information, see
.
						
						 Requires permission to read, write, and append to files. See , , and .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A containing the relative or absolute path for the file that the current object will encapsulate.
						 A constant that determines how to open or create the file.
						 A value that determines how the file can be accessed by the object. This parameter is used to specify the initial values of the and properties. For additional information, see and .
						 A constant that determines how the file will be shared by processes.
						 A containing the desired buffer size in bytes.
						 The parameter is .
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							
								 is less than or equal to zero.
							 -or-
							
								 , , or contain an invalid value.
						
						
							
								 is or , but the specified file cannot be found. If a different mode is specified and the file cannot be found, a new one is created.
						
						 An I/O error occurred, such as specifying and the file specified by already exists.
						 The caller does not have the required permission.
						 The directory information specified in does not exist.
						 The requested is not permitted by the operating system for the specified .
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							
								
									 is not required to be a
 file stored on disk; it can be any part of a system that supports access via
 streams. For example, depending on the system, this class might be able to access
 a physical device.
							
							
								 is
 for all objects that encapsulate files. If indicates a device that does not support seeking, the
property on the resulting is required to be . For additional
information, see
.
						
						 Requires permission to read, write, and append to files. See , , and .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified path, creation mode, access type, and
 sharing permission.
						
						 A containing relative or absolute path for the file that the current object will encapsulate.
						 A value that determines how to open or create the file.
						 A value that determines how the file can be accessed by the object. This parameter is used to specify the initial values of the and properties. For additional information, see and .
						 A value that determines how the file will be shared by processes.
						
							 is .
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							
								 is or , but the specified file cannot be found. If a different mode is specified and the file cannot be found, a new one is created.
						
						 An I/O error occurred, such as specifying and the file specified by already exists.
						 The caller does not have the required permission.
						 The directory information specified by does not exist.
						 The requested is not permitted by the operating system for the specified .
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							
								 , , or contains an invalid value.
						
						
							 This constructor sets read/write access to the file.
							
								
									 is not required to be a
 file stored on disk; it can be any part of a system that supports access via
 streams. For example, depending on the system, this class might be able to access
 a physical device.
							
							
								 is
 for all objects that encapsulate files. If indicates a device that does not support seeking, the
property on the resulting is required to be . For additional
information, see
.
						
						 Requires permission to read, write, and append to files. See , , and .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class with the specified path, creation mode, and access
type.
						
						 A containing the relative or absolute path for the file that the current object will encapsulate.
						 A value that determines how to open or create the file.
						 A value that determines how the file can be accessed by the object. This parameter is used to specify the initial values of the and properties.
						
							 is .
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
							 -or-
							
								 specified and specified , , or .
						
						
							
								 is or , but the specified file was not found. If a different mode is specified and the file was not found, a new one is created.
						
						 An I/O error occurred, such as specifying when the file specified by already exists.
						 The caller does not have the required permission.
						 The directory information specified by does not exist.
						
							 specified a read-only file and is not , or specified a directory.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							
								 or contain an invalid value.
						
						
							 This constructor sets read/write access to the file. Requests to open the
 file for writing by the current or another thread will fail until the object has
 been closed. Read attempts will succeed.
							
								
									 is not required to be a
 file stored on disk; it can be any part of a system that supports access via
 streams. For example, depending on the system, this class might be able to access
 a physical device.
							
							
								 is
 for all objects that encapsulate files. If indicates a device that does not support seeking, the
property on the resulting is required to be . For additional
information, see
.
						
						 Requires permission to read, write, and append to files. See , , and .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class with the specified path and creation mode.
						
						 A containing the relative or absolute path for the file that the current object will encapsulate.
						 A value that determines how to open or create the file.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is .
						 The caller does not have the required permission.
						
							
								 is or , but the specified file cannot be found. If a different mode is specified and the file cannot be found, a new one is created.
						
						 An I/O error occurred, such as specifying when the file specified by already exists.
						 The directory information specified in does not exist.
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							
								 contains an invalid value.
						
						
							 This constructor sets access to the file, and the and
 properties of the current instance are set to
 .
							
								
									 is not required to be a
file stored on disk; it can be any part of a system that supports access via
streams. For example, depending on the system, this class might be able to access
a physical device.
							
							
								 is
 for all objects that encapsulate files. If specifies a device that does not support seeking, the
property of the resulting is required to be . For additional
information, see .

							
							 Requests to open the
 file for writing by the current or another thread will fail until the object has been closed.
 Read attempts
 will succeed.
						
						 Requires permission to read, write, and append to files. See , , and .
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
					
					
						
							 Begins an asynchronous read.
						
						 A array that specifies the buffer to read data into.
						 A containing the zero based byte offset in at which to begin writing data read from the stream.
						 A containing the maximum number of bytes to read.
						 A delegate that references the method to be called when the asynchronous read operation is completed.
						 An application-defined object containing the status of the asynchronous read.
						
							 A that references the asynchronous read.
						
						 The sum of
							 is greater than the length of .
						
							 is .
						
							 or is negative.
						 The asynchronous read operation attempted to read past the end of the file.
						
							 To determine the number of bytes read, call
 with the returned
 .
							 Multiple simultaneous asynchronous requests render the
 request completion order uncertain.
							
								 Use the property to determine whether the current
 instance supports reading. For additional information, see .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
					
					
						
							 Begins an asynchronous write operation.
						
						 A array buffer containing data to write to the current stream.
						 A containing the zero-based byte offset in , which marks the beginning of the data to written to the current stream.
						 A containing the maximum number of bytes to write.
						 A delegate that references the method to be called when the asynchronous write operation is completed.
						 An application-defined object containing the status of the asynchronous write.
						
							 A that references the asynchronous write.
						
						 The sum of
							 is greater than the length of .
						
							 is .
						
							 or is negative.
						 The stream does not support writing.
						 An I/O error occurred.
						
							 Multiple simultaneous asynchronous requests render the request completion
 order uncertain.
							
								 Use the property to determine whether the current
 instance supports writing. For additional information, see .

								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports reading.
						
						
							
								 if the stream supports reading;
 if the stream is
 closed or was opened with write-only
 access.
						
						
							 This property is read-only.
							
								 This property overrides .
								 If a class derived from does not support reading,
 the method throws a
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports seeking.
						
						
							
								 if the stream supports seeking;
 if the stream is
 closed or if the was constructed from an
 operating-system handle such as a pipe or output to the console.
						
						
							
								 If a class derived from
 does not support seeking, a call to (both and

), , or throws a

.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports writing.
						
						
							
								 if the stream supports writing;
 if the stream is
 closed or was opened with read-only access.
						
						
							 If a class derived from does not support writing, a call to or
 will throw a

.
							
								 This property
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the file and releases any resources associated with
 the current file stream.
						
						
							 This method is
 equivalent to ().
							 Any data previously written to the buffer is copied to the file
 before the file stream is closed, so it is not necessary to call before
 invoking . Following a call to , any operations on the file stream
 might raise exceptions. Invoking this method on the
 same instance multiple times does not result in an exception.
							
								 The
method invokes so that the file stream is closed
before the garbage collector finalizes the object. However, objects writing to
the , such as a , might not have flushed
the data from their internal buffers to the when the call to closes
the stream. To prevent data loss, always call on the highest-level object.
							
							
								

 This method overrides .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the and
 optionally releases the managed resources.
						
						 Specify to release both managed and unmanaged resources, or specify to release only unmanaged resources.
						 An I/O error occurred.
						
							 When the parameter is , this method
 releases all resources held by any managed objects that this references.
							
								
									
can be called multiple times by other objects. When overriding
 (), be careful not to reference objects
that have been previously disposed in an earlier call to .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Ends a pending asynchronous read request, and blocks until
 the read request has completed.
						
						 The object for the pending asynchronous request.
						
							 A containing the number of
 bytes read from the stream. Returns 0 only if the end of the file has
 been reached, otherwise, this method blocks until at least one byte is available.
						
						
							 is .
						
							 was not returned by a call to .
						
							 was called multiple times with .
						
							
								 will
 block until the I/O operation has completed.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Ends an asynchronous write, blocking until the I/O operation
 has completed.
						
						 The object for the pending asynchronous request.
						
							 is .
						
							 was not returned by a call to .
						
							 was called multiple times with .
						
							
								 will block
 until the I/O operation has completed.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Releases the resources held by the current instance.
						
						
							
								
closes the .
							
								 Application code does not call this method; it is automatically invoked by
 during garbage collection unless finalization by the garbage collector has been
 disabled. For more information, see , and .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Updates the underlying file with the current state of the buffer and
 subsequently clears the buffer.
						
						 An I/O error occurred.
						 The current instance has already been closed.
						
							 A buffer can be
 used either for reading or writing. If data was copied to the buffer for
 writing, it is written to the file and the buffer is
 cleared.
							 If data was copied to the buffer for reading, and the
 property is , the current
 position within the file is decremented by the number of unread bytes in the
 buffer. The buffer is then cleared.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current
 instance was opened asynchronously or
 synchronously.
						
						
							
								 if the
 current
 was opened
 asynchronously; otherwise, .
						
						
							
								 This property is
 read-only.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets the length in bytes of the stream.
						
						
							 A value containing the length of the stream in bytes.
						
						
							 for this stream is .
						 An I/O error occurred, such as the file being closed.
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets or sets the current
 position of this stream.
						
						
							 A containing the current position of this stream.
						
						 The current stream does not support seeking.
						 An I/O error occurred.
						 Attempted seeking past the end of a stream that does not support this.
						 The value specified for a set operation is negative.
						
							 The position can be set beyond the end of the stream.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads a block of bytes from the stream and returns the data in
 the specified buffer.
						
						 A array. When this method returns, the bytes between and in are replaced by the bytes read from the current stream.
						 A containing the byte offset in at which to begin writing data read from the current stream.
						 A containing maximum number of bytes to read.
						
							 A containing the total number of bytes
 read into the buffer, or zero if the end of the stream is reached.
						
						
							 is .
						
							 or is negative.
						 The current stream does not support reading.
						 An I/O error occurred.
						
							 + is greater than the length of .
						 The current stream is closed.
						
							 The method returns zero only after reaching
 the end of the stream. Otherwise, always reads at least one byte from the
 stream before returning. If no data is available from the stream, this method
 blocks until at least one byte of data can be returned.
							 If the read operation is successful, the current position
 of the stream is advanced by the number of bytes read. If
 an exception occurs, the current position of the stream is unchanged.
							
								 Use the property to determine
whether the current instance supports reading. For additional information, see
 .
							
							
								 This method overrides
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Reads a byte from the file
 and advances the read position one byte.
						
						
							 The byte cast to a , or -1 if the end of
 the stream has been reached.
						
						 The current stream is closed.
						 The current stream does not support reading.
						
							
								 Use the property to determine whether the current
 instance supports reading. For additional information, see .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Changes the position within the current stream by the given offset, which is relative to the stated origin.
						
						 A containing the position relative to from which to begin seeking.
						 A value specifying the beginning, the end, or the current position as a reference point for
						
						
							 A containing the new position in the stream.
						
						 An I/O error occurred.
						 The stream does not support seeking.
						 Attempted seeking before the beginning of the stream or to more than one byte past the end of the stream.
						 The current stream is closed.
						
							
								 Use the
property to determine whether the current instance supports seeking. For
additional information, see
.
							
							
								 The position can be set beyond the end of the stream.
							
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sets the length of
 the current stream to the specified value.
						
						 A that specifies the new length of the stream.
						 An I/O error occurred.
						 The current stream does not support writing and seeking.
						
							 is less than zero.
						
							 If is less than the current length of the
 stream, the stream is truncated. If
 is greater than the current length of
 the stream, the stream is expanded, and the contents of the stream between
 the old and the new length are undefined. A stream is required to support
 both writing and seeking to implement .
							
								 Use the property to determine whether the current
 instance supports writing, and the property to determine whether
 seeking is supported. For additional information, see and .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a block of bytes from a specified byte array to
 the current stream.
						
						 The array to read.
						 A that specifies the byte offset in at which to begin reading.
						 A that specifies the maximum number of bytes to write to the current stream.
						
							 is .
						
							 + is greater than the length of .
						
							 or is negative.
						 An I/O error occurred.
						 The current stream does not support writing.
						
							 If the write operation is successful, the current position of the stream is
 advanced by the number of bytes written. If an exception occurs, the current
 position of the stream is unchanged.
							
								 Use the property to determine whether the current
 instance supports writing. For additional information, see .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a byte to the current position in the file stream.
						
						 A to write to the stream.
						 The current stream is closed.
						 The current stream does not support writing.
						
							
								 Use
method to write a byte to a
efficiently.
							
							
								 Use the property to determine whether the current
 instance supports writing. For additional information, see .
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates that the targeted by the current attribute is declared as a bit-field.
				
				
					 The class provides the consumer of a the information that the
 enumeration is to be used as a bit-field. Additionally, when formatting a , using the causes a value that is a bitwise OR combination of
 multiple fields to print correctly.
					
						 Bit-fields are generally used for lists of
 elements that might occur in combination; whereas enumeration constants are
 generally used for lists of mutually exclusive elements. Therefore, bit-fields
 are designed to be combined with the bitwise OR operator to generate unnamed
 values, whereas enumerated constants are not. Languages
 vary in their usage of bit-fields compared to enumeration constants.
						 This attribute can only be applied to enumerations.
					
				
				
					 The following example demonstrates the use of
 on the formatting of a
 . With this attribute, the enumeration is used as a bit-field, and the value 3 (Top
 | Left) is considered a valid value for the enumeration when formatting. Without this
 attribute, the enumeration is not used as a
 bit-field, and the value 3 (Red | Blue) is not considered a valid value for the
 enumeration when formatting.
					
using System;
[FlagsAttribute()]
public enum Position {

 Top = 0x1,
 Left = 0x2,
 Bottom = 0x4,
 Right = 0x8
}

//enum Color declared without FlagsAttribute
public enum Color {

 Red = 0x1,
 Blue = 0x2,
 Yellow = 0x4
}

public class enumFormat {

 public static void Main() {

 Position p = Position.Top | Position.Left;
 Console.WriteLine("Position: {0}", p);
 Color c = Color.Red | Color.Blue;
 Console.WriteLine("Color: {0}", c);
 }
}

					 The output is
					
						 Position: Top, Left
						 Color: 3
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Enum, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.

						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents errors caused by
 passing incorrectly formatted arguments or invalid format specifiers to methods.
				
				
					
						
							 is thrown from
methods when a being parsed contains characters that are not valid
according to the specified style (passed via the
parameter) or default
style. is thrown from methods when a format specifier
(passed via the
parameter) is not a valid format for the
type of the current instance.
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message that describes the
error, such as "Invalid format." This message takes into account the current
system culture. The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using

, and the property using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no arguments.
							
								 For information on
 inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides a mechanism for programmatic control of
 the garbage collector.
				
				
					
						 The
							 is responsible for tracking and reclaiming
 objects allocated in managed memory. Periodically, the garbage collector
 performs a garbage collection to reclaim memory allocated to objects for which
 there are no valid references. Garbage collections happen automatically when a
 request for memory cannot be satisfied using available free memory.
						 A garbage collection consists of the following
 steps:

						
							
								
 The garbage collector searches for managed objects
 that are referenced in managed code.
							
							
								
 The garbage collector attempts to finalize
 unreferenced objects.
							
							
								
 The garbage collector frees unreferenced objects and reclaims their
 memory.
							
						
						 During a collection, the garbage collector will not free an object if it
 finds one or more references to the object in managed code. However, the garbage
 collector does not recognize references to an object from unmanaged code, and
 can free objects that are being used exclusively in unmanaged code unless
 explicitly prevented from doing so. The method provides a mechanism that
 prevents the garbage collector from collecting objects that are still in use in
 unmanaged code.
						 Implementations of the garbage collector should track the following
 information:
						
							
								
 Memory allocated to objects that are still in use
							
							
								
 Memory allocated to objects that are no longer in use
							
							
								
 Objects that require finalization prior to being
 freed
							
						
						 Other than managed memory allocations, implementations
 of the garbage collector should not maintain information about resources held by
 an object, such as file handles or database connections. When a type uses
 unmanaged resources that must be released before instances of the type are
 reclaimed, the type should implement a

 . In most cases, finalizers are implemented by
 overriding the method; however, types written in C# or C++ implement
 destructors, which compilers turn into an override of
 .
						 In most cases, if an object has a finalizer, the garbage collector calls it
 prior to freeing the object. However, the garbage collector is not required to
 call finalizers in all situations. Also, the garbage collector is not required
 to use a specific thread to finalize objects, or guarantee the order in which
 finalizers are called for objects that reference each other but are otherwise
 available for garbage collection.
						 In scenarios where resources must be released at a specific time, classes
 should implement the interface, which contains a single method ()
 that is used to perform resource management and cleanup tasks. Classes that
 implement must specify, as part of their class contract, if and when class
 consumers call the method to clean up the object. The garbage collector does
 not, by default, call the method; however, implementations of the
 method can call methods in the class to customize the finalization
 behavior of the garbage collector.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Requests that the garbage collector reclaim memory allocated to objects for which there are no valid references.
						
						
							 A call to this method is only a suggestion; such a call does not guarantee that any inaccessible memory is, in fact, reclaimed.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Creates a reference to the specified
 object.
						
						 A that is not to be reclaimed by the garbage collector.
						
							 The purpose of the
method is to ensure the existence of
a reference to an object that is at risk of being reclaimed by the
garbage collector prematurely.
							 The
method performs no operations and does not produce
any side effects.
							 This method is required to be implemented in
 such a way as to prevent optimizing tools from omitting the method call from
 the executable code.
							 During program execution, after the call to the method is
executed, if there are no additional references to in managed code
or data,
is eligible
for garbage collection.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Requests that the specified object be added to the list
 of objects that require finalization.
						
						 The to add to the set of objects that require finalization.
						
							 is a reference.
						
							 The method adds to the list of
 objects that request finalization before the garbage collector frees the object.
 is required to be the caller of this
 method.
							 Calling the method
does not guarantee that the garbage collector will call an object's finalizer.
 For more information, see

.
							
							
								 By default, all
 objects that implement finalizers are added to the list of objects that require
 finalization; however, an object might have already been finalized, or might have
 disabled finalization by calling the
 method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Instructs the garbage collector not to call the method on the specified
 object.
						
						 The whose method will not be called.
						
							 is a reference.
						
							 The method removes from the set of objects
 that require finalization. is required to be the caller of this
 method.
							
								 Objects that
 implement the interface should call this method from the
 method to prevent the garbage collector from calling on an
 object that does not require it.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Suspends the current thread until the set of objects
 waiting for finalization is empty.
						
						
							
								

blocks an application until all objects that are awaiting
finalization have been finalized.
							 When the garbage collector finds objects that can be
 reclaimed, it checks each object to determine the object's finalization
 requirements. If an object implements a finalizer and has not disabled
 finalization by calling , the object is passed to the thread
 that handles finalization. The

 method blocks until all finalizers
 have run to completion.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This class is safe for multiple readers or a single writer. (In Version 1 of this standard, this class was safe for multiple readers and a single writer.)
			
				
					 Represents a hash table.
				
				
					 A represents a
 dictionary with a constant lookup time that contains entries of associated keys
 and values. The type of each entry in a is . A statement that exposes each element in the
 collection is required to iterate over this type. See
 example.
					
					 Objects used as keys in a are required
to either implement both and or neither. Furthermore, for a particular key, these methods are required to produce the same results when called with
the same parameters while that key exists in a particular . Keys cannot be mutated while they are
used in the table.
					 Every key in a is required to be unique compared to every other key
in the table. An object that implements can determine whether two keys are unequal.
The default comparer for a key is the key's implementation of
 .
					 Each value in a is required to provide its own hash function, which
can be accessed by calling . Alternatively, if an object that implements
 is
passed to a constructor, the custom hash
function provided by that object is used for every value in the table.
					
						 The default capacity (i.e. the default number of entries that can be contained) of a is
 zero.
						 When an entry is added to the , the entry is placed
into a bucket based on the hash code obtained from the implementation of the table, or
the if no
specific
was provided. Subsequent lookups of
the key use the hash code of the key to search in only one particular bucket,
substantially reducing the number of key comparisons required to find an entry.
						 As entries are added to a , and the maximum capacity of the table is
reached, the number of buckets in the table is automatically increased to the
smallest prime number that is larger than twice the current number of
buckets.
						 A can
safely support
one writer and multiple readers concurrently. To support multiple writers,
all operations
are required to be done through the wrapper returned by the method.
					
				
				
					 The following example shows
 how to iterate over the elements of a .
					
						 [C#]
						 foreach (DictionaryEntry myEntry in
 myHashtable)
					
				
			
			
				 System.Object
			
			
				
					 System.Collections.IDictionary
					 0
				
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
				
					 System.ICloneable
					 0
				
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class
 using the values of the specified , the specified , and the specified .
						
						 The used to initialize the elements of the new instance.
						
							 The that supplies the hash codes for all keys in the new instance; or, to use the default hash code provider.
						
						
							 The to use to determine whether two keys are equal in the new instance, or to use the default comparer.
						
						
							 is .
						
							 The initial capacity of the new
 instance is set to the number of entries in .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class using
 the values of the specified .
						
						 The used to initialize the elements of the new instance.
						
							 is .
						
							 The initial capacity of the new instance is set to the
 number of entries in . The new instance is initialized with the default
 and .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified initial capacity, the specified
 , and the specified .
						
						 A that specifies the minimum number of entries that the new instance can initially contain.
						
							 The that supplies the hash codes for all keys in the ; or, to use the default hash code provider.
						
						
							 The to use to determine whether two keys are equal, or to use the default comparer.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified and the specified .
						
						
							 The that supplies the hash codes for all keys in the ; or, to use the default hash code provider.
						
						
							 The to use to determine whether two keys are equal; or, to use the default comparer.
						
						
							 The new instance is initialized with the default capacity.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class with the specified initial capacity.
						
						 A that specifies the minimum number of entries that the new instance can initially contain.
						
							 < 0.
						
							 The new instance is initialized with the default and .
							 The number of entries that the new instance can contain can be greater than .
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 The new instance is initialized with the default
 capacity, , and .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Adds an entry with the specified key and value into the
 current instance.
						
						 The key of the entry to add.
						 The value of the entry to add.
						
							
								 is .
						
						
							 An entry with the same key already exists in the current instance.
						
						
							 The current instance is read-only or has a fixed size.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Removes all entries from the current instance.
						
						 The current instance is read-only.
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 The value of each key and value in the current instance is set to
 . The property of the current instance
 is set to zero. The capacity of the current instance remains
 unchanged.
								 If the current instance is empty, it remains unchanged and no exception is
 thrown.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Creates a
that is a copy of the current instance.
						
						
							 A
that is a copy of the current instance.
						
						
							
								 This method is implemented to support the interface.
							
							
								 As described
 above.
							
							
								 This method creates a new instance is initialized with the same count,
 implementation, and implementation
as the current instance. The references to the objects contained by the current
instance are copied to the new instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance contains the specified key.
						
						 The key to locate in the current instance.
						
							
								
if the current instance contains ; otherwise, .
						
						
							 is .
						
							
								 This method is implemented to support the
interface.
							
							
								 As described above.
							
							
								
 This method is equivalent to .
							
							
								
 For the default implementation, this method has a constant (O(1)) lookup time.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance contains an entry with the specified key.
						
						 The key of the entry to locate in the current instance.
						
							
								 if
 the current instance contains an entry with ; otherwise, .
						
						
							 is .
						
							
								 As described above.
							
							
								
 This method uses to compare to the keys in the current instance.

							
							
								 For the default implementation, this method has a constant (O(1)) lookup
 time.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance contains an entry with the specified value.
						
						 The value to locate in the current instance.
						
							
								
if the current instance contains an
entry with ; otherwise, .
						
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described above.
							
							
								 This method is equivalent to .
							
							
								 For the default implementation, this method has a constant (O(1)) lookup
 time.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the entries of the current instance to a
 one-dimensional starting at the specified index.
						
						 The one-dimensional, zero-indexed that is the destination of the objects copied from the current instance.
						 A that specifies the zero-based index in at which copying begins. This value is between 0 and .Length minus the of the current instance, inclusive.
						
							 is .
						
							 < 0.
						
							
								 has more than one dimension.
							 -or-
							
								 > .Length - The of the current instance.
						
						 The type of the current instance is not assignment-compatible with the type of .
						
							
								 As described
 above.
							
							
								 The elements in the current instance are copied to the in the same order in which they are contained the
 current instance. If is not
 assignment-compatible with the type of , a
 is thrown. If an exception is thrown
 while copying, the state of the current instance is undefined.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of key-and-value pairs contained in the
 current instance.
						
						
							 A that specifies the number of key-and-value pairs contained in the
 current instance.
						
						
							 This property is read-only.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IDictionaryEnumerator
					
					
					
						
							 Returns a for the
 current instance.
						
						
							 A for the current
 instance.
						
						
							 If the current instance is modified
 while an enumeration is in progress, a call to or throws .
							
								 For detailed information regarding the use of an enumerator, see .
								 This property is implemented to support the interface.
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Generates a hash code for the specified key in the current instance.
						
						 The whose hash code is to be generated.
						
							 A containing the hash code for .
						
						
							 is .
						
							 This method is accessible only through this class or a derived class.
							
								 As described
 above.
							
							
								 If the current instance was instantiated with a specific implementation, this method uses that hash
 code provider; otherwise, it uses the implementation of

.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a indicating whether the current instance
 has a fixed size.
						
						
							
								 if the
 current instance has a fixed size; otherwise,
 .
						
						
							 This property is read-only.
							
								 Elements can be modified in, but not
 added to or removed from a with a fixed size.
							
							
								 As described
 above.
							
							
								 The default
 value of this property is .
							
							
								 Override
 this property, setting it to
 , to prevent addition or removal of entries in the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance
 is read-only.
						
						
							
								 if the
 current instance is read-only; otherwise,
 .
						
						
							 This property is read-only.
							
								 Elements cannot be modified in, added
 to, or removed from a that is read-only.
							
							
								 As described
 above.
							
							
								 The default
 value of this property is .
							
							
								 Override
 this property, setting it to , in
 order to prevent the addition, removal, or modification of
 entries in the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether access to the current instance
 is synchronized (thread-safe).
						
						
							
								 if access to
 the current instance is synchronized
 (thread-safe); otherwise, .
						
						
							 This property is read-only.
							
								 This property is implemented to support the
 interface.
								 For more information regarding synchronization of access to a ,
see .
							
							
								 As described
 above.
							
							
								 The default
 value of this property is .
							
							
								 Override
 this property, setting it to
 , if thread-safety can be guaranteed for
 the current instance. In order to obtain this safety, use or
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
						
					
					
						
							 Gets or sets the value in the current instance that is associated with the specified key.
						
						 The key whose value to get or set.
						
							 The value in the current instance that is associated
 with . If is
 not contained in the current instance, attempting to get it returns
 , and attempting to set it creates a new entry
 using

 .
						
						
							 is .
						
							 The property is being set and the current instance is read-only.
							 The property is being set, is not contained in the current instance, and the current instance has a fixed size.
						
						
							
								 This property provides the ability to
 access a specific element in the current instance using the following notation:
 myCollection[key]
 .
							
							
								 As described
 above.
							
							
								 If this property is being set and is already contained
 in the current instance, the value associated with the old key is
 replaced.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the specified and the specified key in the
 current instance represent the same value.
						
						 The to compare with .
						 The key in the current instance to compare with .
						
							
								 if and represent the
 same value; otherwise,
 .
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							 This method is accessible only through this class or a derived class.
							
								 As described
 above.
							
							
								 If the
 current instance was initialized with a specified implementation, this method uses that
 implementation to perform the comparison; otherwise, the implementation of is used.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection
					
					
					
						
							 Gets a containing the keys of the current
 instance.
						
						
							 A containing the keys of the current instance.
						
						
							 This property is read-only.
							
								 As described
 above.
							
							
								 The order of the keys in the is unspecified, but it is
 the same order as the associated values in the
 returned by the method.
								 The returned is a reference to the current instance, not
 a static copy. Therefore, changes to the current instance continue to be
 reflected in the .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the entry with the specified key from the
 current instance.
						
						 The key of the entry to remove.
						
							 is .
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 This method is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 This method uses the implementation of
 to locate it in the current instance. If is
found in the current instance, the values of both and its
associated value are set to . If is not
found in the
current instance, no exception is thrown and the current
instance remains unchanged.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Hashtable
					
					
						
					
					
						
							 Returns a synchronized (thread-safe) wrapper for the specified .
						
						 The to synchronize.
						
							 A synchronized (thread-safe) wrapper for .
						
						
							 is .
						
							 This method returns a new instance that contains values equal to the
 values of , and provides synchronized access to those values.
							 If more than one thread is to write to a concurrently, all
write
operations are required to be done through this wrapper.
							
								 A can safely support one
writer and multiple readers concurrently.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets a that can be used to synchronize access to
 the current instance.
						
						
							 A that can be used to synchronize access to the
 current instance.
						
						
							 This property is read-only.
							 A thread is required to perform synchronized operations only on the of a , not directly on
 the table itself. This maintains proper synchronization with any other threads
 concurrently modifying the table.
							
								 This property is implemented to support
 the interface.
							
							
								 As described
 above.
							
							
								 This method returns a reference to
 the current instance.
							
							
								 Override this property to return an object on which to lock when
 implementing a collection that wraps another collection (using a subset of it, for
 example). This is useful when providing synchronized access through two or more
 wrapper collections to the same underlying collection. Typically, this property returns a
 reference to the current instance.
							
							
								 Use this property to obtain a that can be used to synchronize access to the current
instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection
					
					
					
						
							 Gets a containing the values of the current
 instance.
						
						
							 A containing the values of the current
 instance.
						
						
							 This property is read-only.
							
								 As described
 above.
							
							
								 The order of the values in the is unspecified, but it is
 the same order as the associated keys in the returned by the method.
								 The returned is a reference to the current instance, not
 a static copy. Therefore, changes to the current instance continue to be
 reflected in the .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Supported by objects
 that represent the state
 of an asynchronous operation.

				
				
					 An object that supports the
interface stores state information for an asynchronous operation, and provides a
synchronization object to allow threads to be signaled when the operation
completes.
					
						 objects are returned by methods that begin
asynchronous operations, such as , and are passed to methods used to
complete asynchronous operations, such as .
objects are also passed to methods invoked by delegates
when an asynchronous operation completes.
				
			
			
			
			
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets the user-provided state object supplied at the time the asynchronous
 operation was started.

						
						
							 The supplied .
						
						
							
								 The object returned by this property is required to be
 the object specified as the last parameter to methods that begin asynchronous
 operations, such as .
								 This property is read-only.
							
							
								

 Implement this property to allow the caller of an
 asynchronous operation to obtain an application-defined object specified at the
 start of the operation.

							
							
								 The object returned by

 this property can be used to pass state information for
 the asynchronous operation to a
 delegate.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Threading.WaitHandle
					
					
					
						
							 Gets a that can be used to block a thread until an asynchronous
 operation completes.
						
						
							 A that is signaled when an asynchronous operation completes.
						
						
							
								 The object returned by can be allocated in advance or on demand. However, once
 allocated it is required to be kept alive until the user calls a method that
 ends the asynchronous operation, such as .
 Only after the operation completes or is canceled, can the object be disposed
 of.
								
									
										 supplies methods that support waiting
 for synchronization objects to become signaled, such as
 .
								
								 This property is read-only.
							
							
								 Clients that wait for the operation to complete (as
 opposed to polling), use this property to obtain a synchronization object to
 wait on.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a
value that specifies whether the
asynchronous operation completed synchronously.
						
						
							
								 if the operation synchronously;
 otherwise .
						
						
							
								
 As described above.
								
									 Most
 implementations of the interface will not use this property, and should return

 .
								
								 This property is read-only.
							
							
								
 Use this property to determine if the asynchronous
 operation completed synchronously. For example, this property can return
 for an asynchronous IO
 operation if the IO request was small.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a
value that specifies
whether an asynchronous operation has completed.
						
						
							
								 if the operation has completed;
 otherwise .
						
						
							
								 As described above.
								 This property is read-only.
							
							
								 Clients that poll for operation status (as opposed to waiting on a
 synchronization object) use this property to determine the status of the
 operation.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that require control over the
 way in which copies of
 instances are constructed.

				
				
					
						
							 contains the method.
 The consumer of an object should call this method when a copy of the object is
 needed.
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Creates a copy of the current instance.

						
						
							 A of the same type as the current instance, containing
 copies of the non-static members of the current instance.

						
						
							 The exact behavior of this method is unspecified. The intent
 of the method is to provide a mechanism that constructs
 instances that
 are copies of the current instance, without regard for class-specific definitions of the term
 "copy".
							
								 Use the
method to create a shallow copy of an object. For more information, see .
							
							
								 This method is required to return
 an instance of the same type as the current instance.
							
							
								 Implement this method to provide
 class-specific copying behavior.
							
							
								 Use the method
to obtain a copy of the current instance.
							
						
						
							 The following example shows an implementation of that
 uses the
 method to create a copy of
 the current instance.
							 using System;
class MyClass :ICloneable {
 public int myField;
 public MyClass() {
 myField = 0;
 }
 public MyClass(int value) {
 myField = value;
 }
 public object Clone() {
 return this.MemberwiseClone();
 }
}
public class TestMyClass {
 public static void Main() {
 MyClass my1 = new MyClass(44);
 MyClass my2 = (MyClass) my1.Clone();
 Console.WriteLine("my1 {0} my2 {1}",my1.myField, my2.myField);
 my2.myField = 22;
 Console.WriteLine("my1 {0} my2 {1}",my1.myField, my2.myField);
 }
}

							 The output is
							
								 my1 44 my2 44
								 my1 44 my2 22
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Serves as the base interface for implementing collection
 classes. Defines
 size, enumeration, and synchronization methods for all system collections.
				
				
					
						
							 contains the method. The consumer of
 a collection object that implements this interface should call this method when
 copying the elements of that object to a
 .
					
				
			
			
			
				
					 System.Collections.IEnumerable
					 0
				
			
			
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the elements from the current instance to the
 specified , starting at the specified
 index in the array.
						
						 A one-dimensional, zero-based that is the destination of the elements copied from the current instance.
						 A that specifies the zero-based index in at which copying begins.
						
							 is .
						
							 < 0.
						
							
								 has more than one dimension.
							 -or-
							
								 is greater than or equal to .Length.
							 -or-
							 The sum of and the of the current instance is greater than .Length.
						
						 At least one element in the current instance is not assignment-compatible with the type of .
						
							
								 As described above.
							
							
								 Use this method to copy from a collection to a
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of elements contained in the current
 instance.
						
						
							 A that indicates the number of elements contained in the current
 instance.
						
						
							 This property is read-only.
							
								 The property
 is required to return the total number of elements contained in the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a indicating whether access to the
 current instance is synchronized
 (thread-safe).
						
						
							
								 if access to
 the current instance is synchronized (thread-safe); otherwise, .
						
						
							 This property is read-only.
							
								 As described above.
							
							
								 To
 synchronize a collection, use to obtain a
 with
 which to synchronize the collection.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets a that can be used
 for thread-safe synchronized access to the current instance.
						
						
							 A that can be
 used for thread-safe synchronized access to the current instance.
						
						
							 This property is read-only.
							
								 For collections with no publicly available underlying
 store, the expected implementation is to simply return the current instance.
 Note that
 this might not be sufficient for collections that wrap other collections; those
 should return the underlying collection's
 property.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines size and copying methods for all generic collections.
				
				
					
						
							 This interface is the base interface for classes in the namespace.
							 This interface extends ; and are more specialized interfaces that extend .
							 Some collections that limit access to their elements, like the class and the class, directly implement the interface.
						
					
				
			
			
			
				
					 System.Collections.Generic.IEnumerable<T>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Adds an item to the current collection.
						
						 The item to add to the current collection.
						 The current collection is read-only.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Removes all items from the current collection.
						
						 The current collection is read-only.
						
							
								 is set to zero.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current collection contains a specific value.
						
						 The object to locate in the current collection.
						
							 , if item is found in the current collection; otherwise, .
						
							 Implementations of this interface can vary in how they determine equality of objects; for example, some types use the default comparer, while others allow the user to specify the comparer to be used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the elements of the current collection to a , starting at the specified index.
						
						 A one-dimensional, zero-based that is the destination of the elements copied from the current instance.
						 A that specifies the zero-based index in at which copying begins.
						
							 is .
						
							 < 0.
						
							
								 has more than one dimension.
							 -or-
							
								 is greater than or equal to .Length.
							 -or-
							 The sum of and the of the current instance is greater than .Length.
							 -or-
							 Type is not assignable to the element type of the destination array.
						
						
							 This operation overwrites the current contents of the array.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of elements contained in the current
 instance.
						
						
							 A that indicates the number of elements contained in the current
 instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Indicates whether the current collection is read-only.
						
						
							
								 , if the current collection is read-only; otherwise, .
						
						
							 This property is read-only.
							 A collection that is read-only does not allow the addition, removal, or modification of elements after the collection is created.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Removes the first occurrence of an item from the current collection.
						
						 The item to remove from the current collection.
						
							 , if was removed from the current collection; if was not found in the current collection.
						 The current collection is read-only.
						
							 If was found, but cannot be removed for some reason, some unspecified exception is thrown.
							 Implementations of this interface can vary in how they determine equality of objects; for example, some types use the default comparer, while others allow the user to specify the comparer to be used.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that support an ordering of instances of the class.
				
				
					
						
							 contains the
 method. The consumer of an object should call this
 method when sorting instances of a class.
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 object.
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Returned Value
									 Description
								
								
									 A negative value
									 The current instance is < .
								
								
									 Zero
									 The current instance is ==
 .
								
								
									 A positive value
									 The current instance is > than or is a null
 reference.
								
							
						
						
							
								 For any objects A, B and C, the following are required to be true:
								 A.CompareTo(A) is required to return zero.
								 If A.CompareTo(B) returns zero then B.CompareTo(A) is required to return zero.
								 If A.CompareTo(B) returns zero and B.CompareTo(C)
 returns zero then A.CompareTo(C) is required to return zero.
								 If A.CompareTo(B) returns a value other than zero then
 B.CompareTo(A) is required to return a value of the opposite
 sign.
								 If A.CompareTo(B) returns a value not equal
 to zero, and B.CompareTo(C) returns a value of the same sign as
 , then A.CompareTo(C) is required to a value of the same sign as
 and
 .
								 The exact behavior of this method is unspecified. The intent of this method is
 to provide a mechanism that orders instances of a class in a manner that is
 consistent with the mathematical definitions of the relational operators (<,
 >, and ==), without regard for class-specific definitions of the
 operators.
							
							
								 Use the method to determine the ordering of instances of a
class.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines generalized comparison methods that a value type or class implements to create a type-specific comparison method.
				
				
					 This interface is implemented by types whose values can be ordered; for example, the numeric and string classes.
				
			
			
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared to the specified object.
						
						 The to compare to the current instance.
						
							 A value that reflects the sort order of the current instance as compared to . The following table defines the conditions under which the returned value is a negative number, zero, or a positive number.
							
								
									 Returned Value
									 Description
								
								
									 A negative value
									 The current instance is < .
								
								
									 Zero
									 The current instance is ==
 .
								
								
									 A positive value
									 The current instance is > than .
								
							
						
						
							
								 For any objects A, B and C, the following are required to be true:
								 A.CompareTo(A) is required to return zero.
								 If A.CompareTo(B) returns zero then B.CompareTo(A) is required to return zero.
								 If A.CompareTo(B) is zero, then B.CompareTo(C) and A.CompareTo(C) must have the same sign (negative, zero or positive).
								 If B.CompareTo(C) is zero, then A.CompareTo(B) and A.CompareTo(C) must have the same sign (negative, zero or positive).
								 If A.CompareTo(B) returns zero and B.CompareTo(C)
 returns zero then A.CompareTo(C) is required to return zero.
								 If A.CompareTo(B) returns a value other than zero then
 B.CompareTo(A) is required to return a value of the opposite
 sign.
								 If A.CompareTo(B) returns a value not equal
 to zero, and B.CompareTo(C) returns a value of the same sign as
 , then A.CompareTo(C) is required to a value of the same sign as
 and
 .
								 The exact behavior of this method is unspecified. The intent of this method is
 to provide a mechanism that orders instances of a class in a manner that is
 consistent with the mathematical definitions of the relational operators (<,
 >, and ==), without regard for class-specific definitions of the
 operators.
							
							
								 Use the
									 method to determine the ordering of instances of a class.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Provides a mechanism to customize the sort
 ordering of a collection.
				
				
					 The default implementation of this interface
 is
 .
					
						
							 contains the method. The consumer of an object
 should call this method when sorting members of a collection.
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the sort order of two instances.
						
						 First to compare.
						 Second to compare.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Condition
								
								
									 A negative number
									
										 < .
								
								
									 Zero
									
										 == .
								
								
									 A positive number
									
										 > .
								
							
						
						
							
								 For any objects A, B, and C, the following are required to be true:
								
									 (A, A) is required to
 return zero.

								 If
 (A, B)
 returns zero, then (B, A) is required to
 return zero.

								 If (A, B) returns zero and (B, C)
 returns zero then (A, C) is required to
 return zero.

								 If (A, B) returns a value other than
zero, then (B,
A)
is required to return a value of the
opposite sign.
								 If (A, B) returns a value x not equal to
zero, and (B, C)
returns
a value y of the same sign as x, then (A,
C) is required to return
a value of the same sign as x
and y.
							
							
								 The exact ordering of this method is unspecified. The intent of the method
 is to provide a mechanism that orders instances of a class in a manner that
 is consistent with the mathematical definitions of the relational operators (<,
 >, and ==), without regard for class-specific definitions of the
 operators.
							
							
								 This interface is used in conjunction with the and methods.

							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Provides a mechanism to customize comparison in sort ordering of a generic collection.
				
			
			
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the sort order of two instances.
						
						 First to compare.
						 Second to compare.
						
							 A containing a value that reflects the sort order of
 as compared to . The following table defines the conditions
 under which the returned value is a negative number, zero, or a positive
 number.
							
								
									 Value
									 Condition
								
								
									 A negative number
									
										 < .
								
								
									 Zero
									
										 == .
								
								
									 A positive number
									
										 > .
								
							
						
						
							
								 For any objects A, B and C, the following are required to be true:
								 Compare(A,A) is required to return zero.
								 If Compare(A,B) returns zero then Compare(B,A) is required to return zero.
								 If Compare(A,B) is zero, then Compare(B,C) and Compare(A,C) must have the same sign (negative, zero or positive).
								 If Compare(B,C) is zero, then Compare(A,B) and Compare(A,C) must have the same sign (negative, zero or positive).
								 If Compare(A,B) returns zero and Compare(B,C) returns zero then Compare(A,C) is required to return zero.
								 If Compare(A,B) returns a value other than zero then Compare(B,A) is required to return a value of the opposite sign.
								 If Compare(A,B) returns a value not equal
 to zero, and Compare(B,C) returns a value of the same sign as
 , then Compare(A,C) is required to a value of the same sign as
 and
 .
								 The exact behavior of this method is unspecified. The intent of this method is
 to provide a mechanism that orders instances of a class in a manner that is
 consistent with the mathematical definitions of the relational operators (<,
 >, and ==), without regard for class-specific definitions of the
 operators.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that support collections of associated keys and values (i.e. dictionaries).
				
				
					
						 Each key-value pair must have a unique non-null key, but
 the value of an association can be any object reference, including a null
 reference. The interface allows
 the contained keys and values to be enumerated, but it does not imply any
 particular sort order.
						
							
 implementations fall into three categories: read-only, fixed-size,
 variable-size. A read-only implementation cannot be modified. A fixed-size
 implementation does not allow the addition or removal of elements, but it allows
 the modification of existing elements. A variable-size implementation allows the addition,
 removal and modification of elements.
					
				
			
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Adds an entry with the provided key and value to the
 current instance.
						
						 The to use as the key of the entry to add.
						 The to use as the value of the entry to add.
						
							
								 is .
						
						
							 An entry with the same key already exists in the current instance.
						
						
							 The current instance is read-only or has a fixed size.
						
						
							 If the specified key already exists in the current
 instance, this method throws a
 exception but does not modify the
 associated value.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Removes all key and value pairs from the current instance.
						
						
							 The is read-only.
						
						
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance contains an entry with the specified key.
						
						 The key to locate in the .
						
							
								 if the contains an entry with the key; otherwise, .
						
						
							 is .
						
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IDictionaryEnumerator
					
					
					
						
							 Returns a
 for the current
 instance.
						
						
							 A for the current
 instance.
						
						
							
								 For detailed information regarding the
 use of an enumerator, see .
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance
 has a fixed size.
						
						
							
								 if the
 current instance has a fixed size;
 otherwise, .
						
						
							 This property is read-only.
							
								 A collection with a fixed size does not
 allow the addition or removal of elements, but does allow the modification of
 existing elements.
							
							
								 As described
 above.
							
							
								 The default of this property is
 .
							
							
								 Override
 this method, setting the value as
 , to prevent the addition
 and removal of the elements in the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance
 is read-only.
						
						
							
								 if the
 current instance is read-only; otherwise,
 .
						
						
							 This property is read-only.
							
								 A collection that is read-only does not
 allow the addition, removal, or modification of elements.
							
							
								 As described
 above.
							
							
								 The default of this property is
 .
							
							
								 Override
 this method, setting the value as
 , to prevent the addition, removal, and modification of the elements in
 the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
						
					
					
						
							 Gets or sets the element in the current instance that is associated with the specified key.
						
						 The key of the element to get or set.
						
							 The element with the specified key.
						
						
							
								 is .
						
						
							 The property is set and the current instance is read-only.
							 The property is set, does not exist in the collection, and the current instance has a fixed size.
						
						
							
								 This property provides the ability to
 access a specific element in the collection by using the following syntax: myCollection[index].
							
							
								 When setting this property, if the specified key already
 exists in the current instance, the value is required to be replaced; otherwise,
 a new element is required to be created.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection
					
					
					
						
							 Gets a containing the keys of the current
 instance.
						
						
							 A containing the keys of the current
 instance.
						
						
							 This property is read-only.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the entry with the specified key from the
 current instance.
						
						 The key of the entry to remove.
						
							 is .
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 If is not found in the
 current instance, no exception is thrown and the current instance remains unchanged.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection
					
					
					
						
							 Gets a containing the values in the current
 instance.
						
						
							 A containing the values in the current
 instance.
						
						
							 This property is read-only.
							
								 As described
 above.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents a generic collection of key/value pairs.
				
				
					 This interface class is the base interface for generic collections of key/value pairs. The implementing class must have a method for comparing keys.
					 Each element is a key/value pair stored in a key value pair object.
					 Each pair must have a non- key unique according to the comparison method of the class implementing this interface. The value can be and need not be unique. The interface allows the contained keys and values to be enumerated, but it does not imply any particular sort order.
					 Some implementations of this interface might permit null keys, and some might not. A dictionary implementation that prohibits null keys shall throw whenever a method or indexer is called with a null key.
				
			
			
			
				
					 System.Collections.Generic.ICollection<KeyValuePair<TKey,TValue>>
					 0
				
				
					 System.Collections.Generic.IEnumerable<KeyValuePair<TKey,TValue>>
					 0
				
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Adds an entry with the provided key and value to the current instance.
						
						 The to use as the key of the entry to add.
						 The to use as the value of the entry to add.
						
							 An entry with the same key already exists in the current instance.
						
						
							 The current instance is read-only.
						
						
							 You can also use the
								 property to add new elements by setting the value of a key that does not exist in the dictionary. However, if the specified key already exists in the dictionary, setting the
								 property overwrites the old value. In contrast, the
								 method does not modify existing elements.
							 Implementations can vary in how they determine equality of objects.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance contains an entry with the specified key.
						
						 The key to locate in the current instance.
						
							
								 if the current instance contains an entry with the key; otherwise, .
						
						
							 Implementations can vary in how they determine equality of objects.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Removes the entry with the specified key from the current instance.
						
						 The key of the entry to remove.
						
							
								 if the element is successfully removed; otherwise, .
									 This method also returns if was not found.
								
							
						
						
							 The current instance is read-only.
						
						
							 Implementations can vary in how they determine equality of objects.
						
					
					 0
				
				
					
					
					 Property
					
						 TValue
					
					
						
					
					
						
							 Gets or sets the element in the current instance that is associated with the specified key.
						
						 The key of the element to get or set.
						
							 The value associated with the given key.
						
						
							 The property is read but is not found.
						
						
							 The property is set and the current instance is read-only.
						
						
							 This property provides the ability to access a specific element in the collection.
							 You can also use the
								 property to add new elements by setting the value of a key that does not exist in the dictionary. However, if the specified key already exists in the dictionary, setting the
								 property overwrites the old value. In contrast, the
								 method does not modify existing elements.
							 Implementations can vary in how they determine equality of objects.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.Generic.ICollection<TKey>
					
					
					
						
							 Gets a collection containing the keys of the current instance.
						
						
							 A collection containing the keys of the current instance.
						
						
							 This property is read-only.
							 The order of the keys in the returned is unspecified, but it is guaranteed to be the same order as the corresponding values in the collection returned by the property.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.Generic.ICollection<TValue>
					
					
					
						
							 Gets a collection containing the values in the current instance.
						
						
							 A collection containing the values in the current instance.
						
						
							 This property is read-only.
							 The order of the values in the returned is unspecified, but it is guaranteed to be the same order as the corresponding keys in the collection returned by the property.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that support the use of an enumerator over a
 dictionary (i.e., a collection of
 objects).
				
				
					
						
							 contains members that get
 the properties of objects.
						 For detailed information regarding the use of an
 enumerator, see .
					
				
			
			
			
				
					 System.Collections.IEnumerator
					 0
				
			
			
				
					
					
					 Property
					
						 System.Collections.DictionaryEntry
					
					
					
						
							 Gets the in the collection over
 which the current instance is positioned.
						
						
							 The in the collection over which the current instance is positioned.
						
						
							 The is positioned before the first element of the dictionary or after the last element.
							 -or-
							 The dictionary was modified after the was created.
						
						
							 This property is read-only.
							
								 It is required that a call to
 leave the position of
 the enumerator unchanged: consecutive calls to this property are required to return the same until or is
 called.
							
							
								 Use
 to get the same data
 that would be provided by a call to . Because this property is a , boxing is not required as it is for ;
 therefore, for this operation, has reduced overhead compared to .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets the of the in the collection over which the current instance is positioned.
						
						
							 A that contains the

of the in the collection over which the current instance is positioned.
						
						
							 The is positioned before the first element of the dictionary or after the last element.
							 -or-
							 The dictionary was modified after the was instantiated.
						
						
							 This property is read-only.
							
								 It is required that reading
 leave the position of
 the enumerator unchanged: consecutive calls to this property are required to return the
 same
 until or is called.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets the of the in the collection over which the current instance is positioned.
						
						
							 A that contains the

of the in the collection over which the current instance is positioned.
						
						
							 The is positioned before the first element of the dictionary or after the last element.
							 -or-
							 The dictionary was modified after the was created.
						
						
							 This property is read-only.
							
								 It is required
 that a call to leave the position of
 the enumerator unchanged: consecutive calls to this property
 are required to return the same until or is called.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that require explicit control over resource cleanup.
				
				
					 Objects that need to free resources that cannot safely be reclaimed by the
 garbage collector implement the interface.
					 It is a version breaking change to add the interface to an existing class, as it
 changes the semantics of the class.
					
						
							 contains the method. The consumer of an object should
call this method when the object is no longer needed. The interface is generally provided for the
release of unmanaged resources that need to be reclaimed in some order or time
dependent manner. It is important to note that the actual release of these
resources happens at the first call to for
any given object that supports this interface. Programmers should take care
to pair the creation of objects that implement with
at most one invocation of the method. Though it
is legal to invoke more than once, if this happens it
might indicate the presence of a bug since such an object is usually rendered
otherwise unusable after the first invocation.
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Performs application-defined tasks associated with
 freeing or resetting resources.
						
						
							
								 This method is, by convention, used for all tasks associated with freeing
 resources held by an object, or preparing an object for reuse.
								 When implementing the method, objects should seek to ensure
 that all held resources are freed by propagating the call through the
 containment hierarchy. For example, if an object A allocates an object B, and B
 allocates an object C, then A's implementation should call
 on B,
 which should in turn call on C. Objects should also call the
 method
 of their base class if the base class implements .
								 If an object's method is called more than once, the object should
 ignore all calls after the first one. The object should not throw an exception
 if its
 method is called multiple times. can throw an exception if an error
 occurs because a resource has already been freed and
 had
 not been called previously.
								 A resource type might use a particular convention to denote an allocated state
 versus a freed state. An example of this is stream classes, which are
 traditionally thought of as open or closed. Classes that have such conventions
 might choose to implement a public method with a customized name, which calls the

method.
								 Because the method must be called explicitly, objects that implement

should also implement a finalizer to handle freeing resources when
 is not
called. By default, the garbage collector will automatically call an object's
finalizer prior to reclaiming its memory. However, once the
 method
has been called, it is typically unnecessary and/or undesirable for the garbage
collector to call the disposed object's finalizer. To prevent automatic
finalization, implementations can call . For
additional information on implementing finalizers, see and .
							
						
						
							 Resource classes should follow the pattern illustrated by
 this example:
							 class ResourceWrapper : BaseType, IDisposable {
 // Pointer to a external resource.
 private int handle;
 private OtherResource otherRes; //Other resource you use.
 private bool disposed = false;

 public ResourceWrapper () {
 handle = //Allocate on the unmanaged side.
 otherRes = new OtherResource (...);
 }
 // Free your own state.
 private void freeState () {
 if (!disposed) {
 CloseHandle (handle);
 dispose = true;
 }
 }

 // Free your own state, call dispose on all state you hold,
 // and take yourself off the Finalization queue.
 public void Dispose () {
 freeState ();
 OtherRes.Dispose();
 // If base type implements dispose, call it.
 base.Dispose();
 GC.SuppressFinalize(this);
 }

 // Free your own state (not other state you hold)
 // and give your base class a chance to finalize.
 ~ResourceWrapper (){
 freeState();
 }
}

						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by generic classes that support a simple iteration over instances of the collection.
				
				
					
						
							 contains the method. The consumer of an object should call this method to obtain an enumerator for simple iteration over an instance of a collection. Implement this interface to support the foreach semantics of C#.
					
				
			
			
			
				
					 System.Collections.IEnumerable
					 0
				
			
			
			
				
					
					
					 Method
					
					
						 System.Collections.Generic.IEnumerator<T>
					
					
					
						
							 Returns a that
 can be used for simple iteration over a collection.
						
						
							 A
that can be used for simple iteration over a collection.
						
						
							
								 As described
 above.
							
							
								 For a detailed description regarding the use of an
 enumerator, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that support a simple iteration over a collection.
				
				
					
						
							 contains the and methods and the property. The consumer of an
 object should call these methods or use this property when iterating over or
 reading the elements of a collection.
						 When an enumerator is instantiated or a call is made to
 , the enumerator is positioned immediately
 before the first element of the collection and a snapshot of the collection is
 taken. When the enumerator is in this position, a
 call to is necessary before
 reading
 from the collection. If changes are made to the collection (such as adding, repositioning, or deleting elements) the snapshot can get out of sync, causing the enumerator to throw a if or are invoked. Two enumerators instantiated from the same collection
 at the same time can have different snapshots of the collection.
						 Enumerators are intended to
 be used only to read data in the collection.
						 An enumerator does not have exclusive access to the collection for which it was instantiated.
					
				
			
			
			
			
			
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets the element in the collection over which the current instance is positioned.
						
						
							 The element in the collection over which the current instance is positioned.
						
						
							
								 When the current instance is constructed
 or after is called, use to position the current instance
 over the first element of the collection.
							
							
								 It is required that return the element in the collection over which the current
 instance is positioned unless it is positioned before the first or after
 the last element of the collection. If the current instance is
 positioned before the first element or after the last element of the
 collection, returns an unspecified value or throws an unspecified exception. If elements were added, removed, or repositioned in the collection after the current
 instance was instantiated, returns the value it would have returned before the collection was modified.
								 It is also required that not change the position of
 the current instance: consecutive calls to are required to return the same object until
 either or is called.
								 This property is read-only.
							
							
								 Use to get the element in
the collection over which the current instance is positioned, provided that the current
instance is not positioned before the first element
or after the last element of the collection.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Advances the current instance to the next element of the collection.
						
						
							
								 if the current instance was successfully advanced to the next element;
 if the current instance has passed the end of the collection.
						
						
							 The collection was modified after the current instance was instantiated.
						
						
							
								 When the current
 instance is constructed or after is
 called, the current instance
 is positioned immediately before the first element of the collection. Use to position it over the first
 element of the collection.
							
							
								 A call to
 is required to position the
 current instance over the next element in the collection and return
 if the current instance was not
 positioned beyond the last element of the collection when was
 called.
 If the current instance is already positioned immediately after the last
 element of the collection, a call to is required to
 return , and the current instance
 is required to remain in the same
 position. If elements are added, removed, or repositioned in the
 collection after the current instance was instantiated, it is required that a call
 to
 throw .
							
							
								 Use the method to check if the current
instance is positioned immediately after the last element of the collection, and
to position it over the next element if it is not already past the last element
of the collection. This allows the use of a conditional loop to iterate over the
entire collection.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Positions the enumerator immediately before
 the first element in the collection.
						
						 The collection was modified after the enumerator was instantiated.
						
							
								 When the current instance is constructed
 or after is called, the current instance
 is positioned immediately before the first element of the collection, use to position the current instance
 over the first element of the collection.
							
							
								 A call to
 is required to position
 the current instance immediately before the first element of the collection.
 If elements are added, removed, or repositioned in the collection
 after the current instance was instantiated, it is required that
 a call to throw a .
							
							
								 A call to can involve taking a new snapshot of the
collection or simply moving to the beginning of the collection. The preferred
implementation is to simply move the current instance to
the beginning of the collection, before the first
element. This invalidates the current instance
if the collection has been modified since the current instance was
constructed, which is consistent with and .
							
							
								 Use the method to check if the current
instance is positioned immediately past the last element of the collection, and
to position it over the next element if it is not already past the last element
of the collection.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that support a simple iteration over instances of the collection.
				
				
					
						
							 contains the
 method. The consumer of an object should call this method to obtain an
 enumerator for simple iteration over an instance of a collection.
						 Implement this interface to support the
 semantics of C#.
					
				
			
			
			
			
			
				
					
					
					 Method
					
					
						 System.Collections.IEnumerator
					
					
					
						
							 Returns a that
 can be used for simple iteration over a collection.
						
						
							 A
that can be used for simple iteration over a collection.
						
						
							
								 As described
 above.
							
							
								 For a detailed description regarding the use of an
 enumerator, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by generic classes that support a simple iteration over a collection.
				
				
					 Enumerators can be used to read the data in the collection, but they cannot be used to modify the underlying collection.
					 Initially, the enumerator is positioned before the first element in the collection. At this position, calling is unspecified. Therefore, you must call to advance the enumerator to the first element of the collection before reading the value of .
					
						 returns the same object until is called. sets to the next element.
					 If passes the end of the collection, the enumerator is positioned after the last element in the collection and returns false. When the enumerator is at this position, subsequent calls to also return false. If the last call to returned false, calling is unspecified. You cannot set to the first element of the collection again; you must create a new enumerator instance instead.
					 An enumerator remains valid as long as the collection remains unchanged and the enumerator is not disposed. If changes are made to the collection, such as adding, modifying, or deleting elements, the enumerator is irrecoverably invalidated and its behavior is unspecified.
					 The enumerator does not have exclusive access to the collection; therefore, enumerating through a collection is intrinsically not a thread-safe procedure. To guarantee thread safety during enumeration, you can lock the collection during the entire enumeration. To allow the collection to be accessed by multiple threads for reading and writing, you must implement your own synchronization.
					 Default implementations of collections in are not synchronized.
					 [Note: Implementing this interface requires implementing the non-generic interface . The methods , and do not depend on the type parameter , and appear only on the non-generic interface . The property appears on both interfaces, but with different return types. Implementations should provide the non-generic property as an explicit interface member implementation. This allows any consumer of the non-generic interface to consume the generic interface.]
				
			
			
			
				
					 System.IDisposable
					 0
				
				
					 System.Collections.IEnumerator
					 0
				
			
			
			
				
					
					
					 Property
					
						 T
					
					
					
						
							 Gets the element in the collection over which the current instance is positioned.
						
						
							 The element in the collection over which the current instance is positioned.
						
						
							 If is not called before the first call to .
							 -or-
							 If the previous call to returned , indicating the end of the collection.
						
						
							
								 is unspecified after any of the following conditions:
							
								
									
										 The enumerator is positioned before the first element in the collection, immediately after the enumerator is created. must be called to advance the enumerator to the first element of the collection before reading the value of .
									
								
								
									
										 The last call to returned , which indicates the end of the collection.
									
								
								
									 The enumerator is invalidated due to changes made in the collection, such as adding, repositioning, or deleting elements.
								
								
									 If it has been disposed.
								
							
							 If is accessed when its value is unspecified, an exception of unspecified type can be, but need not be, thrown.
							
								 returns the same object until is called. sets to the next element.
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Provides a mechanism to customize equality in sort ordering of a generic collection.
				
			
			
			
			
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the specified objects are equal.
						
						 First to compare.
						 Second to compare.
						
							
								 if the specified objects are equal; otherwise, .
						
						
							 An implementation of Equals(T,T) shall satisfy the following: The equality function shall be be reflexive, so x.Equals(x) is true; symmetric, so x.Equals(y) and y.Equals(x); and transitive, so x.Equals(y) and
y.Equals(z) implies x.Equals(z); for any values x, y and z for which these expressions are defined.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns a hash code for the specified object.
						
						 The object for which the hash code is to be returned.
						
							 A hash code for the specified object.
						
						 The type of is a reference type and is .
						
							 To produce a hash function for the given object. A hash function is used to
 quickly generate a number (a hash code) corresponding to the value of an object.
 Hash functions are used with . A good hash function
 algorithm rarely generates hash codes that collide. For more information about
 hash functions, see

 , Vol. 3, by Donald E. Knuth.
							
							
								 All implementations are required to ensure that if x.Equals(y) == true, then x.GetHashCode() equals y.GetHashCode(), for any x and y values for which these expressions are defined.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines generalized equality methods that a value type or class implements to create a type-specific equality method.
				
				
					 This interface is implemented by types whose values can be ordered; for example, the numeric and string classes.
				
			
			
			
			
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified object is equal to the current object.
						
						 The to compare to the current instance.
						
							
								 if the specified object is equal to the current object; otherwise, .
						
						
							
								 It is up to the implementation to define equality.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that supply objects that provide formatting
 services.
				
				
					
						 When a includes symbols that
 vary by culture, such as the currency symbol included by the "C" and "c"
 formats, a
 supplies the actual characters used in a string representation of a numeric
 value. For example, a formatting object might supply "$" for the currency symbol.
 The formatting object for system-supplied numeric types is a
 instance. For instances, a is used.
						
							 contains the method. The consumer of an object
 should call this method to obtain a formatting object.
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Returns a that provides formatting services.
						
						 The of the formatting object to be returned.
						
							 The current instance, if is the same type as the current instance; otherwise, a reference.
						
						
							
								 As described above.
							
							
								 Implement in
 classes that provide formatting objects for use in methods that generate or
 parse string representations of objects, such as and
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that construct customizable string representations of
 objects.
				
				
					
						
contains the method. The consumer of an object calls
this method to obtain a formatted string representation of the value of the
object.
					 A is a string that describes the appearance of an object when
it is converted to a string. Either standard or custom formats can be used. A
standard format takes the form , where is a single
alphabetic character called the
, and is an integer between zero and 99 inclusive, called the . The format specifier controls the type
of formatting applied to the value being represented as a string. The
 controls the number
of significant digits or decimal places in the string, if applicable. For the list of standard format specifiers, see the
table below. Note that a given data type, such as
, might not support one
or more of the standard format specifiers.
					
					
						 When a format includes symbols that vary by culture, such as the currency
 symbol included by the "C" and "c" formats, a formatting object supplies the
 actual characters used in the string representation. A method might include a
 parameter to pass a object that supplies a
 formatting object, or the method might use the default formatting object, which
 contains the symbol definitions for the current culture. The current culture
 typically uses the same set of symbols used system-wide by default. In the Base
 Class Library, the formatting object for system-supplied numeric types is a
 instance. For instances, a
 is
 used.
					
					 The following table describes the standard format specifiers and associated formatting
 object members that are used with numeric data types in the Base Class
 Library.
					
						
							 Format Specifier
							 Description
						
						
							
								
									
								
								
									
								
							
							
								
									 : Used for strings containing a monetary value. The , , , and members of a
supply the currency symbol, size and separator for digit groupings, and
decimal separator, respectively.
								
									 and determine the symbols used to represent negative
and positive values. For example, a negative value can be prefixed with a
minus sign, or enclosed in parentheses.
								 If the precision specifier is omitted, determines the number of decimal places in the
string. Results are rounded to the nearest representable value when
necessary.
							
						
						
							
								
									
								
								
									
								
							
							
								
									 : (This format is valid only
when specified with integral data types.) Used for strings containing
integer values. Negative numbers are prefixed with the negative number
symbol specified by the
property.
								 The precision specifier determines the
 minimum number of digits that appear in the string. If the specified
 precision requires more digits than the value contains, the string is
 left-padded with zeros. If the precision specifier specifies fewer digits
 than are in the value, the precision specifier is
 ignored.
							
						
						
							
								
									
								
								
									
								
							
							
								
									 : Used for strings in
one of the following forms:
								 [-]
								
								 [-]
								
								 [-] e
								
								 [-] e
								
								 The negative number symbol ('-') appears only if
 the value is negative, and is supplied by the property.

								 Exactly one non-zero decimal digit precedes the decimal separator ('.'), which
is supplied by the
property.
								 The precision specifier determines the number of decimal places
 (
) in the string. If the precision specifier
 is omitted, six decimal places are included in the
 string.
								 The exponent
)
 consists of either a positive or negative number symbol followed by a
 minimum of three digits (). The exponent is
 left-padded with zeros, if necessary. The case of the format specifier
 ('E' or 'e') determines the case used for the exponent prefix (E or e) in
 the string. Results are rounded to the nearest representable value when
 necessary. The positive number symbol is supplied by the

 property.
							
						
						
							
								
									
								
								
									
								
							
							
								
									 : Used for strings in the following
form:
								 "[-] "
								 At least one non-zero decimal digit () precedes the decimal separator ('.'), which is
supplied by the
property.
								 A
 negative number symbol sign ('-') precedes only if the value is negative. This symbol is
 supplied by the
 property.
								 The precision specifier determines the number of decimal places
 () in the string. If the precision specifier is omitted,
 determines the number of decimal
 places in the string. Results are rounded to the nearest representable
 value when necessary.
							
						
						
							
								
									
								
								
									
								
							
							
								
									 : The string is formatted in either fixed-point format ('F' or 'f') or scientific format ('E' or 'e').
								 For integral types:
								 Values are formatted using fixed-point format if
 < precision specifier, where is the exponent of the value in scientific format. For all other values, scientific format is used.
								 If the precision specifier is omitted, a default
 precision equal to the field width required
 to display the
 maximum value for the data
 type is used, which results in the value being formatted in
 fixed-point format. The default precisions for integral types are as
 follows:
								
									 , - 5
								
									 ,
 - 10
								
									 ,
 -
19
								 For Single, Decimal and Double
 types:
								 Values are formatted using fixed-point format
 if
 >= -4 and < precision specifier, where is
 the exponent of the value in scientific format. For all other values,
 scientific format is used. Results
 are rounded to the nearest representable value when necessary.
								
								
									 If
 the precision specifier is omitted, the following default precisions are
 used:
								
								
									
										
: 7
									
										
: 15
									
										
: 29
								
								
									 For
 all types:
								
								
									 - The
 number of digits that appear in the result (not including the exponent)
 will not exceed the value of the precision specifier; values are rounded
 as necessary.
								
								
									 - The
 decimal point and any trailing zeros after the decimal point are removed
 whenever possible.
								
								
									 - The
 case of the format specifier ('G' or 'g') determines whether 'E' or 'e'
 prefixes the scientific format exponent.
								
							
						
						
							
								
									
								
								
									
								
							
							
								
									 : Used for strings in the following form:
								 [-]
								
								 The representation of negative values is
 determined by the property. If the pattern includes a negative number
 symbol ('-'), this symbol is supplied by the
 property.
								 At least one non-zero decimal digit () precedes
the decimal separator ('.'), which is supplied by the property. Digits between the decimal
point and the most significant digit in the value are grouped using the
group size specified by the property. The group separator (',')
is inserted between each digit group, and is supplied by the
property.
								 The precision specifier determines the number of
 decimal places (). If the precision specifier is omitted,
 determines the number of decimal places in the
 string. Results are rounded to the nearest representable value when
 necessary.
							
						
						
							
								
									
								
								
									
								
							
							
								
									 Used for strings containing a
percentage. The , , , and members of a
supply the percent symbol, size and separator for digit groupings, and
decimal separator, respectively.
								
									 and determine the symbols used to represent negative
and positive values. For example, a negative value can be prefixed with a
minus sign, or enclosed in parentheses.
								 If no precision is specified, the number of decimal places in the
 result is determined by . Results are rounded to the nearest representable
 value when necessary.
								 The result is scaled by 100 (.99 becomes 99%).
							
						
						
							
								
									
								
								
									
								
							
							
								 : (This format is valid only when
specified with or .) Used to ensure that the precision of the string
representation of a floating-point value is such that parsing the string
does not result in a loss of precision when compared to the original
value. If the maximum precision of the data type (7 for , and 15 for
) would result in a loss of precision, the precision
is increased by
two decimal places. If a precision specifier is supplied with this format specifier,
it is ignored. This format is otherwise identical to the fixed-point
format.
						
						
							
								
									
								
								
									
								
							
							
								 : (This format is valid only when
specified with integral data types.) Used for string representations of numbers in Base
16. The precision determines the minimum number of digits in
the string. If the precision specifies more digits than the number contains,
the number is left-padded with zeros. The case of the format specifier
('X' or 'x') determines whether upper case or lower case
letters are used in the hexadecimal representation.
						
					
					 If the numerical value is a or with a value of
 ,
 , or , the format
specifier is ignored, and one of the following is returned: , , or .
					 A custom format is any string specified as a format that
 is not in the form of a standard format string (Axx) described above. The
 following table describes the characters that are used in constructing custom
 formats.
					
						
							 Format Specifier
							 Description
						
						
							 0 (zero)
							
								
									
 If
 the value being formatted has a digit in the position where a '0' appears in the custom format, then that digit is copied to the output string;
 otherwise a zero is stored in that position in the output string. The
 position of the leftmost '0' before the decimal separator and the
 rightmost '0' after the decimal separator determine the range of digits
 that are always present in the output string.
								

 The number of Zero and/or Digit placeholders after
 the decimal separator determines the number of digits that appear after
 the decimal separator. Values are rounded as necessary.
							
						
						
							 #
							
								
									
If the value being formatted has a digit in
the position where a '#' appears in the custom format, then that digit
is copied to the output string; otherwise, nothing is stored in that
position in the output string. Note that this specifier never stores the
'0' character if it is not a significant digit, even if '0' is the only
digit in the string. (It does display the '0' character in the output string
if it is a significant digit.)
								

 The number of Zero and/or Digit
 placeholders after the decimal separator determines the number of digits that appear after the decimal
 separator. Values are rounded as necessary.
							
						
						
							 . (period)
							
								
The left most '.'
character in the format string determines the location of the
decimal separator in the formatted value; any additional '.' characters are
ignored. The property determines
the symbol used as the decimal
separator.
						
						
							 , (comma)
							
								
									
The ',' character serves two purposes. First,
if the custom format contains this character between two Zero or Digit placeholders (0 or #)
and to the left of the decimal separator if one is present,
then the output will have group separators inserted between each group of digits
to the left of the decimal separator. The
and
properties determine the symbol used as the group separator and
the number of digits in each group, respectively.
								 If
 the format
 string contains one or more ',' characters immediately to the left of
 the decimal separator, then the number will be scaled. The scale factor is
 determined by the number of group separator characters immediately to the
 left of the decimal separator. If there are x characters, then the value is
 divided by 1000 X before it is formatted. For example, the format string '0,,'
will divide a value by one million. Note that the presence of the ','
character to indicate scaling does not insert group separators in the
output string. Thus, to scale a number by 1 million and insert group
separators, use a custom format similar to "#,##0,,".
							
						
						
							 %
 (percent)
							
								
The presence of a '%' character
in a custom format causes a number to be multiplied by 100
before it is formatted. The percent symbol is inserted in the output string
at the location where the '%' appears in the format string. The property determines
the percent
symbol.
						
						
							
								 E0
								 E+0
								 E-0
								 e0
								 e+0
								 e-0
							
							
								 If any of the strings 'E', 'E+', 'E-', 'e', 'e+', or 'e-' are present
 in a custom format and is followed immediately by at least one '0'
 character, then the value is formatted using scientific notation. The number
 of '0' characters following the exponent prefix (E or e) determines the
 minimum number of digits in the exponent. The 'E+' and 'e+' formats indicate
 that a positive or negative number symbol always precedes the
 exponent. The 'E', 'E-', 'e', or 'e-' formats indicate that a negative number symbol
 precedes negative exponents; no symbol is precedes positive exponents. The
 positive number symbol is supplied by the property. The negative number symbol
 is supplied by the

 property.
						
						
							 \
 (backslash)
							
								 In some languages, such as C#, the
 backslash character causes the next character in the custom format to be interpreted
 as an escape sequence. It is used with C language
 formatting sequences, such as "\n" (newline). In some languages, the escape character
 itself is required to be preceded by an escape character
 when used as a literal. Otherwise, the compiler interprets the character as
 an escape sequence. This escape character is not required to be
 supported in all programming languages.
						
						
							
								 'ABC'
								 "ABC"
							
							
								 Characters enclosed in single or double quotes are
 copied to the output string literally, and do not affect formatting.
						
						
							 ; (semicolon)
							
								 The ';' character is used to separate sections for
 positive, negative, and zero numbers in the format string. (This feature
 is described in detail below.)
						
						
							 Other
							
								 All other characters are stored in the output
 string as literals in the position in which they
 appear.
						
					
					 Note that for fixed-point format strings (strings not containing an 'E0',
 E+0', 'E-0', 'e0', 'e+0', or 'e-0'), numbers are rounded to as many decimal
 places as there are Zero or Digit placeholders to the right of the decimal
 separator. If the custom format does not contain a decimal separator, the number is
 rounded to the nearest integer. If the number has more digits than there are
 Zero or Digit placeholders to the left of the decimal separator, the extra
 digits are copied to the output string immediately before the first Zero or
 Digit placeholder.
					 A custom format can contain
 up to three sections separated by section separator characters, to specify different formatting for
 positive, negative, and zero values. The sections are interpreted as follows:
					
						
							
								 The
 custom format applies to all values (positive, negative and zero). Negative
 values include a negative sign.
						
						
							
								 The
 first section applies to positive values and zeros, and the second section
 applies to negative values. If the value to be formatted is negative, but
 becomes zero after rounding according to the format in the second section,
 then the resulting zero is formatted according to the first section. Negative
 values do not include a negative sign to allow full control over
 representations of negative values. For example, a negative can be represented
 in parenthesis using a custom format similar to "####.####;(####.####)".
						
						
							
								
The first section applies to positive values, the second section
applies to negative values, and the third section applies to zeros. The
second section can be empty (nothing appears between the semicolons), in which case the
first section applies to all nonzero values, and negative values include a
negative sign. If the number to be formatted is nonzero, but becomes zero
after rounding according to the format in the first or second section, then
the resulting zero is formatted according to the third section.
						
					The and types also support using format specifiers to format
string representations of values. The meaning of a specific format specifier
varies according to the kind of data (numeric, date/time, enumeration) being
formatted. See and for a comprehensive list
of the format specifiers supported by each type.

			
			
			
			
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A that specifies the format of the returned string. If is a null reference or the empty string, the default format defined for the type of the current instance is used.
						
						 A that supplies a formatting object containing culture-specific formatting information, or .
						
							 A containing the value of the current instance formatted
 in accordance with and .
						
						 The specified is invalid or cannot be used with the type of the current instance.
						
							
								 Conforming implementations do not throw an exception when
 and/or are null references. If is a null reference, the string is
 constructed using a system-supplied formatting object containing information for
 the current system culture. If is , the
 string is constructed using a system-supplied default format appropriate for the
 type of the current instance.
								 If the object returned by
supplies a culture-specific representation of symbols or patterns included in
 , the returned string is required to use the information supplied
by
.
							
							
								 Implement to allow consumers of a class to use format strings and formatting
 objects to control the way in which the class is represented as a string.
							
						
						
							 The following example demonstrates using the
method to display values in a variety of formats. The current system culture is
U.S. English, which provides the default values for the
parameter of .
							 using System;
class FormattableExample {
 public static void Main() {
 double d = 123.12345678901234;
 string[] formats = {"C","E","e","F","G","N","P","R"};
 for (int i = 0; i< formats.Length;i++)
 Console.WriteLine("{0:R} as {1}: {2}",d,formats[i],d.ToString(formats[i],null));

 string[]intFormats = {"D","x","X"};
 int val = 255;
 for (int i = 0; i< intFormats.Length;i++)
 Console.WriteLine("{0} as {1}: {2}",val,intFormats[i],val.ToString(intFormats[i],null));

 }
}

							 The output is
							
								 123.12345678901234 as C: $123.12
								 123.12345678901234 as E: 1.231235E+002
								 123.12345678901234 as e: 1.231235e+002
								 123.12345678901234 as F: 123.12
								 123.12345678901234 as G: 123.123456789012
								 123.12345678901234 as N: 123.12
								 123.12345678901234 as P: 12,312.35 %
								 123.12345678901234 as R: 123.12345678901234
								 255 as D: 255
								 255 as x: ff
								 255 as X: FF
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by classes that support custom hash functions for instances of the class.
				
				
					
						
							 contains the method. The consumer of an
 object should call this method to obtain a hash code for the object using a
 custom hash function.
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Generates a hash code for the specified .
						
						 The for which a hash code is to be generated.
						
							 A containing the hash code for the specified .
						
						
							 is .
						
							
								 If is , it is required that a call to
 throw .
							
							
								 Implement
 this method to generate a better hash table
 distribution than the default method provided by the type of the for which the hash code is
 being generated.
							
							
								 The value returned by this method
 should not be persisted past the lifetime of the application that created the
 value. The first reason is that the hash function of a class might be
 altered to generate a better distribution, rendering any values from the old
 hash function useless. The second reason is that the default
 implementation of this class does not guarantee that the same value will be
 returned by different instances.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by
 classes that support a collection of objects that can be individually indexed.
				
				
					
						
							 implementations fall into three categories:
 read-only, fixed-size, variable-size. A read-only list cannot be modified. A
 fixed-size list allows the modification of existing elements, but does not
 allow the addition or removal of elements. A variable-size list allows the modification, addition, and
 removal of elements.
					
				
			
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Adds an item to the current instance.
						
						 The to add to the current instance.
						
							 A containing the index of the current instance into which the new element was inserted.
						
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 As described above.
							
							
								 Use
 the method to add another element to the
 current instance. The index into which that element is
 added is implementation-dependent.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Removes all items from the current instance.
						
						
							 The current instance is read-only.
						
						
							
								 As described above.
							
							
								 Implementations
 of this method can vary in how a call to this method affects the capacity of a list. Typically, the count
 is set to zero. The capacity can be set to zero, some default, or remain
 unchanged.
							
							
								 Use this method to
 delete all values from the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance contains a specific value.
						
						 The to locate in the current instance.
						
							
								 if the is found in the current instance; otherwise, .
						
						
							
								 As described above.
							
							
								 Use the method to determine if a particular is an element of the current
 instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Determines the index of a specific item in the current
 instance.
						
						 The to locate in the current instance.
						
							 The index of if found
 in the current instance; otherwise, -1.
						
						
							
								 As described above.
							
							
								 The default
 implementations of this method use to search for value in the
 current instance.
							
							
								 Use to determine if a is contained in the current instance and, if it is
contained, its index in the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Inserts an item to the current instance at the
 specified position.
						
						 A that specifies the zero-based index at which is inserted.
						 The to insert into the current instance.
						
							 is not a valid index in the current instance (i.e. is greater than the number of elements in the current instance).
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 If equals the number
 of items in the , then is
 required to be appended
 to the end of the current instance.

							
							
								 Use
to place a new element into a specific position in the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance has a fixed size.
						
						
							
								 if the
 current instance has a fixed size; otherwise,
 .
						
						
							 This property is read-only.
							
								 A collection with a fixed size does not
 allow the addition or removal of elements, but it allows the modification of
 existing elements.
							
							
								 Any method that adds or removes an
 element of a collection is required to check the value of this property for
 the particular collection before adding or removing elements. If the
 value of this property is , any
 attempt to add or remove an element
 of the current instance is required to throw a .
							
							
								 The default of this property is .
							
							
								 Override this property, setting the
 value to , in order to prevent the addition or removal of
 elements in the current instance.
							
							
								 Use
 to secure
 the current instance from
 modification from methods, such as and , which add or remove elements from a
 list.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance is read-only.
						
						
							
								 if the
 current instance is read-only; otherwise,
 .
						
						
							 This property is read-only.
							
								 A collection that is read-only does not
 allow the modification, addition, or removal of elements.
							
							
								 Any method that modifies,
 adds, or removes an element of a collection is required to check the
 value of this property for the particular collection before
 executing. If the value of this property is , any
 attempt to
 modify, add, or remove an element of the current instance is required to throw
 a .

							
							
								 The default of this property is
 .
							
							
								 Override this property, setting the
 value to , in order to prevent the
 modification, addition, or removal of elements in the current
 instance.
							
							
								 Use to
 secure the current instance from
 modification from methods, such as and , which modify, add, or remove elements
 from a list.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
						
					
					
						
							 Gets or sets the element at the specified index in the current
 instance.
						
						 A that specifies the zero-based index of the element to get or set.
						
							 The element at the specified index in the current instance.
						
						
							 is not a valid index in the current instance.
						 The property is being set and the current instance is read-only.
						
							
								 As described above.
							
							
								 Use this property
 for subscript indexing for the current instance in the following form: myCollection[index].

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the first occurrence of a specified from
 the current instance.
						
						 The to remove from the current instance.
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 As described above.
								 In addition, if
 is or is not found in the current instance, it is required that no
 exception be thrown and the current instance remain unchanged.
							
							
								 The default implementations
 of this method use to search for value
 in the current instance.
							
							
								 Use
to delete a specified from the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the item at the specified
 index of the current instance.
						
						 A that specifies the zero-based index of the item to remove.
						
							 is not a valid index in current instance.
						
							 The current instance is read-only or has a fixed size.
						
						
							
								 As described above.
							
							
								 Use to delete a specified from the current instance.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents a collection of objects that can be individually accessed by index.
				
				
					 This interface is a descendant of the interface and is the base interface of all generic lists.
				
			
			
			
				
					 System.Collections.Generic.ICollection<T>
					 0
				
				
					 System.Collections.Generic.IEnumerable<T>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Determines the index of a specific item in the current instance.
						
						 The to locate in the current instance.
						 The index of if found in the current instance; otherwise, -1.
						
							 Implementations can vary in how they determine equality of objects; for example, uses the default comparer, whereas, allows the user to specify the implementation to use for comparing keys.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Inserts an item into the current instance at the specified position.
						
						 A that specifies the zero-based index at which value is inserted.
						 The to insert into the current instance.
						
							
								 is not a valid index in the current instance (i.e. is negative or greater than the number of elements in the current instance).
						
						
							 The current instance is read-only.
						
						
							 In collections of contiguous elements, such as lists, the elements that follow the insertion point have indices one more than previously, to accommodate the new element. If the collection is indexed, the indexes of the elements that are moved are also updated.
							
								
									 If equals the number of items in the , then value is required to be appended to the end of the current instance.
								
							
						
					
					 0
				
				
					
					
					 Property
					
						 T
					
					
					
						
							 Gets or sets the element at the specified index in the current instance.
						
						 The zero-based index of the element to get or set.
						
							 The element at the specified index in the current instance.
						
						
							
								 is not a valid index in the current instance.
						
						
							 The property is being set and the current instance is read-only.
						
						
							 This property provides the ability to access a specific element in the collection by using some language-specific syntax.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the item at the specified index of the current instance.
						
						 A that specifies the zero-based index of the item to remove.
						
							
								 is not a valid index in the current instance.
						
						
							 The current instance is read-only.
						
						
							 In collections of contiguous elements, such as lists, the elements that follow the removed element have indices one less than previously. If the collection is indexed, the indexes of the elements that are moved are also updated.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when
 an attempt is made to access an element of an array with
 an index that is outside the bounds of the array.
				
				
					
						 The following CIL instructions throw
 :
						
							
								
 ldelem.<type>
							
							
								
 ldelema
							
							
								
 stelem.<type>
							
						
					
				
				
					 The following example demonstrates an error that causes
 a exception.
					 using System;
public class IndexRangeTest {
 public static void Main() {
 int[] array = {0,0,0};
 try {
 for (int i = 0; i<4; i++) {
 Console.WriteLine("array[{0}] = {1}",i,array[i]);
 }
 }
 catch (IndexOutOfRangeException e) {
 Console.WriteLine("Error: {0}",e);
 }
 }
}

					 The output is
					
array[0] = 0
array[1] = 0
array[2] = 0
Error: System.IndexOutOfRangeException: Index was outside the bounds of the array.
 at IndexRangeTest.Main()

				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "An array index is out of range." This
 message takes into account the current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 For information on inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 The class provides atomic operations for variables that are shared by
 multiple threads.
				
				
					 The methods protect against errors that can
 occur when the scheduler switches contexts while a
 thread is updating a variable that can be accessed by other threads. The
 members of this class do not throw exceptions.
					
						 The method
 and its counterpart, ,

 increment or decrement a variable and store
 the resulting value, as an atomic operation.
						 The method atomically exchanges the values of the
specified variables. The method
provides an atomic
operation that compares two values and stores a third value in one of the
variables, based on the outcome of the comparison.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Compares two values for equality and stores a
 specified value if they are equal.
						
						 A reference whose value is updated with if the original value of is equal to .
						 A whose value will replace the value of if and are equal.
						 A to be compared to
						
						
							 The original value of .

						
						
							 The compare and store operations are performed as
 an atomic operation.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
						
						
					
					
						
							 Compares two values for equality and stores a
 specified value if they are equal.
						
						 A whose value is updated with if its original value is equal to .
						 The value that will replace value of if and are equal.
						 A to be compared to
						
						
							 A containing the original value of .

						
						 The address of is .
						
							 The compare and store operations are performed as
 an atomic operation.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
					
					
						
							 Compares two variables for equality and stores a specified object
 if they are equal.
						
						 A reference that is set to if the object to which it refers is equal to .
						 The reference that will replace the value of if and are equal.
						 An object to be compared to that referred to by
						
						
							 A containing the original value of .

						
						 The address of is .
						
							 The compare and store operations are performed as an
 atomic operation.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Decrements the specified variable and stores the result as an atomic operation.

						
						 A containing the variable whose value is to be decremented.
						
							 A containing the
 decremented value.

						
						
							 This method handles an overflow condition by wrapping:
 if = , - 1 =
 . No exception is
 thrown.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Decrements the specified variable and stores the result as an atomic operation.

						
						 A containing the variable whose value is to be decremented.
						
							 A
containing the decremented value.
						
						
							 This method handles an overflow condition by wrapping: if =
 ,
 - 1 = . No exception is thrown.
							 The 64-bit versions
 of and are truly atomic only on systems where
 a is
 64-bits long. On other systems, these methods are atomic with respect to
 each other, but not with respect to other means of accessing the data.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Sets a variable to a specified value as an atomic
 operation and returns the original value.

						
						 A variable to set to the supplied value as an atomic operation.
						 The value to which is set.
						
							 A containing the value of
before the exchange.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
						
					
					
						
							 Sets a variable to a specified value as an atomic
 operation and returns the original value.

						
						 A variable to set to the supplied value as an atomic operation.
						 The value to which is set.
						
							 A containing the value of
before the exchange.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Sets a reference to refer to a specified object as an
 atomic operation and returns a reference to the original object.

						
						 The variable to set.
						 The reference to which is set.
						
							 The original value of .

						
						 The address of is .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Increments the specified variable and stores the result as an atomic operation.

						
						 A containing the variable whose value is to be incremented.
						
							 A containing the incremented value.

						
						
							 This method handles an overflow condition by wrapping: if =
 ,
 + 1 = . No exception is thrown.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Increments the specified variable and stores the result as an atomic operation.

						
						 A containing the variable whose value is to be incremented.
						
							 A
containing the incremented value.
						
						
							 This method handles an overflow condition by wrapping: if =
 ,
 + 1 = . No exception is thrown.
							 The 64-bit versions of
and are truly atomic only on systems where a is 64-bits
long. On other systems, these methods are atomic with respect to each
other, but not with respect to other means of accessing the data.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an explicit
 conversion (casting operation) fails because the source type cannot be converted to the destination
 type.
				
				
					
						 For information on conversions supported by the system, see the class.
						 For errors that occur when the destination type can store source type values,
 but is not large enough to store a specific source value, see
 exception.
						 The following CIL instructions throw :
						
							
								
 castclass
							
							
								 refanyval
							
							
								
 unbox
							
						
					
				
				
					 The following example demonstrates an error that causes
 a exception.
					 using System;
public class InvalidCastExample {
 public static void Main() {
 object obj = new Object();
 int i;
 try {
 i = (int) obj;
 }
 catch(InvalidCastException e) {
 Console.WriteLine("Caught: {0}", e);
 }
 }
}

					 The output is
					
Caught: System.InvalidCastException: Specified cast is not valid.
 at InvalidCastExample.Main()
			
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "Cannot cast from source type to
 destination type." This message takes into account the current system
 culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For information on inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents a 16-bit signed integer.
				
				
					 The data type represents integer values ranging from
 negative 32,768 to positive 32,767; that is, hexadecimal: 0x8000 to 0x7FFF.
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.Int16>
					 0
				
				
					 System.IEquatable<System.Int16>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > , or
 is a null reference.
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the same value as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same type and
 value.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same type and value as the current instance. If is a null reference
 or is not an instance of , returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int16
					
					
					 32767
					
						
							 Contains the maximum value for the type.
						
						
							 The value of this constant is 32,767 (hexadecimal 0X7FFF).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int16
					
					
					
						
							 Contains the minimum value for the type.
						
						
							 The value of this constant is -32,768 (hexadecimal 0X8000).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the formatting
information in a initialized for the current system
culture. For
more information, see .
							
							
						
						
							 This example demonstrates parsing a string to a .
							 using System;
public class Int16ParseClass {
 public static void Main() {
 string str = " 100 ";
 Console.WriteLine("String: \"{0}\" <Int16> {1}",str,Int16.Parse(str));
 }
}

							 The output is
							
								 String: "
 100 " <Int16> 100
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting
information in a initialized for the current system culture. For more information, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the
culture-specific formatting information from the
instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 The string is parsed using the
 culture-specific formatting information from the
 instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to ("G",
).
							 If is
 or a cannot
be obtained from , the formatting information for the current
system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of
 the current instance.
						
						 A containing a character that specifies the format of the returned string.
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the formatting
 information in the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot
 be obtained from , the formatting information for the current
 system culture is used.
							 If is a null reference, the general
format specifier "G" is used.
							
								 For a
 detailed description of formatting, see the interface.
								 This method is implemented
 to support the interface.
							
							 The following table lists the characters that are valid for the type.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "D", "d"
									 Decimal format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "X", "x"
									 Hexadecimal format.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using
 the general format specifier ("G"). The string takes into account the current
 system culture.
						
						
							 This version of is equivalent to (,).
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system culture.
						
						
							 is invalid.
						
							 This version of is equivalent to (, null).
							 If is a null reference, the general
format specifier "G" is used.
						
						
							 This example demonstrates converting a to a string.
							 using System;
public class Int16ToStringExample {
 public static void Main() {
 Int16 i = 16;
 Console.WriteLine(i);
 string[] formats = {"c", "d", "e", "f", "g", "n", "p", "x" };
 foreach(string str in formats)
 Console.WriteLine("{0}: {1}", str, i.ToString(str));
 }
}

							 The output is
							
								 16
								 c: $16.00
								 d: 16
								 e: 1.600000e+001
								 f: 16.00
								 g: 16
								 n: 16.00
								 p: 1,600.00 %
								 x: 10
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents a 32-bit signed integer.
				
				
					 The data type represents integer values ranging from
 negative 2,147,483,648 to positive 2,147,483,647; that is, hexadecimal
 0X80000000 to 0X7FFFFFFF.
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.Int32>
					 0
				
				
					 System.IEquatable<System.Int32>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									
										 Current instance > , or
 is a null reference.
									
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the same and value as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same type and value.
						
						 The to compare to the current instance.
						
							
								 if represents the same
 type and value as the current instance. If is a null reference or
 is not an instance of , returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					 2147483647
					
						
							 Contains the maximum value for the type.
						
						
							 The value of this constant is 2,147,483,647 (hexadecimal
 0X7FFFFFFF).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
						
							 Contains the minimum value for the type.
						
						
							 The value of this constant is -2,147,483,648 (hexadecimal
 0X80000000).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting
information in a initialized for the current system culture. For more information, see .
							
							
						
						
							 This example demonstrates parsing a string to a .
							 using System;
public class Int32ParseClass {
 public static void Main() {
 string str = " 100 ";
 Console.WriteLine("String: \"{0}\" <Int32> {1}",str,Int32.Parse(str));
 }
}

							 The output is
							
								 String: "
 100 " <Int32> 100
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the formatting
information in a initialized for the current system
culture. For
more information, see .
							
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the
culture-specific formatting information from the
instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 The string is parsed using the
 culture-specific formatting information from the
 instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to ("G",
).
							 If is
 or a cannot
be obtained from , the formatting information for the current
system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A containing a character that specifies the format of the returned string.
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the formatting
 information in the instance supplied by .

						
						
							 is invalid.
						
							 If is
 or a cannot
 be obtained from , the formatting information for the current
 system culture is used.
							 If is a null reference, the general
format specifier "G" is used.
							
								 For a detailed
 description of formatting, see the interface.
								 This method is implemented
 to support the interface.
							
							 The following table lists the characters that are valid for the type.
							
								
									 Item
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "D", "d"
									 Decimal format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "X", "x"
									 Hexadecimal
 format.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using
 the general format specifier ("G"). The string takes into account the current
 system culture.
						
						
							 This version of is equivalent to (,
).
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system
 culture.
						
						
							 is invalid.
						
							 This method is equivalent to (,
).
							 If is a null reference, the general format specifier "G" is used.
						
						
							 This example demonstrates converting a to a string.
							 using System;
public class Int32ToStringExample {
 public static void Main() {
 Int32 i = 32;
 Console.WriteLine(i);
 String[] formats = {"c", "d", "e", "f", "g", "n", "p", "x" };
 foreach(String str in formats)
 Console.WriteLine("{0}: {1}", str, i.ToString(str));
 }
}

							 The output is
							
								 32
								 c: $32.00
								 d: 32
								 e: 3.200000e+001
								 f: 32.00
								 g: 32
								 n: 32.00
								 p: 3,200.00 %
								 x: 20
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a 64-bit signed integer.
				
				
					 The data type represents integer values ranging from
 negative 9,223,372,036,854,775,808 to positive 9,223,372,036,854,775,807; that
 is, hexadecimal 0X8000000000000000 to 0X7FFFFFFFFFFFFFFF.
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.Int64>
					 0
				
				
					 System.IEquatable<System.Int64>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									
										 Current instance > , or
 is a null reference.
									
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the same value as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the
 same type and value.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same type and value as the current instance. If is a null reference
 or is not an instance of , returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int64
					
					
					 9223372036854775807
					
						
							 Contains the maximum value for the type.
						
						
							 The value of this constant is 9,223,372,036,854,775,807 (hexadecimal
 0X7FFFFFFFFFFFFFFF).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int64
					
					
					
						
							 Contains the minimum value for the type.
						
						
							 The value of this constant is -9,223,372,036,854,775,808 (hexadecimal
 0X8000000000000000).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the formatting
information in a initialized for the current system
culture. For
more information, see .
							
						
						
							 This example demonstrates parsing a string to a .
							 using System;
public class Int64ParseClass {
 public static void Main() {
 string str = " 100 ";
 Console.WriteLine("String: \"{0}\" <Int64> {1}",str,Int64.Parse(str));
 }
}

							 The output is
							
								 String: " 100
 " <Int64> 100
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting
information in a initialized for the current system culture. For more information, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the
culture-specific formatting information from the
instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 The string is parsed using the
 culture-specific formatting information from the
 instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to ("G",
).
							 If is
 or a cannot
be obtained from , the formatting information for the current
system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of
 the current instance.
						
						 A containing a character that specifies the format of the returned string.
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the formatting
 information in the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot be
 obtained from , the formatting information for the current system
 culture is used.
							 If is a null reference, the general
format specifier "G" is used.
							
								 For a detailed
 description of formatting, see the interface.
								 This method is implemented
 to support the interface.
							
							 The following table lists the characters that are valid for the type.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "D", "d"
									 Decimal format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "X", "x"
									 Hexadecimal format.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using
 the general format specifier ("G"). The string takes into account the current
 system culture.
						
						
							 This version of is equivalent to (,).
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system culture.
						
						
							 is invalid.
						
							 This method is equivalent to
(,
).
							 If is a null reference, the general
format specifier "G" is used.
						
						
							 This example demonstrates converting a to a string.
							 using System;
public class Int64ToStringExample {
 public static void Main() {
 Int64 i = 64;
 Console.WriteLine(i);
 String[] formats = {"c", "d", "e", "f", "g", "n", "p", "x" };
 foreach(String str in formats)
 Console.WriteLine("{0}: {1}", str, i.ToString(str));
 }
}

							 The output is
							
								 64
								 c: $64.00
								 d: 64
								 e: 6.400000e+001
								 f: 64.00
								 g: 64
								 n: 64.00
								 p: 6,400.00 %
								 x: 40
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Supported by types that either have a value or an indication of the absence of a value.
				
				
					 An object that supports the interface can be tested via the property to see if that object currently contains a value. If it does, that value can be retrieved via the property . Otherwise, that object contains no value.
				
			
			
			
			
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Indicates whether the current instance contains a value.
						
						
							
								 if the current instance contains a value; otherwise .
						
						
							
								 If is , the instance contains a value, and returns that value.
								 If is , the instance contains no value, and an attempt to read results in a .
								 This property is read-only.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets the value, if any, of the current instance.
						
						
							 The value of the current instance.
						
						
							 is .
						
							
								 If is , the instance contains a value, and returns that value.
								 If is , the instance contains no value, and an attempt to read results in a .
								 This property is read-only.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an operation cannot be
 performed.
				
				
					
						
							 is typically thrown when the state of
 one or more objects determines whether an operation can be performed.
						 The exception should not be thrown for
 errors caused by invalid arguments. For invalid argument errors, throw or one
 of its derived types, such as or .
						 The ldflda CIL instruction throws .
					
				
				
					 The following example demonstrates an error that causes
 a exception.
					 using System;
using System.Collections;
public class InvalidOpExample {
 public static void Main() {
 int[] array = {0,0};
 IEnumerator enumerator = array.GetEnumerator();
 Console.Write("{0}",enumerator.Current);
 }
}

					 The output is
					
						 Unhandled Exception: System.InvalidOperationException: Enumeration has not
 started. Call MoveNext.
						 at System.SZArrayEnumerator.get_Current()
						 at InvalidOpExample.Main()
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "The requested operation cannot be
 performed." This message takes into account the current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to a system-supplied message. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using
 . If is
 , the property is initialized to a system-supplied message.
							
								 For information on
 inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the
 error that occurs when a program contains invalid CIL instructions or
 metadata.
				
				
					
						 This exception is
 thrown by the system when a compiler emits incorrect CIL
 or metadata.
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "Metadata is incorrect." This message
 takes into account the current system culture.
							 The property is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 For information on inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an I/O operation fails.
				
				
					
						 is the
 base
 class for exceptions thrown while accessing information using streams, files and
 directories.
					
						 The Base Class Library includes the following types,
 each of which is derived from :
						
							
								
									
								
							
							
								
									
								
							
							
								
									
								
							
							
								
									
								
							
							
								
									
								
							
						
						 Where appropriate, use these types instead of .
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 The constructor initializes the property of the new instance
 to a system-supplied message that describes the error, such as "An I/O
 error occurred while performing the requested operation." This message takes into
 account the current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 The constructor initializes the property of the new
 instance using . If is
 , the property is initialized to a system-supplied message.
							 The property of the new
instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 The constructor initializes the property of the new
 instance using and the property using
 . If is
 , the property is initialized to a system-supplied message.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines methods implemented by permission types.
				
				
					
						 Permission types describe a level of access to secured
 operations or resources, such as files or environment variables. Permission instances do not confer the right to
 access a resource or perform an operation; the security system determines whether or not requested permissions
 are granted. Permissions are used by both application code and the security system in the
 following ways:
						
							
								

 Code requests the permissions it needs in order to
 run.
							
							
								

 Permissions are granted by the security system.
							
							
								

 Code demands that calling code has a permission.
							
							
								

 Code

 alters the default behavior

 of the security system by asserting or denying
 permissions.
							
						
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a object of the same type and containing the same
 values as the current instance.
						
						
							 A new object of the same type and containing the same
 values as the current instance.
						
						
							
								 The object returned by
 this method is required to be a deep copy of the current instance; any objects
 referenced by the current instance are duplicated in the copy.
							
							
								 Implement this
 method to provide the system with a means of duplicating permission objects.
							
							
								 Use
 this method to obtain a copy of the current instance that is identical to the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Forces a if all callers do not have the permission
 specified by the current instance.
						
						
							 A caller does not have the permission specified by the current instance.
						
						
							 The permission check for begins with the immediate caller
 of the code that calls this method and continues until all callers have been
 checked or a caller has been found that is not granted the demanded permission,
 in which case a exception is thrown.
							
								 Notifies the
 system that a security check is required for all callers of the method that
 invokes . All callers are required to have the permissions
 described by the current instance. If one of the callers asserts the
 permissions and that caller has the permissions, the system is required to allow
 all callers that have not been checked to bypass the security check. If the
 security check fails, a is thrown by the system.
							
							
								 Use this method to
 ensure that callers that call the method containing a
 call have the
 permissions described by the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns an
 object that is the intersection of the current instance and the
 specified
 object.
						
						 An object of the same type as the current instance to intersect with the current instance.
						
							 A new object that is the same type as
 the current instance and represents the intersection of the
 current instance and . If the intersection is empty, or
 is , returns .
						
						
							 is not and is not of the same type as the current instance.
						
							 The object returns by is a permission that secures the resources and
 operations secured by two
 objects: a demand passes the
 intersection of two objects only if it passes both of the objects.
							
								 If is not and is not of the same type as
 the current instance, a exception is required to be thrown.
								 The following statements are required to be true for all
 implementations of the method. and

represent non-null object
references.
								
									
										
											 .Intersect() returns a value
 equal to .
									
									
										
											 .Intersect() returns the same
 value as .Intersect().
									
									
										
											 .Intersect() returns

 .
									
								
							
							
								 Use this method to obtain the set of permissions that are
 described both by the current instance and the specified
 object.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of
 the specified object.
						
						 A object of the same type as the current instance that is to be tested for the subset relationship.
						
							
								 if the current instance is a subset of ;
 otherwise, . If the current instance is unrestricted, and
 is not, returns . If is
 unrestricted, returns . If target is
 and the current instance does not secure any resources or
 operations, returns . If target is
 and the current instance secures one or more resources or operations, returns

.
						
						
							 is not and is not of the same type as the current instance.
						
							 The current instance is a subset of if the current instance
 specifies a set of accesses to resources or operations that is wholly contained
 by . For example, a permission that represents read access to a
 file is a subset of a permission that represents read and write access to the
 file.
							
								 If is not
 and is not of the same type
 as the current instance, a exception is
 required to be thrown.
								 The following statements are required to be true for all
 implementations of the method. , , and

represent non-null objects.
								
									
										
											 .IsSubsetOf(
) returns .
									
									
										
											 .IsSubsetOf() returns the same
 value as .IsSubsetOf() if and only if and

 represent the same set of permissions.
									
									
										

 if .IsSubsetOf() and
 .IsSubsetOf(
) both return
 , .IsSubsetOf() returns
 .
									
								
							
							
								 Use this method to determine if the
 permissions described by the current instance are also described by the
 specified object.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns an object that is the union of the
 current instance and the specified
 object.
						
						 A object of the same type as the current instance to combine with the current instance.
						
							 A new object of the same type as the current
 instance that represents the
 union of the current instance and .
						
						
							 is not and is not of the same type as the current instance.
						
							 The object returned by is a permission that represents the
 permissions described by the current instance and those described by
 . Any demand that passes either the current instance or
 is required to pass the union of the two.
							
								 If is not and is not of the same type as
 the current instance, a exception is required to be thrown.
								 The following statements are required to be true for all
 implementations of the method. and
 represent non-null objects.
								
									
										
											 .Union() returns an object that
 is value-equal to .
									
									
										
											 .Union() returns an object that
 is value-equal to the object returned by .Union().
									
									
										
											 .Union() returns an
 object that is value-equal to

 .
									
								
							
							
								 Use this
 method to obtain a object of the same type as the current instance
 and that describes the permissions described by the current
 instance and those described by .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 The exception that is thrown when the key specified for accessing an element in a collection does not match any key in the collection.
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied message that describes the error, such as "An application error has occurred." This message takes into account the current system culture.
							 The property is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 The message that describes the error. The content of is intended to be understandable to the user. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to an implementation-specific message. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 The message that describes the error. The content of is intended to be understandable to the user. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non- , then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to an implementation-specific message.
							
								 For information on inner exceptions,
 see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations, provided that reading and writing operations on K and V are atomic.
			
				
					 Defines a key/value pair that can be set or retrieved.
				
			
			
				 System.ValueType
			
			
			
				
					
					
					 Constructor
					
						 System.Void
					
					
						
						
					
					
						
							 Initializes a new key/value pair with the specified key and value.
						
						 The key of the key/value pair.
						 The value of the key/value pair.
					
					 0
				
				
					
					
					 Field
					
						 K
					
					
					
					
						
							 The key in the key/value pair.
						
					
					 0
				
				
					
					
					 Field
					
						 V
					
					
					
					
						
							 The value in the key/value pair.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 Static members of this type are thread-safe. Any instance members are not guaranteed to be thread safe. A list can support multiple readers concurrently, as long as the collection is not modified. Even so, enumerating through a collection is intrinsically not a thread safe procedure. [Note: To guarantee thread safety during enumeration, you can lock the collection during the entire enumeration. To allow the collection to be accessed by multiple threads for reading and writing, you must implement your own synchronization.]
			
				
					 Implements the interface. The size of a List is dynamically increased as required. A List is not guaranteed to be sorted. It is the programmer's responsibility to sort the List prior to performing operations (such as) that require a List to be sorted. Indexing operations are required to perform in constant access time; that is, O(1).
				
				
					 Some methods, such as , , , and , use an equality comparer for the list elements. The default equality comparer for type T is determined as follows: If type T implements then the default equality comparer is
						 ; otherwise the default equality comparer is
						 .
					 Some methods, such as and , use a comparer for the list elements. Some overloads of these methods take an explicit comparer as argument, while others use a default comparer. The default comparer for type T is determined as follows: If type T implements then the default comparer is
						 ; otherwise, if type T implements then the default comparer is
						 . If type T implements neither nor then there is no default comparer; in this case a comparer or comparison delegate must be given explicitly.
					 The capacity of a is the number of elements the can hold. As elements are added to a , the capacity is automatically increased as required.. The capacity can be decreased by calling or by setting the property explicitly.
					 Indexes in this collection are zero-based.
					
						 accepts as a valid value for reference types and allows duplicate elements.
					 This type contains a member that is a nested type, called . Although is a member of this type, is not described here; instead, it is described in its own entry, .
				
			
			
				 System.Object
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
				
					 System.Collections.IList<T>
					 0
				
				
					 System.Collections.Generic.ICollection<T>
					 0
				
				
					 System.Collections.Generic.IEnumerable<T>
					 0
				
				
					 System.Collections.Generic.IList<T>
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Initializes a new list that is empty and has the default initial capacity.
						
						
							
								 If the size of the collection can be estimated, you can specify the initial capacity in a constructor overload that accepts a capacity parameter to eliminate the need to perform a number of resizing operations while adding elements to the list.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Initializes a new list with elements copied from the specified collection, ensuring that the list has sufficient capacity to accommodate the number of elements copied.
						
						 The collection from which to copy the elements.
						
							 is .
						
							
								 If the size of the collection can be estimated, you can specify the initial capacity in a constructor overload that accepts a capacity parameter to eliminate the need to perform a number of resizing operations while adding elements to the list.
							
							 The elements are copied onto the list in the same order in which they are read by the System.Collections.Generic.IEnumerator<T> from collection.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Initializes a new list that is empty and has the specified initial capacity.
						
						 The maximum number of elements that the List can contain without reallocating memory.
						
							 is less than zero.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Adds an item to the end of the list.
						
						 The item to add to the end of the list. (can be if T is a reference type.)
						
							
								 accepts as a valid value for reference types and allows duplicate elements.
							 If already equals , the capacity of the list is increased.
							 If is less than , this method is an O(1) operation. If the capacity needs to be increased to accommodate the new element, this method becomes an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
					
						
					
					
						
							 Adds the elements of the specified collection to the end of the list.
						
						 The collection whose elements are added to the end of the list.
						
							 is .
						
							
								 accepts as a valid value for reference types and allows duplicate elements.
							 The order of the elements in the collection is preserved in the .
							 If the new (the current plus the size of the collection) will be greater than , the capacity of the list is increased.
							 If the list can accommodate the new elements without increasing , this method is an O(n) operation, where n is the number of elements to be added. If the capacity needs to be increased to accommodate the new elements, this method becomes an O(n + m) operation, where n is the number of elements to be added and m is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.IList<!0>
					
					
					
						
							 Returns a read-only wrapper to the current List.
						
						
							 A read-only wrapper for the current List.
						
						
							 To prevent any modifications to a list, expose it only through this wrapper.
							 A collection that is read-only is simply a collection with a wrapper that prevents modifying the collection; therefore, if changes are made to the underlying collection, the read-only collection reflects those changes.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Searches the entire sorted list for an element using the default comparer, and returns the zero-based index of the element.
						
						 The element for which to search. (can be if T is a reference type.)
						
							 The zero-based index of in the sorted list, if is found; otherwise, a negative number, which is the bitwise complement of the index of the next element that is larger than or, if there is no larger element, the bitwise complement of .
						
						
							 The default comparer cannot find a or implementation for type T.
						
						
							 This method uses the default comparer for type T to determine the order of list elements. If there is no default comparer, then the method throws . The default comparer for a given element type T is defined in the Description section of this (class) specification.
							 The list must already be sorted according to the comparer implementation; otherwise, the result is incorrect.
							 Comparing with any reference type is allowed and does not generate an exception when using . When sorting, is considered to be less than any other object.
							 If the list contains more than one element with the same value, the method returns only one of the occurrences, and it might return any one of the occurrences, not necessarily the first one.
							 If the list does not contain the specified value, the method returns a negative integer. You can apply the bitwise complement operation (~) to this negative integer to get the index of the first element that is larger than the search value. When inserting the value into the list, this index should be used as the insertion point to maintain the sort order.
							 This method is an O(log n) operation, where n is the number of elements in the list.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches the entire sorted list for an element using the specified comparer and returns the zero-based index of the element.
						
						 The element for which to search. (can be if T is a reference type.)
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the default comparer.
						
						
							 The zero-based index of in the sorted list, if is found; otherwise, a negative number, which is the bitwise complement of the index of the next element that is larger than or, if there is no larger element, the bitwise complement of .
						
						
							
								 is , and the default comparer cannot find a or implementation for type T.
						
						
							 If the given comparer is non- , it is used to determine the order of list elements. If the given comparer is , the default comparer for type T is used; if there is no default comparer, then the method throws . The default comparer for a given element type T is defined in the Description section of this (class) specification.
							 The comparer customizes how the elements are compared. For example, if T is , you can use a instance as the comparer to perform case-insensitive string searches.
							 The list must already be sorted according to the comparer implementation; otherwise, the result is incorrect.
							 Comparing with any reference type is allowed and does not generate an exception when using . When sorting, is considered to be less than any other object.
							 If the contains more than one element with the same value, the method returns only one of the occurrences, and it might return any one of the occurrences, not necessarily the first one.
							 If the list does not contain the specified value, the method returns a negative integer. You can apply the bitwise complement operation (~) to this negative integer to get the index of the first element that is larger than the search value. When inserting the value into the list, this index should be used as the insertion point to maintain the sort order.
							 This method is an O(log n) operation, where n is the number of elements in the list.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Searches a range of elements in the sorted list for an element using the specified comparer and returns the zero-based index of the element.
						
						 The zero-based starting index of the range to search.
						 The length of the range to search.
						 The element for which to search. (can be if T is a reference type.)
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the default comparer.
						
						
							 The zero-based index of in the sorted list, if is found; otherwise, a negative number, which is the bitwise complement of the index of the next element that is larger than or, if there is no larger element, the bitwise complement of + .
						
						
							 + is greater than .
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							
								 is , and the default comparer cannot find a or implementation for type T.
						
						
							 If the given comparer is non- , it is used to determine the order of list elements. If the given comparer is , the default comparer for type T is used; if there is no default comparer, then the method throws . The default comparer for a given element type T is defined in the Description section of this (class) specification.
							 The comparer customizes how the elements are compared. For example, if T is , you can use a instance as the comparer to perform case-insensitive string searches.
							 The list must already be sorted according to the comparer implementation; otherwise, the result is incorrect.
							 Comparing with any reference type is allowed and does not generate an exception when using . When sorting, is considered to be less than any other object.
							 If the contains more than one element with the same value, the method returns only one of the occurrences, and it might return any one of the occurrences, not necessarily the first one.
							 If the list does not contain the specified value, the method returns a negative integer. You can apply the bitwise complement operation (~) to this negative integer to get the index of the first element that is larger than the search value. When inserting the value into the list, this index should be used as the insertion point to maintain the sort order.
							 This method is an O(log n) operation, where n is the number of elements in the range.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the number of elements the current instance can contain.
						
						
							 A containing the number of elements the current instance can contain.
						
						 Attempt to set the capacity to a value less than .
						
							 This property is read/write.
							
								 is the number of elements that the list is capable of storing without needing to be extended. is the number of elements that are actually in the list.
							
								 is always greater than or equal to . When exceeds while adding elements, the capacity is increased.
							 The capacity can be decreased by calling or by setting the property explicitly.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Removes all elements from the list.
						
						
							
								 gets set to zero, and references to other objects from elements of the collection are also released. The capacity remains unchanged.
							
								
									 To reset the capacity, call or set the property directly.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.List<U>
					
					
						
					
					
						
							 Converts the current List (of type T) to a List of type U.
						
						 A converter delegate that converts each element from one type to another type.
						
							 A List of the target type containing the converted elements from the current List.
						
						
							
								 is .
						
						
							 The converter is a delegate that converts an object to the target type. The elements of the current List are individually passed to the converter delegate, and the converted elements are saved in the new List.
							 The current List remains unchanged.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the list contains a specific value.
						
						 The object to locate in the current collection. (can be if T is a reference type.)
						
							
								 , if is found in the list; otherwise, .
						
						
							 This method uses the default equality comparer for type T to determine equality of list elements. The default equality comparer for element type T is defined in the Description section of this (class) specification.
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Copies the entire list to an array.
						
						 A one-dimensional, zero-based array that is the destination of the elements copied from the list.
						
							
								 is multidimensional.
							 -or-
							
								 does not have zero-based indexing.
							 -or-
							 The number of elements in the list is greater than the number of elements that the destination can contain.
							 -or-
							 Type T is not assignable to the element type of the destination array.
						
						
							
								 is .
						
						
							 The elements are copied onto the array (using) in the same order in which the enumerator iterates through the list.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the elements of the list to an array, starting at a particular index.
						
						 A one-dimensional, zero-based array that is the destination of the elements copied from the list.
						 The zero-based index in at which copying begins.
						
							
								 is multidimensional.
							 -or-
							
								 does not have zero-based indexing.
							 -or-
							 The sum of and number of elements in the list is greater than the length of the destination array.
							 -or-
							 Type T is not assignable to the element type of the destination array.
						
						
							
								 is .
						
						
							
								 is less than zero.
						
						
							 The elements are copied onto the array (using) in the same order in which the enumerator iterates through the list.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Copies a range of elements of the list to an array, starting at a particular index in the target array.
						
						 The zero-based index in the source list at which copying begins.
						 A one-dimensional, zero-based array that is the destination of the elements copied from the list.
						 The zero-based index in at which copying begins.
						
							 The number of elements to copy.
						
						
							
								 is multidimensional.
							 -or-
							
								 is equal to or greater than the of the source list.
							 -or-
							
								 is equal to or greater than the length of .
							 -or-
							 The number of elements from to the end of the source list is greater than the available space from to the end of the destination .
							 -or-
							 Type T is not assignable to the element type of the destination array.
						
						
							
								 is .
						
						
							
								 is less than zero.
							 -or-
							
								 does not have zero-based indexing.
							 -or-
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							 The elements are copied onto the array (using) in the same order in which the enumerator iterates through the list.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of elements contained in the current instance.
						
						
							 The number of elements in the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the List contains elements that match the conditions defined by the specified predicate.
						
						 The predicate delegate that specifies the elements to search for.
						
							
								 if the List contains one or more elements that match the conditions defined by the specified predicate; otherwise, .
						
						
							
								 is .
						
						
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate, and processing is stopped when a match is found.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.List<!0>
					
					
						
					
					
						
							 Retrieves all the elements that match the conditions defined by the specified predicate.
						
						 The predicate delegate that specifies the elements to search for.
						
							 A List containing all the elements that match the conditions defined by the specified predicate, if found; otherwise, an empty List.
						
						
							
								 is .
						
						
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the Predicate delegate, and the elements that match the conditions are saved in the returned List.
						
					
					 0
				
				
					
					
					 Method
					
						 T
					
					
						
					
					
						
							 Searches for an element that matches the conditions defined by the specified predicate, and returns the first occurrence within the entire List.
						
						 The predicate delegate that specifies the element to search for.
						
							 The first element that matches the conditions defined by the specified predicate, if found; otherwise, the default value for type T.
						
						
							
								 is .
						
						
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate, moving forward in the List, starting with the first element and ending with the last element. Processing is stopped when a match is found.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Searches for an element that matches the conditions defined by the specified predicate, and returns the zero-based index of the first occurrence within the List.
						
						 The predicate delegate that specifies the element to search for.
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							
								 is .
						
						
							 The List is searched forward starting at the first element and ending at the last element.
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches for an element that matches the conditions defined by the specified predicate, and returns the zero-based index of the first occurrence within the range of elements in the List that extends from the specified index to the last element.
						
						 The zero-based starting index of the search.
						 The predicate delegate that specifies the element to search for.
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							
								 is .
						
						
							
								 is less than 0 or greater than or equal to .
						
						
							 The List is searched forward starting at and ending at the last element.
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches for an element that matches the conditions defined by the specified predicate, and returns the zero-based index of the first occurrence within the range of elements in the List that starts at the specified index and contains the specified number of elements.
						
						 The zero-based starting index of the search.
						 The number of elements to search.
						 The predicate delegate that specifies the element to search for.
						
							 The zero-based index of the first occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							
								 is .
						
						
							
								 is less than 0.
							 -or-
							
								 is less than 0.
							 -or-
							
								 + is greater than .
						
						
							 The List is searched forward starting at and ending after elements.
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate.
						
					
					 0
				
				
					
					
					 Method
					
						 T
					
					
						
					
					
						
							 Searches for an element that matches the conditions defined by the specified predicate, and returns the last occurrence within the entire List.
						
						 The predicate delegate that specifies the element to search for.
						
							 The last element that matches the conditions defined by the specified predicate, if found; otherwise, the default value for type T.
						
						
							
								 is .
						
						
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate, moving backward in the List, starting with the last element and ending with the first element. Processing is stopped when a match is found.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Searches for an element that matches the conditions defined by the specified predicate, and returns the zero-based index of the last occurrence within the List.
						
						 The predicate delegate that specifies the element to search for.
						
							 The zero-based index of the last occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							
								 is .
						
						
							 The List is searched backward starting at the last element and ending at the first element.
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches for an element that matches the conditions defined by the specified predicate, and returns the zero-based index of the last occurrence within the range of elements in the List that extends from the specified index to the first element.
						
						 The zero-based starting index of the backward search.
						 The predicate delegate that specifies the element to search for.
						
							 The zero-based index of the last occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							
								 is .
						
						
							
								 is less than 0 or greater than or equal to .
						
						
							 The List is searched backward starting at and ending at the first element.
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches for an element that matches the conditions defined by the specified predicate, and returns the zero-based index of the last occurrence within the range of elements in the List that starts at the specified index and contains the specified number of elements going backwards.
						
						 The zero-based starting index of the search.
						 The number of elements to search.
						 The predicate delegate that specifies the element to search for.
						
							 The zero-based index of the last occurrence of an element that matches the conditions defined by , if found; otherwise, -1.
						
						
							
								 is .
						
						
							
								 is less than zero, or greater than or equal to .
							 -or-
							
								 is less than 0.
							 -or-
							
								 is greater than + 1.
						
						
							 The List is searched backward starting at and ending after elements.
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Performs the specified action on each element of the List.
						
						 The action delegate to perform on each element of the List.
						
							
								 is .
						
						
							 The action is a delegate that performs an action on the object passed to it. The elements of the current List are individually passed to the action delegate, sequentially, in index order, and on the same thread as that used to call . Execution stops if the action throws an exception.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.List<!0>
					
					
						
						
					
					
						
							 Creates a shallow copy of a range of elements in the current List.
						
						 The zero-based index at which the range starts.
						 The number of elements in the range.
						
							 A shallow copy of the given range of elements in the list.
						
						
							
								 + is greater than .
						
						
							
								 is less than 0.
							 -or-
							
								 is less than 0.
						
						
							 A shallow copy of a collection, or a subset of that collection, copies only the elements of the collection, whether they are reference types or value types, but it does not copy the objects that the references refer to. The references in the new collection point to the same objects as do the references in the original collection. (In contrast, a deep copy of a collection copies the elements and everything directly or indirectly referenced by those elements.)
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Collections.Generic.List;lt;T>.Enumerator
					
					
					
						
							 Returns an enumerator, in index order, that can be used to iterate over the list.
						
						
							 An enumerator for the list.
						
						
							
								 For a detailed description regarding the use of an enumerator, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Searches for the specified object and returns the zero-based index of the first occurrence within the entire list.
						
						 The T to locate in the current list. (The value can be if T is a reference type.)
						
							 The zero-based index of the first occurrence of within the List, if found; otherwise, -1.
						
						
							 The list is searched forward starting at the first element and ending at the last element.
							 This method uses the default equality comparer for type T to determine equality of list elements. The default equality comparer for element type T is defined in the Description section of this (class) specification.
							 This method performs a linear search; therefore, the average number of comparisons is proportional to . That is, this method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches for the specified object and returns the zero-based index of the first occurrence within the range of elements in the list that extends from the specified index to the last element.
						
						 The T to locate in the current list. (The value can be if T is a reference type.)
						 The zero-based starting index of the search.
						
							 The zero-based index of the first occurrence of within the range of elements in the list, if found; otherwise, -1.
						
						
							
								 is less than zero or greater than .
						
						
							 The list is searched forward starting at and ending at the last element.
							 This method uses the default equality comparer for type T to determine equality of list elements. The default equality comparer for element type T is defined in the Description section of this (class) specification.
							 This method is an O(n) operation, where n is the number of elements from to the end of the list.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches for the specified object and returns the zero-based index of the first occurrence within the range of elements in the list that starts at the specified index and contains the specified number of elements.
						
						 The T to locate in the current list. (The value can be if T is a reference type.)
						 The zero-based starting index of the search.
						 The number of elements to search.
						
							 The zero-based index of the first occurrence of within the specified range of elements in the list, if found; otherwise, -1.
						
						
							
								 is less than 0.
							 -or-
							
								 is less than 0.
							 -or-
							
								 + is greater than .
						
						
							 The list is searched forward starting at and ending at + - 1, and searching at most terms.
							 This method uses the default equality comparer for type T to determine equality of list elements. The default equality comparer for element type T is defined in the Description section of this (class) specification.
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Inserts an item to the List at the specified position.
						
						 The zero-based index at which is to be inserted.
						 The item to insert. (can be if T is a reference type.)
						
							 The zero-based index of the first occurrence of within the specified range of elements in the list, if found; otherwise, -1.
						
						
							
								 is less than 0.
							 -or-
							
								 is greater than .
						
						
							
								 accepts as a valid value for reference types and allows duplicate elements.
							 If already equals , the capacity of the List is increased.
							 If is equal to , is added to the end of list.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Inserts the elements of a collection in the List at the specified position.
						
						 The zero-based index at which the new elements should be inserted.
						 The collection whose elements should be inserted into the list. (itself cannot be , but the collection can contain elements that are , if type T is a reference type.)
						
							 The zero-based index of the first occurrence of within the specified range of elements in the list, if found; otherwise, -1.
						
						
							
								 is .
						
						
							
								 is less than zero,
							 -or-
							
								 is greater than .
						
						
							
								 accepts as a valid value for reference types and allows duplicate elements.
							 If the new value of will be greater than , the capacity of the List is increased.
							 If is equal to , the collection is added to the end of list.
							 The order of the elements in the collection is preserved in the list.
						
					
					 0
				
				
					
					
					 Property
					
						 T
					
					
						
					
					
						
							 Gets or sets the element at the specified index of the current instance.
						
						 The zero-based index of the element in the current instance to get or set.
						
							 The element at the specified index of the current instance.
						
						
							
								 < 0.
							 -or-
							
								 >= of the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Searches for the specified object and returns the zero-based index of the last occurrence within the entire list.
						
						 The T to locate in the current list. (The value can be if T is a reference type.)
						
							 The zero-based index of the last occurrence of within the entire list, if found; otherwise, -1.
						
						
							 The list is searched backward starting at the last element and ending at the first element.
							 This method uses the default equality comparer for type T to determine equality of list elements. The default equality comparer for element type T is defined in the Description section of this (class) specification.
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Searches for the specified object and returns the zero-based index of the last occurrence within the range of elements in the list that extends from the specified index to the last element.
						
						 The T to locate in the current list. (The value can be if T is a reference type.)
						 The zero-based starting index of the search.
						
							 The zero-based index of the last occurrence of within the range of elements in the list, if found; otherwise, -1.
						
						
							
								 is less than zero or greater than or equal to .
						
						
							 The list is searched backward starting at and ending at the first element.
							 This method uses the default equality comparer for type T to determine equality of list elements. The default equality comparer for element type T is defined in the Description section of this (class) specification.
							 This method is an O(n) operation, where n is the number of elements from the beginning of the list to .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Searches for the specified object and returns the zero-based index of the last occurrence within the range of elements in the list that starts at the specified index and contains the specified number of elements.
						
						 The T to locate in the current list. (The value can be if T is a reference type.)
						 The zero-based starting index of the search.
						 The number of elements to search.
						
							 The zero-based index of the last occurrence of within the range of elements in the list that contains number of elements and ends at , if found; otherwise, -1.
						
						
							
								 is less than zero, or greater than or equal to .
							 -or-
							
								 is less than 0.
							 -or-
							
								 is greater than + 1.
						
						
							 The list is searched backward starting at and ending after elements.
							 This method uses the default equality comparer for type T to determine equality of list elements. The default equality comparer for element type T is defined in the Description section of this (class) specification.
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Removes the first occurrence of the specified object from the list.
						
						 The object to be removed from the list.
						
							
								 if is successfully removed; otherwise, .
						
						
							 This method uses the default equality comparer for type T to determine equality of list elements. The default equality comparer for element type T is defined in the Description section of this (class) specification.
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Removes the all the elements that match the conditions defined by the specified predicate.
						
						 The predicate delegate that specifies the elements to remove.
						
							 The number of elements removed from the List.
						
						
							
								 is .
						
						
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate, and the elements that match the conditions are removed from the List.
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the item at the specified index of the list.
						
						 The zero-based index of the item to remove.
						
							
								 is less than 0.
							 -or-
							
								 is equal to or greater than .
						
						
							 The item is removed and all the elements following it in the List have their indexes reduced by 1.
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Removes a range of elements from the list.
						
						 The zero-based starting index of the range of elements to remove.
						 The number of elements to remove.
						
							
								 + is greater than .
						
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							 The items are removed and all the elements following them in the List have their indexes reduced by .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Reverses the order of the elements in the list.
						
						
							 This method uses
								 to reverse the order of the elements.
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Reverses the order of the elements in the specified element range of the list.
						
						 The zero-based starting index of the range of elements to reverse.
						 The number of elements to reverse.
						
							
								 + is greater than .
						
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							 This method reverses the order of the elements in the specified element range
							 This method is an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Sorts the elements in the list using the default comparer.
						
						
							 The default comparer cannot find a or implementation for type T.
						
						
							 This method uses the default comparer for type T to determine the order of list elements. If there is no default comparer, then the method throws . The default comparer for a given element type T is defined in the Description section of this (class) specification.
							 At worst, this operation is O(n 2), where n is the number of elements to sort. On average it's O(n log n).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sorts the elements in the list using the specified comparer.
						
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the default comparer.
						
						
							
								 is , and the default comparer cannot find a or implementation for type T.
						
						
							 If the given comparer is non- , it is used to determine the order of list elements. If the given comparer is , the default comparer for type T is used; if there is no default comparer, then the method throws . The default comparer for a given element type T is defined in the Description section of this (class) specification.
							 At worst, this operation is O(n 2), where n is the number of elements to sort. On average it's O(n log n).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sorts the elements in the list using the specified comparer.
						
						 The zero-based starting index of the range of elements to sort.
						 The number of elements to sort.
						
							 The implementation to use when comparing elements.
							 -or-
							
								 to use the default comparer.
						
						
							 + is greater than .
						
							
								 is less than zero.
							 -or-
							
								 is less than zero.
						
						
							
								 is , and the default comparer cannot find a or implementation for type T.
						
						
							 If the given comparer is non- , it is used to determine the order of list elements. If the given comparer is , the default comparer for type T is used; if there is no default comparer, then the method throws . The default comparer for a given element type T is defined in the Description section of this (class) specification.
							 At worst, this operation is O(n 2), where n is the number of elements to sort. On average it's O(n log n).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sorts the elements in the list using the specified comparison.
						
						
							 The comparison to use when comparing elements.
						
						
							 is .
						
							 At worst, this operation is O(n 2), where n is the number of elements to sort. On average it's O(n log n).
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface.
							
								 For more information, see .
							
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Collections.Generic.IEnumerator<T>
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Void
					
					
						
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ICollection.IsSynchronized
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Collections.IEnumerator
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Int32
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Boolean
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Int32
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Void
					
					
						
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Void
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Void
					
					
						
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 T[]
					
					
					
						
							 Copies the elements in the list to a new array.
						
						
							 The new array containing a copy of the list's elements.
						
						
							 This an O(n) operation, where n is .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Suggests that the capacity be reduced to the actual number of elements in the list.
						
						
							 This method can be used to suggest a collection's memory overhead be minimized, e.g., if no new elements are expected to be added to the collection.
							
								 To reset a list to its initial state, call the method before calling .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Sets the capacity to the actual number of elements in the list.
						
						
							 This method can be used to minimize a list's memory overhead if no new elements are expected to be added to the list.
							 To reset a List to its initial state, call the method before calling . Trimming an empty list sets the capacity of the list to the default capacity.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether every element in the List matches the conditions defined by the specified predicate.
						
						 The predicate delegate that specifies the check against the elements.
						
							
								 , if every element in the List matches the conditions defined by the specified predicate; otherwise, .
						
						
							
								 is .
						
						
							 The predicate is a delegate that returns if the object passed to it matches the conditions defined in the delegate. The elements of the current List are individually passed to the predicate delegate. The elements are processed sequentially and on the same thread.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 Static members of this type are thread safe. Any instance members are not guaranteed to be thread safe.
			
				
					 Enumerates the elements of a List.
				
				
					 For information on the behavior of enumerators, see the Description section of .
					 Default implementations of collections in are not synchronized.
					 This type is a member of type .
				
			
			
				 System.ValueType
			
			
				
					 System.IDisposable
					 0
				
				
					 System.Collections.IEnumerator
					 0
				
				
					 System.Collections.Generic.IEnumerator<T>
					 0
				
			
			
			
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface.
						
						
							
								 Note to inheritors: can be called multiple times by other objects. When overriding this method, do not reference objects that have been previously disposed of in an earlier call to .
							
						
					
					 0
				
				
					
					
					 Property
					
						 T
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 This method is implemented to support the and interfaces.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 This read-only property is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Enables access to objects across application
 domain boundaries
 in implementations that
 support remoting.
				
				
					
						 An application
 domain is a partition in an OS process where one or more applications reside.
 Objects in the same application domain communicate directly. Objects that reside
 in different application domains communicate either by transporting copies of
 objects across application domain boundaries, or by exchanging messages via proxy.
					
					
						 is the base class for objects that
 communicate across application domain boundaries by exchanging messages via a
 proxy. Objects that do not inherit from are
 implicitly . When a remote application references a
 object, a copy of the object is passed across application domain boundaries.
				
			
			
				 System.Object
			
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides support for creating and using a stream whose backing store is memory.
				
				
					 The class creates streams that have memory as a backing
 store instead of a disk or a network connection.
 encapsulates data stored as an unsigned byte array. The encapsulated data is directly accessible
 in memory. Memory streams can reduce the need for temporary buffers and files
 in an application.
					 The of
a stream is the position at which the next read or write operation takes
place. The current position can be retrieved or set through the
method. When a new instance of
is created, the
current position is set to zero.
					 The maximum length of a is implementation-specific.
					
						 Memory streams created
 with an unsigned byte array provide a non-resizable stream view
 of the data. When using a byte array, you can neither
 append to nor shrink the stream, although you might be able to modify the existing
 contents depending on the parameters passed into the constructor.
					
				
			
			
				 System.IO.Stream
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 The array from which to create the new stream.
						 A that specifies the index into at which the stream begins.
						 A that specifies the length of the stream in bytes.
						 A that specifies whether the new stream instance supports writing.
						 A that specifies whether is exposed via , which returns the array from which the stream was created. Specify to expose ; otherwise, specify .
						
							 is .
						
							 or is negative.
						 (+) is greater than the length of .
						
							 The and properties of
 the new instance are
 set to . The property is set to . The property is set to
 .
							
								 The new stream instance can be written to depending on the value of , but the of the underlying array cannot be changed. The length of the stream cannot be set
to a value larger than , but the stream can be truncated
(see).
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new non-resizable instance of the
class.
						
						 The array from which to create the new stream.
						 A that specifies the index in at which the stream begins.
						 A that specifies the length of the stream in bytes.
						 A that specifies whether the new stream instance supports writing.
						
							 is .
						
							 or are negative.
						 (+) is greater than the length of .
						
							 The and properties
 of the new are
 set to . The property is set to . The property is set to
 .
							
								 The new stream instance can be written to depending on the value of , but the of the
 underlying byte array cannot be changed. The length of the stream cannot be set
 to a value larger than , but the stream can be truncated
 (see).
							
							 The new stream does not expose the underlying byte
 buffer, and calls to the method throw .
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new resizable instance of the
class.
						
						
							 The , , and properties of the
 new instance of the class are set to .
							 The capacity of the new stream instance can be increased
 by using the method or by
 setting the property.
							 The new stream exposes the underlying byte buffer, which
 can be accessed through the
 method.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new resizable instance of the
class.
						
						 A that specifies the initial size of the internal array.
						
							 is negative.
						
							 The , , and
properties of the new instance of the class are set to
 .
							 The of
the new stream instance is set to can be increased
by using the method or by
setting the property. Write operations at the end of
the new instance of the class expand the .
							 The new stream exposes the underlying byte buffer,
 which can be accessed through the
 method.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new non-resizable instance of the class.
						
						 The array from which to create the new stream.
						 The parameter is .
						
							 The , , and
properties of the new instance of the class are set to
 . is set to the length of the specified

array.
							
								 The new stream instance can be written to, but
 the of
 the underlying
 array cannot be changed. The length of the stream cannot be set
 to a value greater than
 , but the
 stream can be truncated (see).
							
							 The new stream does not expose the underlying byte buffer, and calls to the
 method throw .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new non-resizable instance of the class.
						
						 The array from which to create the new stream.
						 A that specifies whether the new stream instance supports writing.
						
							 is .
						
							 The and properties of the new
 instance of the class are set to . The property is set to the length of the specified
 array. The property is set to

.
							
								 The new stream instance can be written to depending on the value of , but the of the underlying
array cannot be changed. The length of the stream cannot be set
to a value larger than , but the stream can be truncated
(see).
							
							 The new stream does not expose the underlying buffer, and calls to the
method throw .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new non-resizable instance of the
class.
						
						 The array from which to create the new stream.
						 A that specifies the index into at which the stream begins.
						 A that specifies the length of the stream in bytes.
						
							 is .
						
							 or is less than zero.
						 (+) is greater than the length of .
						
							 The , , and properties of the
 new instance are set to . The property
 is set to
 .
							
								 The new stream instance can be written to, but the
 of the underlying
array cannot be changed. The length of the stream cannot be set
to a value larger than , but the stream can be truncated
(see).
							
							 The new stream does not expose the underlying
buffer, and calls to the method throw
.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports reading.
						
						
							
								 if the current
 stream is open and supports reading; otherwise
 .
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream
 supports seeking.
						
						
							
								 if the stream is open and
 supports seeking; otherwise
 .
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream
 supports writing.
						
						
							
								 if the stream supports writing;
 otherwise, .
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the number of bytes allocated for the current
 stream.
						
						
							 A containing the
 number of bytes allocated for the current stream.
						
						 The value specified for a set operation is negative or less than the current length of the stream.
						 A set operation was attempted on a stream whose capacity cannot be modified.
						 The current stream is closed.
						
							
								 is
 the buffer length for system-provided byte arrays. If the current stream is
 created with a specified
 array, indicates the length of the portion of
 the provided array to which the current stream has access. For additional information, see the ([], ,) constructor.
							
							
								
cannot be set to a value less than the current length of the stream, but can be
set to less than the current capacity. If the capacity specified is less than
the current capacity, the size of the buffer used
to hold the stream can be reduced, but need not be.
							
								 If the value specified for a set operation is less than the default value,
 for performance reasons the property is set to the default. The default
 value of the property is
 unspecified.

							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current instance.
						
						
							 The stream will not support reading or writing after
 this method is invoked. Following a call to
 , operations on the
 stream can raise an exception.
							 The buffer of a closed is still available, and the
and methods can
be called successfully.
							 This method overrides
.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Overrides
so that no action is performed.
						
						
							 Since any data written to a is written into RAM, this
 method is redundant.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
					
						
							 Returns the
 array of unsigned bytes from which this stream was created.
						
						
							 The array from which the current stream was created, or the
 underlying array if a
 array was not provided to the
 constructor during construction of the current instance.
						
						 The current instance was not created with a publicly visible buffer.
						
							 To create a instance with a publicly visible buffer use the default constructor,
 (
 [], , , ,) or (
) constructor.
							 If the current stream is resizable, multiple calls to
 this method do not return the same array if the underlying
 array is
 resized between calls. For additional information, see
 .
							
								 This method works when the is closed.
							
							
								 As described above.
							
						
						
							 The following example demonstrates that two calls to the
method on a resizable stream do not return the same array if the underlying byte array is
reallocated.
							 using System;
using System.IO;

public class MemoryStreamTest {
 public static void Main() {

 MemoryStream ms = new MemoryStream(10);

 byte[] a = ms.GetBuffer();
 byte[] b = ms.GetBuffer();

 //Force reallocation of the underlying byte array.
 ms.Capacity = 10240;
 byte[] c = ms.GetBuffer();

 if(Object.ReferenceEquals(a, b))
 Console.WriteLine("a and b represent the same instance.");
 else
 Console.WriteLine("a and b represent the different instances.");

 if(Object.ReferenceEquals(a, c))
 Console.WriteLine("a and c represent the same instance.");
 else
 Console.WriteLine("a and c represent the different instances.");

 }
}

							 The output is
							
								 a and b represent the same instance.
								 a and c represent the different instances.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets the length of the stream in bytes.
						
						
							 A containing the length of the stream in bytes.
						
						 The current stream is closed.
						
							 This property is read-only.
							
								 This property
 overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets or sets the current position within the stream.
						
						
							 A containing the current position within the stream.
						
						 The value specified for a set operation is negative or greater than the maximum length of a .
						 The current stream is closed.
						
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads a block of bytes from the current stream at the current position, and
 writes the data to the specified byte array.
						
						 A array. When this method returns, contains the specified byte array with the values between and replaced by the characters read from the current stream.
						 A that specifies the byte offset in at which to begin writing.
						 A that specifies the maximum number of bytes to read.
						
							 A that specifies the total number of bytes
 written into the buffer, or zero if the end of the stream is
 reached before any bytes are read.
						
						
							 is .
						
							 or is negative.
						 (+) is larger than the length of .
						 The current stream is closed.
						
							 If the read operation is successful, the current position within the
 stream advances by the number of bytes read. If an exception occurs, the current position within
 the stream remains unchanged.
							 If the read takes place immediately following a seek beyond the end of the stream, the end of the stream is reached.
							
								 If the byte array specified in the parameter is the underlying buffer returned by the
 method, the array contents are overwritten, and no
 exception is thrown.
								 This method overrides .
							
						
						
							 The following example demonstrates the result of reading from a into its
 underlying byte array.
							 using System;
using System.IO;

public class MemoryStreamTest {
 public static void Main() {

 byte[] values = new byte [] {0,1,2,3,4,5,6,7,8,9};

 foreach (byte b in values) {
 Console.Write(b);
 }

 Console.WriteLine();

 MemoryStream ms = new MemoryStream (values);

 ms.Read(values, 1, 5);

 foreach (byte b in values) {
 Console.Write(b);
 }
 }
}

							 The output is
							
								 0123456789
								 0012346789
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Reads a byte from the current stream at the current position.

						
						
							 The byte cast to a , or -1 if the end of the stream has been reached.

						
						 The current stream is closed.
						
							 If the read operation is successful, the current position
 within the stream is advanced by one byte. If an exception occurs, the
 current position within the stream is unchanged.
							 If the read takes place immediately following a seek beyond the end of the stream, the end of the stream is reached.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Changes the position within the current stream by the given offset, which is relative to the stated origin.
						
						 A that specifies the new position within the stream. This is relative to the parameter, and can be positive or negative.
						 A value that specifies the seek reference point.
						
							 A containing the new position within the stream, calculated by
 combining the seek reference point and the offset.
						
						 Seeking is attempted before the beginning of the stream.
						
							 is greater than the maximum length of .
						
							 is not a valid value.
						 The current stream is closed.
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sets the length of the current stream to the specified value.
						
						 A that specifies the value at which to set the length.
						
							 The current stream is not resizable and is greater than the current .
							 -or-
							 The current stream does not support writing.
						
						
							 is negative or is greater than the maximum length of the - , where is the index into the underlying buffer at which the stream starts.
						
							 If the specified value is less than the current length of the
 stream, the stream is truncated. If after the truncation the current position within the
 stream is past the end of the stream, the
 method returns -1, the method reads zero bytes into the provided byte
 array, and and methods

 append specified bytes at the end of the stream, increasing its length.
							 If the specified value is larger than the current
 capacity and the stream is resizable, the capacity is increased, and the current position
 within the stream is unchanged. If the length is increased, the contents
 of the stream between the old and the new length are initialized to zeros.
							
								 A instance must support writing for this method to
 work. Use the property to determine whether the
 current instance supports writing. For additional information, see .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
					
						
							 Writes the entire stream contents to a array,
 regardless of the current position within the stream.
						
						
							 A new array.

						
						
							 This method returns a copy of the contents of
 the as a byte array. If the
 current instance was constructed on a provided byte array, a copy of the section
 of the array to which the current instance has access is returned. For
 additional information, see the ([], ,)
 constructor.
							
							
								 This method
 works when the is
 closed.
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a block of bytes
 to the current stream at the current position using data read from buffer.
						
						 The array to write data from.
						 A that specifies the zero based byte offset into at which to begin writing from.
						 A that specifies the maximum number of bytes to write from .
						
							 is .
						
							 The current stream does not support writing.
							 -or-
							 The current position is closer than bytes to the end of the stream, and the capacity cannot be modified.
						
						 (+) is greater than the length of .
						
							 or are negative.
						 An I/O error occurred.
						 The current stream is closed.
						
							 If the write operation is
 successful, the current position within the stream is advanced by the number of
 bytes written. If an exception occurs, the current position within the stream
 is unchanged.
							 If the write takes place immediately following a seek beyond the end of the stream, that stream is zero-byte-extended to the new seek position before the given bytes are written.
							 Write operations at the end of a resizable expand
 the .
							
								 Use the method to determine whether the current stream supports writing.
							
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a to the current stream at the current position.
						
						 The to write.
						 The current stream is closed.
						
							 The current stream does not support writing.
							 -or-
							 The current position is at the end of the stream, and the stream's capacity cannot be modified.
						
						
							 Write operations at the end of a resizable
expand the . If the write operation is
successful, the current position within the stream is advanced by one byte. If an
exception occurs, the position is unchanged.
							 If the write takes place immediately following a seek beyond the end of the stream, that stream is zero-byte-extended to the new seek position before the given byte is written.
							
								 Use the method to determine
whether the current stream supports writing.
							
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the entire contents of the current instance to a specified stream.
						
						 The to write the current memory stream to.
						
							 is .
						 The current or target stream is closed.
						
							
								 This method is equivalent to calling
									 and passing in the underlying buffer of the current instance.
							
							
								 As described
 above.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides
 a mechanism that synchronizes access to objects.
				
				
					 The class
 controls access to objects by granting a single thread a lock for an object.
 Object locks provide the
 ability to restrict access to a block of code, commonly called a critical section.
 While a thread owns the lock for an object no other thread can acquire the lock
 for the object. Additionally, the

 class can be used to ensure that no other thread can access a section of
 application code being executed by the lock owner, unless the other thread is
 executing the code using a different locked object.
					 The following information is
 maintained for each synchronized object:
					
						
							

 A reference to the thread that currently holds the
 lock.
						
						
							

 A reference to a "ready queue", which contains the
 threads that are ready to obtain the lock.
						
						
							

 A reference to a "waiting queue", which contains the threads that are
 waiting for notification of a change in the state of the locked
 object.
						
					
					 The following table describes the actions taken by
 threads that access synchronized objects:
							
								 Action
								 Description
							
							
								 Enter
								 Acquires a lock for an
 object. Also marks the beginning of a critical section. No other
 thread can enter the critical section unless they are executing the instructions in the critical
 section using a different locked object. See the and
 methods.
								
							
							
								 Wait
								 Releases the lock on an object in order to permit
 other threads to lock and access the object. The calling thread waits
 while another thread accesses the object. Pulse signals (see below) are
 used to notify waiting threads about changes to an object's state.
 See

 .
								
							
							
								 Pulse
 (signal)
								 Sends a signal to one or more waiting threads. The
 signal notifies a waiting thread that the state of the locked object has
 changed, and the owner of the lock is ready to release the lock. The
 waiting thread is placed in the object's ready queue so that it can
 eventually receive the lock for the object. Once the thread has the lock,
 it can check the new state of the object to see if the required state has
 been reached. See and

 .
								
							
							
								 Exit
								 Releases the lock on an object. Also marks the end
 of a critical section protected by the locked object.
 See
 .
								
							
						
					
					 The
 and methods
 are used to
 mark the beginning and end of a critical section. If the critical section is
 a set of contiguous instructions, then the lock acquired by the
 method guarantees
 that only a single thread can execute the enclosed code with the locked
 object. This facility is typically used to synchronize access to a static or
 instance method of a class. If an instance method requires synchronized
 thread access, the instance method invokes the
 and corresponding methods using itself (the current
 instance) as the object to lock. Since only one thread can hold the lock on the
 current instance, the method can only be executed by one thread at a time.
 Static methods are protected in a similar fashion using the

 object of the current instance as the locked object.
					
						 The functionality provided by the
and
methods is identical to that provided by the C#
lock statement.
						 If a critical section spans an entire method, the locking
 facility described above can be achieved by placing the on the method, and specifying
 the option. Using this attribute,
 the and statements are not needed.
 Note that the attribute causes the current thread to hold the lock until
 the method returns; if the lock can be released sooner, use the class
 (or C#
 statement) instead of
 the attribute.
						 While it is possible for the and
 statements that lock and release a
given object to cross member and/or class boundaries, this practice is strongly discouraged.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Acquires an
 exclusive lock on the specified object.
						
						 The on which to acquire the lock.
						
							 is .
						
							 This method acquires an exclusive
 lock on
 .
							 A caller of this method is required to invoke once
 for each invoked.
							 The caller of this method is blocked if another thread
 has obtained the lock by calling
 and specifying the same object. The caller
 is not blocked if the current thread holds the lock. The same thread can
 invoke more than once (and it will not block); however, an equal number of calls are required to be invoked before other
 threads waiting on the object will
 unblock.
							
								 Invoking this member is identical to
 using the C# statement.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases an exclusive lock on the specified .
						
						 The on which to release the lock.
						
							 is .
						
							 The current thread does not own the lock for the specified object.
						
						
							 This method releases an exclusive lock on . The caller is required to own the lock on

.
							 If the caller owns the
 lock on the specified object, and has made an equal number
 of and calls for
 the object, then the lock is released. If the caller has not
 invoked as many times as
 , the lock is not released.
							
								 If the lock is released and there are
 other threads in the ready queue for the object, one of the threads will
 acquire the lock. If there are other threads in the waiting queue
 waiting to acquire the lock, they are not automatically moved to the ready
 queue when the owner of the lock calls . To move one or more waiting
 threads into the ready queue, call or prior to invoking .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Notifies the next waiting thread (if any) of a change in the specified locked object's state.
						
						 The a thread might be waiting for.
						
							 is .
						 The calling thread does not own the lock for the specified object.
						
							 The thread that currently owns the lock on the specified object
 invokes this method to signal the next thread in line for the lock (in the
 queue of threads waiting to acquire the lock on the object). Upon receiving the pulse, the
 waiting thread is moved to the ready queue. When the thread that invoked releases the lock, the
 next thread
 in the ready queue (which is not necessarily
 the thread that was pulsed) acquires the lock.
							
								 To signal a waiting object using , you must be the current owner of
 the lock.
								 To signal multiple threads, use the
 method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Notifies all waiting threads (if any) of a change in the specified locked object's
 state.
						
						 The that one or more threads might be waiting for.
						
							 is .
						 The calling thread does not own the lock for the specified object.
						
							 The thread that currently owns the lock on the specified object invokes this method
 to signal all threads waiting to acquire the lock on the object. After the
 signal is sent, the waiting threads are moved to the ready queue. When the
 thread that invoked releases the lock,
 the next thread in the ready queue acquires the lock.
							
								 To signal waiting objects using , you must be the current owner of the
 lock.
								 To signal a single thread, use the
 method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Attempts to acquire an exclusive lock on the specified object.
						
						 The on which to acquire the lock.
						
							
								 if the current thread acquired
 the lock; otherwise, .
						
						
							 is .
						
							 If successful, this method acquires an exclusive lock
 on . This method returns immediately, whether or not the lock is available.
							 This method is equivalent to
(, 0).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Attempts, for the specified number
 of milliseconds, to acquire an exclusive
 lock on the specified object.
						
						 The on which to acquire the lock.
						 A containing the maximum number of milliseconds to wait for the lock.
						
							
								 if the current thread acquired the lock; otherwise, .
						
						
							 is .
						
							 is negative, and not equal to .
						
							 If successful, this method acquires an exclusive lock on .
							 If equals , this
method is equivalent to
(). If
 equals zero, this method is
equivalent to
().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Attempts, for the specified amount of time, to acquire an exclusive lock
 on the specified object.
						
						 The on which to acquire the lock.
						 A set to the maximum amount of time to wait for the lock.
						
							
								 if the current thread acquires the lock; otherwise, .
						
						
							 is .
						 The value of in milliseconds is negative and is not equal to , or is greater than .
						
							 If successful, this method acquires an exclusive lock on .
							 If the value of converted to milliseconds equals , this method is equivalent to
(). If the value of equals zero, this method is equivalent to

().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Releases the lock on an object and blocks the current thread
 until it reacquires the lock
 or until a specified amount of time elapses.
						
						 The on which to wait.
						 A containing the maximum number of milliseconds to wait before this method returns.
						
							
								 if the lock was reacquired before the specified time elapsed; otherwise,
 .
						
						
							 is .
						 The calling thread does not own the lock for the specified object.
						 The value of is negative, and not equal to .
						
							 If successful, this method reacquires an exclusive lock on .
							 This method behaves identically to (), except that it does not block indefinitely unless
 is
specified for . Once the specified time has elapsed, this
method returns a value that indicates whether the lock has been reacquired by the
caller. If equals 0, this method returns
immediately.
							
								 This method is
 called when the caller is waiting for a change in the state of the object, which
 occurs as a result of another thread's operations on the object. For additional
 details, see

 ().
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Releases the lock on an object and blocks the current thread
 until it reacquires the lock
 or until a specified amount of time elapses.
						
						 The on which to wait.
						 A set to the maximum amount of time to wait before this method returns.
						
							
								 if the lock was reacquired before
 the specified time elapsed; otherwise, .
						
						
							 is .
						 The calling thread does not own the lock for the specified object.
						 If is negative, and is not equal to , or is greater than .
						
							 If successful, this method reacquires an exclusive lock on .
							 This method behaves identically to (), except that it does not block indefinitely unless

milliseconds is
specified for . Once the specified time has elapsed, this
method returns a value that indicates whether the lock has been reacquired by the
caller. If equals 0, this method returns immediately.
							
								 This method is
 called when the caller is waiting for a change in the state of the object, which
 occurs as a result of another thread's operations on the object. For additional
 details, see

 (
).
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Releases the lock on an object and blocks the current
 thread until it reacquires the lock.
						
						 The on which to wait.
						
							
								 if the
 call returned because the caller reacquired the lock for the specified object.
 This method does not return if the lock is not reacquired.
						
						
							 is .
						 The calling thread does not own the lock for the specified object.
						
							 This method reacquires an exclusive lock on .
							 The thread that currently owns the
 lock on the specified object invokes this method in order to release the object
 so that another thread can access it. The caller is blocked while waiting to reacquire the lock. This method is called when the caller is
 waiting for a change in the state of the object, which occurs as a result of another
 thread's operations on the object.
							 When a thread calls , it releases the lock on the object
and enters the object's waiting queue. The next thread in the object's ready
queue (if there is one) acquires the lock and has exclusive use of the object.
All threads that call remain in the waiting queue until
they receive a signal via or sent by the
owner of the lock. If is sent, only the thread at the
head of the waiting queue is affected. If is sent, all threads that are waiting for
the object are affected. When the signal is received, one or more threads leave
the waiting queue and enter the ready queue. A thread in the ready queue
is permitted to reacquire the lock.
							 This method returns when the calling thread reacquires the lock on the object. Note that this method blocks indefinitely if
 the holder of the lock does not call or .
							 The caller executes once, regardless of the number of times
 has been
invoked for the specified object. Conceptually,
the method stores the number of times
the caller invoked on the object
and invokes
as many times as necessary to fully release the locked object. The caller then
blocks while waiting to reacquire the object. When the caller reacquires the lock, the system calls
as many times as necessary to restore the saved
count for the caller.
							 Calling releases the lock for the specified object
only; if the caller is the owner of locks on other objects, these locks are not
released.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					
Represents the error that occurs when a requested operation is not implemented for a given type.
				
				
					
						 A number of the types and constructs, specified elsewhere in this Standard, are not required of CLI implementations that conform only to the Kernel Profile. For example, the floating-point feature set consists of the floating-point data types and . If support for these is omitted from an implementation, any attempt to reference a signature that includes the floating-point data types results in an exception of type
 .
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error. This message takes into account the current
 system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							
								 For information on inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					
 Represents the error that occurs when an object cannot
 perform an operation.
				
				
					
						
							 is thrown when it is never possible for
 the object to perform the requested operation. A typical scenario is when a base
 class declares a method that derived classes are required to implement, and the
 method is invoked on the base class. When a method throws
 this usually indicates that the derived classes must provide an implementation
 of the method, and callers must invoke the method
 on the derived class.
						 For scenarios where it is sometimes possible for the
 object to perform the requested operation, and the object state determines
 whether the operation can be performed, see
 .
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error. This message takes into account the current
 system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							
								 For information on inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is not guaranteed to be safe for multithreaded operations.
			
				
					 Represents a nullable value type. An instance of can contain a value of type or an indication that the instance contains no value. Upon boxing, if it contains no value, it will be converted to the null reference; otherwise, it will be converted to a boxed T. [Note: Because of the constraint on the generic parameter, cannot be of type for any . end note]
				
				
					 The value type represents a value of a given type or an indication that the instance contains no value. Such a nullable type is useful in a variety of situations, such as in denoting nullable columns in a database table or optional attributes in an XML element. The runtime transforms instances without values into true nulls when performing a box operation; instances with values are transformed into boxed 's containing the 's Value.
					 An instance of has two properties, and . is used to determine whether the current instance currently has a value. It returns or , and never throws an exception. returns the current value of the instance, provided it has one (i.e., is); otherwise, it throws an exception.
					 In addition to the above properties, there is a pair of methods, both overloads of . The version taking no arguments returns the instance's current value, if it has one; otherwise, it returns the default value of type . The version taking an argument of type returns the instance's current value, if it has one; otherwise, it returns the default value argument passed to it.
					 Applying to an instance that has the default initial value, causes false to be returned.
				
			
			
				 System.ValueType
			
			
			
				
					
					
					 Constructor
					
						 System.Void
					
					
						
					
					
						
							 Constructs and initializes a new instance of giving it the specified initial value.
						
						 The initial value of the new instance.
						
							
								 Once this constructor has executed, applying to the new instance returns .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same type and value.
						
						 The to compare to the current instance.
						
							 The following table defines the conditions under which the return value is or :
							
								
									 Returned Value
									 HasValue Condition
									 obj.HasValue Condition
								
								
									
										
									
									 The current instance and have different types.
									 The current instance and have different types.
								
								
									
										
									
									
										
									
									
										 is .
								
								
									
										
									
									
										
									
									
										 is .
								
								
									
										
									
									
										
									
									
										
									
								
								
									
										
									
									
										
									
									
										
									
								
								
									
										
									
									
										
									
									
										
									
								
								
									
										
										
										
									
									
										
									
									
										
									
								
							
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 T
					
					
						
					
					
						
							 Creates a from a .
						
						 The value to convert to type .
						
							 The value, if any, of the specified nullable value. Otherwise, a is thrown.
						
						
							 is .
						
							
								 This method corresponds to the method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 If is , a containing the hash code for the value of the current instance is returned; otherwise, 0 is returned.
						
						
							 The algorithm used to generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 T
					
					
					
						
							 Returns the value of the current instance, or if it has none, returns the default value for the type .
						
						
							 A value of type , which is either the value of the current instance, or if it has none, the default value for the type (i.e., all-bits-zero).
						
						
							
								
									
									 allows a value other than the default value to be returned if the current instance contains no value.
							
						
					
					 0
				
				
					
					
					 Method
					
						 T
					
					
						
					
					
						
							 Returns the value of the current instance, or if it has none, returns .
						
						 The value to be returned if the current instance contains no value.
						
							 A value of type , which is either the value of the current instance, or if it has none, the value of .
						
						
							
								
									
									 allows the default value for type to be returned if the current instance contains no value.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Indicates whether the current instance contains a value.
						
						
							
								 if the current instance contains a value; otherwise .
						
						
							
								 If is , the instance contains a value, and returns that value.
								 If is , the instance contains no value, and an attempt to read results in a exception. A call to returns the default value.
								 This property is read-only.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Nullable<T>
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A with the specified value.
						
						
							
								 The conversion implemented by this method corresponds exactly to invoking the
									 constructor.
							
						
					
					 0
				
				
					
					
					 Method
					
						 T
					
					
						
					
					
						
							 Perform an explicit conversion of a value to type .
						
						 The value to convert to type .
						 The value, if any, of the specified nullable value. Otherwise, a is thrown.
						
							 is .
						
							
								 The conversion implemented by this method corresponds exactly to obtaining the value of the property.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Nullable<T>
					
					
						
					
					
						
							 Creates a from a .
						
						 The value to convert to .
						
							 A with the specified value.
						
						
							
								 This method corresponds to the method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 If is true,
								 is returned; otherwise, is returned.
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 T
					
					
					
						
							 Gets the value, if any, of the current instance.
						
						
							 The value of the current instance.
						
						
							 is .
						
							
								 If is , the instance contains a value, and returns that value.
								 If is , the instance contains no value, and an attempt to read results in an exception.
								 This property is read-only.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when there is an attempt
 to dereference a null object reference.
				
				
					
						 Applications throw the
 rather than
 .
						 The following CIL instructions throw
:
						
							
								
 callvirt
							
							
								 cpblk
							
							
								 cpobj
							
							
								 ldelema
							
							
								 ldelem.<type>
							
							
								 ldfld
							
							
								 ldflda
							
							
								 ldind.<type>
							
							
								 ldlen
							
							
								 stelem.<type>
							
							
								 stind.<type>
							
							
								 stfld
							
							
								 throw
							
							
								 unbox
							
							
								 initblk
							
						
					
				
				
					 The following example demonstrates an error that causes
 a exception.
					 using System;
public class Ints {
 public int[] myInts;
}
public class NullRefExample {
 public static void Main() {
 Ints ints = new Ints();
 try {
 int i = ints.myInts[0];
 }
 catch(NullReferenceException e) {
 Console.WriteLine("Caught error: {0}.", e);
 }
 }
}

					 The output is
					
Caught error: System.NullReferenceException: Object reference not set to an instance of an object.
 at NullRefExample.Main().

				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "The value 'null' was found where an
 instance of an object was required." This message takes into account the current
 system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For information on
 inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Supplies culture-specific formatting information for
 string representations of numeric values.
				
				
					
						 supplies symbols such as currency symbols and decimal
 separators.
					
						 A
instance typically contains the set of symbols for a specific language and
culture. Instances of can be created to provide customized formatting
information.
					
				
			
			
				 System.Object
			
			
				
					 System.ICloneable
					 0
				
				
					 System.IFormatProvider
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 The new instance is not read-only, and is otherwise
 identical to the instance returned by the property.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Creates a copy of the current instance.
						
						
							 A that is a copy of the current
 instance.
						
						
							 The method returns a new instance of with property values that are equal to the
 property values of the current instance except for the property, which is always .
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the number of decimal places in currency values.
						
						
							 A
containing the number of decimal places in currency values.
						
						 The value specified for a set operation is less than 0 or greater than 99.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is 2.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol used as the decimal separator in currency values.
						
						
							 A containing the decimal separator used in currency values.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 ".".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol used to separate groups of
 digits to the left of the decimal point in currency values.
						
						
							 A
containing the group separator used in currency values.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is ",".
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32[]
					
					
					
						
							 Gets or sets the number of digits in each group to the
 left of the decimal point in currency values.
						
						
							 A array containing elements that define the number of digits in
 each group in currency values.
						
						
							 The array specified for a set operation is a null reference.
						
						
							 One of the elements in the array specified for a set operation is not between 0 and 9.
							 -or-
							 The array contains an element, other than the last element, that is set to 0.
						
						
							 The current instance is read-only and a set operation was attempted.
						
						
							 All elements of the array except the last are required
 to be between 1 and 9, inclusive. The last element can be 0.
							 The first element of the array defines the number of
 elements in the first group of digits located immediately to the left of the
 . Each subsequent element refers to the next group of
 digits located to the left of the previous group. If the last element of the
 array is not zero, any remaining digits are grouped based on the last element of
 the array. If the last element is zero, the remaining digits are not
 grouped.
							 The culture-invariant value for this property is an
 array with a single element containing the value 3.
						
						
							 The following example demonstrates the effects of
 different
 property values.
							 using System;
using System.Globalization;
class Test {
 public static void Main() {
 NumberFormatInfo nfi = new NumberFormatInfo();

 decimal myMoney = 9999999994444333221.00m;
 nfi.CurrencyGroupSizes = new int[] {1,2,3,4,0};
 Console.WriteLine("{0}",myMoney.ToString("C",nfi));

 myMoney = 123456789123456.78m;
 nfi.CurrencyGroupSizes = new int[] {3};
 Console.WriteLine("{0}",myMoney.ToString("C",nfi));

 nfi.CurrencyGroupSizes = new int[] {3,0};
 Console.WriteLine("{0}",myMoney.ToString("C",nfi));

 }
}

							 The output is
							
								 $999999999,4444,333,22,1.00
								 $123,456,789,123,456.78
								 $123456789123,456.78
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the format of negative currency values.
						
						
							 A
between 0 and 15 inclusive, which specifies the format of negative currency
values.
						
						 The value specified for a set operation is less than 0 or greater than 15.
						 The current instance is read-only and a set operation was attempted.
						
							 The following table describes the valid values for this
 property. "$" is used as the value for , "-" is used as the value for , and 999 represents any numeric value.
							
								
									 Value
									 Pattern
								
								
									 0
									 ($999)
								
								
									 1
									 -$999
								
								
									 2
									 $-999
								
								
									 3
									 $999-
								
								
									 4
									 (999$)
								
								
									 5
									 -999$
								
								
									 6
									 999-$
								
								
									 7
									 999$-
								
								
									 8
									 -999
 $
								
								
									 9
									 -$
 999
								
								
									 10
									 999 $-
								
								
									 11
									 $
 999-
								
								
									 12
									 $
 -999
								
								
									 13
									 999- $
								
								
									 14
									 ($
 999)
								
								
									 15
									 (999
 $)
								
							
							 The culture-invariant value for this property is 0.
						
						
							 The following example demonstrates the effects of
 different
 property values.
							 using System;
using System.Globalization;
class Test {
 public static void Main() {
 NumberFormatInfo nfi = new NumberFormatInfo();
 decimal myMoney = -9999999999999.00m;
 for (int i = 0; i<=15; i++) {
 nfi.CurrencyNegativePattern = i;
 Console.WriteLine("pattern # {0}: {1}",i,myMoney.ToString("C",nfi));
 }
 }
}

							 The output is
							
								 pattern # 0: ($9,999,999,999,999.00)
								 pattern # 1: -$9,999,999,999,999.00
								 pattern # 2: $-9,999,999,999,999.00
								 pattern # 3: $9,999,999,999,999.00-
								 pattern # 4: (9,999,999,999,999.00$)
								 pattern # 5: -9,999,999,999,999.00$
								 pattern # 6: 9,999,999,999,999.00-$
								 pattern # 7: 9,999,999,999,999.00$-
								 pattern # 8: -9,999,999,999,999.00 $
								 pattern # 9: -$ 9,999,999,999,999.00
								 pattern # 10: 9,999,999,999,999.00 $-
								 pattern # 11: $ 9,999,999,999,999.00-
								 pattern # 12: $ -9,999,999,999,999.00
								 pattern # 13: 9,999,999,999,999.00- $
								 pattern # 14: ($ 9,999,999,999,999.00)
								 pattern # 15: (9,999,999,999,999.00 $)
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the format of positive currency values.
						
						
							 A
between 0 and 3 inclusive, containing the format of positive currency
values.
						
						 The value specified for a set operation is less than 0 or greater than 3.
						 The current instance is read-only and a set operation was attempted.
						
							 The following table describes the valid values for this
 property. "$" is used as the value for , and 999 represents any numeric value.
							
								
									 Value
									 Pattern
								
								
									 0
									 $999
								
								
									 1
									 999$
								
								
									 2
									 $
 999
								
								
									 3
									 999 $
								
							
							 The culture-invariant value for this property is 0.
						
						
							 The following example demonstrates the effects of
 different property values.
							 using System;
using System.Globalization;
class Test {
 public static void Main() {
 NumberFormatInfo nfi = new NumberFormatInfo();
 decimal myMoney = 9999999999999.00m;
 for (int i = 0; i<=3; i++) {
 nfi.CurrencyPositivePattern = i;
 Console.WriteLine("pattern # {0}: {1}",i,myMoney.ToString("C",nfi));
 }
 }
}

							 The output is
							
								 pattern # 0: $9,999,999,999,999.00
								 pattern # 1: 9,999,999,999,999.00$
								 pattern # 2: $ 9,999,999,999,999.00
								 pattern # 3: 9,999,999,999,999.00 $
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the currency symbol.
						
						
							 A
containing the currency symbol.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is the Unicode currency symbol
 0x00a4.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Globalization.NumberFormatInfo
					
					
					
						
							 Gets a instance containing formatting
 information for the current system culture.
						
						
							 A read-only containing the settings for the current
 system culture.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Returns an object of the specified type that provides formatting services.
						
						 The of the formatting object to be returned.
						
							 The current instance, if is of type ; otherwise, a null reference.
						
						
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Globalization.NumberFormatInfo
					
					
					
						
							 Gets a instance containing formatting
 information that is culture-independent and does not change.
						
						
							 A read-only with property values which are
 universally supported. The property values of the returned are not
 impacted by changes to the current culture.
						
						
							 This property is read-only.
							 The following table lists the property values of the

 returned by this property.
							
								
									 Property
									 Default
									 Description
								
								
									
										
									
									 2
									 The number of decimal places in currency
 values.
								
								
									
										
									
									 "."
									 The string used as the decimal separator in currency values.
								
								
									
										
									
									 ","
									 The string used to separate groups of digits to the left of the
 decimal point in currency values.
								
								
									
										
									
									 3
									 The number of digits in each group to the left of the decimal point in
 currency values.
								
								
									
										
									
									 0
									 The format of negative currency values.
								
								
									
										
									
									 0
									 The format of positive currency values.
								
								
									
										
									
									 0x00a4
									 The Unicode currency symbol.
								
								
									
										
									
									 "NaN"
									 The string used to represent undefined floating-point values.
								
								
									
										
									
									 "-Infinity"
									 The string used to represent negative infinities.
								
								
									
										
									
									 "-"
									 The string used to indicate negative values.
								
								
									
										
									
									 2
									 The default number of decimal places.
								
								
									
										
									
									 "."
									 The string used as the decimal separator.
								
								
									
										
									
									 ","
									 The string used to separate groups of digits to the left of the
 decimal point.
								
								
									
										
									
									 3
									 The number of digits in each group to the left of the decimal
 point.
								
								
									
										
									
									 1
									 The format of negative values.
								
								
									
										
									
									 2
									 The default number of decimal places in percent values.
								
								
									
										
									
									 "."
									 The string used as the decimal separator in percent values.
								
								
									
										
									
									 ","
									 The string used to separate groups of digits to the left of the
 decimal point in percent values.
								
								
									
										
									
									 3
									 The number of digits in each group to the left of the decimal in
 percent values.
								
								
									
										
									
									 0
									 The format of negative percent values.
								
								
									
										
									
									 0
									 The format of positive percent values.
								
								
									
										
									
									 "%"
									 The percent symbol.
								
								
									
										
									
									 " "
									 The per mille symbol.
								
								
									
										
									
									 "Infinity"
									 The string used to represent positive infinities.
								
								
									
										
									
									 "+"
									 The string used to indicate positive values.
								
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance is read-only.
						
						
							
								 if the current instance is read-only; otherwise
 .
						
						
							 This property is read-only.
							
								 Attempting to perform an assignment to a
 property of a read-only causes a .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol that represents NaN
 (Not-a-Number) floating-point values.
						
						
							 A
containing the symbol for NaN values.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 "NaN".
							
								 For more
 information on NaN
 values, see or .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol that represents negative infinity.
						
						
							 A
containing the symbol for negative infinity.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 "-Infinity".
							
								 For more
 information on negative infinity, see or .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol used to represent negative values.
						
						
							 A
containing the symbol that indicates a value is negative.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 "-".
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the number of decimal places for numeric values.
						
						
							 A
containing the number of decimal places for numeric values.
						
						 The value specified for a set operation is less than 0 or greater than 99.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is 2.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol used as the decimal separator
 for numeric values.
						
						
							 A
containing the decimal separator.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 ".".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol used to separate groups of
 digits to the left of the decimal point for numeric values.
						
						
							 A
containing the group separator.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 ",".
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32[]
					
					
					
						
							 Gets or sets the number of digits in each group to the
 left of the decimal point for numeric values.
						
						
							 A array containing elements that define the number of digits in
 each group in numeric values.
						
						 The array specified for a set operation is a null reference.
						 One of the elements in the array specified for a set operation is not between 0 and 9.
						 The current instance is read-only and a set operation was attempted.
						
							 All elements of the array except the last are required
 to be between 1 and 9, inclusive. The last element can be 0.
							 The first element of the array defines the number of
 elements in the first group of digits located immediately to the left of the
 . Each subsequent element refers to the next group of
 digits located to the left of the previous group. If the last element of the
 array is not zero, any remaining digits are grouped based on the last element of
 the array. If the last element is zero, the remaining digits are not
 grouped.
							 The culture-invariant value for this property is an
 array with a single element containing the value 3.
						
						
							 The following example demonstrates the effects of
 different
 property values.
							 using System;
using System.Globalization;
class Test {
 public static void Main() {
 NumberFormatInfo nfi = new NumberFormatInfo();

 decimal data = 9999999994444333221.00m;
 nfi.NumberGroupSizes = new int[] {1,2,3,4,0};
 Console.WriteLine("{0}",data.ToString("N",nfi));

 data = 123456789123456.78m;
 nfi.NumberGroupSizes = new int[] {3};
 Console.WriteLine("{0}",data.ToString("N",nfi));

 nfi.NumberGroupSizes = new int[] {3,0};
 Console.WriteLine("{0}",data.ToString("N",nfi));
 }
}

							 The output is
							
								 999999999,4444,333,22,1.00
								 123,456,789,123,456.78
								 123456789123,456.78
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the format of negative values.
						
						
							 A
between 0 and 4 inclusive that specifies the format of negative values.
						
						 The value specified for a set operation is less than 0 or greater than 4.
						 The current instance is read-only and a set operation was attempted.
						
							 The following table describes the valid values for this property. "-" is used
 as the value for , and 999
 represents any numeric value.
							
								
									 Value
									 Pattern
								
								
									 0
									 (999)
								
								
									 1
									 -999
								
								
									 2
									 -
 999
								
								
									 3
									 999-
								
								
									 4
									 999 -
								
							
							 The culture-invariant value for this property is 1.
						
						
							 The following example demonstrates the effects of
 different
 property values.
							 using System;
using System.Globalization;
class Test {
 public static void Main() {
 NumberFormatInfo nfi = new NumberFormatInfo();
 Double data = -9999999999999.00;
 for (int i = 0; i<=4; i++) {
 nfi.NumberNegativePattern = i;
 Console.WriteLine("pattern # {0}: {1}",i,data.ToString("N",nfi));
 }
 }
}

							 The output is
							
								 pattern # 0: (9,999,999,999,999.00)
								 pattern # 1: -9,999,999,999,999.00
								 pattern # 2: - 9,999,999,999,999.00
								 pattern # 3: 9,999,999,999,999.00-
								 pattern # 4: 9,999,999,999,999.00 -
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the number of decimal places in percent values.
						
						
							 A
containing the number of decimal places in percent values.
						
						 The value specified for a set operation is less than 0 or greater than 99.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is 2.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol used as the decimal separator in percent values.
						
						
							 A containing the decimal separator used in percent values.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is ".".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol used to separate groups of
 digits to the left of the decimal point in percent values.
						
						
							 A
containing the group separator symbol used in percent values.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 ",".
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32[]
					
					
					
						
							 Gets or sets the number of digits in each group to the
 left of the decimal point in percent values.
						
						
							 A array containing elements that define the number of digits in
 each group in percent values.
						
						
							 The array specified for a set operation is a null reference.
						
						
							 One of the elements in the array specified for a set operation is not between 0 and 9.
							 -or-
							 The array contains an element, other than the last element, that is set to 0.
						
						
							 The current instance is read-only and a set operation was attempted.
						
						
							 All elements of the array except the last are required
 to be between 1 and 9, inclusive. The last element can be 0.
							 The first element of the array defines the number of
 elements in the first group of digits located immediately to the left of the
 . Each subsequent element refers to the next group of
 digits located to the left of the previous group. If the last element of the
 array is not zero, any remaining digits are grouped based on the last element of
 the array. If the last element is zero, the remaining digits are not
 grouped.
							 The culture-invariant value for this property is an
 array with a single element containing the value 3.
						
						
							 The following example demonstrates the effects of
 different
 property values.
							 using System;
using System.Globalization;
class Test {
 public static void Main() {
 NumberFormatInfo nfi = new NumberFormatInfo();

 decimal data = 9999999994444333221.00m;
 nfi.PercentGroupSizes = new int[] {1,2,3,4,0};
 Console.WriteLine("{0}",data.ToString("P",nfi));

 data = 123456789123456.78m;
 nfi.PercentGroupSizes = new int[] {3};
 Console.WriteLine("{0}",data.ToString("P",nfi));

 nfi.PercentGroupSizes = new int[] {3,0};
 Console.WriteLine("{0}",data.ToString("P",nfi));
 }
}

							 The output is
							
								 99999999944,4433,322,10,0.00 %
								 12,345,678,912,345,678.00 %
								 12345678912345,678.00 %
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the format of negative percent values.
						
						
							 A
between 0 and 2 inclusive that specifies the format of negative percent
values.
						
						 The value specified for a set operation is less than 0 or greater than 2.
						 The current instance is read-only and a set operation was attempted.
						
							 The following table describes the valid values for this
 property. "%" is used as the value for , "-" is used as the value for , and 999 represents any numeric
 value.
							
								
									 Value
									 Pattern
								
								
									 0
									 -999 %
								
								
									 1
									 -999%
								
								
									 2
									 -%999
								
							
							 The culture-invariant value for this property is 0.
						
						
							 The following example demonstrates the effects of
 different property values.
							 using System;
using System.Globalization;
class Test {
 public static void Main() {
 NumberFormatInfo nfi = new NumberFormatInfo();
 decimal data = -.9900m;
 for (int i = 0; i<=2 ; i++) {
 nfi.PercentNegativePattern = i;
 Console.WriteLine("pattern # {0}: {1}",i,data.ToString("P",nfi));
 }
 }
}

							 The output is
							
								 pattern # 0: -99.00 %
								 pattern # 1: -99.00%
								 pattern # 2: -%99.00
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the format of positive percent values.
						
						
							 A between 0 and 2 inclusive that specifies
 the format of positive percent values.
						
						 The value specified for a set operation is less than 0 or greater than 2.
						 The current instance is read-only and a set operation was attempted.
						
							 The following table describes the valid values for this
 property. "%" is used as the value for , and 999 represents a numeric
 value.
							
								
									 Value
									 Pattern
								
								
									 0
									 999 %
								
								
									 1
									 999%
								
								
									 2
									 %999
								
							
							 The culture-invariant value for this property is 0.
						
						
							 The following example demonstrates the effects of
 different
 property values.
							 using System;
using System.Globalization;
class Test {
 public static void Main() {
 NumberFormatInfo nfi = new NumberFormatInfo();
 decimal data = .9900m;
 for (int i = 0; i<=2 ; i++) {
 nfi.PercentPositivePattern = i;
 Console.WriteLine("pattern # {0}: {1}",i,data.ToString("P",nfi));
 }
 }
}

							 The output is
							
								 pattern # 0: 99.00 %
								 pattern # 1: 99.00%
								 pattern # 2: %99.00
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol that represents percentage values.
						
						
							 A containing the percent symbol.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 "%".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the per mille symbol.
						
						
							 A containing the per mille symbol.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 " ".
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol that represents positive infinity.
						
						
							 A containing the symbol for positive
 infinity.
						
						 The value specified for a set operation is a null reference.
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 "Infinity".
							
								 For more
 information on positive infinity, see or
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the symbol used to represent positive values.
						
						
							 A containing the symbol that indicates the
 value is positive.
						
						 The value specified for a set operation is a null reference
						 The current instance is read-only and a set operation was attempted.
						
							 The culture-invariant value for this property is
 "+".
						
					
					 0
				
				
					
					
					 Method
					
						 System.Globalization.NumberFormatInfo
					
					
						
					
					
						
							 Creates a read-only copy of the specified
instance.
						
						 A object to copy.
						
							 A that is a copy of the current instance,
 and cannot be altered.
						
						
							 is a null reference.
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies styles for representations of numeric values.
				
				
					
						 define the presence and/or location of various elements
 in a representation of a numeric value. For example, the style describes strings where the
 numeric value is enclosed in parenthesis, such as "(432.00)".
					
					
						 Where symbols such as a currency symbol are allowed in a

 pattern, a instance defines the representations of the symbols.
						
							 values are passed to methods that convert between
 and
numeric data types, such as the methods implemented by
numeric base types. To specify multiple values, use the bitwise OR
operator.
						 For a list of the valid white space characters, see
 the
 class.
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowCurrencySymbol
					
						
							 Specifies that a currency symbol is allowed. See .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowDecimalPoint
					
						
							 Specifies that a decimal point is allowed. See , , and .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowExponent
					
						
							 Specifies that exponential notation is allowed.
							 This style is used for values in one of the following forms:
							 [-]m.ddddddE+xx

							 [-]m.ddddddE-xx
							 [-]m.dddddde+xx

							 [-]m.dddddde-xx

							 One or more non-zero digits (m) precede the decimal
 separator ("."). A minus sign ("-") can precede m. The type performing the
 conversion determines the number of decimal places (dddddd) in the string, and
 maximum and minimum values for xx and m. The exponent (+/-xx)
 consists of either a plus or minus sign followed by at least one digit.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowHexSpecifier
					
						
							 Specifies that hexadecimal representation (Base 16) is allowed.
							 Valid hexadecimal values include the numeric digits 0-9 and the hexadecimal
 digits A-F, and a-f. The hexadecimal digits can be in upper or lower case.
 Hexadecimal values can be left-padded with zeros. Strings parsed using this
 style are not permitted to be prefixed with "0x".
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowLeadingSign
					
						
							 Specifies that a leading sign symbol is allowed. See and .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowLeadingWhite
					
						
							 Specifies that the string can be prefixed with white space characters.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowParentheses
					
						
							 Specifies that one pair of balanced parentheses is allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowThousands
					
						
							 Specifies that group separators are allowed; for
 instance, separating the hundreds from the thousands. See , , and .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowTrailingSign
					
						
							 Specifies that a trailing sign symbol is allowed. See and .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 AllowTrailingWhite
					
						
							 Specifies that the string can be suffixed with white space characters.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 Any
					
						
							 Specifies that , , , , , , , and styles are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 Currency
					
						
							 Specifies that , , , , , , , and styles are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 Float
					
						
							 Specifies that , , , and styles are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 HexNumber
					
						
							 Specifies that , , styles are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 Integer
					
						
							 Specifies that , , and styles are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 None
					
						
							 Specifies that no styles are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.NumberStyles
					
					
					 Number
					
						
							 Specifies that , , , , and styles are allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides support for classes. This class is the root of the object hierarchy.
				
				
					
						 Classes derived from can override the following methods of
 the class:
						
							
								
									 - Enables
 comparisons between objects.
							
							
								
									 -
 Performs clean up operations before an object is automatically reclaimed.
							
							
								
									 - Generates a number corresponding to the value
 of the object (to support the use of a hashtable).
							
							
								
									 - Manufactures a human-readable text string that
 describes an instance of the class.
							
						
					
				
			
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.
						
						
							
								 This constructor is
 called by constructors in derived classes, but it can also be used to directly
 create an instance of the
 class. This might be useful, for example, if you need to obtain a reference to
 an object so that you can synchronize on it, as might be the case when using the
 C# statement.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified is equal to the
 current instance.
						
						 The to compare with the current instance.
						
							
								 if is equal to the
 current instance; otherwise, .
						
						
							
								 The statements listed below are required to be true for all
 implementations of the
 method. In the list, x, y, and z represent non-null object references.
								
									
										 x.Equals(x) returns .
									
									
										 x.Equals(y) returns the same value as y.Equals(x).
									
									
										 If (x.Equals(y) && y.Equals(z)) returns , then x.Equals(z) returns .
									
									
										 Successive invocations of x.Equals(y) return the same
value as long as the objects referenced by x and y are not modified.
									
									
										 x.Equals() returns for non-null x.
									
								
								 See for additional required behaviors pertaining to the

method.
								
									 Implementations of should
not
throw exceptions.
								
							
							
								 The method
 tests for , which means that
 returns
 if the specified instance of and
 the current instance are the same instance; otherwise, it returns

.
								
									 An implementation of the method is shown in the following C#
 code:
									
										 public virtual bool Equals(Object obj) {
									
									
										 return this == obj;
									
									
										 }
									
								
							
							
								 For some kinds of objects, it is desirable to have test for instead of
 referential equality. Such implementations of return true if the two objects have the
 same "value", even if they are not the same instance. The definition of what
 constitutes an object's "value" is up to the implementer of the type, but it is
 typically some or all of the data stored in the instance variables of the
 object. For example, the value of a is based on the characters of the
 string; the
 method of the class returns
 for any two string instances that
 contain exactly the same characters in the same order.
								 When the
method of a base class provides value equality, an override of
 in a class
derived from that base class should invoke the inherited implementation of
 .
								 All implementations of are required to ensure that for any two object references and , if
									
									
									 , then
									
									
									 .
								 If your programming language supports operator
 overloading, and if you choose to overload the equality operator for a given
 type, that type should override the method. Such
 implementations of the method should return the same
 results as the equality operator. Following this guideline will help ensure that
 class library code using (such as and

) behaves
 in a manner that is consistent with the way the equality operator is used by
 application code.
								 If you are implementing a value type, you should follow these guidelines:
								
									
										
 Consider overriding to gain
 increased performance over that provided by the default implementation of
 on .
									
									
										
 If you override

 and the language supports operator overloading, you
 should overload the equality operator for your value type.
									
								
								 For reference types, the guidelines are as follows:
								
									
										
 Consider overriding on a
 reference type if the semantics of the type are based on the fact that the
 type represents some value(s). For example, reference types such as Point and
 BigNumber should override .
									
									
										
 Most reference types should not overload the equality
 operator, even if they override

 . However, if you are implementing a reference type that
 is intended to have value semantics, such as a complex number type, you should
 override the equality operator.
									
								
								 If you implement on a given type, you should override
 on that
type.
							
							
								 The method is called by methods in collections
classes that perform search operations, including the method and
the
method.
							
						
						
							
								
							
							 The following example contains two calls to the default
 implementation of .
							 using System;
class MyClass {
 static void Main() {
 Object obj1 = new Object();
 Object obj2 = new Object();
 Console.WriteLine(obj1.Equals(obj2));
 obj1 = obj2;
 Console.WriteLine(obj1.Equals(obj2));
 }
}

							 The output is
							
								 False
								 True
							
							
								
							
							 The following example shows a class that overrides
the method to
provide value equality and a class , which is derived
from
. Because Point's override of
 is the first
in the inheritance chain to introduce value equality, the
 method of
the base class (which is inherited from and checks for referential
equality) is not invoked. However, invokes
 because implements

in a manner that provides value equality.
							 using System;
public class Point: object {
 int x, y;
 public override bool Equals(Object obj) {
 //Check for null and compare run-time types.
 if (obj == null || GetType() != obj.GetType()) return false;
 Point p = (Point)obj;
 return (x == p.x) && (y == p.y);
 }
 public override int GetHashCode() {
 return x ^ y;
 }
}

class Point3D: Point {
 int z;
 public override bool Equals(Object obj) {
 return base.Equals(obj) && z == ((Point3D)obj).z;
 }
 public override int GetHashCode() {
 return base.GetHashCode() ^ z;
 }
}

							 The method checks that the
argument is non-null and that it references an instance of the same type as this
object. If either of those checks fail, the method returns false. The
 method uses
 to determine whether
the run-time types of the two objects are identical. (Note that
 is not used here because it returns the static type.) If
instead the method had used a check of the form
									 is Point , the check would
return true in cases where is an instance of a subclass of
 ,
even though and the current instance are not of the same runtime
type. Having verified that both objects are of the same type, the method casts

to type
and returns the result of comparing the instance variables of the two objects.
							 In , the inherited
 method is
invoked before anything else is done; the inherited method checks to see that is non-null, that is an instance of the same class as this
object, and that the inherited instance variables match. Only when the inherited
 returns true does the method compare the
instance variables introduced in the subclass. Specifically, the cast to

is not executed unless
has been determined to be of type or a subclass of

.
							
								
							
							 In the previous example, operator == (the equality
 operator) is used to compare the individual instance variables. In some cases,
 it is appropriate to use the method to
 compare instance variables in an
 implementation, as shown in the following example:
							 using System;
class Rectangle {
 Point a, b;
 public override bool Equals(Object obj) {
 if (obj == null || GetType() != obj.GetType()) return false;
 Rectangle r = (Rectangle)obj;
 //Use Equals to compare instance variables
 return a.Equals(r.a) && b.Equals(r.b);
 }
 public override int GetHashCode() {
 return a.GetHashCode() ^ b.GetHashCode();
 }
}

							
								
							
							 In some languages, such as C#, operator overloading is
 supported. When a type overloads operator ==, it should also override the
 method to
 provide the same functionality. This is typically accomplished by writing the

method
in terms of the overloaded operator ==. For example:
							 using System;
public struct Complex {
 double re, im;
 public override bool Equals(Object obj) {
 return obj is Complex && this == (Complex)obj;
 }
 public override int GetHashCode() {
 return re.GetHashCode() ^ im.GetHashCode();
 }
 public static bool operator ==(Complex x, Complex y) {
 return x.re == y.re && x.im == y.im;
 }
 public static bool operator !=(Complex x, Complex y) {
 return !(x == y);
 }
}

							 Because Complex is a C# struct (a value type), it is
 known that there will be no subclasses of
 . Therefore, the
 method need
 not compare the GetType() results for each object, but can instead use the
 operator to check the type of the
parameter.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two object references are equal.
						
						 First object to compare.
						 Second object to compare.
						
							
								 if one or more of the following statements is
 true:
							
								
									
										 and refer to the same object,
								
								
									
										 and are both null references,
								
								
									
										 is not
 and
 .Equals() returns true;
								
							
							 otherwise returns .
						
						
							 This static method checks for null references before it
 calls .Equals() and
 returns false if either or is null. If the Equals(object
) implementation throws an exception, this method throws an
 exception.
						
						
							 The following example demonstrates the method.
							 using System;

public class MyClass {
 public static void Main() {
 string s1 = "Tom";
 string s2 = "Carol";
 Console.WriteLine("Object.Equals(\"{0}\", \"{1}\") => {2}",
 s1, s2, Object.Equals(s1, s2));

 s1 = "Tom";
 s2 = "Tom";
 Console.WriteLine("Object.Equals(\"{0}\", \"{1}\") => {2}",
 s1, s2, Object.Equals(s1, s2));

 s1 = null;
 s2 = "Tom";
 Console.WriteLine("Object.Equals(null, \"{1}\") => {2}",
 s1, s2, Object.Equals(s1, s2));

 s1 = "Carol";
 s2 = null;
 Console.WriteLine("Object.Equals(\"{0}\", null) => {2}",
 s1, s2, Object.Equals(s1, s2));

 s1 = null;
 s2 = null;
 Console.WriteLine("Object.Equals(null, null) => {2}",
 s1, s2, Object.Equals(s1, s2));
 }
}

							 The output is
							
								 Object.Equals("Tom", "Carol") => False
								 Object.Equals("Tom", "Tom") => True
								 Object.Equals(null, "Tom") => False
								 Object.Equals("Carol", null) => False
								 Object.Equals(null, null) => True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Allows a to perform cleanup operations before the memory
 allocated for the is automatically reclaimed.
						
						
							
								 During execution, is automatically called after an object
 becomes inaccessible, unless the object has been exempted from finalization by a
 call to . During shutdown of an application domain, is
 automatically called on objects that are not exempt from finalization, even
 those that are still accessible. is automatically called only once on a
 given instance, unless the object is re-registered using a mechanism such as
 and has not been subsequently called.
								 Conforming implementations of the CLI are required to make every
 effort to ensure that for every object that has not been exempted from
 finalization, the method is called after the object becomes inaccessible.
 However, there might be some circumstances under which is not
 called. Conforming CLI implementations are required to explicitly specify the conditions
 under which is not guaranteed to be called. For example, might not be guaranteed to be called in
 the event of equipment failure, power failure, or other catastrophic system failures.
								
								 In addition to
 and , conforming implementations of the CLI are allowed to
 provide other mechanisms that affect the behavior of . Any mechanisms provided are required to be specified by the CLI implementation.
								 The order in which the methods
of two objects are run is unspecified, even if one object refers to the other.
								 The thread on which is run is unspecified.
								 Every implementation of in a
derived type is required to call its base type's implementation of
. This is the only case in which application code calls .
							
							
								 The
implementation does nothing.
							
							
								 A type should implement when it uses unmanaged resources such as
 file handles or database connections that must be released when the managed
 object that uses them is reclaimed. Because methods
 can be invoked in any order (including from multiple threads), synchronization
 can be necessary if the method can interact with other
 objects, whether accessible or not. Furthermore, since the order in which
 is called is unspecified, implementers of
 (or of destructors implemented through
 overriding Finalize) must take care to correctly handle references to
 other objects, as their

 method might already have been invoked. In
 general, referenced objects should not be considered valid during
 finalization.
								 See the interface for an alternate means of disposing of
resources.
							
							
								 For C# developers: Destructors are the C# mechanism for
 performing cleanup operations. Destructors provide appropriate safeguards, such
 as automatically calling the base type's destructor. In C# code, cannot be
 called or overridden.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							
								 serves as a hash function for a specific
 type. A hash function is used to
 quickly generate a number (a hash code) corresponding to the value of an object.
 Hash functions are used with . A good hash function
 algorithm rarely generates hash codes that collide. For more information about
 hash functions, see

 , Vol. 3, by Donald E. Knuth.
							
							
								 All implementations of are required to ensure that for any two object references x
 and y, if x.Equals(y) ==
 true, then x.GetHashCode() ==
 y.GetHashCode().
								 Hash codes generated by
need not be unique.
								 Implementations of
are not permitted to throw exceptions.
							
							
								 The implementation attempts to produce a
unique hash code for every object, but the hash codes generated by this method
are not guaranteed to be unique. Therefore, can generate the same hash code for two different instances.
							
							
								 It is recommended (but not required) that types
 overriding also override . Hashtables cannot be relied on to work correctly if this recommendation is not followed.
							
							
								 Use this method to obtain
 the hash code of an object. Hash codes should not be persisted (i.e. in a database or file) as they are allowed to change from run to run.
							
						
						
							
								
							
							 In some cases, is implemented to simply return an integer value.
The following example illustrates an implementation of
, which
returns an integer value:
							 using System;
public struct Int32 {
 int value;
 //other methods...

 public override int GetHashCode() {
 return value;
 }
}

							
								
							
							 Frequently, a type has multiple data members that can participate in
 generating the hash code. One way to generate a hash code is to combine these
 fields using an xor (exclusive or) operation, as shown in the following
 example:
							 using System;
public struct Point {
 int x;
 int y;
 //other methods

 public override int GetHashCode() {
 return x ^ y;
 }
}

							
								
							
							 The following example illustrates another case where the type's fields are
 combined using xor (exclusive or) to generate the hash code. Notice that in this
 example, the fields represent user-defined types, each of which implements
 (and should implement as well):
							 using System;
public class SomeType {
 public override int GetHashCode() {
 return 0;
 }
}

public class AnotherType {
 public override int GetHashCode() {
 return 1;
 }
}

public class LastType {
 public override int GetHashCode() {
 return 2;
 }
}
public class MyClass {
 SomeType a = new SomeType();
 AnotherType b = new AnotherType();
 LastType c = new LastType();

 public override int GetHashCode () {
 return a.GetHashCode() ^ b.GetHashCode() ^ c.GetHashCode();
 }
}

							 Avoid implementing in a manner that results in circular references. In
other words, if AClass.GetHashCode calls BClass.GetHashCode, it should not be
the case that BClass.GetHashCode calls AClass.GetHashCode.
							
								
							
							 In some cases, the data member of the class in which you are implementing
 is bigger than a . In such cases, you could combine the
 high order bits of the value with the low order bits using an XOR operation, as
 shown in the following example:
							 using System;
public struct Int64 {
 long value;
 //other methods...

 public override int GetHashCode() {
 return ((int)value ^ (int)(value >> 32));
 }
}

						
					
					 0
				
				
					
					
					 Method
					
						 System.Type
					
					
					
						
							 Gets the type of the current instance.
						
						
							 The instance of that represents the run-time type (the exact type) of the current instance.
						
						
							 For two objects x and y that have identical run-time
 types, (x.GetType(),y.GetType()) returns

 .
						
						
							 The following example demonstrates the fact that
returns the run-time type of the current instance:
							 using System;
public class MyBaseClass: Object {
}
public class MyDerivedClass: MyBaseClass {
}
public class Test {
 public static void Main() {
 MyBaseClass myBase = new MyBaseClass();
 MyDerivedClass myDerived = new MyDerivedClass();

 object o = myDerived;
 MyBaseClass b = myDerived;

 Console.WriteLine("mybase: Type is {0}", myBase.GetType());
 Console.WriteLine("myDerived: Type is {0}", myDerived.GetType());
 Console.WriteLine("object o = myDerived: Type is {0}", o.GetType());
 Console.WriteLine("MyBaseClass b = myDerived: Type is {0}", b.GetType());
 }
}

							 The output is
							
								 mybase: Type is MyBaseClass
								 myDerived: Type is MyDerivedClass
								 object o = myDerived: Type is MyDerivedClass
								 MyBaseClass b = myDerived: Type is MyDerivedClass
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Creates a shallow copy of the current instance.
						
						
							 A shallow copy of the current instance. The run-time
 type (the exact type) of the returned object is the same as the run-time type of
 the object that was copied.
						
						
							
								 creates a new instance of the same type
 as the current instance and then copies each of the object's non-static fields
 in a manner that depends on whether the field is a value type or a reference
 type. If the field is a value type, a bit-by-bit copy of all the field's bits is
 performed. If the field is a reference type, only the reference is copied. The algorithm for performing a shallow copy is as follows (in pseudo-code):
							
								 for each instance field f in this instance
								 if (f is a value type)
								 bitwise copy the field
								 if (f is a reference type)
								 copy the reference
								 end for loop
							
							
								 This mechanism is
 referred to as a shallow copy because it copies rather than clones the non-static fields.
							
							 Because implements the above algorithm, for any object, a, the following statements are required to be true:
							
								
									

 a.MemberwiseClone() is not identical to a.
								
								
									

 a.MemberwiseClone().GetType() is identical to a.GetType().
								
							
							
								 does not call any of the type's constructors.
							
								 If has been
overridden, a.MemberwiseClone().Equals(a) might return
 .
							
							
								 For an alternate copying mechanism, see .
								
									 is protected (rather than public) to
 ensure that from verifiable code it is only possible to clone objects of the
 same class as the one performing the operation (or one of its subclasses).
 Although cloning an object does not directly open security holes, it does allow
 an object to be created without running any of its constructors. Since these
 constructors might establish important invariants, objects created by cloning might
 not have these invariants established, and this can lead to incorrect program
 behavior. For example, a constructor might add the new object to a linked list
 of all objects of this class, and cloning the object would not add the new
 object to that list -- thus operations that relied on the list to locate all
 instances would fail to notice the cloned object. By making the method
 protected, only objects of the same class (or a subclass) can produce a clone
 and implementers of those classes are (presumably) aware of the appropriate
 invariants and can arrange for them to be true without necessarily calling a constructor.
							
						
						
							 The following example shows a class called
 as well as a representation of the instance of

 returned by
 .
							 using System;
class MyBaseClass {
 public static string CompanyName = "My Company";
 public int age;
 public string name;
}

class MyDerivedClass: MyBaseClass {

 static void Main() {

 //Create an instance of MyDerivedClass
 //and assign values to its fields.
 MyDerivedClass m1 = new MyDerivedClass();
 m1.age = 42;
 m1.name = "Sam";

 //Do a shallow copy of m1
 //and assign it to m2.
 MyDerivedClass m2 = (MyDerivedClass) m1.MemberwiseClone();
 }
}

							 A graphical representation of m1 and m2 might look like this
							
+---------------+

| 42 | m1

+---------------+

| +---------|-----------------> "Sam"

+---------------+ /|\

 |

+---------------+ |

| 42 | | m2

+---------------+ |

| +--------|---------------------|

+---------------+

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two object references are identical.
						
						 First object to compare.
						 Second object to compare.
						
							
								 if and refer
 to the same object or are both null references; otherwise,
 .
						
						
							 This static method provides a way to compare two objects
 for reference equality. It does not call any user-defined code, including
 overrides of
 .
						
						
							 using System;
class MyClass {
 static void Main() {
 object o = null;
 object p = null;
 object q = new Object();
 Console.WriteLine(Object.ReferenceEquals(o, p));
 p = q;
 Console.WriteLine(Object.ReferenceEquals(p, q));
 Console.WriteLine(Object.ReferenceEquals(o, p));
 }
}

							 The output is
							
								 True
								 True
								 False
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Creates and returns a representation of the current
 instance.
						
						
							 A representation of the current instance.
						
						
							
								
									 returns a string whose content is intended to be
 understood by humans. Where the object contains culture-sensitive data, the
 string representation returned by takes into account the current
 system culture. For example, for an instance of the class whose value
 is zero, the implementation of might return "0.00" or "0,00" depending on the
 current UI culture. Although there are no exact requirements
 for the format of the returned string, it should as much as possible
 reflect the value of the object as perceived by the user.
								
							
							
								
									 is equivalent to calling to obtain
 the object
 for the current instance and then returning the result of calling the
 implementation
 for that type. The value returned includes the full name of the type.
								
							
							
								 It is recommended, but not required, that be
 overridden in a derived class to return values that are meaningful for that
 type. For example, the base data types, such as , implement so that
 it returns the string form of the value the object represents.
								 Subclasses that require more control over the formatting
 of strings than provides should implement , whose
 method
 uses the culture of the current thread.
							
						
						
							 The following example outputs the textual description of
 the value of an object of type to the console.
							 using System;

class MyClass {
 static void Main() {
 object o = new object();
 Console.WriteLine (o.ToString());
 }
}

							 The output is
							
								 System.Object
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an operation is
 performed on a disposed object.
				
				
					
						 For additional information about
 disposing objects, see the interface.
					
				
				
					 The following example demonstrates an error that causes the
exception to be thrown.
					 using System;
using System.IO;

public class ObjectDisposedExceptionTest {
 public static void Main() {
 MemoryStream ms = new MemoryStream(16);
 ms.Close();
 try {
 ms.ReadByte();
 }
 catch (ObjectDisposedException e) {
 Console.WriteLine("Caught: {0}", e.Message);
 }
 }
}

					 The output is
					
						 Caught: Cannot access a closed Stream.
					
				
			
			
				 System.InvalidOperationException
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A containing the name of the disposed object.
						
							 This constructor initializes the property of the new instance
 using The property is initialized to a system-supplied message that describes the
 error and
 includes . This message takes into account the
 current system culture.
							 The property of the new instance is
initialized to .
							
								 If is
 , the property
contains only an error message.
							
						
						
							 The following example displays the error message of a
 instance created
 using this constructor.
							 using System;

public class ExampleDisposableObject : IDisposable {
 public static void Main() {

 ExampleDisposableObject obj = new ExampleDisposableObject();

 obj.Close();

 try {
 Console.WriteLine(obj);
 } catch (ObjectDisposedException e) {
 Console.WriteLine("Caught: {0}", e.Message);
 }
 }

 public ExampleDisposableObject() {
 isDisposed = false;
 }

 ~ExampleDisposableObject() {
 Dispose(true);
 }

 public void Close() {
 Dispose(true);
 }

 public void Dispose() {
 Dispose(true);
 }

 public void Dispose(bool disposing) {
 isDisposed = true;
 }

 public override String ToString() {
 if(isDisposed)
 throw new ObjectDisposedException("ExampleDisposableObject");
 else
 return "This is an instance of ExampleDisposableObject.";
 }

 private bool isDisposed;
}

							 The output is
							
								 Caught: Cannot access a disposed object named "ExampleDisposableObject".
								 Object name: "ExampleDisposableObject".
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A containing the name of the disposed object.
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance
 using , and the property using
 . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property of the new instance is
initialized to .
						
						
							 The following example throws a instance created using this
 constructor.
							 using System;

public class ExampleDisposableObject : IDisposable {
 public static void Main() {

 ExampleDisposableObject obj = new ExampleDisposableObject();

 obj.Close();

 try {
 Console.WriteLine(obj);
 } catch (ObjectDisposedException e) {
 Console.WriteLine("Caught: {0}", e.Message);
 }
 }

 public ExampleDisposableObject() {
 isDisposed = false;
 }

 ~ExampleDisposableObject() {
 Dispose(true);
 }

 public void Close() {
 Dispose(true);
 }

 public void Dispose() {
 Dispose(true);
 }

 public void Dispose(bool disposing) {
 isDisposed = true;
 }

 public override String ToString() {
 if(isDisposed) {
 string message = "Oh-oh! This object has been disposed!";
 string objectName = "ExampleDisposableObject";
 throw new ObjectDisposedException(objectName, message);
 }
 else
 return "Hello, World!";
 }

 private bool isDisposed;
}

							 The output is
							
								 Caught: Oh-oh! This object has been disposed!
								 Object name: "ExampleDisposableObject".
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the message that describes the error.
						
						
							 A that describes
 the error.
						
						
							 If the property is not

, the message includes the name of the object.
							 This property is read-only.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the disposed object.
						
						
							 A containing the name of the disposed object.
						
						
							
								 If this property is not or , the value of this property is included in the
 string returned by the
 property.
							
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates that the target of the current attribute will be
 removed in future versions of the assembly in which the target
 is contained.
				
				
					
						 Marking an
 item as obsolete provides consumers of that item the information that the item
 will be not be available in future versions of the assembly in
 which it is contained. A has a property that can be used to suggest alternative ways of
 obtaining the functionality provided by the item, i.e. a workaround. This class also has a property that designates whether a
 compiler will treat usage of the obsolete item as an error. If this property
 is , the compiler will issue a warning if
 the obsolete item is used and the compiler
 supports the generation of such warnings.
						 This attribute can be applied to any valid attribute target
 except assemblies, parameters, and return values. For a complete list
 of valid attribute targets, see .
					
				
				
					 The following example demonstrates the usage of to
 generate a compile-time warning.
					

using System;

public class ObsoleteAttributeExample {

 [ObsoleteAttribute("OldMethod is being removed: use NewMethod in future versions.")]
 public static void OldMethod() {

 //Execute some code here
 }

 public static void Main() {

 OldMethod();
 }
}

					 An example compile-time result is
					
						 ObsoleteAttributeExample.cs(8,4):
 warning CS0618: 'ObsoleteAttributeExample.OldMethod()' is obsolete: 'OldMethod is
 being removed: use NewMethod in future versions.'
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Enum | AttributeTargets.Constructor | AttributeTargets.Method | AttributeTargets.Property | AttributeTargets.Field | AttributeTargets.Event | AttributeTargets.Interface | AttributeTargets.Delegate, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor is equivalent to (,
). The compiler does not
treat an item with this attribute as an error.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified

that
contains suggested workarounds.
						
						 The that contains suggested workarounds.
						
							 This constructor is equivalent to (,). The compiler does
 not treat an item with this attribute as an error.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with a that contains
 suggested workarounds and a that indicates whether the compiler
 treats usage of the target of the current instance as an error.
						
						 A that contains suggested workarounds.
						 A that indicates whether the compiler treats usage of the target of the current instance as an error.
						
							 Respectively, the property and the property of the new instance are initialized as
 and .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets a that contains
 suggested workarounds for the target of the current instance.
						
						
							 A that contains
 suggested workarounds
 for the target of the current instance.
						
						
							 This property is read-only.
							 The current instance contains a suggested workaround message if and only if
 such a message was specified when the current instance was constructed. If
 no workaround was specified for the current instance, the value of
 this property is .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a that indicates
 whether the compiler treats usage of the target of the current
 instance as an error.
						
						
							
								 if the
 compiler treats usage of the target
 of the current instance
 as an error; otherwise, .
						
						
							 This property is read-only.
							 The default value of this property is .
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when insufficient memory prevents the
 current memory allocation from succeeding.
				
				
					
						 The following CIL instructions throw :
						
							
								 box
							
							
								 newarr
							
							
								 newobj
							
						
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "There was not enough memory to
 continue the execution of the program." This message takes into account the
 current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of message is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of message is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For information on
 inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when the result of an arithmetic operation is too large to be
 represented by the destination type.
				
				
					 In languages that detect overflow, this is the exception
 that gets thrown. For example, in C#, the keyword is
 used to detect overflow conditions. A exception occurs only in a

 context.
					
						 The following CIL instructions throw :
						
							
								
 add.ovf.<signed>
							
							
								
 conv.ovf.<to type>
							
							
								 conv.ovf.<to type>.un
							
							
								
 mul.ovf.<type>
							
							
								
 sub.ovf.<type>
							
							
								 newarr
							
						
					
				
				
					 The following example demonstrates an error that causes
 a exception.
					 using System;
public class OverflowExample {
 public static void Main() {
 int i = 400;
 byte b = 0;
 try {
 checked { b = (byte)(i); }
 }
 catch (OverflowException e) {
 Console.WriteLine("Error caught: {0}", e);
 }
 }
}

					 The output is
					
Error caught: System.OverflowException: Arithmetic operation resulted in an overflow.
 at OverflowExample.Main()

				
			
			
				 System.ArithmeticException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error. This message takes into account the current
 system culture.
							 The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For information on
 inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Performs operations on instances that contain
 file or directory path information.
				
				
					 A path is a string that provides the location of a file
 or directory. A path does not necessarily point to a location on disk; for
 example, a path might map to a location in memory or on a device. Paths are
 composed of the components described below. Component names are shown in

 and the following table describes the symbols used in component definitions:
					
						
							 Symbol
							 Description
						
						
							 < >
							 Indicates a path component.
						
						
							 { }
							 Indicates a grouping; either all components
 in a grouping are present, or none are permitted to be
 present.
						
						
							 *
							 Indicates that the component or grouping that immediately precedes
 this symbol can appear zero, one, or multiple times.
						
						
							 ?
							 Indicates that the component or grouping that immediately precedes
 this symbol can appear zero, or one times.
						
						
							 +
							 Indicates string concatenation.
						
					
					 The components that define a path are as
 follows:
					
						 : A string that
specifies one or more directory levels in a file system. If a directory name
contains
multiple levels, a separates the levels; however, a directory name does not begin or
end with a directory separator character. In the example path C:/foo/bar/bat.txt, the directory
name is " foo/bar". returns the directory name component of a path.
Note that this method does include a beginning separator character if one is
included
in the specified
path.
					
						 :
An implementation-specific constant string containing a single printable
non-alphanumeric character used to separate levels in a file system. In the
example path C:/foo/bar/bat.txt, the directory separator character is " /". The and store
implementation-specific directory separator characters
.
					
						 : A string that consists of the
characters at the end of a file name, from and including the last . The minimum and
maximum lengths of extension components are implementation-specific. In the example
path C:/foo/bar/bat.txt
, the is " .txt". The method returns the
extension component of a
path.
					
						 :
An implementation-specific constant string
composed of a single character that appears after the last character in the
 component indicating the beginning of the
component. If the extension separator character is the first character
in a , it is not interpreted as a
extension separator character If more than one extension separator
character appears in a file name, only the last occurrence is the
extension separator character; all other occurrences are part of the file base
component In the example path C:/foo/bar/bat.txt, the extension separator character
is " .".
					
						 : A string containing the

						 with the component removed. In the example path C:/foo/bar/bat.txt, the file base
is " bat".
The method returns the
file base component of a
path.
					
						 : A string containing all information
required to uniquely identify a file within a directory. This component is defined
as follows:
					
						 <file
 base>{+<extension>}?
					
					 The file name component is commonly referred to as a
 relative file name. In the example path C:/foo/bar/bat.txt, the file name is " bat.txt". The
method returns the file name component of a
path.
					
						 : A string containing all
information required to uniquely identify a directory within a file
system. This component is defined as
follows:
					
						 <path
 root>+<directory name>
					
					 The full directory name component is commonly referred to
 as the absolute directory name. In the example path C:/foo/bar/bat.txt, the full directory name is " C:/foo/bar
".
					
						
						 : A string containing all
information required to uniquely identify a file within a file system. This
component is defined as
follows:
					
						 <full
 directory name>+<directory separator character>+<file
 name>
					
					 The full path component is commonly referred to as the
 absolute file name. In the example path C:/foo/bar/bat.txt, the full path is " C:/foo/bar/bat.txt". The method returns the full path
component.
					
						 : A string containing all information
required to uniquely identify the highest level in a file
system. The component is defined as
follows:
					
						 {<volume
 identifier>+<volume separator character>}?+<directory separator
 character>
					
					 In the example path C:/foo/bar/bat.txt , the path root is " C:/". The
method returns the
component.
					
						
						 : A string composed of a single alphabetic
character that uniquely defines a drive or volume in a file system. This
component is optional; on systems that do not support volume identifiers, this
component is required to be a zero length string. In the example path C:/foo/bar/bat.txt
, the path root is " C:". In the example path, \\myserver\myshare\foo\bar\baz.txt
the path root is " \\myserver\myshare".
					
						 : A
string composed of a single alphabetic character used to separate the

						 from other components in a path. This
component can appear in a path only if a volume identifier is
present This component is optional; on systems that do not
support the volume identifier component, the volume separator character
component is required to be a zero length
string.
					 The exact format of a path is determined by the current
 platform. For example, on Windows systems a path can start with a volume
 identifier, while this element is not present in Unix system paths. On some
 systems, paths containing file names can contain extensions. The format of an
 extension
 is platform dependent; for example, some systems limit extensions to
 three characters, while others do not. The current platform and possibly the current
 file system determine the set of characters used to separate the elements of
 a path, and the set of characters that cannot be used when specifying paths.
 Because of these differences, the fields of the class as well as the exact behavior
 of some members of the class are determined by the current platform and/or file
 system.
					 A path contains either absolute or relative location
 information. Absolute paths fully specify a location: the file or directory can
 be uniquely identified regardless of the current location. A full path or full
 directory name component is present in an absolute path. Relative paths specify
 a partial location: the current working directory is used as the starting point
 when locating a file specified with a relative path. To determine the current working directory, call
 .
					
					 Most members of the class do not interact with the file system
and do not verify the existence of the file or directory specified by a path
string.
members that modify a path string, such
as , have no effect on files and directories in the
file system.
members do, however, validate the contents of a specified path string, and
throw if the string contains
characters that are not valid in path strings, as defined by the current
platform and file system. Implementations are
required to preserve the case of file and directory path strings, and to be case
sensitive if and only if the current platform is case-sensitive.

				
			
			
				 System.Object
			
			
			
				
					
					
					 Field
					
						 System.Char
					
					
					
						
							 Provides a string containing an alternate single printable
 non-alphanumeric character used to separate directory levels in a hierarchical
 file system.
						
						
							 This field is read-only.
							 This field can be set to the
 same value as .
							
								
									 and are
 both valid for separating directory levels in a path string.
								 The value of this field is a slash ('/') on Windows systems and a backslash
 ('\') on Unix systems.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Changes the extension component of the specified path string.
						
						 A containing the path information to modify.
						 A containing the new extension. Specify to remove an existing extension from .
						
							 A
containing the modified path information.
							 Platforms that do not support this feature
 return unmodified.
						
						
							 contains one or more implementation-specific invalid characters.
						
							 The exact behavior of this
 method is implementation-specific. This method checks for invalid
 characters as defined by the current platform and file system.

						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Concatenates two
 path strings.
						
						 A containing the first path.
						 A containing the second path.
						
							 A containing
 followed by .
 If one of the specified paths is a zero length string, this method returns the
 other path. If contains an absolute path, this method returns
 .
						
						
							 or is .
						
							
								 or contains one or more implementation-specific invalid characters.
						
						
							 If does not end with
 a valid separator character (or),
 is appended to prior
 to the concatenation.
						
						
							 The following example demonstrates using the
 method on a Windows system.
							 using System;
using System.IO;
class CombineTest {
 public static void Main() {
 string path1, path2;
 Console.WriteLine("Dir char is {0} Alt dir char is {1}",
 Path.DirectorySeparatorChar,
 Path.AltDirectorySeparatorChar
);
 path1 = "foo.txt";
 path2 = "\\ecmatest\\examples";
 Console.WriteLine("{0} combined with {1} = {2}",path1, path2 , Path.Combine(path1,

path2));
 path1 = "\\ecmatest\\examples";
 path2 = "foo.txt";
 Console.WriteLine("{0} combined with {1} = {2}",path1, path2 , Path.Combine(path1,

path2));
 }
}

							 The output is
							
								 Dir char is \ Alt dir char is /
								 foo.txt combined with \ecmatest\examples = \ecmatest\examples
								 \ecmatest\examples combined with foo.txt =
 \ecmatest\examples\foo.txt
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Char
					
					
					
						
							 Provides a string containing a single
 printable non-alphanumeric character used to separate directory levels in a hierarchical file system.

						
						
							 This field is read-only.
							
								
									 and are both
 valid for separating directory levels in a path string.
								 The value of this field is a backslash ('\') on Windows systems and a slash ('/') on Unix systems.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the directory name component of the specified path string.
						
						 A containing the path of a file or directory.
						
							 A containing directory information for , or
 if denotes a root directory, is
 the empty string, or is Returns if path
 does not contain directory information.
						
						
							
								 contains one or more implementation-specific invalid characters.
						
						
							 The string returned by this method consists
 of all characters between the first and last or character
 in . The first separator character is included, but the last separator character is not included in
 the returned string.
						
						
							 The following example demonstrates using the method on a Windows system.
							 using System;
using System.IO;
class GetDirectoryTest {
 public static void Main() {
 string [] paths = {
 @"\ecmatest\examples\pathtests.txt",
 @"\ecmatest\examples\",
 "pathtests.xyzzy",
 @"\",
 @"C:\",
 @"\\myserver\myshare\foo\bar\baz.txt"
 };
 foreach (string pathString in paths) {
 string s = Path.GetDirectoryName(pathString);
 Console.WriteLine("Path: {0} directory is {1}",pathString, s== null? "null": s);
 }
 }
}

							 The output is
							
								 Path: \ecmatest\examples\pathtests.txt directory is \ecmatest\examples
								 Path: \ecmatest\examples\ directory is \ecmatest\examples
								 Path: pathtests.xyzzy directory is
								 Path: \ directory is null
								 Path: C:\ directory is null
								 Path: \\myserver\myshare\foo\bar\baz.txt directory is \\myserver\myshare\foo\bar
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the extension component of the specified path string.
						
						 A containing the path information from which to get the extension.
						
							 A containing the extension of
								 ,
or . If is
 , returns . If path does not have extension information,
returns .
							 The extension returned by this method includes the
 implementation-specific extension separator character used to separate the extension
 from the rest of the path.
							 Platforms that do not
 support this feature return unmodified.
						
						
							
								 contains one or more implementation-specific invalid characters.
						
						
							 The exact behavior of this method
 is implementation-specific. The character used to separate the extension from the rest of the path is
 implementation-specific.
						
						
							 The following example demonstrates using the method on a Windows
 system.
							 using System;
using System.IO;
class GetDirectoryTest {
 public static void Main(){
 string [] paths = {
 @"\ecmatest\examples\pathtests.txt",
 @"\ecmatest\examples\",
 "pathtests.xyzzy",
 "pathtests.xyzzy.txt",
 @"\",
 ""
 };
 foreach (string pathString in paths){
 string s = Path.GetExtension (pathString);
 if (s == String.Empty) s= "(empty string)";
 if (s == null) s= "null";
 Console.WriteLine("{0} is the extension of {1}", s, pathString);
 }
 }
}

							 The output is
							
								 .txt is the extension of \ecmatest\examples\pathtests.txt
								 (empty string) is the extension of \ecmatest\examples\
								 .xyzzy is the extension of pathtests.xyzzy
								 .txt is the extension of pathtests.xyzzy.txt
								 (empty string) is the extension of \
								 (empty string) is the extension of
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the file name, including the extension if any, of the specified path string.
						
						 A containing the path information from which to obtain the filename and extension.
						
							 A consisting of the characters
 after the last directory character in . If the last character
 of is a directory separator character, returns . If is , returns
 .
							 Platforms that do not support this feature
 return unmodified.
						
						
							 contains one or more implementation-specific invalid characters.
						
							 The directory separator characters used to determine the start of
 the file name are and .
						
						
							 The following example demonstrates the behavior of the
 method on a
 Windows system.
							 using System;
using System.IO;
class FileNameTest {
 public static void Main() {
 string [] paths = {"pathtests.txt",
 @"\ecmatest\examples\pathtests.txt",
 "c:pathtests.txt",
 @"\ecmatest\examples\",
 ""
 };
 foreach (string p in paths) {
 Console.WriteLine("Path: {0} filename = {1}",p, Path.GetFileName(p));
 }
 }
}

							 The output is
							
								 Path: pathtests.txt filename = pathtests.txt
								 Path: \ecmatest\examples\pathtests.txt filename = pathtests.txt
								 Path: c:pathtests.txt filename = pathtests.txt
								 Path: \ecmatest\examples\ filename =
								 Path: filename =
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the file base component of the specified path string without the extension.
						
						 A containing the path of the file.
						
							 A consisting of the
 string returned by , minus
 the implementation-specific extension separator character and extension. Platforms that do not support this feature
 return
 unmodified.
						
						
							 contains one or more implementation-specific invalid characters.
						
							
								 For additional details, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns information required to uniquely identify a
 file within a file system.
						
						 A containing the file or directory for which to obtain absolute path information.
						
							 A containing the fully qualified (absolute) location of .
						
						
							
								 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
							 -or-
							 The system could not retrieve the absolute path.
						
						 The caller does not have the required permissions.
						
							 is .
						 The length of or the absolute path information for exceeds the system-defined maximum length.
						
							 The absolute path includes all information required to locate
 a file or directory on a system. The file or directory specified by is not required to exist; however if
 does exist, the caller is required to have permission to obtain
 path information for . Note
 that unlike most members of the
 class, this method accesses the file
 system.
						
						
							 The following example demonstrates the method on a Windows system. In
 this example, the absolute path for the current directory is c:\ecmatest\examples.
							 using System;
using System.IO;
class GetDirectoryTest {
 public static void Main() {
 string [] paths = {
 @"\ecmatest\examples\pathtests.txt",
 @"\ecmatest\examples\",
 "pathtests.xyzzy",
 @"\",
 };
 foreach (string pathString in paths)
 Console.WriteLine("Path: {0} full path is {1}",pathString,

Path.GetFullPath(pathString));
 }
}

							 The output is
							
								 Path: \ecmatest\examples\pathtests.txt full path is
 C:\ecmatest\examples\pathtests.txt
								 Path: \ecmatest\examples\ full path is C:\ecmatest\examples\
								 Path: pathtests.xyzzy full path is
 C:\ecmatest\examples\pathtests.xyzzy
								 Path: \ full path is C:\
							
						
						 Requires permission to access path information. See .
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the path root component of the specified path.
						
						 A containing the path from which to obtain root directory information
						
							 A containing the root directory of , or
 if is
 . Returns
 if the specified path does not contain root information.
							 Platforms that do not support this feature
 return unmodified.
						
						
							 contains one or more implementation-specific invalid characters or is equal to .
						
							 This method does not verify that the path exists.

							 The exact behavior of this method is implementation-specific.
						
						
							 The following example demonstrates the
method.
							 using System;
using System.IO;
class GetPathRootTest
{
 public static void Main() {
 string [] paths = {

@"\ecmatest\examples\pathtests.txt",
 "pathtests.xyzzy",
 @"\",
 @"C:\",

@"\\myserver\myshare\foo\bar\baz.txt"
 };
 foreach (string pathString in paths) {
 string s = Path.GetPathRoot(pathString);
 Console.WriteLine("Path: {0} Path root is {1}",pathString, s== null? "null": s);
 }
 }
}

							 The output is
							
								 Path: \ecmatest\examples\pathtests.txt Path root is \
								 Path: pathtests.xyzzy Path root is
								 Path: \ Path root is \
								 Path: C:\ Path root is C:\
								 Path: \\myserver\myshare\foo\bar\baz.txt
 Path root is \\myserver\myshare
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a unique temporary file name and creates a 0-byte file by
 that name on disk.

						
						
							 A containing the name of the temporary file.

							 Platforms that do not support this feature
 return .
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns the path information of a temporary directory.
						
						
							 A containing the full directory name of a temporary
 directory.
							 The information returned by this method is
 implementation-specific. Platforms that do not support this feature return
 .
						
						 The caller does not have the required permission.
						
							 On platforms that provide a mechanism for users
 to discover this information, (for example by checking an environment variable),
 implementations of the CLI return the same information as the implementation-specific
 mechanism.
						
						 Requires unrestricted access to environment variables. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a indicating whether the specified path includes an extension component.
						
						 A containing the path to search for an extension.
						
							
								 if
 includes a file extension.
							 Platforms that do not support this feature
 return .
						
						
							 contains one or more implementation-specific invalid characters.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a indicating whether the specified path string contains a
 path root component.
						
						 A containing the path to test.
						
							
								 if
 contains an absolute path;
if contains relative path information.
							 Platforms that do not support this feature
 return .
						
						
							 contains one or more implementation-specific invalid characters.
						
							
								 This method does not access file systems or verify the existence of the specified path.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Char
					
					
					
						
							 Provides a implementation-specific separator character used to
 separate path strings in environment variables.

						
						
							 This field is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when a directory or file name is longer than the system-defined maximum
 length.
				
			
			
				 System.IO.IOException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to
 a system-supplied message that describes the error, such as "The supplied path
 is too long." This message takes into account the current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new
 instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							 The property of the new instance is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using and
 the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents a value specifying whether an entity, at
 creation, should have full or no access to resources.
				
				
					
						 Code access permission objects supply a constructor that takes a value specifying that the new
 instance is either fully restricted () or unrestricted (). A fully restricted permission
 object disallows access to a resource; an unrestricted permission object allows
 full access to a resource. For example, a fully restricted object disallows access to files
 and directories, while an unrestricted object of the same

 type allows full access to all
 files and directories in the file system.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Security.Permissions.PermissionState
					
					
					 None
					
						
							 Specifies access to the resource protected
 by the permission is not allowed.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.PermissionState
					
					
					 Unrestricted
					
						
							 Specifies full access to the resource protected by the permission.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a collection that can contain different kinds of permissions and perform security
 operations.
				
				
					
						 Use
to perform operations on different permission types as
a group.
					
					 The XML encoding of a instance is defined below in EBNF format. The
 following conventions are used:
					
						
							
								 All non-literals in the grammar below are shown in normal
 type.
							
						
						
							
								 All literals are in bold font.
							
						
					
					 The following meta-language symbols are used:
					
						
							

 '*' represents a meta-language symbol suffixing an
 expression that can appear zero or more times.
						
						
							

 '?' represents a meta-language symbol suffixing an
 expression that can appear zero or one time.
						
						
							

 '+' represents a meta-language symbol suffixing an
 expression that can appear one or more times.
						
						
							

 '(',')' is used to group literals, non-literals or a
 mixture of literals and non-literals.
						
						
							

 '|' denotes an exclusive disjunction between two
 expressions.
						
						
							

 '::= ' denotes a production rule where a left hand
 non-literal is replaced by a right hand expression containing literals,
 non-literals or both.
						
					
					 The XML encoding of a
instance is as follows:
					
						 PermissionSet::=
						 (
						
							
						
						
							
						
						
							
						
)
						 |
						 (
						
							
						
						
							
						
						
							
						
						 DnsPermissionXML ?
						 SocketPermissionXML ?
						 WebPermissionXML ?
						 EnvironmentPermissionXML ?
						 FileIOPermissionXML ?
						 ReflectionPermissionXML ?
						 SecurityPermissionXML ?
						 CustomPermissionXML *
						
							
						
)
					
					 CustomPermissionXML represents any custom permission. The XML encoding for custom permissions makes use of the following symbols:
					 ClassName is the name of the class implementing the
 permission.
					 AssemblyName is the name of the assembly that contains
 the class implementing the permission.
					 Version is the version number indicating the
 version of the assembly implementing the permission.
					 StrongNamePublicKeyToken is the strong name public key token constituting the
 strong name of the assembly that implements the permission.
					 version is version information for the custom permission. Format and content
 are defined by the author of the custom permission.
					 PermissionAttributes is any attribute and attribute value on the element used by the
permission to represent a particular permission state, for example,
unrestricted=
"true".
Format and content are defined by the author of the
custom permission.
					 PermissionXML is any valid XML used by the permission to
 represent permission state. Format and content are defined by the author of the custom
 permission.
					 The XML encoding of a custom permission instance is as
 follows:
					
						 CustomPermissionXML ::=
						
							
						
						 ClassName
						
						 AssemblyName
						
						
							 Version
						
						
							
						
						
							 StrongNamePublicKeyToken
						
						
							 version
						
						 (PermissionAttributes)*
						 >
						 (PermissionXML)?
						
							
						
					
				
			
			
				 System.Object
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the class with the
 values of the specified instance.
						
						 The instance with which to initialize the values of the new instance, or to initialize an empty permission set.
						
							 is not and is not an instance of .
						
							 If is not , the new instance is
 initialized with copies of the objects in , not references
 to those objects. If is , the new instance contains no
 permissions.
							
								 To add a permission to an
 empty ,
 use .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the class with the
 specified
 value.
						
						
							 A value. This value is either or , to specify fully restricted or fully unrestricted access.
						
						
							 is not a valid value.
						
							
								 The
 new instance contains no permissions. To add a permission to the
 new instance, use .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Adds the specified object to
 the current instance if that permission does not already exist in the current instance.
						
						 The object to add.
						
							 If is ,
 returns . If a permission of the same type as
 already exists in the current instance, the union of the existing
 permission and is added to the current instance and is returned.
						
						
							 is not a object.
						
							
								 The is added if is not
 and a permission of the same type as does
 not already exist in the current instance.
							
							
								 Use this method to
 add permission objects to the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Asserts that calling code can access the resources identified by the permissions contained in the current
 instance through the code that calls this method, even if callers have not been
 granted permission to access the resource.
						
						
							 The asserting code does not have sufficient permission to call this method.
							 -or-
							 This method was called with permissions already asserted for the current stack frame.
						
						
							
								 This method is the only way to assert multiple permissions at the same time
 within a frame because only a single assert can be active on a frame at one
 time; subsequent asserts will result in an exception.
							
							
								 As described above.
							
							
								 Use this method to insure that all callers can access
 a set of secured resources.
							
						
						 Requires permission to perform the assertion security operation. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Security.PermissionSet
					
					
					
						
							 Returns a new containing copies of the objects in the current instance.
						
						
							 A new that is value equal to the current instance.
						
						
							
								 This method creates
 copies of the permission objects in the current instance, and adds them to the new instance.
							
							
								 This method calls
 the
 constructor that takes a argument,
 and passes the current instance as that parameter.
							
							
								 Use this method to
 create a new instance containing permissions that are identical to the permissions contained in
 the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the permission objects in the current instance to the specified
 location in the specified .
						
						 The destination .
						 A that specifies the zero-based starting position in the array at which to begin copying.
						
							 has more than one dimension.
						
							 is outside the range of allowable values for .
						
							 is .
						
							
								 This method is
 implemented to support the interface.
							
							
								 As described above.
							
							
								 The default
 implementation uses the (,) method to add the value to the array.
							
							
								 Override this
 method to customize the manner in which elements are added to
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Forces a if all callers do
 not have the permissions specified by the objects
 contained in the current instance.
						
						 A caller does not have the permission specified by the current instance.
						
							
								 The permission check for begins with the
 immediate caller of the code that calls this method and continues until all
 callers have been checked or a caller has been found that is not granted the
 demanded permission, in which case a exception is thrown.
								 If the current instance is empty, a call to succeeds.
							
							
								 Use this
 method to ensure in a single operation that all callers have all permissions contained in a permission set.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Denies access to the resources secured by the objects contained in the current instance through the
 code that calls this method.
						
						
							 A previous call to has already restricted the permissions for the current stack frame.
						
						
							 This is the only way to deny multiple permissions at the
 same time within a frame because only a single deny can be active on a frame at
 one time; subsequent denies will result in an exception.
							
								 This method is required to prevent
 callers from accessing all resources protected by the objects in the
 current instance even if the callers had been granted permission to access them.
								 A call to
 is effective until the calling code returns.
							
							
								 Use this method to force
 all security checks for the objects contained in the current instance to
 fail.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reconstructs the state of a object using the specified XML
 encoding.
						
						
							 A instance containing the XML encoding to use to reconstruct the state of a object.
						
						
							 is .
						
							
								 does not contain an XML encoding for a instance.
							 -or-
							 An error occurred while reconstructing .
						
						
							
								 For the XML
 encoding for this class, see
 the class page.
							
							
								 When this call completes, the
 objects in the current instance are required to be identical to the objects in the
 encoded in
 .
							
							
								 Override this method
 to reconstruct subclasses of .
							
							
								 Applications do
 not typically call this method; it is called by the system.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						
							 Returns an enumerator used to iterate
 over the permissions in the current instance.
						
						
							 A object
 for the permissions of the
 set.
						
						
							
								 This method is implemented to support
 the interface, which supports the
 interface.
							
							
								 As described above.
							
							
								 Override this method to customize
 the enumerator returned by this method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of
 the specified object.
						
						
							 A instance that is to be tested for the subset relationship.
						
						
							
								 if the current instance is a subset of ;
 otherwise, .
						
						
							
								 The current instance is a subset if all demands that succeed
 for the current instance also succeed for . That is, the current
 instance is a subset of if contains at least the
 permissions contained in the current instance.
								 If this method returns , the current instance does not
 describe a level of access to a set of resources that is not already described
 by .
							
							
								 As described above.
							
							
								 Use this method to determine if the all
 permissions contained in the current instance are also contained in
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Specifies that only the resources described by the current
 instance can be accessed by calling code, even if the code has
 been granted permission to access other resources.
						
						
							 A previous call to has already set the permissions for the current stack frame.
						
						
							
								
									 is similar to
 in that both methods cause access
 to fail where it might otherwise succeed. The difference is that specifies permissions for which
 to refuse access, while
									 specifies the only permissions that will succeed.
								 This is the only way to permit multiple permissions at the same time within a stack
 frame because only a single permit at a time can be active on a frame;
 subsequent permits will result in an exception.
							
							
								 Callers are required to
 be prevented from accessing resources not secured by the contents of the current
 instance, even if a caller has been granted permission to access such resources.
								 A is in effect until the calling
 code returns to its caller.
							
							
								 Use this method to limit access to a
 specified set of resources.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the state
 of the current instance.
						
						
							 A
containing the XML representation of the state of the current instance.
						
						
							
								 This method overrides .
							
						
						
							 The following example displays the XML that encodes the
 state of a
 .
							
using System;
using System.Security;
using System.Security.Permissions;

public class PermissionSetToStringExample {
 public static void Main() {

 PermissionSet ps = new PermissionSet(PermissionState.Unrestricted);
 Console.WriteLine(ps.ToString());
 }
}

			
							 The output is
							 <PermissionSet class="System.Security.PermissionSet" version="1"
 Unrestricted="true"/>
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.SecurityElement
					
					
					
						
							 Returns the XML encoding of the current instance.
						
						
							 A containing an XML encoding of the state of the
 current instance.
						
						
							
								 As described above.
							
							
								 Override this method to return an
 object containing the XML encoding for types derived from .
							
							
								 This method is called by the
 system.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.PermissionSet
					
					
						
					
					
						
							 Returns a object that is the union of the current instance and
 the specified object.
						
						 A instance to be combined with the current instance.
						
							 A new instance that represents the
 union of the current instance and . If the current
 instance or is unrestricted, returns a
 instance that is unrestricted.
						
						
							 The result of a call to
								 is a new
instance that represents all the operations represented by the current instance
as well as all the operations represented by . If either set is
unrestricted, the union is unrestricted, as well.
							
								 As described above.
							
							
								 Use this method to
 create a instance that contains all of the permissions
 of the current instance and .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents the method that defines a Boolean query on an object.
				
				 The object to compare against the Boolean query defined within the method represented by this delegate.
				
					
						 if meets the criteria defined within the method represented by this delegate; otherwise, .
				
				
					 Predicate methods are expected to not throw exceptions. If they do throw exceptions, other methods that use that delegate might exhibit unspecified behavior. It is also intended that predicate methods not produce side-effects; however, such methods need not be thread safe.
					
						 This delegate is used by several methods in , and in to search for elements in the collection.
					
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Generates
 psuedo-random numbers.
				
				
					 Instances of this class are initialized using a "seed",
 or starting value. The series of numbers
 generated by instances of the class are repeatable: given the
 same seed value,
 all instances of this class generate the same series of numbers.
					
						 The numbers generated by this class are chosen with equal
 probability from a finite set of numbers. The numbers are generated by a
 definite mathematical algorithm and are therefore not truly random, but are
 sufficiently random for practical purposes. For this reason, the numbers are
 considered to be psuedo-random.

					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
 class using
 as the seed
 value.
						
						
							 This constructor is equivalent to ().
							
								 When generating
 random numbers on high performance systems, the system clock value might not
 produce the desired behavior. For details, see the (
)
 constructor.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the class using the specified
 seed value.
						
						 A used as the starting value for the pseudo-random number sequence.
						
							
								 To construct instances that produce different random number sequences, invoke
 this constructor using different seed values such as might be
 produced by the system clock. Note, however that on high performance systems, the system clock
 might not change between invocations of the constructor, in which case the seed value
 will be the same for different instances of . When this is the case, additional operations are required to have the seed values differ in each invocation.

							
						
						
							 The following example demonstrates using a
 bitwise complement operation to obtain different random numbers using a time-dependent
 seed value on high performance systems.
							 using System;
class RandomTest {
 public static void Main() {
 Random rand1 = new Random();
 Random rand2 = new Random(Environment.TickCount);
 Console.WriteLine("The random number is {0}",rand1.Next());
 Console.WriteLine("The random number is {0}",rand2.Next());

 Random rdm1 = new Random(unchecked(Environment.TickCount));
 Random rdm2 = new Random(~unchecked(Environment.TickCount));
 Console.WriteLine("The random number is {0}",rdm1.Next());
 Console.WriteLine("The random number is {0}",rdm2.Next());
 }
}

							
								 The output is
								 The random number is 1990211954
								 The random number is 1990211954
								 The random number is 1990211954
								 The random number is 964628126
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns a psuedo-random positive number less than the specified
 maximum.
						
						 The upper bound of the random number to be generated. is required to be greater than or equal to zero.
						
							 A set to a psuedo-random value greater than or equal to zero
 and less than . If is zero, returns zero.
						
						
							 is less than zero.
						
							
								 As described
 above.
							
							
								 Override this method to customize
 the algorithm used to generate the return value.
							
							
								 Use this method to generate a psuedo-random number
 less than the specified maximum value.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns a psuedo-random number within a specified range.
						
						 The lower bound of the random number returned.
						 The upper bound of the random number returned.
						
							 A psuedo-random number greater than or equal to and
 less than . If and
 are equal, this value
 is returned.
						
						
							 is greater than .
						
							
								 As described above.
							
							
								 Override this
 method to customize the algorithm used to generate the return
 value.
							
							
								 Use this method to generate
 psuedo-random numbers in a specified range.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Returns a psuedo-random number between 0 and .
						
						
							 A greater than or equal to zero and less than
 .
						
						
							
								 As described above.
							
							
								 Override this method to customize the algorithm used to generate the return value.
							
						
						
							 The following example demonstrates using the
 method. The output generated by this example
 will
 vary.
							 using System;
class RandomTest {
 public static void Main() {
 Random rand1 = new Random();
 for (int i = 0; i<10;i++)
 Console.WriteLine("The random number is {0}",rand1.Next());

 }
}

							 The output is
							
								 The random number is
 1544196111
								 The random number is
 181749919
								 The random number is
 1045210087
								 The random number is
 1073826097
								 The random number is
 1533078806
								 The random number is
 1083151645
								 The random number is
 569083504
								 The random number is
 1711370568
								 The random number is
 578178313
								 The random number is
 409444742
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Populates the elements of a specified array of bytes with random numbers.
						
						 An array of bytes to be populated with random numbers.
						
							 is a reference.
						
							
								 Each element of the array of bytes is set to a random number greater than or
 equal to zero, and less than or equal to .
							
							
								 Override this method to customize
 the algorithm used to generate the return value.
							
							
								 Use the
 method to populate a
 array with random numbers.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
					
						
							 Returns a random number between 0.0 and 1.0.
						
						
							 A greater than or equal to 0.0, and less than 1.0.
						
						
							
								 As described
 above.
							
							
								 Use this method to generate a
 psuedo-random number greater than or equal to zero, and less than
 one.
							
						
					
					 1
					 ExtendedNumerics
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an array with an
 incorrect number of dimensions is passed to a method.
				
				
					 The following example demonstrates an error that causes
 a
 exception.
					 using System;
public class RankExample {
 public static void Main() {
 int[] oneDAry = new int[5];
 int[,] twoDAry = new int[2,3];
 for (int i = 0; i < 2; i++) {
 oneDAry.SetValue(i, i);
 }
 try {
 Array.Copy(oneDAry, twoDAry, 2);
 }
 catch (RankException e) {
 Console.WriteLine("Error caught: {0}", e);
 }
 }
}

					 The output is
					
Error caught: System.RankException: The specified arrays must have the same number of dimensions.
 at System.Array.Copy(Array sourceArray, Int32 sourceIndex, Array destinationArray, Int32 destinationIndex, Int32 length)
 at System.Array.Copy(Array sourceArray, Array destinationArray, Int32 length)
 at RankExample.Main()

				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a
 system-supplied message that describes the error, such as "The two arrays must
 have the same number of dimensions." This message takes into account the current
 system culture.
							 The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using
 . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the
property of the new instance using , and the property using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no
arguments.
							
								 For information on
 inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents an 8-bit signed integer.
				
				
					 The
data type represents integer values ranging from negative 128 to positive 127;
that is, hexadecimal 0x80 to 0x7F.
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.SByte>
					 0
				
				
					 System.IEquatable<System.SByte>
					 0
				
			
			
				
					 CLSCompliantAttribute(false)
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > , or
 is a null reference.
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared to the specified
 .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the
 same type and value.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same type and value as the current instance. If is a null reference
 or is not an instance of , returns .
							
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the same value as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for the current instance.
						
						
							 The algorithm used to generate the hash code is
 unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.SByte
					
					
					 127
					
						
							 Contains the maximum value for the type.
						
						
							 The value of this constant is 127 (hexadecimal
 0X7F).
						
					
					 0
				
				
					
					
					 Field
					
						 System.SByte
					
					
					
						
							 Contains the minimum value for the type.
						
						
							 The value of this constant is -128 (hexadecimal
 0X80).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the formatting
information in a initialized for the current system culture. for more information, see .
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use ().
							
						
						
							 This example demonstrates the () method.
							 using System;
public class SByteParseClass {
 public static void Main() {
 string str = " 100 ";
 Console.WriteLine("String: \"{0}\" <SByte> {1}",
 str,SByte.Parse(str));
 }
}

							 The output is
							
								 String: " 100
 " <SByte> 100
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The
value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the formatting
information in a initialized for the current system culture. For more information, see .
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (,).
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
						
					
					
						
							 Returns the specified String converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the
culture-specific formatting information from the
instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (,).
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 The string is parsed using the
 culture-specific formatting information from the
 instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (, ,).
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to ("G",
).
							 If is
 or a cannot
be obtained from , the formatting information for the current
system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A containing a character that specifies the format of the returned string.
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the formatting
 information in the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot
 be obtained from , the formatting information for the current
 system culture is used.
							 If is a null reference, the general
format specifier "G" is used.
							
								 For a detailed
 description of formatting, see the interface.
								 This method is implemented
 to support the interface.
							
							 The following table lists the characters that are valid for the type.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "D", "d"
									 Decimal format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "X", "x"
									 Hexadecimal
 format.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using
 the general format specifier ("G"). The string takes into account the current
 system culture.
						
						
							 This version of is equivalent to (,
).
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system
 culture.
						
						
							 is invalid.
						
							 This version of is equivalent to
(,
).
							 If is a null reference, the general
format specifier "G" is used.
						
						
							 This example demonstrates the () method.
							 using System;
public class SByteToStringExample {
 public static void Main() {
 SByte i = 8;
 Console.WriteLine(i);
 String[] formats = {"c", "d", "e", "f", "g", "n", "p", "x"};
 foreach(String str in formats)
 Console.WriteLine("{0}: {1}", str, i.ToString(str));
 }
}

							 The output is
							
								 8
								 c: $8.00
								 d: 8
								 e: 8.000000e+000
								 f: 8.00
								 g: 8
								 n: 8.00
								 p: 800.00 %
								 x: 8
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies security actions that can be performed using declarative security.
				
				
					
						 For information about using declarative security
 and security actions, see Partition II of the CLI Specification.
					
					
						 Declarative security is specified using types derived
 from . The following table describes the attribute targets supported by each of the
 security actions.
						
							
								 Security action
								 Attribute Targets
							
							
								 Assert
								 Class, Method
							
							
								 Demand
								 Class, Method
							
							
								 Deny
								 Class, Method
							
							
								 InheritanceDemand
								 Class, Method
							
							
								 LinkDemand
								 Class, Method
							
							
								 PermitOnly
								 Class, Method
							
							
								 RequestMinimum
								 Assembly
							
							
								 RequestOptional
								 Assembly
							
							
								 RequestRefuse
								 Assembly
							
						
						 For additional information on attribute targets, see .
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 Assert
					
						
							 Specifies that callers of the code performing the assert
 need not have the permissions specified by the current security attribute, and
 that a check for any such permission can stop after the code that asserted it.
 An assert can change the default behavior of a security check (such as
 that caused by a Demand, LinkDemand, etc.).
							
							 This action can be applied to classes and methods.
							
								 This action should only be used by code that can
 assure that its callers cannot manipulate it to abuse the asserted
 permission.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 Demand
					
						
							 Specified that all callers are required
 to have the permissions specified by the current security attribute.
							 This action can be applied to classes and methods.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 Deny
					
						
							 Specifies that access to the resource or
 operation described by the current security attribute be denied to callers, even if they
 have been granted permission to access it.
									
 causes a security check
 for the permissions specified by the current security attribute to fail even when
 it would otherwise succeed.
							
							 This action can be applied to classes and methods.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 InheritanceDemand
					
						
							
 Specifies the permissions that a derived class is required to have. When the
 target is a class, classes inheriting from the target are required to have the
 permissions specified by the current security attribute. When the target is
 a method, classes overriding the target are required to have the
 permissions specified by the current security attribute.
							 This action can be applied to classes and methods.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 LinkDemand
					
						
							 Specifies that the immediate caller be required
 to have the specified permissions.
							 This action can be applied to classes and methods.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 PermitOnly
					
						
							 Specifies that access is limited to only those resources
 or operations specified by the current security attribute, even if the code has been
 granted permission to access others. A security check for a permission not
 described by the current security attribute fails regardless of whether or not
 callers have been granted this permission.
							 This action can be applied to classes and methods.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 RequestMinimum
					
						
							 Specifies that the current security attribute describes the minimum permissions required for an assembly
 to run.
							 This action can be applied to assemblies.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 RequestOptional
					
						
							 Specifies that the current security attribute
 describes
 optional permissions that an assembly can be granted.
							 This action can be applied to assemblies.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityAction
					
					
					 RequestRefuse
					
						
							 Specifies that the current security attribute
 describes resources or operations that an assembly cannot access.
							 This action can be applied to assemblies.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 This is the base class for attributes used by the
 security system.
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of
with the specified .
						
						 A value.
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a object that contains the security information of the
 current instance.
						
						
							 A object.
						
						
							
								 Returns an instance of
 the permission type that corresponds to the current attribute. The
 returned object contains the security information of the current attribute.
							
							
								 Override this
 method to create an instance of the permission type that corresponds to the
 current attribute. For example, the
 implementation of creates an instance of the

 class.
							
							
								 Security information specified
 using attributes is stored in metadata. The security information in the metadata is created using the permission object returned by
 this method.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets
 full (unrestricted) permission to the resource protected by the current instance.
						
						
							
								 if full access
 to the protected resource
 is declared or is being set; otherwise, .
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the XML object model for encoding security objects.
				
				
					 The simple XML object model for an element consists of the following
 parts:
					
						
							

 The tag is the element name.
						
						
							

 The attributes are zero or more name/value attribute
 pairs on the element.
						
						
							

 The children are zero or more elements nested within
 <tag> and </tag>.
						
					
					 An attribute name must be at least one character,
 and cannot be . If element-based value representation is
 used, elements with a text string that is
 are represented in the <tag/> form; otherwise, text is
 delimited by the <tag> and </tag> tokens. Both forms
can be combined with attributes, which are shown if present.
					 The tags, attributes, and
 text are case-sensitive. The XML form contains quotation marks and
 escape sequences where necessary. String values that include characters invalid for use
 in XML result in a .
 These rules apply to all properties and methods.
					
						 This class is intended to be a lightweight implementation of a simple XML
 object model for use within the security system, and not for use as a general
 XML object model.
						 It is strongly suggested that properties of a security element are expressed
 as attributes, and property values are expressed as attribute values.
 Specifically, avoid nesting text within tags. For any <tag>text</tag> representation a
 representation of type <tag
 value="text"/> is usually available. Using attribute-based XML
representations aids in readability.
						 For performance reasons, character validity is checked only when the element
 is encoded into XML form, and not on every set of a property or method call.
 Static methods allow explicit checking where needed.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the current instance.
						
						
							 A representation of the current instance.
						
						
							
								 The XML in the returned by this method represents the state of
 a permission object. To obtain the XML schema used to encode that object, see the class page for
 the particular permission object .
								 This method
 overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when
 an application does not have the permissions required to access a
 resource or perform a secured operation.
				
				
					
						 For more information about permissions and
 security, see Partition V of the CLI specification.
						 The following CIL instructions throw :
						
							
								 call
							
							
								 calli
							
							
								 callvirt
							
						
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message
that describes the error, such as "A security violation has occurred." This message takes into account the current system culture.
							 The property of the new instance
is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property of the new instance
is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of
 the new instance using and the property using . If is , the
 property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							
								 For more
 information on inner exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Describes a set of security permissions applied to
 code.
				
				
					 The
enumeration defines the permissions secured by this class.
					 The XML encoding of a instance is defined below
 in EBNF format. The following conventions are used:
					
						
							
								 All non-literals in the grammar below are shown in normal type.
							
						
						
							
								 All literals are in bold font.
							
						
					
					 The following meta-language symbols are used:
					
						
							

 '*' represents a meta-language symbol suffixing an
 expression that can appear zero or more times.
						
						
							

 '?' represents a meta-language symbol suffixing an
 expression that can appear zero or one time.
						
						
							

 '+' represents a meta-language symbol suffixing an
 expression that can appear one or more times.
						
						
							

 '(',')' is be used to group literals, non-literals or
 a mixture of literals and non-literals.
						
						
							

 '|' denotes an exclusive disjunction between two
 expressions.
						
						
							

 '::= ' denotes a production rule where a left hand
 non-literal is replaced by a right hand expression containing literals,
 non-literals or both.
						
					
					 BuildVersion refers to the build version of the shipping CLI. This
 is a dotted build number such as '2412.0' .
					 ECMAPubKeyToken ::=

					
					 SecurityPermissionFlag = |
 | |
 |
					
					 Each SecurityPermissionFlag literal can appear in the XML no more than once.
 For example, Flags=Assertion,Assertion is illegal.
					
						 SecurityPermission ::=
						
							
						
						
							
						
						
							
						
						
							
						
						
							 BuildVersion
						
						
							
						
						
							 ECMAPubKeyToken
						
						
							
						
						 (
						
							
						
)
						 |
						 (
						
							 SecurityPermissionFlag
(SecurityPermissionFlag)*)
						 | ()
						
							
						
					
				
			
			
				 System.Security.CodeAccessPermission
			
			
				
					 System.Security.IPermission
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the class
 with the specified
 value.
						
						
							 A value. This value is either or , respectively yielding fully restricted or fully unrestricted access to all security variables.
						
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the class
 with the specified
 value.
						
						 One or more values. Specify multiple values for using the bitwise OR operator.
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns
 a object containing the same values
 as the current instance.
						
						
							 A new
instance containing the same values as the current instance.
						
						
							
								 The object returned by this method represents the same access to resources
 as the current instance.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reconstructs the state of a object using the specified
 XML encoding.
						
						 A instance containing the XML encoding to use to reconstruct the state of a object.
						
							 is .
						
							
								 does not contain the encoding for a instance.
							 The version number of is not valid.
						
						
							 The state of the current instance is changed to the
 state encoded in .
							
								 For the XML encoding for this class, see
 the
 class page.
								 This method overrides
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns
 a object that is the intersection of
 the current instance and the specified object.
						
						 A object that is of the same type as the current instance to be intersected with the current instance.
						
							 A new instance that represents the
 intersection of the current instance and . If
 the intersection is empty, or
 is , returns .
						
						
							 is not and is not of type .
						
							
								 The intersection of two permissions is a permission that secures the
 resources and operations secured by both permissions. Specifically, it represents
 the minimum permission such that any demand that passes both permissions will
 also pass their intersection.
								 This method overrides and is implemented to
 support the

 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of
 the specified object.
						
						 A object of the same type as the current instance that is to be tested for the subset relationship with the current instance.
						
							
								 if the current instance is a subset of ;
 otherwise, . If the current instance is unrestricted, and
 is not, returns . If is
 unrestricted, returns . If target is
 and the current instance was initialized with
 , returns
 . If target is and the current instance was initialized with any value
 other than , returns
 .
						
						
							 is not and is not of type .
						
							
								 The current instance is a subset of if the current instance
 specifies a set of accesses to resources that is wholly contained by
 . For example, a permission that represents read access to a file
 is a subset of a permission that represents read and write access to the file.
								 This method overrides and is implemented to
 support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.SecurityElement
					
					
					
						
							 Returns the XML encoding of the current
 instance.
						
						
							 A containing an XML encoding of the state of the
 current instance.
						
						
							
								 For the XML encoding for this class, see
 the class page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a object that is the union of the
 current instance and the specified object.
						
						 A object of the same type as the current instance to be combined with the current instance.
						
							 A new
instance
that represents the union of the current instance and . If the current instance
or is unrestricted, returns
a
instance that is unrestricted. If is ,
returns a copy of the current instance using the
method.
						
						
							 is not and is not of type .
						
							
								 The result of a call to is a permission
 that represents all of the access to security permissions represented by the
 current instance as well as the security permissions represented by
 . Any demand that passes either the current instance or

 passes their union.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Used to apply a security action and a set of
 security permissions to program code.
				
				
					
						 The security permissions are defined in the enumeration and are specified using
 the property.
						 The security information declared by a
 security attribute is stored in the metadata of the attribute target, and is accessed by
 the system at run-time. Security attributes are used for
 declarative security only. For imperative security, use the corresponding
 permission class, .
						 The allowable targets are
 determined by the passed to the constructor.
					
				
				
					 In the following example, the attribute target is
 an assembly. The attribute declares that the
 ability to assert permissions
 on behalf of callers is the minimum permission required for the assembly to execute.
					
						 [assembly:SecurityPermissionAttribute(SecurityAction.RequestMinimum, Assertion=true)]

					
				
			
			
				 System.Security.Permissions.CodeAccessSecurityAttribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified value.
						
						 A value.
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new object
 that contains the security information of the current instance.
						
						
							 A new object
 with the security information of the current instance.
						
						
							
								 Applications typically do not call this method; it is intended for use by the
 system.
								 The security information declared by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time. The
 system uses the object returned by this method to convert the security
 information of the current instance into the form stored in metadata.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Security.Permissions.SecurityPermissionFlag
					
					
					
						
							 Gets or sets values that define the
 permissions declared by the current instance.
						
						
							 One or more values.
 To specify multiple values in a set operation,
 use the bitwise OR operator.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies a set of security permissions applied to a
 instance.
				
				
					 This enumeration is used by .
					
						 is
a bit-field; specify multiple values using the bitwise OR
operator.
					 For information on security, see Partition
 II of the CLI Specification.
					
						 Many of these flags are powerful and
 should only be granted to highly trusted code.
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityPermissionFlag
					
					
					 Assertion
					
						
							 Specifies the ability to assert that all of the callers
 of the code granted this permission
 will pass the check for
 a specific permission
 or permission set.
							 The ability to assert a specific permission or permission set allows code to
 ensure that its callers do not fail with a security exception for lack of
 the specific permission or permission set asserted.
							
								 Asserting a permission is often used
 when writing library code that accesses protected resources but itself does not
 expose these resources in any exploitable way to the calling code.

							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityPermissionFlag
					
					
					 ControlThread
					
						
							 Specifies the ability to control thread behavior.
 The operations protected include
 and .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityPermissionFlag
					
					
					 Execution
					
						
							 Specifies permission for the code to run. Without this
 permission managed code cannot execute.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityPermissionFlag
					
					
					 NoFlags
					
						
							 Specifies that none of the permissions in this
 enumeration are available.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityPermissionFlag
					
					
					 SkipVerification
					
						
							 Specifies the right to skip the verification checks that
 ensure type safety and metadata correctness in an assembly. If an assembly has
 been granted this permission it will not fail with a
 even if the assembly contains unverifiable constructs.
							
								 Code that is
 unverifiable can execute without causing a if
 this permission is granted.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.SecurityPermissionFlag
					
					
					 UnmanagedCode
					
						
							 Specifies the ability to call unmanaged code.
							
								

 Because unmanaged code potentially allows other permissions to be bypassed,
 this permission should be used with caution. It is used for applications calling native
 code using PInvoke.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the seek reference positions.
				
				
					 The enumeration is used by the overrides of the method to set
 the seek reference point in a stream, which allows you to specify an offset from
 the reference point.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.IO.SeekOrigin
					
					
					 Begin
					
						
							 Indicates that the seek reference point is the beginning of a
 stream.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.SeekOrigin
					
					
					 Current
					
						
							 Indicates that the seek reference point is the current position
 within a stream.
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.SeekOrigin
					
					
					 End
					
						
							 Indicates that the seek reference point is the first byte beyond the end of a stream.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when the execution stack overflows due to too many
 method calls.
				
				
					
						
							 is thrown for execution stack overflow errors, typically
 in the case of a very deep or unbounded recursion.
						 The localloc CIL instruction throws .
					
				
				
					 The following example demonstrates an error that causes
 a exception.
					 using System;
public class StackOverflowExample {
 public static void recursion() { recursion(); }
 public static void Main() {
 try {
 recursion();
 }
 catch(StackOverflowException e) {
 Console.WriteLine("Error caught: {0}", e);
 }
 }
}

					 The output is
					
						 Error
 caught: System.StackOverflowException: Exception of type
 System.StackOverflowException was thrown.
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "The requested operation caused a
 stack overflow." This message takes into account the current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For information on inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Abstract base class for all stream implementations.
				
				
					 Streams involve three fundamental operations:
					
						
							

 You can read from streams. Reading is the transfer of
 data from a stream into a data structure, such as an array of bytes.
						
						
							

 You can write to streams. Writing is the transfer of
 data from a data structure into a stream.
						
						
							

 Streams can support seeking. Seeking is the querying and modifying of the
 current position within a stream. Seek capability depends on the kind of
 backing store a stream has. For example, network streams have no unified
 concept of a current position, and therefore typically do not support seeking.
						
					
					 All classes that represent streams inherit from the
 class.
 The
 class and its subclasses provide a generic view of
 data sources and repositories, isolating the programmer from
 the specific details of the operating system and underlying devices.
					 Subclasses are required to provide implementations only
 for the synchronous read and write methods. The asynchronous read and write
 methods are implemented via the synchronous ones. The synchronous read and write methods
 are and . The asynchronous read and write methods are
 , , ,
 and .
					
					 Depending on the underlying data source or repository, streams might support
 only some of these capabilities. An application can query a stream for its
 capabilities by using the , , and
 properties.
					 The and methods read and write data
in a variety of formats. For streams that support seeking, the and
 methods, and the and
 properties can be used to query and modify the
current position and length of a stream.
					 Some stream implementations perform local buffering of the underlying data to
 improve performance. For such streams, the method can be used to clear
 any internal buffers and ensure that all data has been written to the underlying
 data source or repository.
					 Calling on a flushes any
buffered data, essentially calling for you. also releases operating system resources such as file handles, network
connections, or memory used for any internal buffering.
					 If you need a with no backing store (i.e., a bit bucket), use

.
				
			
			
				 System.MarshalByRefObject
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
					
					
						
							 Begins an asynchronous read operation.
						
						 The array to read the data into.
						 A that specifies the byte offset in at which to begin writing data read from the stream.
						 A that specifies the maximum number of bytes to read from the stream.
						 A delegate to be called when the read is complete, or .
						 An application-defined object, or .
						
							 A that contains
 information about the asynchronous read operation, which could still
 be pending.
						
						 The current does not support reading.
						 The stream is closed.
						 An I/O error occurred.
						
							 This method starts an asynchronous read operation. To
 determine how many bytes were read and release resources allocated by this
 method, call the method and specify the object
 returned by this method. The method
 should be called exactly once for each call to .
							
							 If the
 parameter is not , the method referenced by is invoked when the asynchronous operation
 completes. The
 object returned by this method
 is passed as the argument to the method referenced by .
							 The current position in the stream is updated when the
 asynchronous read or write is issued, not
 when the I/O operation completes.
							 Multiple simultaneous asynchronous requests render the request completion order unspecified.
							 The parameter can be any object that the caller wishes to have
 available for the duration of the asynchronous operation. This object is
 available via the property of the object returned by this
 method.
							
								 Use the
property to determine whether the current instance supports
reading.
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
					
					
						
							 Begins an asynchronous write operation.
						
						 The array to be written to the current stream.
						 A that specifies the byte offset in at which to begin copying bytes to the current stream.
						 A that specifies the maximum number of bytes to be written to the current stream.
						 A delegate to be called when the write is complete, or .
						 An application-defined object, or .
						
							 A
that represents the asynchronous write, which could still be pending.
						
						 The current does not support writing.
						 The stream is closed.
						 An I/O error occurred.
						
							 Pass the returned by this method to to ensure that the write completes and frees
 resources appropriately. If an error occurs during an asynchronous
 write, an exception will not be thrown until is
 called with the returned by this method. If a failure is detected from the underlying OS (such as if a floppy
 is ejected in the middle of the operation), the results of the write operation are undefined.
							
							 If the parameter is not , the method
referenced by is invoked when the asynchronous operation
completes. The object returned by this method is passed as the argument
to the method referenced by .
							 The parameter can be any object that the caller wishes to have
available for the duration of the asynchronous operation. This object is
available via the property of the object returned by this
method.
							 If a stream is writable, writing at the end of
 it expands the stream.
							 The current position in the stream is updated when you issue the asynchronous
 read or write, not when the I/O operation completes. Multiple simultaneous
 asynchronous requests render the request completion order
 uncertain.
							
								
									 should generally be greater than 64
 KB.
								 Use the property to
determine whether the current instance supports writing.
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports reading.
						
						
							
								 if the stream supports reading;
 otherwise, .
						
						
							 If a class derived from does not support reading, the following methods
 throw a : ,
 and .
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports seeking.
						
						
							
								 if the stream supports seeking;
 otherwise, .
						
						
							 If a class derived from does not support seeking, the following methods throw a : ,
 ,
 , or .
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports writing.
						
						
							
								 if the stream supports writing;
 otherwise, .
						
						
							 If a class derived from does not support writing, the following methods
 throw a : , , and .
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current stream
 and releases any resources associated with the current stream.
						
						
							 Following a call to this method, a call to another operation on the same stream might result in an exception (such as , for example). However, if the stream is already closed, a call to throws no exceptions.
							
								 If this method

 is called while an asynchronous read or write is pending for a stream, the
 behavior of the stream is undefined.

							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Threading.WaitHandle
					
					
					
						
							 Allocates a object.
						
						
							 A reference to the allocated .
						
						
							 When called for the first time this method
 creates a object and returns it. On subsequent
 calls, the method returns a reference to the same wait
 handle.
							
								
									 is useful if you implement the
 asynchronous methods and require a way of blocking in or
 until the asynchronous operation is
 complete.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Ends a pending asynchronous read request.
						
						 The object that references the pending asynchronous read request.
						
							 A that indicates the number of bytes read from the stream,
 between 0 and the number of bytes specified via the parameter . Streams only return
0 at the end of the stream, otherwise, they block until at
least 1 byte is available.
						
						
							 is .
						
							 did not originate from a method on the current stream.
						
							
								 blocks until the I/O operation has completed.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Ends an asynchronous write operation.
						
						 A that references the outstanding asynchronous I/O request.
						 The parameter is .
						
							 did not originate from a method on the current stream.
						
							
								 is required to be called exactly once for every . blocks until the write I/O operation has completed.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Flushes the internal buffer.
						
						 An I/O error occurs.
						 The stream is closed.
						
							
								 Implementers should use this method to move any information from an underlying buffer
 to its destination. The method should clear the buffer, but the stream
 should not be closed. Depending upon the state of the object, the current
 position within the stream might need to be modified (for example, if the
 underlying stream supports seeking). For additional information see
 .
							
							
								 As described
 above.
							
							
								 Override on
 streams that implement a buffer.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets the length in bytes of the stream.
						
						
							 A value representing the length of the stream in
 bytes.
						
						 The stream does not support seeking.
						 The stream is closed.
						
							
								 Use the
property to determine whether the current instance supports
seeking.
							
							
								 This property is
 read-only.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.Stream
					
					
					
						
							 Returns a with no backing store.
						
						
							
								
									 is used to redirect output to a stream
 that does not consume any operating system resources. When the methods of that provide writing are invoked on
 , they simply return, and no data is written. also implements a method that returns zero without reading data.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets or sets the position within the current stream.
						
						
							 A that specifies the current position within the stream.
						
						 The stream does not support seeking.
						 The stream is closed.
						 An I/O error has occurred.
						
							 The stream is required to support seeking to get or set the
 position. Use the
 property to determine whether the current instance supports seeking.
							
							 Classes that derive from are required to provide an implementation of
 this property.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads a sequence of bytes from the current stream and advances the position
 within the stream by the number of bytes read.
						
						 A array. When this method returns, the elements between and are replaced by the bytes read from the current source.
						 A that specifies the zero based byte offset in at which to begin storing the data read from the current stream.
						 A that specifies the maximum number of bytes to be read from the current stream.
						
							 A that specifies the total number of bytes read into the
 buffer, or zero if the end of the stream has been
 reached before any data can be read.
						
						 (+ - 1) is greater than the length of .
						
							 is .
						
							 or is less than zero.
						 The current stream does not support reading.
						 The stream is closed.
						 An I/O error occurred.
						
							
								 Use the
property to determine whether the current instance supports
reading.
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Reads a byte from the stream and advances the position
 within the stream by one byte.
						
						
							 The unsigned byte cast to a , or -1 if at the end
 of the stream.
						
						 The stream does not support reading.
						 The stream is closed.
						 An I/O error has occurred.
						
							
								 As described above.
							
							
								 Use the property to determine whether
 the current instance supports reading.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Changes the position within the current stream by the given offset, which is relative to the stated origin.
						
						 A that specifies the byte offset relative to origin.
						 A value indicating the reference point used to obtain the new position.
						
							 A that specifies the new position within the current stream.
						
						 The stream does not support seeking, such as if the stream is constructed from a pipe or console output.
						 The stream is closed.
						 An I/O error has occurred.
						
							
								 Use the property to determine whether
 the current instance supports seeking.
							
							
								 If is negative,
the new position is required to precede the position specified by by the number of bytes specified by . If is zero,
the new position is required to be the position specified by . If
 is positive, the new position is required to follow the position
specified by by the number of bytes specified by .
							
							
								 Classes derived from that
 support seeking are required to override this method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Sets the length of the current stream.
						
						 A that specifies the desired length of the current stream in bytes.
						 The stream does not support both writing and seeking, such as if the stream is constructed from a pipe or console output.
						 The stream is closed.
						 An I/O error occurred.
						
							
								 Use the
property to determine whether the current instance supports writing, and the
 property
to determine whether seeking is supported.
							
							
								 If the specified value is less than
 the current length of the stream, the stream is truncated. If the specified
 value is larger than the current length of the stream, the stream is expanded.
 If the stream is expanded, the contents of the stream between the old and the
 new length are initialized to zeros.
							
							
								 There is no default
 implementation.
							
							
								 Classes derived from are required to
support both writing and seeking for
to work.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a
 sequence of bytes to the current stream and advances the current position within
 the current stream by the number of bytes written.
						
						 A array containing the data to write.
						 A that specifies the zero based byte offset in at which to begin copying bytes to the current stream.
						 A that specifies the number of bytes to be written to the current stream.
						 (+) is greater than the length of .
						
							 is .
						
							 or is negative.
						 The stream does not support writing.
						 The stream is closed.
						 An I/O error occurred.
						
							
								 Use the property to determine whether
 the current instance supports writing.
							
							
								 If the write operation is
 successful, the position within the stream advances by the number of bytes
 written. If an exception occurs, the position within the stream remains
 unchanged.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a to the current position in the stream and advances the position within the stream by one byte.
						
						 The to write to the stream.
						 The stream does not support writing.
						 The stream is closed.
						 An I/O error has occurred.
						
							
								 Use the property to determine whether
 the current instance supports writing.
							
							
								 As described above.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Implements a that reads
 characters from a byte stream in a particular encoding.
				
				
					 The class is designed for
 character input in a particular , whereas subclasses of are designed for byte input and output.
					
						
							 defaults to UTF-8 encoding unless specified
 otherwise, instead of defaulting to the ANSI code page for the current system.
 UTF-8 handles Unicode characters correctly and provides consistent results on localized
 versions of the operating system.
						 When reading from a , it is more efficient to use a buffer that is the
same size as the internal buffer of the stream.
						 By default, a is not thread safe. For a
thread-safe wrapper, see
.
					
				
			
			
				 System.IO.TextReader
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified file name, with the specified character encoding, byte order
 mark detection option, and buffer size.
						
						 A that specifies the complete file path to read.
						 A that specifies the character encoding to use.
						 A value that indicates whether the new is required to look for byte order marks at the beginning of the stream. Specify to enable detection of byte order marks; otherwise, specify .
						 A that specifies the minimum buffer size, in number of 16-bit characters. If less than the minimum allowable size (128 characters), the minimum allowable size is used.
						
							 is in an invalid format or contains invalid characters.
						 The directory information specified in was not found.
						 The file specified in was not found.
						
							 is an empty string ("").
						
							 or is .
						
							 is less than or equal to zero.
						
							 This constructor initializes the property using
 .
							 If requested, the current constructor detects the encoding by examining the
 first three bytes of the stream. The constructor automatically recognizes UTF-8,
 little-endian Unicode, and big-endian Unicode text if the file starts with the
 appropriate byte order marks. Otherwise, the user-provided encoding is used. See
 the method for more information.
							
								
									 is not required to be a file stored on disk;
 it can be any part of a system that supports access via streams. For example,
 depending on the system, this class might be able to access a physical device.
								 When reading from a , it is more efficient to use a buffer that is the
same size as the internal buffer of the stream.
								 For information on the valid format and characters for path strings, see
 .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified file name, with the specified character encoding and byte order mark detection option.
						
						 A that specifies the complete file path to read.
						 A that specifies the character encoding to use.
						 A value that indicates whether the new is required to look for byte order marks at the beginning of the stream. Specify to enable detection of byte order marks; otherwise, specify .
						
							 is in an invalid format or contains invalid characters.
						 The directory information specified in was not found.
						 The file specified in was not found.
						
							 is an empty string ("").
						
							 or is .
						
							 This constructor initializes the property using
 , and the internal buffer to the default size.
 The default buffer size is implementation
 defined.
							
							 If requested, the current constructor detects the
 encoding by examining the first three bytes of the stream. The constructor
 automatically recognizes UTF-8, little-endian Unicode, and big-endian Unicode
 text if the file starts with the appropriate byte order marks. Otherwise, the
 user-provided encoding is used. See the

 method for more information.
							
								
									 is not required to be a
 file stored on disk; it can be any part of a system that supports access via
 streams. For example, depending on the system, this class might be able to access
 a physical device.
								 For information on the valid format and characters for
 path strings, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class for the specified file name and with the specified character encoding.
						
						 A that specifies the complete file path to read.
						 A that specifies the character encoding to use.
						
							 is in an invalid format or contains invalid characters.
						 The directory information specified in was not found.
						 The file specified in was not found.
						
							 is an empty string ("").
						
							 or is .
						
							 This constructor initializes the property using
 , and the internal buffer to the default size.
 The default buffer size is implementation
 defined.
							
							
								
									 is not required to be a
 file stored on disk; it can be any part of a system that supports access via
 streams. For example, depending on the system, this class might be able to access
 a physical device.
								 For information on the valid format and characters for
 path strings, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class
 for the specified file name, with the specified byte order mark detection option.
						
						 A that specifies the complete file path to read.
						 A value that indicates whether the new is required to look for byte order marks at the beginning of the stream. Specify to enable detection of byte order marks; otherwise, specify .
						
							 is in an invalid format or contains invalid characters.
						 The directory information specified in was not found.
						 The file specified in was not found.
						
							 is an empty string ("").
						
							 is .
						
							 This constructor initializes the property to , and the internal buffer to the default size.
 The default buffer size is implementation
 defined.
							
							 If requested, the current constructor
 detects the encoding by examining the first three bytes of the stream.
 The constructor automatically recognizes UTF-8, little-endian Unicode, and
 big-endian Unicode text if the file starts with the appropriate byte order marks.
 Otherwise, UTF-8 encoding is used. See the
 method for more information.
							
								
									 is not required to be a
 file stored on disk; it can be any part of a system that supports access via
 streams. For example, depending on the system, this class might be able to access
 a physical device.
								 For information on the valid format and characters for
 path strings, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified file name.
						
						 A that specifies the complete file path to read.
						
							 is in an invalid format or contains invalid characters.
						 The directory information specified in was not found.
						 The file specified in was not found.
						
							 is an empty string ("").
						
							 is .
						
							 This constructor initializes the property to , and
 the internal buffer to the default size. The default buffer size is implementation defined.
							
							
								
									 is not required to be
 a file stored on disk; it can be any part of a system that supports access via
 streams. For example, depending on the system, this class might be able to access
 a physical device.
								 For information on the valid format and characters for
 path strings, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified stream, with the specified character encoding, byte order mark
 detection option, and buffer size.
						
						 The to read.
						 A that specifies the character encoding to use.
						 A value that indicates whether the new is required to look for byte order marks at the beginning of the stream. Specify to enable detection of byte order marks; otherwise, specify .
						 A that specifies the minimum buffer size, in number of 16-bit characters. If is less than the minimum allowable size (128 characters), the minimum allowable size is used.
						
							 does not support reading.
						
							 or is .
						
							 is less than or equal to zero.
						
							 This constructor initializes the property using
 parameter the property using .
							 If requested, this constructor detects the encoding by examining
 the first three bytes of the stream. The constructor automatically recognizes UTF-8,
 little-endian Unicode, and big-endian Unicode text if the
 file starts with the appropriate byte order marks. Otherwise, the user-provided encoding is
 used. For more information, see the method.
							
								 When reading from a , it is more
efficient to use a buffer that is the same size as the internal buffer of the
stream.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified stream, with the specified character encoding and byte order mark detection option.
						
						 The to read.
						 A that specifies the character encoding to use.
						 A value that indicates whether the new is required to look for byte order marks at the beginning of the stream. Specify to enable detection of byte order marks; otherwise, specify .
						
							 does not support reading.
						
							 or is .
						
							 This constructor initializes the property using
 , the property using , and the internal buffer to the default size.
 The default buffer size is implementation
 defined.
							
							 If requested, this constructor detects the encoding
 by examining the first three bytes of
 . This constructor
 automatically recognizes UTF-8, little-endian Unicode, and big-endian Unicode text if the stream starts
 with the appropriate byte order marks. Otherwise, the user-provided encoding is
 used. See the method for more information.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified stream.
						
						 The to read.
						
							 does not support reading.
						
							 is .
						
							 This constructor initializes the property to , the property using , and the internal buffer to the default size.
 The default buffer size is implementation
 dependent.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified stream, with the specified
 byte order mark detection option.
						
						 The to read.
						 A value that indicates whether the new is required to look for byte order marks at the beginning of the stream. Specify to enable detection of byte order marks; otherwise, specify .
						
							 does not support reading.
						
							 is .
						
							 This constructor initializes the property to , the property using , and the internal buffer to the default size.
 The default buffer size is implementation
 defined.
							
							 If requested, the current constructor detects the encoding by
 examining the first three bytes of the stream. The constructor automatically recognizes
 UTF-8, little-endian Unicode, and big-endian Unicode text if
 the file starts with the appropriate byte order marks. Otherwise, UTF-8 encoding is
 used. For more information, see the method.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class for the specified stream with the specified character encoding.
						
						 The to read.
						 A that specifies the character encoding to use.
						
							 does not support reading.
						
							 or is .
						
							 This constructor initializes the property using , the property using
 , and the internal buffer to the default size. The default buffer size is implementation defined.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.IO.Stream
					
					
					
						
							 Gets the underlying stream.
						
						
							 The underlying which the current instance is reading.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current instance of
, releasing any system resources associated with it.
						
						
							 Following a call to this method, operations on the current instance might raise exceptions.
							
								 This version of is equivalent to ().
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets the current character encoding that the current
 is
 using.
						
						
 The current used by the current reader.

						
							 This property is read-only.
							 The value returned
 by this property might change after the first call to a
 method if encoding auto detection was specified to the constructor for the
 current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Allows a
to discard its buffered data.
						
						
							
								 This method is useful when reading from a stream after seeking
 to a new position. If this method is not called and the internal
 buffer is not empty, a read attempt at the new location will first
 return data that is in the buffer before returning the text at the current
 position in the stream.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the and
 optionally releases the managed resources.
						
						
							 to release both managed and unmanaged resources; to release only unmanaged resources.
						
							 When the parameter is , this method
 releases all resources held by any managed objects that this
 references. This method invokes the method of each
 referenced object.
							
								
									 can be called multiple
 times by other objects. When overriding (), be careful not
 to reference objects that have been previously disposed in an earlier call to
 .
								 This method calls the dispose method of the base class, ().
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Returns the next character in the underlying stream
 without advancing the position of the
 in the stream.
						
						
							 The next character from the character source
 as a , or -1 if at the end of the
 stream.
						
						 An I/O error occurred.
						
							
								 This method returns -1 is when the end of the underlying stream is reached
 because a Unicode character can contain only values between hexadecimal 0x0000
 to 0xFFFF (0 to 65535).
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Reads the next
 character from the input stream
 and advances the character position by one character.
						
						
							 The next character from the character source represented
 as a , or -1 if at the end
 of the stream.
						
						 An I/O error occurred.
						
							
								 This method returns -1 when the end of the underlying stream is reached
 because a Unicode character can contain only values between hexadecimal 0x0000
 to 0xFFFF (0 to 65535).
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads a maximum of
characters from the current stream into ,
beginning at .
						
						 A array. When this method returns, contains the specified character array with the values between and replaced by the characters read from the current instance.
						 A that specifies the index of at which to begin writing.
						 A that specifies the maximum number of characters to read.
						
							 A containing the number of characters that have been read, or zero if
 there are no more characters left to read. Can be less than
 if the end
 of the stream has been reached.
						
						
							 .Length - < .
						
							 is .
						
							 or is negative.
						
							 An I/O error occurred.
							 -or-
							 The current stream is closed.
						
						
							
								 This method returns after either characters are
 read, or the end of the file is reached. is a blocking
 version of .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads a line of characters from the current stream and returns
 the data as a string.
						
						
							 A containing the next line from the input stream, or
 if the end of the input
 stream is reached.
						
						 An I/O error occurred.
						 There is insufficient memory to allocate a buffer for the returned string.
						
							
								 This method defines a line as a sequence of
 characters followed by a carriage return (hexadecimal 0x000d), a line feed (hexadecimal 0x000a), or . The returned string does not contain the terminating
 character(s).
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the stream from the current position to the
 end of the stream.
						
						
							 A containing the rest of the stream as a string, from the current
 position to the end. If the current position is at the end of the stream, returns the empty string ("").
						
						 An I/O error occurred.
						 There is insufficient memory to allocate a buffer for the returned string.
						
							
								 This method overrides
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Implements a wrapper that writes
 characters to a stream in a particular encoding.
				
				
					 The class is designed for character output in a particular
 ,
 whereas subclasses of are designed for byte
 input and output.
					
						 defaults to using an instance of unless specified
otherwise. This instance of is constructed such that the method returns
the Unicode byte order mark written in UTF-8. The preamble of the encoding is
added to a stream when you are not appending to an existing stream. This means
any text file you create with has three byte order marks at
its beginning. UTF-8
handles all Unicode characters correctly and gives consistent results on
localized versions of the operating system.
					
						 By default,
 is not thread safe. For a thread-safe wrapper, see
.
					
				
			
			
				 System.IO.TextWriter
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class for the specified file on
the specified path, using the specified encoding and buffer size.
						
						 A that specifies the complete file path to write to.
						 A value that determines whether data is to be appended to the file. If the file exists and is , the file is overwritten. If the file exists and is , the data is appended to the file. Otherwise, a new file is created.
						 A that specifies the character encoding to use.
						 A that specifies the buffer size.
						 A general I/O exception occurred, such as trying to access a CD-ROM drive whose tray is open.
						 The directory information specified in was not found.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 or is .
						
							 is in an implementation-specific invalid format.
						 The length of or the absolute path information for exceeds the implementation-specific maximum length.
						
							 is negative.
						 The caller does not have the required permission.
						 Access is denied. The caller does not have the required permission.
						
							 If the specified file exists, it can be either overwritten or appended to. If
 the file does not exist, this constructor creates a new file.
							 This constructor initializes the property using
 . For additional information, see .
							
								
									 is not required to be a file stored on disk; it can be any part
 of a system that supports access via streams. For example, depending on the
 system, this class might be able to access a physical device.
								 For information on the valid format and characters for path strings, see
 .
							
						
						 Requires permission for reading and writing files. See ,
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class for the specified file on
the specified path, using the specified encoding and default buffer size.
						
						 A that specifies the complete file path to write to.
						 A value that determines whether data is to be appended to the file. If the file exists and is , the file is overwritten. If the file exists and is , the data is appended to the file. Otherwise, a new file is created.
						 A that specifies the character encoding to use.
						 A general I/O exception occurred, such as trying to access a CD-ROM drive whose tray is open.
						 The directory information specified in was not found.
						 Access is denied. The caller does not have the required permission.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 or is .
						
							 is in an implementation-specific invalid format.
						 The length of or the absolute path information for exceeds the implementation-specific maximum length.
						 The caller does not have the required permission.
						
							 If the specified file exists, it can be either overwritten or appended to. If
 the file does not exist, this constructor creates a new file.
							 This constructor initializes the property using
 . For additional information, see .
							
								
									 is not required to be a file stored on disk;
 it can be any part of a system that supports access via streams. For example,
 depending on the system, this class might be able to access a physical device.
								 For information on the valid format and characters for path strings, see
 .
								 The default buffer size can typically be around 4 KB.
							
						
						 Requires permission for reading and writing files. See ,
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class for the specified file on
the specified path, using the default encoding and buffer size.
						
						 A that specifies the complete file path to write to.
						 A value that determines whether data is to be appended to the file. If the file exists and is , the file is overwritten. If the file exists and is , the data is appended to the file. Otherwise, a new file is created.
						 A general I/O exception occurs, such as trying to access a CD-ROM drive whose tray is open
						 The directory information specified in was not found.
						 Access to is denied. The caller does not have the required permission.
						
							 is a zero-length string, contains only white space, or contains one or more implementation-specific invalid characters.
						
							 is in an implementation-specific invalid format.
						 The length of or the absolute path information for exceeds the implementation-specific maximum length.
						
							 is .
						 The caller does not have the required permission.
						
							 This constructor initializes the
property to whose method returns an empty
byte array. For additional information, see .
							 If the specified file exists, it can be either overwritten or appended to. If
 the file does not exist, this constructor creates a new file.
							
								
									 is not required to be a file stored on disk;
 it can be any part of a system that supports access via streams. For example,
 depending on the system, this class might be able to access a physical device.
								 For information on the valid format and characters for path strings, see
 .
								 The default buffer size can typically be around 4 KB.
							
						
						 Requires permission for reading and writing files. See ,
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified stream, using the default
 encoding and buffer size.
						
						 The to write to.
						
							 does not support writing.
						
							 is .
						
							 This constructor initializes the property to a whose method returns an empty
 byte array. For additional information,
 see
 . The property is initialized using
 .
							
								 The default buffer size can typically be
 around 4 KB.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class for the specified stream, using the specified
encoding and the default buffer size.
						
						 The to write to.
						 A that specifies the character encoding to use.
						
							 or is .
						
							 does not support writing.
						
							 This constructor initializes the property using , and the property
 using . For additional information, see .
							
								 The default buffer size can typically be
 around 4 KB.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class for the specified stream, using the specified
encoding and buffer size.
						
						 The to write to.
						 A that specifies the character encoding to use.
						 A that specifies the buffer size.
						
							 or is .
						
							 is negative.
						
							 does not support writing.
						
							 This constructor initializes the property using
 , and the property using . For additional information, see .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class for the specified file on the specified path, using the default encoding and
 buffer size.
						
						 A that specifies the complete file path to write to.
						
							 is in an invalid format or contains invalid characters.
						 The directory information specified in was not found.
						 Access to is denied.
						
							 is an empty string ("").
						
							 is .
						 The length of or the absolute path information for exceeds the implementation-specific maximum length.
						 The caller does not have the required permission.
						
							 This constructor initializes the property to
 a whose method returns an empty
 byte array. For additional information, see .
							
								
									 is not required to be a file stored on disk;
 it can be any part of a system that supports access via streams. For example,
 depending on the system, this class might be able to access a
 physical device.
								 For information on the valid format and characters for
 path strings, see
 .
								 The default buffer size can typically be around 4 KB.
							
						
						 Requires permission for reading and writing files. See ,
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether the
 current will flush its buffer to the
 underlying stream after every call to .
						
						
							
								 to force
 to flush its
 buffer; otherwise, .
						
						
							 The will do a limited amount of buffering, both
 internally and potentially in the encoder from the encoding you passed in. If

is set to , the data will
be flushed into the underlying stream only when the buffer is full, or when
 () or
is called.
							 Setting to
 forces to flush the buffered data out of the
encoder and call on the
stream every time
is called.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.IO.Stream
					
					
					
						
							 Gets the underlying
 stream.
						
						
							 The the current instance
 is writing to.
						
						
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current
and the underlying stream.
						
						
							 This method calls
, writing buffered data to the underlying stream. Following a call to , any operations on the current instance
might raise exceptions.
							
								 This version of is equivalent to ().
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the and
 optionally releases the managed resources.
						
						
							 to release both managed and unmanaged resources; to release only unmanaged resources.
						
							 When the parameter is , this method
 releases all resources held by any managed objects that this
 references. This method invokes the method of each
 referenced object.
							
								
									 can be called multiple
 times by other objects. When overriding (), be careful not
 to reference objects that have been previously disposed in an earlier call to
 .
								 This method calls the dispose method of the base class,
									
									
									 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets the in which the output is written.
						
						
							 The specified in
 the constructor for the current instance, or
 if an encoding was not
 specified.
						
						
							
								 This property overrides the
property.
							
							
								 As described above.
							
							
								 This property is required in some XML
 scenarios where a header must be written containing the encoding used by the
 .
 This allows XML code to consume an arbitrary and generate a correct XML
 header.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Releases resources held by the current instance.
						
						
							
								 Application code does not call this
 method; it is automatically invoked by during garbage collection unless
 finalization by the garbage collector has been disabled. For more information,
 see , and .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Clears all buffers for the current writer and causes any buffered
 data to be written to the underlying stream.
						
						 The current writer is closed.
						 An I/O error occurred.
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a character to the stream.
						
						 The to write to the underlying stream.
						
							 is or the buffer is full, and the contents of the buffer cannot be written to the underlying fixed size stream because the is at the end the stream.
						 The current writer is closed.
						 An I/O error occurred.
						
							 The specified character is written to the underlying stream unless the end
 of the stream is reached prematurely.
							 If is , is
 invoked automatically.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a character array to the underlying stream.
						
						 A array containing the data to write. If is , nothing is written.
						
							 is or the buffer is full, and the contents of the buffer cannot be written to the underlying fixed size stream because the is at the end the stream.
						 The current writer is closed.
						 An I/O error occurred.
						
							 The specified characters are written to the underlying stream unless the end
 of the stream is reached prematurely.
							 If is , is
 invoked automatically.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a sub-array of characters to the underlying stream.
						
						 A array containing the data to write.
						 A that specifies the index into at which to begin writing.
						 A that specifies the number of characters to read from .
						 buffer.Length - < .
						
							 is .
						
							 or is negative.
						
							 is or the buffer is full, and the contents of the buffer cannot be written to the underlying fixed size stream because the is at the end the stream.
						 The current writer is closed.
						 An I/O error occurred.
						
							 The specified
 characters are written to the underlying stream unless the end of the stream is
 reached prematurely.
							
							 If is , is
 invoked automatically.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a string to the stream.
						
						 The to write to the stream. If is , nothing is written.
						
							 is or the buffer is full, and the contents of the buffer cannot be written to the underlying fixed size stream because the is at the end the stream.
						 The current writer is closed.
						 An I/O error occurred.
						
							 The specified is written to the underlying stream unless the end
 of the stream is reached prematurely.
							 If is , is
invoked automatically.
							
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents an immutable series of characters.
				
				
					 An is the position of a character within a
 string. The first character in the string is at index 0. The length of a string
 is the number of characters it is made up of. The last accessible
 of a string
 instance is
 - 1.
					 Strings are immutable; once created, the contents of a
 do not change. Combining
 operations, such as , cannot alter existing strings.
 Instead, such operations return a new string that contains the results of the
 operation, an unchanged string, or the null value. To perform modifications to a
 use the

.
					 Implementations of are required to contain
a variable-length character buffer positioned a fixed number of bytes after
the beginning of the String object. The
method returns
the number of bytes between the start of the String object and the character buffer. This
information is intended primarily for use by compilers, not application programmers. For additional information, see
.
					
					
						 Comparisons and searches are case-sensitive by default,
 and unless otherwise specified, use the culture defined (if any) for the current thread
 to determine the order of the alphabet used by the strings. This information is
 then used to compare the two strings on a character-by-character basis. Upper
 case letters evaluate greater than their lowercase equivalents.
						 The following characters are considered white space when present in a instance: 0x9, 0xA, 0xB, 0xC, 0xD, 0x20, 0xA0, 0x2000, 0x2001,
 0x2002, 0x2003, 0x2004, 0x2005, 0x2006, 0x2007, 0x2008, 0x2009, 0x200A, 0x200B,
 0x3000, and 0xFEFF. The null character is defined as hexadecimal 0x00.
						 The () constructor is
 omitted for performance reasons. If you need a copy of a , consider using
 or
 the
 class.
						 To insert a formatted string representation of an object
 into a string, use the methods.
 These methods take one or more arguments to be formatted, and a format string.
 The format string contains literals and zero or more format
 specifications of the form { [,][:
]}, where:

						
							
								
									 is a zero-based integer
 indicating the argument to be formatted. If the actual argument is a null
 reference, then an empty string is used in its place.
							
							
								
									 is an optional integer
 indicating the minimum width of the region to contain the formatted value of
 argument
 . If the length of
 the string representation of the value is less than , then the
 region is padded with spaces. If is negative, the formatted value
 is left justified in the region; if is positive, then the value is right
 justified. If is
 not specified, it is assumed to be zero indicating that neither padding nor
 alignment is customized. Note that if the length of the formatted value is
 greater than , then is ignored.
							
							
								
									 is an
 optional string that determines the representation used for arguments.
 For example, an integer can be represented in hexadecimal or decimal format, or as a
 monetary value. If is
 omitted and an argument implements the interface, then a null reference is
 used as the format specifier. Therefore, all implementations of
 are required to allow a null reference as
 a format specifier, and return a string containing the default representation
 of the object as determined by the object type. For additional information on
 format specifiers, see
 .
							
						
						 If an object referenced in the format string implements
 ,
 then the method of the object provides the formatting. If the
 argument does not implement , then the method of the object provides default
 formatting, and
 , if present, is ignored.
 For an example that demonstrates this, see Example 2.
						 To include a
 curly bracket in a formatted
 string, specify the bracket twice; for example, specify "{{" to
 include "{" in the formatted string. See Example 1.
						 The class exposes the same functionality as the methods
via and . The primary difference is that the

methods return the formatted string, while the
System.Console methods write the formatted string to a stream.
					
					 When a non-empty string is searched for the first or last occurrence of an empty string, the empty string is found at the search start position.
				
				
					 Example 1
					 The following example demonstrates formatting numeric
 data types and inserting literal curly brackets into strings.
					 using System;
class StringFormatTest {
 public static void Main() {
 decimal dec = 1.99999m;
 double doub = 1.0000000001;

 string somenums = String.Format("Some formatted numbers: dec={0,15:E} doub={1,20}", dec, doub);
 Console.WriteLine(somenums);

 string curlies = "Literal curly brackets: {{ and }} and {{0}}";
 Console.WriteLine(curlies);

 object nullObject = null;
 string embeddedNull = String.Format("A null argument looks like: {0}", nullObject);
 Console.WriteLine(embeddedNull);
 }
}

					 The output is
					
Some formatted numbers: dec= 1.999990E+000 doub= 1.0000000001
Literal curly brackets: {{ and }} and {{0}}
A null argument looks like:

					 Example 2
					 The following example demonstrates how formatting works if is or is
 not implemented by an argument to the method. Note that the format specifier
 is ignored if the argument does not implement .
					 using System;
class StringFormatTest {
 public class DefaultFormatEleven {
 public override string ToString() {
 return "11 string";
 }
 }
 public class FormattableEleven:IFormattable {
 // The IFormattable ToString implementation.
 public string ToString(string format, IFormatProvider formatProvider) {
 Console.Write("[IFormattable called] ");
 return 11.ToString(format, formatProvider);
 }
 // Override Object.ToString to show that it is not called.
 public override string ToString() {
 return "Formatted 11 string";
 }
 }

 public static void Main() {
 DefaultFormatEleven def11 = new DefaultFormatEleven ();
 FormattableEleven for11 = new FormattableEleven();
 string def11string = String.Format("{0}",def11);
 Console.WriteLine(def11string);
 // The format specifier x is ignored.
 def11string = String.Format("{0,15:x}", def11);
 Console.WriteLine(def11string);

 string form11string = String.Format("{0}",for11);
 Console.WriteLine(form11string);
 form11string = String.Format("{0,15:x}",for11);
 Console.WriteLine(form11string);
 }
}

					 The output is
					
11 string
 11 string
[IFormattable called] 11
[IFormattable called] b

					 Example 3
					 The following example demonstrates searching for an empty string in a non-empty string.
					 using System;
class EmptyStringSearch {
	public static void Main() 	{
		Console.WriteLine("ABCDEF".IndexOf(""));
		Console.WriteLine("ABCDEF".IndexOf("", 2));
		Console.WriteLine("ABCDEF".IndexOf("", 3, 2));
		Console.WriteLine("ABCDEF".LastIndexOf(""));
		Console.WriteLine("ABCDEF".LastIndexOf("", 1));
		Console.WriteLine("ABCDEF".LastIndexOf("", 4, 2));
	}
}
					 The output is
					 0
2
3
5
1
4
				
			
			
				 System.Object
			
			
				
					 System.IComparable
					 0
				
				
					 System.ICloneable
					 0
				
				
					 System.IComparable<System.String>
					 0
				
				
					 System.IEquatable<System.String>
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
				
					 System.Collections.Generic.IEnumerable<System.Char>
					 0
				
			
			
				
					 DefaultMemberAttribute("Chars")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of
.
						
						 A .
						 A containing the number of occurrences of .
						
							 is less than zero.
						
							 If the specified number is 0, is
 created.
						
						
							 The following example demonstrates using this constructor.
							 using System;

public class StringExample {
 public static void Main() {

 string s = new String('a', 10);

 Console.WriteLine(s);
 }
}

							 The output is
							
								 aaaaaaaaaa
							
						
					
					 0
				
				
					
					
					 Constructor
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
					
						
					
					
						
							 Constructs and initializes a new instance of using a specified pointer to a sequence of Unicode characters.
						
						 A pointer to a null-terminated array of Unicode characters. If is a null pointer, is created.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative,
 use the ([]) constructor.
							 This constructor copies the sequence of Unicode characters at the specified
 pointer until a null character (hexadecimal 0x00) is reached.
							 If the specified array is not null-terminated, the
 behavior of this constructor is system dependent. For example, such a situation
 might cause
 an access violation.
							
								 In C# this
 constructor is defined only in the context of unmanaged code.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of
by copying the specified array of Unicode characters.
						
						 An array of Unicode characters.
						
							 If the specified array is a null reference or contains
 no elements, is created.
						
					
					 0
				
				
					
					
					 Constructor
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of using a specified
 pointer to a sequence of Unicode characters, the index within that sequence at
 which to start copying characters, and the number of characters to be copied to
 construct the
 .
						
						 A pointer to an array of Unicode characters.
						 A containing the index within the array referenced by from which to start copying.
						 A containing the number of characters to copy from to the new . If is zero, is created.
						
							
								 or is less than zero.
							 -or-
							
								 is a null pointer and is not zero.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use the
 (, ,) constructor.
							 This constructor copies Unicode characters from
 , starting at and ending at
 (+ - 1).
							 If the specified range is outside of the memory
 allocated for the sequence of characters, the behavior of this constructor is
 system dependent. For example, such a situation might cause an access violation.
							
								 In C# this
 constructor is defined only in the context of unmanaged code.
							
						
					
					 0
				
				
					
					
					 Constructor
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class to the value indicated by a specified pointer to an array of
 8-bit signed integers, a starting character position within that array, a
 length, and an
 object.
						
						 A pointer to a array.
						 A containing the starting position within .
						 A containing the number of characters within to use. If is zero, is created.
						 A object that specifies how the array referenced by is encoded.
						
							
								 or is less than zero.
							 -or-
							
								 is a null pointer and is not zero.
						
						
							 If is a
 pointer, a instance is constructed.
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of using an array of Unicode characters, the index within array at which to start
 copying characters, and the number of characters
 to be copied.
						
						 An array of Unicode characters.
						 A containing the index within the array referenced by from which to start copying.
						 A containing the number of characters to copy from the array. If is zero, is created.
						
							 is a null reference.
						
							
								 or is less than zero.
							 -or-
							 The sum of and is greater than the number of elements in .
						
						
							 This constructor copies the sequence Unicode characters
 found at between indexes and
 + - 1.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Char
					
					
						
					
					
						
							 Gets the character at a specified position in the current
 instance.
						
						
							 A Unicode character at the location index in the current instance.
						
						
							 is greater than or equal to the length of the current instance or less than zero.
						
							 This property is read-only.
							
								 is the position of a character within a
 string. The first character in the string is at index 0. The length of a string
 is the number of characters it is made up of. The last accessible
 of a string instance is its length
 - 1.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Returns a reference to the current instance of .
						
						
							 A reference to the current instance of .
						
						
							
								
									 does not generate a new instance. Use the or method to
 create a separate object with the same
 value as the current instance.
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
						
					
					
						
							 Compares substrings of two strings, ignoring or honoring their case.
						
						 The first containing a substring to compare. Can be a null reference.
						 A containing the starting index of the substring within .
						 The second containing a substring to compare. Can be a null reference.
						 A containing the starting index of the substring within .
						 A containing the maximum number of characters in the substrings to compare. If is zero, then zero is returned.
						 A indicating if the comparison is case-insensitive. If is , the comparison is case-insensitive. If is , the comparison is case-sensitive, and uppercase letters evaluate greater than their lowercase equivalents.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the specified substrings. For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value Type
									 Condition
								
								
									 A negative number
									 The substring in is < the substring
 in .
								
								
									 Zero
									 The substring in ==
 the substring in
 , or is zero.
								
								
									 A positive number
									 The substring in is > the substring
 in .
								
							
						
						
							
								 is greater than .Length
							 -or-
							
								 is greater than .Length
							 -or-
							
								 , , or is negative.
						
						
							
								 The result of comparing any (including the
 empty string) to a null reference is greater than zero. The result of comparing
 two null references is zero. Uppercase letters evaluate greater than their
 lower
 case
 equivalents.
								 The maximum number of characters compared is the lesser of the length of less , the length of less , and .
								 When a culture is available, the method uses the culture of the current thread to
 determine the ordering of individual characters. The two strings are compared on
 a character-by-character
 basis.
							
						
						
							 The following example demonstrates comparing substrings with and without case
 sensitivity.
							 using System;
public class StringCompareExample {
 public static void Main() {
 string strA = "STRING A";
 string strB = "string b";
 int first = String.Compare(strA, strB, true);
 int second = String.Compare(strA, 0, strB, 0, 4, true);
 int third = String.Compare(strA, 0, strB, 0, 4, false);
 Console.WriteLine("When the string 'STRING A' is compared to the string 'string b' in a case-insensitive manner, the return value is {0}.", first);
 Console.WriteLine("When the substring 'STRI' of 'STRING A' is compared to the substring 'stri' of 'string b' in a case-insensitive manner, the return value is {0}.", second);
 Console.WriteLine("When the substring 'STRI' of 'STRING A' is compared to the substring 'stri' of 'string b' in a case-sensitive manner, the return value is {0}.", third);
 }
}

							 The output is
							
								 When the string 'STRING A' is compared to the string 'string b' in a
 case-insensitive manner, the return value is -1.
								 When the substring 'STRI' of 'STRING A' is compared to the substring 'stri'
 of 'string b' in a case-insensitive manner, the return value is 0.
								 When the substring 'STRI' of 'STRING A' is compared to the substring 'stri'
 of 'string b' in a case-sensitive manner, the return value is 1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Compares substrings of two
 strings.
						
						 The first to compare. Can be a null reference.
						 A containing the starting index of the substring within .
						 The second to compare. Can be a null reference.
						 A containing the starting index of the substring within .
						 A containing the maximum number of characters in the substrings to compare. If is zero, then zero is returned.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the specified substrings. For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Meaning
								
								
									 A negative number
									 The substring in is < the substring
 in .
								
								
									 Zero
									 The substring in ==
 the substring in
 , or is zero.
								
								
									 A positive number
									 The substring in is > the substring
 in .
								
							
						
						
							 The sum of and is greater than .Length .
							 -or-
							 The sum of and is greater than .Length .
							 -or-
							
								 , , or is negative.
						
						
							
								 The result of comparing any (including the empty string) to a null
 reference is greater than zero. The result of comparing two null references is
 zero. Uppercase letters evaluate greater than their lowercase
 equivalents.
								 The method uses the culture (if any) of the current thread to
 determine the ordering of individual characters. The two strings are compared on a character-by-character
 basis.
							
						
						
							 The following example demonstrates comparing substrings.
							 using System;
public class StringCompareExample {
 public static void Main() {
 string strA = "A string";
 string strB = "B ring";
 int first = String.Compare(strA, 4, strB, 2, 3);
 int second = String.Compare(strA, 3, strB, 3, 3);
 Console.WriteLine("When the substring 'rin' of 'A string' is compared to the substring 'rin' of 'B ring', the return value is {0}.", first);
 Console.WriteLine("When the substring 'tri' of 'A string' is compared to the substring 'ing' of 'B ring', the return value is {0}.", second);
 }
}

							 The output is
							
								 When the substring 'rin' of 'A string' is compared to the substring 'rin' of
 'B ring', the return value is 0.
								 When the substring 'tri' of 'A string' is compared to the substring 'ing' of
 'B ring', the return value is 1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns sort order of two
objects, ignoring or honoring their case.
						
						 The first to compare. Can be a null reference.
						 The second to compare. Can be a null reference.
						 A indicating whether the comparison is case-insensitive. If is , the comparison is case-insensitive. If is , the comparison is case-sensitive, and uppercase letters evaluate greater than their lowercase equivalents.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the specified substrings. For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Meaning
								
								
									 A negative number
									
										 is < .
								
								
									 Zero
									
										 == .
								
								
									 A positive number
									
										 is > .
								
							
						
						
							
								 The result of comparing any (including the empty string) to a null
 reference is greater than zero. The
 result of comparing two null references is zero. Uppercase letters evaluate
 greater than their lowercase
 equivalents.
								 The method uses the culture (if any) of the
 current thread to determine the ordering of individual characters. The two strings
 are compared on a character-by-character
 basis.
								
									 (,
 ,
) is equivalent to
 (,
).
							
						
						
							 The following example demonstrates comparing strings with and without case
 sensitivity.
							 using System;
public class StringCompareExample {
 public static void Main() {
 string strA = "A STRING";
 string strB = "a string";
 int first = String.Compare(strA, strB, true);
 int second = String.Compare(strA, strB, false);
 Console.WriteLine("When 'A STRING' is compared to 'a string' in a case-insensitive manner, the return value is {0}.", first);
 Console.WriteLine("When 'A STRING' is compared to 'a string' in a case-sensitive manner, the return value is {0}.", second);
 }
}

							 The output is
							
								 When 'A STRING' is compared to 'a string' in a case-insensitive manner, the
 return value is 0.
								 When 'A STRING' is compared to 'a string' in a case-sensitive manner, the
 return value is 1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Compares two objects in a case-sensitive manner.
						
						 The first to compare. Can be a null reference.
						 The second to compare. Can be a null reference.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the specified strings. For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Meaning
								
								
									 A negative number
									
										 is lexicographically < .
								
								
									 Zero
									
										 is lexicographically == .
								
								
									 A positive number
									
										 is lexicographically > .
								
							
						
						
							 This method performs a case-sensitive operation.
							
								 The result of comparing any (including the empty string) to a null
 reference is greater than zero. The
 result of comparing two null references is zero. Uppercase letters evaluate
 greater than their lowercase equivalents.
								 The method uses the culture (if any) of the
 current thread to determine the ordering of individual characters. The two strings
 are compared on a character-by-character basis.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Compares two specified objects based
 on the code points of
 the contained Unicode characters.
						
						 The first to compare.
						 The second to compare.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the specified strings. For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Description
								
								
									 A negative number
									
										 is < , or
 is a null reference.
								
								
									 Zero
									
										 == , or both
and are null references.
								
								
									 A positive number
									
										 is > , or
is a null reference.
								
							
						
						
							
								 The result of comparing any (including the
 empty string) to a null reference is greater than zero. The result of comparing
 two null references is zero. Uppercase letters evaluate greater than
 their lowercase equivalents.
								 The method uses the culture (if any) of the current thread to
 determine the ordering of individual characters. The two strings are compared
 on a character-by-character basis.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Compares substrings of two specified
objects based
on
the code points of the contained Unicode characters.
						
						 The first to compare.
						 A containing the starting index of the substring in .
						 The second to compare.
						 A containing the starting index of the substring in .
						 A containing the number of characters in the substrings to compare.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the specified strings. For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value Type
									 Condition
								
								
									 A negative number
									 The substring in is < the
 substring in , or is a null reference.
								
								
									 Zero
									 The substring in ==
 the substring in
 , or both and are null
 references.
								
								
									 A positive number
									 The substring in is > the substring
 in , or is a null
 reference.
								
							
						
						
							
								 is greater than .Length
							 -or-
							
								 is greater than .Length
							 -or-
							
								 , , or is negative.
						
						
							 When either of the String arguments is the null reference an shall be thrown if the corresponding index is non-zero.
							
								 The maximum number of characters compared is the lesser of the length of less , the length of less , and .
								 The result of comparing any (including the empty string) to a null reference is
 greater than zero. The result of comparing two null references is zero. Upper
 case letters evaluate greater than their lowercase equivalents.
								 The method uses the culture (if any) of the current thread to determine the ordering
 of individual characters. The two strings are compared on a
 character-by-character basis.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified object.
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Condition
								
								
									 A negative number
									 The current instance is lexicographically <
 .
								
								
									 Zero
									 The current instance is lexicographically ==
 .
								
								
									
										 A positive number
									
									
										 The current instance is lexicographically >
 , or is a null
 reference.
									
								
							
						
						
							 is not a .
						
							
								 is required to be a
object.
							
								 The result of comparing any (including the
 empty string) to a null reference is greater than zero. Uppercase letters evaluate greater than their
 lowercase equivalents.
								 The method uses the culture (if any) of the current thread to
 determine the ordering of individual characters. The two strings are compared on
 a character-by-character
 basis.
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared to the specified string.
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Condition
								
								
									 A negative number
									 The current instance is lexicographically <
 .
								
								
									 Zero
									 The current instance is lexicographically ==
 .
								
								
									
										 A positive number
									
									 The current instance is lexicographically >
 , or is a null reference.
								
							
						
						
							
								 Uppercase letters evaluate greater than their lowercase equivalents.
								 The method uses the culture (if any) of the current thread to
 determine the ordering of individual characters. The two strings are compared on
 a character-by-character
 basis.
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Concatenates the representations of two specified objects.
						
						 The first to concatenate.
						 The second to concatenate.
						
							 The concatenated representation of the values of
 and .
						
						
							
								 is used in place of any null argument.
							 This version of is equivalent to (.ToString(),
 .ToString ()).
							
								 If either of the
 arguments is an array reference, the method concatenates a string representing
 that array, instead of its members (for example,)[].
							
						
						
							 The following example demonstrates concatenating two objects.
							 using System;
public class StringConcatExample {
 public static void Main() {
 string str = String.Concat('c', 32);
 Console.WriteLine("The concatenated Objects are: {0}", str);
 }
}

							 The output is
							
								 The
 concatenated Objects are: c32
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Concatenates the representations of three specified objects, in order provided.
						
						 The first to concatenate.
						 The second to concatenate.
						 The third to concatenate.
						
							 The concatenated representations of the values of
 , , and .
						
						
							 This method concatenates the values returned by
 the methods on every argument. is used in place of any null argument.
							 This version of is equivalent to
 (. (),
 . (),
 . ()).
						
						
							 The following example demonstrates concatenating three objects.
							 using System;
public class StringConcatExample {
 public static void Main() {
 string str = String.Concat('c', 32, "String");
 Console.WriteLine("The concatenated Objects are: {0}", str);
 }
}

							 The output is
							
								 The
 concatenated Objects are: c32String
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Concatenates the representations of the elements in an
 array of
 instances.
						
						 An array of instances to concatenate.
						
							 The concatenated representations of the values of the
 elements in .
						
						
							 is a null reference.
						
							 This method concatenates the values returned by
 the methods on every
 object in the array. is
 used in place of any null reference in the array.
						
						
							 The following example demonstrates concatenating an array of objects.
							 using System;
public class StringConcatExample {
 public static void Main() {
 string str = String.Concat('c', 32, "String");
 Console.WriteLine("The concatenated Object array is: {0}", str);
 }
}

							 The output is
							
								 The
 concatenated Object array is: c32String
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Concatenates two specified instances of .
						
						 The first to concatenate.
						 The second to concatenate.
						
							 A containing the concatenation of and
 .
						
						
							
								 is used in place of any null argument.
						
						
							 The following example demonstrates concatenating two strings.
							 using System;
public class StringConcatExample {
 public static void Main() {
 string str = String.Concat("one", "two");
 Console.WriteLine("The concatenated strings are: {0}", str);
 }
}

							 The output is
							
								 The
 concatenated strings are: onetwo
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Concatenates three specified instances of .
						
						 The first to concatenate.
						 The second to concatenate.
						 The third to concatenate.
						
							 A containing the concatenation of , , and
 .
						
						
							
								 is used in place of any null argument.
						
						
							 The following example demonstrates concatenating three strings.
							 using System;
public class StringConcatExample {
 public static void Main() {
 string str = String.Concat("one", "two", "three");
 Console.WriteLine("The concatenated strings are: {0}", str);
 }
}

							 The output is
							
								 The
 concatenated strings are: onetwothree
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Concatenates the elements of a specified array.
						
						 An array of instances to concatenate.
						
							 A containing the concatenated elements of .
						
						
							 is a null reference.
						
							
								 is used in place of any null reference in the array.
						
						
							 The following example demonstrates concatenating an array of strings.
							 using System;
public class StringConcatExample {
 public static void Main() {
 string str = String.Concat("one", "two", "three", "four", "five");
 Console.WriteLine("The concatenated String array is: {0}", str);
 }
}

							 The output is
							
								 The
 concatenated String array is: onetwothreefourfive
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Creates a new instance of with the same value as a specified
 instance of .
						
						 The to be copied.
						
							 A new with the same value as
 .
						
						
							 is a null reference.
						
							 The following example demonstrates copying strings.
							 using System;
public class StringCopyExample {
 public static void Main() {
 string strA = "string";
 Console.WriteLine("The initial string, strA, is '{0}'.", strA);
 string strB = String.Copy(strA);
 strA = strA.ToUpper();
 Console.WriteLine("The copied string, strB, before strA.ToUpper, is '{0}'.", strB);
 Console.WriteLine("The initial string after StringCopy and ToUpper, is '{0}'.", strA);
 Console.WriteLine("The copied string, strB, after strA.ToUpper, is '{0}'.", strB);
 }
}

							 The output is
							
								 The initial string, strA, is 'string'.
								 The copied string, strB, before strA.ToUpper, is 'string'.
								 The initial string after StringCopy and ToUpper, is 'STRING'.
								 The copied string, strB, after strA.ToUpper, is 'string'.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Copies a specified number of characters from a specified
 position in the current
 instance to
 a specified position in a specified array of Unicode characters.
						
						 A containing the index of the current instance from which to copy.
						 An array of Unicode characters.
						 A containing the index of an array element in to copy.
						 A containing the number of characters in the current instance to copy to .
						
							 is a null reference.
						
							
								 , , or is negative
							 -or-
							
								 is greater than the length of the substring from to the end of the current instance
							 -or-
							
								 is greater than the length of the subarray from to the end of
							
						
						
							 The following example demonstrates copying characters from a string to a
 Unicode character array.
							 using System;
public class StringCopyToExample {
 public static void Main() {
 string str = "this is the new string";
 Char[] cAry = {'t','h','e',' ','o','l','d'};
 Console.WriteLine("The initial string is '{0}'", str);
 Console.Write("The initial character array is: '");
 foreach(Char c in cAry)
 Console.Write(c);
 Console.WriteLine("'");
 str.CopyTo(12, cAry, 4, 3);
 Console.Write("The character array after CopyTo is: '");
 foreach(Char c in cAry)
 Console.Write(c);
 Console.WriteLine("'");
 }
}

							 The output is
							
								 The initial string is 'this is the new string'
								 The initial character array is: 'the old'
								 The character array after CopyTo is: 'the new'
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					
						
							 A constant string representing the empty string.
						
						
							 This field is read-only.
							 This field is a string of length zero, "".
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value that indicates whether the ending characters of the current
 instance match the specified .
						
						 A to match.
						
							
								 if the end of the current instance
 is equal to ; if is not
 equal to the end of the current instance or is longer than the
 current instance.
						
						
							 is a null reference.
						
							 This method compares
with the substring at
the end of the current instance that has a same length as
							
							 The comparison
 is case-sensitive.
						
						
							 The following example demonstrates determining whether the current instance
 ends with a specified string.
							 using System;
public class StringEndsWithExample {
 public static void Main() {
 string str = "One string to compare";
 Console.WriteLine("The given string is '{0}'", str);
 Console.Write("The given string ends with 'compare'? ");
 Console.WriteLine(str.EndsWith("compare"));
 Console.Write("The given string ends with 'Compare'? ");
 Console.WriteLine(str.EndsWith("Compare"));
 }
}

							 The output is
							
								 The given string is 'One string to compare'
								 The given string ends with 'compare'? True
								 The given string ends with 'Compare'? False
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 object have the
 same value.
						
						 A .
						
							
								 if is a and its value is
 the same as the value of the current instance; otherwise,
 .
						
						 The current instance is a null reference.
						
							 This method checks for value equality. This comparison is case-sensitive.
							
								 This method
 overrides .
							
						
						
							 The following example demonstrates checking to see if an object is equal to
 the current instance.
							 using System;
public class StringEqualsExample {
 public static void Main() {
 string str = "A string";
 Console.WriteLine("The given string is '{0}'", str);
 Console.Write("The given string is equal to 'A string'? ");
 Console.WriteLine(str.Equals("A string"));
 Console.Write("The given string is equal to 'A String'? ");
 Console.WriteLine(str.Equals("A String"));
 }
}

							 The output is
							
								 The given string is 'A string'
								 The given string is equal to 'A string'? True
								 The given string is equal to 'A String'? False
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 string have the
 same value.
						
						 A .
						
							
								 if the value of is the same as the value of the current instance; otherwise, .
						
						
							 This method checks for value equality. This comparison is case-sensitive.
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two specified objects have the
 same value.
						
						 A or a null reference.
						 A or a null reference.
						
							
								 if the value of is the
 same as the value of ; otherwise, .
						
						
							 The comparison
 is case-sensitive.
						
						
							 The following example demonstrates checking to see if two strings are
 equal.
							 using System;
public class StringEqualsExample {
 public static void Main() {
 string strA = "A string";
 string strB = "a string";
 string strC = "a string";
 Console.Write("The string '{0}' is equal to the string '{1}'? ", strA, strB);
 Console.WriteLine(String.Equals(strA, strB));
 Console.Write("The string '{0}' is equal to the string '{1}'? ", strC, strB);
 Console.WriteLine(String.Equals(strC, strB));
 }
}

							 The output is
							
								 The string 'A string' is equal to the string 'a string'? False
								 The string 'a string' is equal to the string 'a string'? True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Replaces the format specification in a specified with the textual
 equivalent of the value of a corresponding instance in a specified array.
						
						 A containing zero or more format specifications.
						 A array containing the objects to be formatted.
						
							 A containing a copy of in which the format
 specifications have been replaced by the equivalent of the corresponding
 instances of in .
						
						
							 or is a null reference.
						
							
								 is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the length of the array.
						
						
							 If an object referenced in the format string is a null
 reference, an empty string is used in its place.
							
								 This version of
 is
 equivalent to (null, ,). For more
 information on the format specification see the
 class
 overview.
							
						
						
							 The following example demonstrates the method.
							
using System;
public class StringFormat {
 public static void Main() {
 Console.WriteLine(String.Format("The winning numbers were {0:000} {1:000} {2:000} {3:000} {4:000} today.", 5, 10, 11, 37, 42));
 Console.WriteLine("The winning numbers were {0, -6}{1, -6}{2, -6}{3, -6}{4, -6} today.", 5, 10, 11, 37, 42);
 }
}

							 The output is
							
The winning numbers were 005 010 011 037 042 today.
The winning numbers were 5 10 11 37 42 today.

						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Replaces the format specification in a provided with a specified
 textual equivalent of the value of a specified instance.
						
						 A containing zero or more format specifications.
						 A to be formatted. Can be a null reference.
						
							 A copy of in which the
 first format specification has been replaced by the formatted equivalent of the
 .
						
						
							 is a null reference.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (1).
						
						
							 If an object referenced in the format string is a null reference, an empty string is used in its place.
							
								 This version of
 is
 equivalent to (, , [] { }). For more information on the format
 specification see the class overview.
							
						
						
							 The following example demonstrates the method.
							
using System;
public class StringFormat {
 public static void Main() {
 Console.WriteLine(String.Format("The high temperature today was {0:###} degrees.", 88));
 Console.WriteLine("The museum had {0,-6} visitors today.", 88);
 }
}

							 The output is
							
The high temperature today was 88 degrees.
The museum had 88 visitors today.

						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Replaces the format specification in a specified with the textual equivalent of the value of two
 specified
 instances.
						
						 A containing zero or more format specifications.
						 A to be formatted. Can be a null reference.
						 A to be formatted. Can be a null reference.
						
							 A containing a copy of in which the format
 specifications have been replaced by the equivalent of and
 .
						
						
							 is a null reference.
						
							
								 is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (2).
						
						
							 If an object referenced in the format string is a null
 reference, an empty string is used in its place.
							
								 This version of
 is
 equivalent to (,
 , { , }).
 For more information on the format specification see the class
 overview.
							
						
						
							 The following example demonstrates the method.
							 using System;
public class StringFormat {
 public static void Main() {
 Console.WriteLine(String.Format("The temperature today oscillated between {0:####} and {1:####} degrees.", 78, 100));
 Console.WriteLine(String.Format("The temperature today oscillated between {0:0000} and {1:0000} degrees.", 78, 100));
 Console.WriteLine("The temperature today oscillated between {0, -4} and {1, -4} degrees.", 78, 100);
 }
}

							 The output is
							
The temperature today oscillated between 78 and 100 degrees.
The temperature today oscillated between 0078 and 0100 degrees.
The temperature today oscillated between 78 and 100 degrees.

						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
						
					
					
						
							 Replaces the format specification in a specified with the textual
 equivalent of the value of three specified instances.
						
						 A containing zero or more format specifications.
						 The first to be formatted. Can be a null reference.
						 The second to be formatted. Can be a null reference.
						 The third to be formatted. Can be a null reference.
						
							 A containing a copy of in which the first, second,
 and third format specifications have been replaced by the equivalent of
 , , and .
						
						
							 is a null reference.
						
							
								 is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (3).
						
						
							 If an object referenced in the format string is a null
 reference, an empty string is used in its place.
							
								 This version of
 is
 equivalent to (,
 , { , ,
 }). For more information on the format specification see the
 class
 overview.
							
						
						
							 The following example demonstrates the method.
							
using System;
public class StringFormat {
 public static void Main() {
 Console.WriteLine(String.Format("The temperature today oscillated between {0:###} and {1:###} degrees. The average temperature was {2:000} degrees.", 78, 100, 91));
 Console.WriteLine("The temperature today oscillated between {0, 4} and {1, 4} degrees. The average temperature was {2, 4} degrees.", 78, 100, 91);
 }
}

							 The output is
							
The temperature today oscillated between 78 and 100 degrees. The average temperature was 091 degrees.
The temperature today oscillated between 78 and 100 degrees. The average temperature was 91 degrees.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Replaces the format specification in a specified with the
 culture-specific textual equivalent of the value of a corresponding instance in a
 specified array.
						
						 A interface that supplies an object that provides culture-specific formatting information. Can be a null reference.
						 A containing zero or more format specifications.
						 A array to be formatted.
						
							 A containing a copy of in which the format
 specifications have been replaced by the equivalent of the corresponding
 instances of in .
						
						
							 or is a null reference.
						
							
								 is invalid.
							 -or-
							 The number indicating an argument to be formatted () is less than zero, or greater than or equal to the length of the array.
						
						
							 If an object referenced in the format string is a null
 reference, an empty string is used in its place.
							 The parameter string is embedded with
 zero or more format specifications of the form, { [,][:
]}, where is a zero-based integer indicating
 the argument to be formatted, is an optional integer indicating the
 width of the region to contain the formatted value, and is
 an optional string of formatting codes.
 For more information on the format specification see the class
 overview.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.CharEnumerator
					
					
					
						
							 Retrieves an object that can iterate through the individual
 characters in the current instance.
						
						
							 A object.
						
						
							 This method is required by programming languages
 that support the interface to iterate through members of a
 collection.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for this instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the index of the first occurrence of a specified
 Unicode character in the current instance.
						
						 A Unicode character.
						
							 A containing the zero-based index of the first occurrence of
 character in the current instance; otherwise, -1 if was not found.
						
						
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the index of the first occurrence of a specified Unicode character
 in the current instance, with the search starting from a specified index.
						
						 A Unicode character.
						 A containing the index of the current instance from which to start searching.
						
							 A containing the zero-based index of the first occurrence of
 in the current instance starting from the specified index; otherwise, -1 if was not found.
						
						
							 is less than zero or greater than the length of the current instance.
						
							 This method is case-sensitive.
						
						
							 The following example demonstrates the
method.
							 using System;
public class StringIndexOf {
 public static void Main() {
 String str = "This is the string";
 Console.WriteLine("Searching for the index of 'h' starting from index 0 yields {0}.", str.IndexOf('h', 0));
 Console.WriteLine("Searching for the index of 'h' starting from index 10 yields {0}.", str.IndexOf('h', 10));
 }
}

							 The output is
							
								 Searching for the index of 'h' starting from index 0 yields 1.
								 Searching for the index of 'h' starting from index 10 yields -1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the index of the first occurrence of a specified Unicode character in the
 current instance, with the search over the specified range starting
 at the provided index.
						
						 A Unicode character.
						 A containing the index of the current instance from which to start searching.
						 A containing the number of consecutive elements of the current instance to be searched starting at .
						
							 A containing the zero-based index of
 the first occurrence of in the current instance in the specified range of indexes; otherwise, -1 if

was not found.
						
						
							
								 or is negative
							 -or-
							
								 + is greater than the length of the current instance.
						
						
							 The search begins at and continues until
 + - 1 is reached. The character at
 + is not included in the search.
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the index of the first occurrence of a specified
 in the current instance.
						
						 The for which to search.
						
							 A that indicates the result of the search for
 in the current instance as follows:
							
								
									 Return Value
									 Description
								
								
									 A zero-based number equal to the index of the start of the first substring in
 the current instance that is equal to

 .
									
										
 was found starting at the index returned.
								
								
									 -1
									
										 was not found.
								
							
						
						
							 is a null reference.
						
							 The search begins at the first character of the current instance. The search is
 case-sensitive, culture-sensitive, and the culture (if any) of the current thread
 is
 used.
						
						
							 The following example demonstrates the
method.
							 using System;
public class StringIndexOf {
 public static void Main() {
 String str = "This is the string";
 Console.WriteLine("Searching for the index of \"is\" yields {0,2}.", str.IndexOf("is"));
 Console.WriteLine("Searching for the index of \"Is\" yields {0,2}.", str.IndexOf("Is"));
 Console.WriteLine("Searching for the index of \"\" yields {0,2}.", str.IndexOf(""));
 }
}

							 The output is
							
								 Searching for the index of "is" yields 2.
								 Searching for the index of "Is" yields -1.
								 Searching for the index of "" yields 0.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the index of the first occurrence of a specified
 in the current instance, with
 the search starting from a specified index.
						
						 The for which to search.
						 A containing the index of the current instance from which to start searching.
						
							 A that indicates the result of the search for
 in the current instance as follows:
							
								
									 Return Value
									 Description
								
								
									 A zero-based number equal to the index of the start of the first substring in
 the current instance that is equal to
 .
									
										 was found starting at the index returned.
								
								
									 -1
									
										 was not found.
								
							
						
						
							 is a null reference.
						
							
								 is greater than the length of the current instance.
						
						
							 This method is
 case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the index of the first occurrence of a specified
 in the current
 instance, with the search over the specified range starting at the provided index.
						
						 The for which to search
						 A containing the index of the current instance from which to start searching.
						 A containing the number of consecutive elements of the current instance to be searched starting at .
						
							 A that indicates the result of the search for
 in the current instance as follows:
							
								
									 Return Value
									 Description
								
								
									 A zero-based number equal to the index of the start of the first substring in
 the current instance that is equal to
 .
									
										 was found starting at the index returned.
								
								
									 -1
									
										 was not found.
								
							
						
						
							 is a null reference.
						
							
								 or is negative
							 -or-
							
								 + is greater than the length of the current instance.
						
						
							 The search begins at and continues
 until + - 1 is reached. The character at
 + is
 not included in the
 search.
							 This method is
 case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Reports the index of the first occurrence in the current
 instance of any character in a specified array of Unicode
 characters.
						
						 An array of Unicode characters.
						
							 The index of the first occurrence of an element of in the
 current instance; otherwise, -1 if no element of was found.
						
						
							 is a null reference.
						
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the index of the first occurrence of any element in a specified array
 of Unicode characters in the current instance, with the search starting from a
 specified index.
						
						 An array of Unicode characters.
						 A containing the index of the current instance from which to start searching.
						
							 A containing a positive value equal to the index of the
 first occurrence of an element of in the current instance;
 otherwise, -1 if no element of
 was found.
						
						
							 is a null reference.
						
							 is greater than the length of the current instance
						
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the index of the first occurrence of any element in a specified Array
 of Unicode characters in the current instance, with the search over the
 specified range starting from the provided index.
						
						 An array containing the Unicode characters to seek.
						 A containing the index of the current instance from which to start searching.
						 A containing the range of the current instance at which to end searching.
						
							 A containing a positive value equal to the index of
 the first occurrence of an element of in the current instance;
 otherwise, -1 if no element of was found.
						
						
							 is a null reference.
						
							
								 or is negative.
							 -or-
							
								 + is greater than the length of the current instance.
						
						
							 The search begins at and continues
 until + - . The character at
 + is not included in the search.
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a equivalent to the current instance with a specified
 inserted at the specified position.
						
						 A containing the index of the insertion.
						 The to insert.
						
							 A new that is equivalent to the current string with
 inserted at index
							
						
						
							 is a null reference.
						
							
								 is greater than the length of the current instance.
						
						
							 In the new string returned by this method, the first
 character of is at and all characters in the
 current string from to the end are inserted in the new
 string after the last character of .
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Retrieves the system's reference to a specified .
						
						 A .
						
							 The reference to .

						
						
							 is a null reference.
						
							 Instances of each unique literal string constant
 declared in a program, as well as any unique instance of you add
 programmatically are kept in a table, called

 the "intern pool".

							 The intern pool conserves string storage. If a literal
 string constant is assigned to several variables, each variable is set to
 reference the same constant in the intern pool instead of referencing several
 different instances of that

 have identical values.

							 This method looks up a specified string in the intern
 pool. If the string exists, a reference to it is returned. If it does not exist,
 an instance equal to the specified string is added to the intern pool and a
 reference that

 instance is returned.

						
						
							 The following example demonstrates the method.
							 using System;
using System.Text;
public class StringExample {
 public static void Main() {

 String s1 = "MyTest";
 String s2 = new StringBuilder().Append("My").Append("Test").ToString();
 String s3 = String.Intern(s2);

 Console.WriteLine(Object.ReferenceEquals(s1, s2)); //different
 Console.WriteLine(Object.ReferenceEquals(s1, s3)); //the same
 }
}

							 The output is
							
								 False
								 True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Retrieves a reference to a specified .
						
						 A .
						
							 A reference to if it is in the system's
 intern pool; otherwise, a null reference.
						
						
							 is a null reference.
						
							 Instances of each unique literal string constant
 declared in a program, as well as any unique instance of you add
 programmatically are kept in a table, called the "intern pool".
							 The intern pool conserves string storage. If a literal
 string constant is assigned to several variables, each variable is set to
 reference the same constant in the intern pool instead of referencing several
 different instances of that have identical values.
							
								 This method
 does not return a value, but can still be used where a
 is needed.
							
						
						
							 The following example demonstrates the
method.
							 using System;
using System.Text;

public class StringExample {
 public static void Main() {

 String s1 = new StringBuilder().Append("My").Append("Test").ToString();

 Console.WriteLine(String.IsInterned(s1) != null);
 }
}

							 The output is
							
								 True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Concatenates the elements of a specified array, inserting
 a separator string between each element pair and yielding
 a single concatenated string.
						
						 A .
						 A array.
						
							 A consisting of the elements of separated
 by instances of the
 string.
						
						
							 is a null reference.
						
							 The following example demonstrates the method.
							 using System;
public class StringJoin {
 public static void Main() {
 String[] strAry = { "Red" , "Green" , "Blue" };
 Console.WriteLine(String.Join(" :: ", strAry));
 }
}

							 The output is
							
								 Red :: Green
 :: Blue
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
						
					
					
						
							 Concatenates a specified separator
between the elements of a
specified
array, yielding a
single concatenated string.
						
						 A .
						 A array.
						 A containing the first array element in to join.
						 A containing the number of elements in to join.
						
							 A consisting of the specified strings in joined by
 . Returns if is zero, has no
 elements, or and all the elements of are
 .
						
						
							 plus is greater than the number of elements in .
						
							 The following example demonstrates the method.
							 using System;
public class StringJoin {
 public static void Main() {
 String[] strAry = { "Red" , "Green" , "Blue" };
 Console.WriteLine(String.Join(" :: ", strAry, 1, 2));
 }
}

							 The output is
							
								 Green ::
 Blue
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the index of the last occurrence of a specified

 within the current instance, starting at a given position.
						
						 A .
						 A containing the index of the current instance from which to start searching.
						
							 A that indicates the result of the search for
in the current instance as follows:
							
								
									 Return Value
									 Description
								
								
									 A zero-based number equal to the index of the start of the last substring in
 the current instance that is equal to
 .
									
										 was found.
								
								
									 -1
									
										 was not found.
								
							
						
						
							 is a null reference.
						
						
							 is less than zero or greater than or equal to the length of the current instance.
						
							 This method searches for the last occurrence of the
 specified between the start of the string and the indicated index.
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the index of the last occurrence of a specified

 in the provided range of
 the current instance.
						
						 The substring to search for.
						 A containing the index of the current instance from which to start searching.
						 A containing the range of the current instance at which to end searching.
						
 A that indicates the result of the search for
 in the current instance as follows:
								
									 Return Value
									 Description
								
								
									 A zero-based number equal to the index of the start of the last substring in
 the current instance that is equal to
 .
									
										 was found.
								
								
									 -1
									
										 was not found.
								
							
						
						
							 is a null reference.
						
							
								 or is less than zero.
							 -or-
							
								 - is smaller than -1.
						
						
							 The search begins at and continues
 until -
 + 1.
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the index of the last occurrence of a specified
 within
 the current instance.
						
						 A .
						
 A that indicates the result of the search for
 in the current instance as follows:
								
									 Return Value
									 Description
								
								
									 A zero-based number equal to the index of the start of the last substring in
 the current instance that is equal to
 .
									
										 was found.
								
								
									 -1
									
										 was not found.
								
							
						
						
							 is a null reference.
						
							 The search is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the index of the last occurrence of a specified character in the provided range of the current instance.
						
						 A Unicode character to locate.
						 A containing the index of the current instance from which to start searching.
						 A containing the range of the current instance at which to end searching.
						
							 A containing the index of the last occurrence of in the
 current instance if found between and (-
 + 1); otherwise, -1.
						
						
							 is a null reference.
						
							
								 or is less than zero.
							 -or-
							
								 - is less than -1.
						
						
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the index of the last occurrence of a specified character within the current instance.
						
						 A Unicode character to locate.
						 A containing the index in the current instance from which to begin searching.
						
							 A containing the index of the last occurrence of in the current instance, if found; otherwise, -1.
						
						
							 is a null reference.
						
							 is less than zero or greater than the length of the current instance.
						
							 This method searches for the last occurrence of the specified character between the start of the string and the indicated index.
							 This method is case-sensitive.
						
						
							 The following example demonstrates the
method.
							 using System;
public class StringLastIndexOfTest {
 public static void Main() {
 String str = "aa bb cc dd";

 Console.WriteLine(str.LastIndexOf('d', 8));
 Console.WriteLine(str.LastIndexOf('b', 8));
 }
}

							 The output is
							
								 -1
								 4
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the index of the last occurrence of a specified character
 within the current instance.
						
						 The Unicode character to locate.
						
							 A containing the index of the last occurrence of
in the current instance, if found; otherwise, -1.
						
						
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the index of the last occurrence of any element of a specified array of characters in the current instance.
						
						 An array of Unicode characters.
						
							 A containing the index of the last occurrence of any element of
 in the current instance, if found; otherwise, -1.
						
						
							 is a null reference.
						
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the index of the last occurrence of any element of a specified array of characters in the current instance.
						
						 An array of Unicode characters.
						 A containing the index of the current instance from which to start searching.
						
							 A containing the index of the last occurrence of any element of in the
 current instance, if found; otherwise, -1.
						
						
							 is a null reference.
						
						
							
								 is less than zero or greater than or equal to the length of the current instance.
						
						
							 This method searches for the last occurrence of the specified
 characters between the start of the string and the indicated index.
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the index of the last occurrence of any of specified characters in the provided range of the current instance.
						
						 An array of Unicode characters.
						 A containing the index of the current instance from which to start searching.
						 A containing the range of the current instance at which to end searching.
						
							 A containing the index of the last occurrence of any element of
 if found between and (-
 + 1); otherwise, -1.
						
						
							 is a null reference.
						
							
								 or is less than zero.
							 -or-
							
								 - is smaller than -1.
						
						
							 The search begins at and continues
 until - + 1. The character at
 - is not included
 in the search.
							 This
 method is case-sensitive.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of characters in the current instance.
						
						
							 A containing the number of characters in the current instance.
						
						
							 This property is read-only.
						
						
							 The following example demonstrates the property.
							 using System;
public class StringLengthExample {
 public static void Main() {
 string str = "STRING";
 Console.WriteLine("The length of string {0} is {1}", str, str.Length);
 }
}

							 The output is
							
								 The length
 of string STRING is 6
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether the two
 specified string values are equal to
 each other.
						
						
						 The first to compare.
						 The second to compare.
						
							
								 if and
represent the same string value; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value indicating whether the two string
 values are not equal to
 each other.
						
						
						 The first to compare.
						 The second to compare.
						
							
								 if and do not
 represent the same string value; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Right-aligns the characters in the current instance, padding with spaces on the left,
 for a specified total length.
						
						 A containing the number of characters in the resulting string.
						
							 A new that
 is equivalent to the current instance right-aligned and padded on the left with as
 many spaces as needed to create a length of . If is less than the length of the current instance, returns a new
 that is identical
 to the current instance.
						
						
							 is less than zero.
						
							
								 A space in Unicode
 format is defined as the hexadecimal value 0x20.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Right-aligns the characters in the current instance, padding on the left with a specified
 Unicode character, for a specified total length.
						
						 A containing the number of characters in the resulting string.
						 A that specifies the padding character to use.
						
							 A new that is equivalent to the current instance right-aligned
 and padded on the left with as many characters as needed to
 create a length of . If is less than the length of the current
 instance, returns a new that is identical
 to the current instance.
						
						
							 is less than zero.
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Left-aligns the characters in the current instance, padding on the right with a specified Unicode character,
 for a specified total number of characters.
						
						 A containing the number of characters in the resulting string.
						 A that specifies the padding character to use.
						
							 A new that is equivalent to the current instance left aligned and
 padded on the right with as many characters as needed to
 create a length of . If is less than the length of the current instance, returns a new
 that is identical
 to the current instance.
						
						
							 is less than zero.
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Left-aligns the characters in the current instance, padding with spaces on the right, for a
 specified total number of characters.
						
						 A containing the number of characters in the resulting string.
						
							 A new that is equivalent to this instance left aligned and
 padded on the right with as many spaces as needed to create a length of
 . If is less than the length of the current
 instance, returns a new that is identical
 to the current instance.
						
						
							 is less than zero.
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Deletes a specified number of characters from the current
 instance beginning at a specified index.
						
						 A containing the index of the current instance from which to start deleting characters.
						 A containing the number of characters to delete.
						
							 A new that is equivalent to the current instance without the
 specified range characters.
						
						
							
								 or is less than zero.
							 -or-
							
								 plus is greater than the length of the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Replaces all instances of a specified substring within
 the current instance with another specified string.
						
						 A containing the string value to be replaced.
						 A containing the string value to replace all occurrences of . Can be a null reference.
						
							 A equivalent to the current instance with all occurrences of
 replaced with . If the replacement value is a
 null reference, the specified substring is removed.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Replaces all instances of a specified Unicode character
 with another specified Unicode character.
						
						 The Unicode character to be replaced.
						 The Unicode character to replace all occurrences of .
						
							 A equivalent to the current instance with all occurrences of
 replaced with .
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Returns substrings of the current instance that are
 delimited by the specified characters.
						
						 A array of delimiters. Can be a null reference.
						
							 A array containing the results of the split operation as
 follows:
							
								
									 Return Value
									 Description
								
								
									 A single-element array containing the
 current instance.
									 None of the elements of
 are contained in the current instance.
								
								
									 A
 multi-element array, each element of which is a substring of the
 current instance that was delimited by one or more characters in

									
									 At least one element of is contained in the current
 instance.
								
								
									 A multi-element array, each
 element of which is a substring of the current instance that was delimited
 by white space characters.
									 The current instance contains white space characters and
 is a null reference or an empty
 array.
								
							
						
						
							
								 is returned for any substring where two delimiters are
 adjacent or a delimiter is found at the beginning or end of the current
 instance.
							 Delimiter characters are not included in the
 substrings.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
						
					
					
						
							 Returns substrings of the current instance that are delimited by the specified characters.
						
						 An array of Unicode characters that delimit the substrings in the current instance, an empty array containing no delimiters, or a null reference.
						 A containing the maximum number of array elements to return.
						
							 A array containing the results of the split operation as
 follows:
							
								
									 Return Value
									 Description
								
								
									 A single-element array containing the
 current instance.
									 None of the elements of are
 contained in the current instance.
								
								
									 A
 multi-element array, each element of
 which is a substring of the current instance that was delimited by one or
 more characters in
									
									 At least one element of is
 contained in the current instance.
								
								
									 A
 multi-element array, each element of
 which is a substring of the current instance that was delimited by white
 space characters.
									 The current instance contains white space
 characters and is a null reference or an empty
 array.
								
							
						
						
							 is negative.
						
							
								 is returned for any substring where two delimiters are
 adjacent or a delimiter is found at the beginning or end of the current
 instance.
							 Delimiter characters are not included in the
 substrings.
							 If there are more substrings in the current instance than the
 maximum specified number, the first -1 elements of the array
 contain the first - 1 substrings. The remaining characters in the
 current instance are returned in the last element of the array.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value that indicates whether the start of the current instance
 matches the specified .
						
						 A .
						
							
								 if the start of the current
 instance is equal to ; if is
 not equal to the start of the current instance or is longer than the current
 instance.
						
						
							 is a null reference.
						
							 This method compares with the substring
 at the start of the current instance that has a length of
 .Length. If .Length is greater than the length of
 the current instance or the relevant substring of the current instance is not
 equal to , this method returns ; otherwise,
 this method returns
 .

							 The
 comparison is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Retrieves a substring from the current instance, starting from a specified index, continuing for a specified
 length.
						
						 A containing the index of the start of the substring in the current instance.
						 A containing the number of characters in the substring.
						
							 A containing the substring of the current instance with
 the specified length that begins at the specified position. Returns if is equal to the length of
 the current instance and length is zero.
						
						
							
								 is greater than the length of the current instance.
							 -or-
							
								 or is less than zero.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Retrieves a substring from the current instance, starting from a specified index.
						
						 A containing the index of the start of the substring in the current instance.
						
							 A equivalent to the substring that begins at
 of the current
 instance. Returns
 if is equal to the length of the current instance.
						
						
							 is less than zero or greater than the length of the current instance.
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.Generic.IEnumerator<System.Char>
					
					
					
						
							 This method is implemented to support the interface.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Char[]
					
					
					
						
							 Copies the characters in the current instance to a Unicode character array.
						
						
							 A
array whose elements are the individual characters of
the current instance. If the current instance is an empty string, the array returned by this method is empty
and has a zero length.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char[]
					
					
						
						
					
					
						
							 Copies the characters in a specified substring in the current instance to a Unicode character array.
						
						 A containing the index of the start of a substring in the current instance.
						 A containing the length of the substring in the current instance.
						
							 A array whose elements are the
 number of characters in the current instance, starting from the
 index in the current instance. If the specified length is
 zero, the entire string is copied starting from the beginning of the current
 instance, and ignoring the value of . If the current instance
 is an empty string, the returned array is empty and has a zero length.
						
						
							
								 or is less than zero.
							 -or-
							
								 plus is greater than the length of the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a copy of this in lowercase.
						
						
							 A in lowercase..
						
						
							 This method takes into account the culture (if any) of the current thread.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value
 of the current instance.
						
						
							 The current .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns this instance of ; no
 actual conversion is performed.
						
						 (Reserved) A interface implementation which supplies culture-specific formatting information.
						
							 This .
						
						
							
								 is reserved, and does not
 currently participate in this operation.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a copy of the current instance with all elements
 converted to
 uppercase, using default properties.
						
						
							 A new
in uppercase.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Removes all occurrences of a set of characters provided
 in a character from the beginning and
 end of the current instance.
						
						 An array of Unicode characters. Can be a null reference.
						
							 A new equivalent to the current instance with the characters
 in removed from its beginning and end. If
 is a null reference, all of the white space characters are removed from the
 beginning and end of
 the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Removes all occurrences of white space characters from the beginning and
 end of the current instance.
						
						
							 A new equivalent to the current instance after
 white space characters
 are removed from its
 beginning and end.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Removes all occurrences of a set of characters specified
 in a Unicode character from the
 end of the current instance.
						
						 An array of Unicode characters. Can be a null reference.
						
							 A new equivalent to the current instance with characters in
 removed from its end. If is a null reference, white space
 characters are removed.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Removes all occurrences of a set of characters specified in a Unicode character array from the
 beginning of the current instance.
						
						 An array of Unicode characters or a null reference.
						
							 A new equivalent to the current instance with the characters
 in removed from its beginning. If is a
 null reference, white space
 characters are removed.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
 Represents a mutable string of characters.

				
					 This class represents string-like objects that are
 mutable. After a object has been created, it can be directly modified by
 removing, replacing, or inserting characters. This contrasts the class, which
 represents an immutable string of characters.
					 The of an instance of the class is
 the maximum number of characters it can hold in the currently allocated space.
 The will dynamically allocate more space when it is
 required.
					 Unlike most types in the Base Class Library, the arguments to members
are assumed to be passed as / arguments
(passed by reference). Normally arguments
are arguments (passed by value) unless explicitly declared
as or /
 .
					
					
						 An instance of is said to be "immutable" because its
 value cannot be modified once it has been created. Methods on that appear to
 modify a
 instance actually return a new instance containing the modification. The class
 provides methods that actually modify the contents of a string-like object.
						 Relational operators only perform reference comparisons
 (unless overloaded by a particular language compiler). Despite this restriction,
 relational operators can be used to compare objects that are assigned literal
 values. Their values are immutable and can't change, so a reference comparison
 is sufficient. Because instances are mutable, they should not be compared with
 relational operators.
						 For performance reasons a might
allocate more memory than needed. The amount of memory allocated is
implementation specific.
					
				
			
			
				 System.Object
			
			
			
				
					 DefaultMemberAttribute("Chars")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new, empty instance of the
class.
						
						
							 The new instance of represents a string equal to . The
is set to the default capacity.
							
								 The default value
 of the
 property is implementation dependent.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class, with the specified as its value.
						
						 A containing the string value of the new instance of .
						
							
								 The of
 the new instance is implementation defined.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new, empty instance of the class, with a specified

.
						
						 A containing the starting number of characters allowed in the .
						
							 is less than zero.
						
							 If the specified capacity is less than the default
 capacity, the of the new instance of is set to
 the default value. The will dynamically allocate more space when it is
 required.

							 The new is initialized to represent an empty
 string.

							
								 The default value
 of the
 property is implementation dependent.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Appends multiple copies of a character to the end of the
 current
 .

						
						 The to be appended.
						 A containing the number of times to append .
						
							 The current instance after the operation has occurred.
						
						
							 is less than zero.
						
							 This method appends copies of the specified character to
 the current instance.
							 The of the current instance is increased as
necessary.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
					
					
						
							 Appends the string representation of an array of Unicode characters to the
 end of the current instance.
						
						 The array to be appended.
						 A containing the index in at which the subarray starts.
						 A containing the number of characters to copy from .
						
							 The current instance after the operation has occurred.
						
						
							 is a null reference, and and are not both zero.
						
							
								 or is less than zero.
							 -or-
							 The sum of and is greater than the length of .
						
						
							 This method appends the specified range of characters from the
 array to the current instance. If is a null
 reference, and both and are zero, no
 changes are made.
							 The of the current instance is increased as
 necessary.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends a copy of a string to the end of the current instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends the string to the
 current instance. If is a null reference, no changes are
 made.
							 The of the current instance is increased as
necessary.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
					
					
						
							 Appends a copy of an array of Unicode characters, specified by a starting
 index and length, of a specified to the end of the current instance.
						
						 The from which the substring will be taken.
						 A containing the index in from which to start copying.
						 A containing the number of characters to copy from .
						
							 The current instance after the operation has occurred.
						
						
							 is a null reference, and and are not both zero.
						
							
								 or is less than zero.
							 -or-
							 The sum of and is greater than the length of .
						
						
							 This method appends the specified range of characters in
 the string to the current instance. If is a null
 reference and and are both zero, no changes
 are made.
							 The of the current instance is increased as
 necessary.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current
 instance.
						
						 A to be appended.
						
							 The current instance after the operation has
 occurred.

						
						
							 This method appends
 .ToString()
 to the current instance.
							 The
of the current instance is increased as necessary.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current
 instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method appends
 .ToString() to the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends
 .ToString() to
 the current instance.
							 The of the current instance is increased as necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a Unicode character to the end of the
 current instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends the specified character to the current instance.
							 The of the current instance is increased as
 necessary.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current
 instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.

						
						
							 This method appends
 .ToString() to the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current
 instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends
 .ToString() to the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current
 instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends
 .ToString() to the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a
to the end of the current instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends
 .ToString() to the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a
to the end of the current instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends
 .ToString() to the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to
 the end of the current instance.
						
						 The to be appended.
						
							 The current instance after the operation has
 occurred.

						
						
							 This method appends
 .ToString() to
 the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current
 instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method appends
 .ToString() to
 the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current
 instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method appends
 .ToString() to
 the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of a to the end of the current
 instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method appends
 .ToString() to
 the current instance.
							 The of the current instance is increased as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of an object to the end of the current
 instance.
						
						 The to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends
 .ToString() to the current instance. If is a
 null reference, no changes are made.
							 The of the current instance is increased as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
					
					
						
							 Appends the string representation of all of the
 characters in a to the end of the
 current instance.

						
						 The array of to be appended.
						
							 The current instance after the operation has occurred.
						
						
							 This method appends all of the characters in the specified array to the
 current instance in the same order as they appear in . If
 is a null reference no changes are made.
							 The of the current instance is increased as
 necessary.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
						
					
					
						
							 Appends the specified string to the current instance, with
 the format specifications in that string being replaced with the appropriately formatted
 string values of the specified objects.
						
						 A containing zero or more format specifications.
						 The first to be formatted. Can be a null reference.
						 The second to be formatted. Can be a null reference.
						 The third to be formatted. Can be a null reference.
						
							 The current instance after the operation has occurred.
						
						
							 is a null reference.
						
							 is invalid.
						
							 This method appends the formatted copy of the specified
 string to the current instance. If an object referenced in the format string is

 , an empty string is used in its place.
							
								 This version of
 is equivalent to (
 , ,

{ }). For more information on the format specification, see the

class overview.
							
						
						
							 using System;
using System.Text;

public class StringBuilderTest {
 public static void Main() {

 StringBuilder sb = new StringBuilder("The high ");
 Console.WriteLine(sb.AppendFormat("temperature today was {0} {1} {2}.", "very", "very", "high"));
 }
}

							 The output is
							
								 The high
 temperature today was very very high.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Appends the specified string to the current instance, with the format specifications in that string being replaced
 with the string values of the specified array of objects, formatted in
 accordance with the formatting object returned by the specified .
						
						 A that supplies a formatting object that provides culture specific formatting information. Can be a null reference.
						 A containing zero or more format specifications.
						 A array to be formatted.
						
							 The current instance after the operation has occurred.
						
						
							 or is a null reference.
						
							 is invalid.
						
							 This method appends the formatted copy of the specified
 string to the current instance. If an object referenced in the format string is

 , an empty string is used in its place.
							 The format parameter is embedded with zero or more format
 specifications of the form, { [,
][:]}, where is a zero-based
 integer indicating the argument to be formatted,
 is an optional
 integer indicating the width of the region to contain the formatted value, and
 is an optional string of formatting codes.
 For more information on the format
 specification see the
 class overview.
							
						
						
							 using System;
using System.Text;

public class StringBuilderTest {
 public static void Main() {

 string a = "very";
 string b = "very";
 string c = "high";

 StringBuilder sb = new StringBuilder("The high ");
 Console.WriteLine(sb.AppendFormat(null, "temperature today was {0}, {1} {2}.", a, b, c));
 }
}

							 The output is
							
								 The high
 temperature today was very, very high.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Appends the specified string to the current instance, with the
 format specifications in that string being replaced with the appropriately formatted string values of
 the elements in the specified array.
						
						 A containing zero or more format specifications.
						 A array to be formatted.
						
							 The current instance after
 operation has occurred.
						
						
							 is a null reference.
						
							 is invalid.
						
							 This method appends the formatted copy of the specified
 string to the current instance. If an object referenced in the format string is

 , an empty string is used in its place.
							
								 This version of
 is equivalent to (
 , ,). For more
 information on the format specification see the
 class overview.
							
						
						
							 using System;
using System.Text;

public class StringBuilderTest {
 public static void Main() {

 string [] strings = {"very", "very", null, "high"};

 StringBuilder sb = new StringBuilder("The high ");
 Console.WriteLine(sb.AppendFormat("temperature today was {0}, {1} {2}{3}.", strings));
 }
}

							 The output is
							
								 The high
 temperature today was very, very high.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
					
					
						
							 Appends the specified string to the current instance, with the format
 specifications in that string being replaced with the appropriately formatted
 string values of the specified objects.
						
						 A containing zero or more format specifications.
						 The first to be formatted. Can be a null reference.
						 The second to be formatted. Can be a null reference.
						
							 The current instance after the operation has occurred.
						
						
							 is a null reference.
						
							 is invalid.
						
							 This method appends the formatted copy of the specified
 string to the current instance. If an object referenced in the format string is

 , an empty string is used in its place.
							
								 This version of
 is equivalent to (
 , ,

{ , }). For more information on the format
specification, see the class overview.
							
						
						
							 using System;
using System.Text;

public class StringBuilderTest {
 public static void Main() {

 StringBuilder sb = new StringBuilder("The high ");
 Console.WriteLine(sb.AppendFormat("temperature today was {0} {1}.", "very", "high"));
 }
}

							 The output is
							
								 The high temperature today was very high.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Appends the specified string to the current instance, with the format
 specifications in that string being replaced with the appropriately formatted
 string value of the specified object.
						
						 A containing zero or more format specifications.
						 A to be formatted.
						
							 The current instance after the operation has occurred.
						
						
							 is a null reference.
						
							 is invalid.
						
							 This method appends the formatted copy of the specified string to the current
 instance.
							
								 This version of is equivalent to (
 , ,
{ }). For more information on the format specification, see the

class overview.
							
						
						
							 using System;
using System.Text;

public class StringBuilderTest {
 public static void Main() {

 StringBuilder sb = new StringBuilder("The high ");
 Console.WriteLine(sb.AppendFormat("temperature today was {0, 6}.", 88));
 }
}

							 The output is
							 The high temperature today was 88.

						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the maximum number of characters that can be contained in the
 memory allocated by the current instance.
						
						
							 A containing the maximum number of characters that can be contained in the memory
 allocated by the current instance.
						
						 The value specified for a set operation is less than .
						
							 The property does not affect the string value of the current
 instance. The will dynamically
 increase the and allocate
 more space when it is required.
							
								 For performance
 reasons a might allocate more memory than needed. The amount of
 memory allocated is implementation specific.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Char
					
					
						
					
					
						
							 Gets or sets the character at a specified position in the current
 instance.
						
						
							 A containing the Unicode character at location in the current instance.
						
						
							
								 is greater than or equal to the length of the current instance.
							 -or-
							
								 is less than zero.
						
						
							
								 is the position of a character within the
 . The first character in the string is at index 0.
 The length of a string is the number of characters it contains. The last
 accessible character of a instance is at the index
 - 1.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Ensures that the capacity of the current instance is at least a specified
 value.
						
						 A containing the minimum capacity to ensure.
						
							 A equal to the
 new of the current instance.
						
						
							 is less zero.
						
							 If the specified value is less than the current
 , no changes are made and
 remains the same.
							
								 For performance
 reasons, the new might
 be larger than the specified value. The amount of memory allocated by this
 method is implementation specific.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and a specified have
 the same value.
						
						 A .
						
							
								 if the current instance and have the same
 value; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a string object into the current instance at a
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This method inserts
into the current instance at the specified location. Existing characters are
shifted to make room for the new text, and is
adjusted as necessary.
							 If is
 or a null reference, the is
not changed.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a value into the current
 instance at a specified index.
						
						 A containing the index at which to insert.
						 The value to be inserted.
						
							 The current instance after insertion has occurred.

						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is
 adjusted as necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
					
					
						
							 Inserts multiple copies of a
 string into the current instance at a specified index.

						
						 A containing the index at which to insert.
						 The to be inserted.
						 A containing the number of times the string is to be inserted.
						
							 The current instance after insertion has occurred.

						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero
							 -or-
							
								 is less than zero
						
						
							 This method inserts the string times
 into the current instance at the specified location. Existing characters are
 shifted to make room for the new text, and is adjusted as necessary.
							 If is
 or a null reference, the is
not changed.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is adjusted as necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and

 is adjusted as
 necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at a
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.

						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is adjusted as necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a Unicode character into the current
 instance at a specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is
 adjusted as necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of an array of Unicode characters into the
 current instance at a specified index.
						
						 A containing the index at which to insert.
						 The array to be inserted.
						
							 The current instance after insertion has occurred.

						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This method inserts all of the characters in the specified array into the
 current instance in the same order as they appear in . Existing characters are shifted to make room for
 the new text, and is
 adjusted as necessary.
							 If is empty or a null reference, the is
 not changed.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
						
					
					
						
							 Inserts the string representation of a subarray
 of Unicode characters into the current instance at a specified index.

						
						 A containing the index at which to insert.
						 The array from which to get the characters to be inserted.
						 A containing the starting index within .
						 A containing the number of characters to insert from .
						
							 The current instance after insertion has occurred.
						
						
							 is a null reference, and and are not both zero.
						
							
								 is greater than the length of the current instance or less than zero.
							 -or-
							
								 or is less than zero or their sum is greater than the length of .
						
						
							 This method inserts the specified range of characters from
array into the current instance in the same order as they appear in
 . Existing
characters are shifted to make room for the new text, and
 is adjusted as necessary.
							 If is an empty array or a null reference and
 and are both zero, the is
not changed.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of an object into the current instance at a
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is
 adjusted as necessary.
							 If is a null reference, the is
 not changed.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at a
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is
 adjusted as necessary.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is
 adjusted as necessary.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.
						
						 A containing the index at which to insert.
						 The to insert.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is adjusted as necessary.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is adjusted as necessary.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is adjusted as necessary.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is adjusted as necessary.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.

						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero.
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is adjusted as necessary.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Inserts the string representation of a into the current instance at the
 specified index.
						
						 A containing the index at which to insert.
						 The to be inserted.
						
							 The current instance after insertion has occurred.
						
						
							
								 is greater than the length of the current instance
							 -or-
							
								 is less than zero
						
						
							 This method inserts
 .ToString() into the current instance at the specified
 location. Existing characters are shifted to make room for the new text, and
 is adjusted as necessary.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the length of the current instance.
						
						
							 A containing the length of the current instance.
						
						 The value specified for a set operation is less than 0.
						
							 If the specified length is less than the current length,
 the is truncated to the specified length. If the specified
 length is greater than the current length, the end of the string value of the
 is
 padded with
 spaces.

							 If the specified length is greater than the current
 , is set to the
 specified
 length.

							
								 A space in Unicode format is defined as the
 hexadecimal value
 0x20.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Removes a specified range of characters from the current instance.
						
						 A containing the index at which to begin removal.
						 A containing the number of characters to be removed.
						
							 The current instance after removal has occurred.

						
						
							
								 or is less than zero
							 -or-
							 The sum of and is greater than the length of the current instance.
						
						
							 This method removes the specified range of characters from the current
 instance. The characters at (+) are moved to
 , and the string value of the current instance is shortened
 by .
							
								 The
 method can be used
 to remove all instances of a string from a .
							
						
						
							 using System;
using System.Text;

public class StringBuilderTest {
 public static void Main() {

 StringBuilder sb = new StringBuilder("0123456789");
 Console.WriteLine(sb);
 sb.Remove(3, 4);
 Console.WriteLine(sb);
 }
}

							 The output is
							
								 0123456789
								 012789
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
						
					
					
						
							 Replaces all instances of a specified character in a specified range with
 another specified character.
						
						 The to replace.
						 The with which to replace .
						 A containing the index from which to start replacing .
						 A containing the length of the range in which to replace .
						
							 The current instance after substitution has occurred.
						
						
							 The sum of and is larger than the length of the current instance
							 -or-
							
								 or is less than zero.
						
						
							 This method substitutes each occurrence of in the specified range of the
 current instance with .
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
							 Replaces all instances of a specified character in the current instance with
 another specified character.
						
						 The to replace.
						 The with which to replace .
						
							 The current instance after substitution has occurred.
						
						
							 This method substitutes each occurrence of in the current instance with
 .
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
						
						
					
					
						
							 Replaces all instances of a specified string in a
 specified range with another specified string.
						
						 A containing the string value to replace.
						 A containing the string value with which to replace . Can be a null reference.
						 A containing the location from which to start replacing .
						 A containing the length of the range in which to replace .
						
							 The current instance after substitution has occurred.
						
						
							
								 is a null reference.
						
						
							
								 or is less than zero.
							 -or-
							 The sum of and is greater than the length of the current instance.
						
						 The length of is zero.
						
							 This method substitutes each occurrence of in the specified range of the
 current instance with .
 If is , instances of are
 removed.
							
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
						
						
					
					
						
 Replaces all instances of a specified string with
 another specified string
						
						 A containing the string value to replace.
						 A containing the string value with which to replace . Can be a null reference.
						
							 The current instance after substitution has
 occurred.

						
						
							 is a null reference.
						 The length of is zero.
						
							 This method substitutes each occurrence of in the
 current instance with .
 If is , instances of
 are removed.
							
							 This method is case-sensitive.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of a substring of the current
 instance.
						
						 A containing the index at which the substring begins.
						 A containing the length of the substring.
						
							 A new representing the characters in the specified range.
						
						
							
								 or is less than zero.
							 -or-
							 The sum of and is greater than the length of the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current
 instance.
						
						
							 A representing the current instance.
						
						
							 This method overrides .
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Implements a
that reads from a string.
				
			
			
				 System.IO.TextReader
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class
 that
 reads from the specified string.
						
						 The to be initialized to.
						
							 is .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the
.
						
						
							 Following a call to , other methods on the current instance will throw an exception.
							
								 This version of is equivalent to ().
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases system resources used by the current
 instance.
						
						
							 to release both managed and unmanaged resources; to release only unmanaged resources.
						
							 When the parameter is , this method
 releases all resources held by any managed objects that this
 references. This method invokes the method of each
 referenced object.
							
								
									 can be called multiple
times by other objects. When overriding (), be careful not
to reference objects that have been previously disposed in an earlier call to
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Returns the next available character but does not advance the reader's position
 in the underlying string.
						
						
							 The next character to be read as a , or -1 if no more characters are
 available.
						
						 The current reader is closed.
						
							 The current position of the is not changed by this operation.
							
								 This method returns -1 is when the end of the underlying string is reached
 because a Unicode character can contain only values between hexadecimal 0x0000
 to 0xFFFF (0 to 65535).
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads a block of characters from the input string.
						
						 A array. When this method returns, contains the specified character array with the values between and replaced by the characters read from the current source.
						 A that specifies the starting index in the buffer.
						 A that specifies the number of characters to read.
						
							 A containing the total number of characters read into the
 buffer, or zero if the end of the underlying string has been reached.
						
						
							 is .
						 (+) >
							 Length.
						
							
								 < 0
							
							
								 or-
							
								 < 0.
						
						 The current reader is closed.
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Reads the next character from the input string and advances the character position by one character.
						
						
							 The next character from the underlying string as a
 , or -1 if no more
 characters are available.
						
						 The current reader is closed.
						
							
								 This method returns -1 is when the end of the underlying string is reached
 because a Unicode character can contain only values between hexadecimal 0x0000
 to 0xFFFF (0 to 65535).
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads a line from the underlying string.

						
						
							 A containing the next line from the underlying string, or

if the end of
the underlying string is reached.

						
						 The current reader is closed.
						 There is insufficient memory to allocate a buffer for the returned string.
						
							 A line is defined as a
 sequence of characters followed by a carriage return (0x000d), a line feed (0x000a),
 or a carriage return immediately followed by a line feed. The resulting string
 does not contain the terminating character(s).
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns the underlying string
 from the current position to the end.
						
						
							 A containing the content from the current position to the end of the underlying
 string.
						
						 The current reader is closed.
						 There is insufficient memory to allocate a buffer for the returned string.
						
							
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
 Implements a that writes information to a string.

			
			
				 System.IO.TextWriter
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 A new is automatically created and associated with the
 new instance.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified format
 provider.
						
						 A object that defines formatting.
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class that
 writes to the specified .
						
						 The to write to.
						
							 is .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class that writes to the specified
 and has the specified format provider.
						
						 The to write to.
						 A object that defines formatting.
						
							 is .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current instance.
						
						
							
								 This version of is equivalent to ().
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the and
 optionally releases the managed resources.
						
						
							 to release both managed and unmanaged resources; to release only unmanaged resources.
						
							 When the parameter is , this method
 releases all resources held by any managed objects that this
 references. This method invokes the method of each
 referenced object.
							
								
									 can be called multiple
times by other objects. When overriding (), be careful not
to reference objects that have been previously disposed in an earlier call to
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets the in which the output is written.
						
						
							 The in which the output is written.
						
						
							
								 As described above.
							
							
								 This property is required in some XML
 scenarios where a header must be written containing the encoding used by the
 .
 This allows XML code to consume an arbitrary and generate a correct XML
 header.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.StringBuilder
					
					
					
						
							 Returns the underlying
.
						
						
							 The underlying
.
						
						
							 This method returns either the that was passed to the
 constructor, or the that was automatically
 created.

							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a string containing the characters written to
 the current instance
 so far.

						
						
							 The containing the characters written to the
 current instance.

						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a string to the current instance of the
 .
						
						 The to write. If is , nothing is written.
						 The writer is closed.
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes the specified region of a character array to this
 instance of the .
						
						 The array to read data from.
						 A that specifies the index at which to begin reading from .
						 A that specifies the maximum number of characters to write.
						
							 is .
						
							
								 < 0
							 -or-
							
								 < zero.
						
						 (+) >
							 Length.
						 The writer is closed.
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a character to the current instance of the
.
						
						 The to write.
						 The writer is closed.
						
							
								 This method
 overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when a method requires the
 caller to own the lock on a given , and the method is
 invoked by a caller that does not own that lock.

				
				
					
						 is
 thrown if the , , or methods
 are invoked for a specified object, but the caller does not own the lock on that
 object. is also thrown when the method is
 called to release the lock on an object, but the caller does not own the lock on
 that object.

					 To acquire the lock on an object, use . To release the
lock on an object, use .
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the
 new instance to a system-supplied message that describes the error, such as
 "Synchronization method was invoked from an unsynchronized block of code." This
 message takes into account the current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							 The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property
 of the new instance using and the property using
 . If is
 , the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					
						 is the base class for all exceptions defined by the
 system.
				
				
					 This class is provided as a means to differentiate between
 exceptions defined by the system versus exceptions defined by applications.
 For more information on
 exceptions defined by applications, see .
					
					
						
							 does not
 provide information as to the cause of the Exception. In most scenarios,
 instances of this class should not be thrown. In cases where this class is
 instantiated, a human-readable message describing the error should be passed to
 the constructor.
					
				
			
			
				 System.Exception
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message that describes the
error, such as "A system error has occurred." This message takes into account
the current system culture.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the
property of the new instance using . If is ,
the property is initialized to the system-supplied message
provided by the constructor that takes no arguments. The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the
property of the new instance using , and the property using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no
arguments.
							
								 For information on
 inner exceptions, see
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an object that can read a sequential series of
 characters.
				
				
					
						 is designed for character
 input, whereas the is designed for byte input and the

class is designed for reading from a
string.
					 By default, a is not thread safe. For information on creating a
thread-safe
, see .
				
			
			
				 System.MarshalByRefObject
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current instance and releases any system
 resources associated with it.
						
						
							
								 After a call to , any IO operation on the current
 instance might throw an exception.
							
							
								 This method is equivalent to (
).
							
							
								 Use this method to
 close the current instance and free any resources associated with
 it.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the and
 optionally releases the managed resources.
						
						
							 to release both managed and unmanaged resources; to release only unmanaged resources.
						
							 When the parameter is , this method
 releases all resources held by any managed objects that this
 references. This method invokes the method of each
 referenced object.
							
								
									 can be called multiple
times by other objects. When overriding (), be careful not
to reference objects that have been previously disposed in an earlier call to
 .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.TextReader
					
					
					
						
							 Provides a with no data to read from.
						
						
							 Reading from the text reader is similar to reading from the end of a
 stream:
							
								
									
										 ()
 and methods
 return -1
								
								
									
										
										
										 [], ,
										 and methods return zero
								
								
									
										 and methods return
 .
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Reads the next character without changing the state of the reader
 or the character source.
						
						
							 The next character to be read, or -1 if no more characters are
 available.
						
						 An I/O error has occurred.
						
							 The position of the
in the source is not changed by this operation.
							
								 As described above.
							
							
								 The default implementation
 returns -1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads at most the specified number of characters from the current character source, and writes them to the provided
 character array.
						
						 A array. When this method returns, contains the specified character array with the values between and (+ -1) replaced by the characters read from the current source.
						 A that specifies the place in at which to begin writing.
						 A that specifies the maximum number of characters to read. If the end of the stream is reached before of characters is read into , this method returns.
						
							 A containing the number of characters that were read, or zero if there were no more
 characters left to read. Can be less than if the end of the stream
 has been reached.
						
						
							 is .
						 (+) >
							 Length.
						
							
								 0
							
							
								 or-
							
								 0.
						
						 An I/O error occurred.
						
							
								
is a blocking version of this method.
							
								 The provided character array can
 be changed only in the specified range.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Reads the next character from the character source and advances the character
 position by one character.
						
						
							 The next character from the character source represented
 as a , or -1 if at the end
 of the stream.
						
						 An I/O error occurred.
						
							
								 As described
 above.
							
							
								 The default implementation
 returns -1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads a
 specified number of characters from the current stream into a
 provided character array.
						
						 A array. When this method returns, contains the specified character array with the values between and replaced by the characters read from the current source.
						 A that specifies the index in at which to begin writing.
						 A that specifies the maximum number of characters to read.
						
							 A containing the number of characters that were read, or
 zero if there were no more characters left to read. Can be
 less than if the end of the stream has been reached.
						
						
							 is .
						 (+ - 1) >
							 Length.
						
							
								 0
							
							
								 or-
							
								 0.
						
						 An I/O error occurred.
						
							 The method blocks until either the specified number of
 characters are read, or no more characters are available in the source.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads a line of characters
 from the current character source.
						
						
							 A containing the next line from the input stream, or
 if all lines have
 been read. The returned string does not
 contain the line terminating character.
						
						 An I/O error occurred.
						
							 There is insufficient memory to allocate a buffer for the returned string.
						
						 The number of characters in the next line is larger than .
						
							 A line is defined as a sequence
 of characters followed by a carriage return (0x000d), a line feed (0x000a), , or the end of stream marker.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads all characters from the current position in the
 character source
 to the end of the source.
						
						
							 A string containing all characters from the current
 position to the end of the character
 source.
						
						 An I/O error occurred.
						 There is insufficient memory to allocate a buffer for the returned string.
						 The number of characters from the current position to the end of the underlying stream is larger than .
						
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.TextReader
					
					
						
					
					
						
							 Creates a thread-safe wrapper around the specified

 instance.
						
						 The to synchronize.
						
							 A thread-safe .
						
						 The parameter is .
						
							 This method returns a instance that wraps around the specified instance and restricts concurrent
 access to it by multiple threads.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					
 Represents a writer that can write a sequential series of characters.
				
				
					
						 is designed for character output, whereas the

class is designed for byte input and output.
					
						 By default, a is not thread safe. See for a
thread-safe wrapper.
					
				
			
			
				 System.MarshalByRefObject
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with
 the specified format provider.
						
						 A object that supplies a formatting object.
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current instance and releases any system
 resources associated with it.
						
						
							
								 After a call to , any operation on the current instance
 might throw an exception.
								 This version of is equivalent to ().
							
							
								 As described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the and
 optionally releases the managed resources.
						
						
							 to release both managed and unmanaged resources; to release only unmanaged resources.
						
							 When the parameter is , this method
 releases all resources held by any managed objects that this
 references. This method invokes the method of each
 referenced object.
							
								
									 can be called multiple
times by other objects. When overriding (), be careful not
to reference objects that have been previously disposed in an earlier call to
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets the in which the output is written.
						
						
							 The in which the output
 is written.
						
						
							
								 As described above.
							
							
								 This property is required in some XML scenarios where a
 header must be written containing the encoding used by the . This
 allows XML code to consume an arbitrary and generate a
 correct XML header.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Writes any buffered data to the underlying device and
 clears all buffers for the current instance.
						
						
							
								 As described above.
							
							
								 This method is not
 implemented in this abstract class.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.IFormatProvider
					
					
					
						
							 Gets an object that provides formatting for the current instance
						
						
							 A object for a specific culture, or the formatting of the
 current culture if no other culture is specified.
						
						
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the line terminator string used by the
 current .
						
						
							 A containing the line terminator string for the current .
						
						
							 The default line terminator string is
.
							 The line terminator string is written to the text stream
 whenever one of the methods is called. In order for text written by the
 to be readable by a , only
 should be used as a terminator string. If is set to
 , the default newline character is used instead.
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.IO.TextWriter
					
					
					
						
							 Provides a
object without a backing store.
						
						
							 Use to redirect output to a stream that will not
 consume any operating system resources.
							 When a method is invoked on , the call simply returns, and no data is actually written
to any backing store.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.TextWriter
					
					
						
					
					
						
							 Creates a thread-safe wrapper around the specified

 instance.
						
						 The to synchronize.
						
							 A thread-safe .
						
						
							 is .
						
							 This method returns a class that wraps around the
 specified instance and restricts concurrent
 access to it by multiple threads.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Writes a formatted string to the text stream.
						
						 A containing the format string.
						 The array of objects referenced from the format string.
						
							
								 is .
							 -or-
							
								 is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to
								 Length .
						
						
							 This version of is equivalent to ((,)).
							
								 If a specified object is not referenced in the format string, it is
 ignored.
								 This method does not search the specified for individual newline characters
 (hexadecimal 0x000a) and replace them with .
							
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Writes out a formatted string to the text stream.
						
						 A containing the format string.
						 The first object referenced in the format string.
						 The second object referenced in the format string.
						 The third object referenced in the format string.
						
							
								 is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (3).
						
						
							 This version of is equivalent to ((,
 , ,)).
							
								 If a specified object is not referenced in the format string, it is
 ignored.
								 This method does not search the specified for individual newline characters
 (hexadecimal 0x000a) and replace them with .
							
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes out a formatted string to the text stream.
						
						 A containing the format string.
						 The first object referenced in the format string.
						 The second object referenced in the format string.
						
							
								 is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (2).
						
						
							 This version of is equivalent to ((,
 ,)).
							
								 If a specified object is not referenced in the format string, it is
 ignored.
								 This method does not search the specified for individual newline characters
 (hexadecimal 0x000a) and replace them with .
							
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes out the format string to the text stream.
						
						 A containing the format string.
						 An object referenced in the format string.
						
							
								 is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (1).
						
						
							 This version of is equivalent to ((,
)).
							
								 If the specified object is not referenced in the format string, it is
 ignored.
								 This method does not search the specified for individual newline characters
 (hexadecimal 0x000a) and replace them with .
							
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified object to the text stream.
						
						 The object to write. If is , nothing is written.
						 An I/O error occurred.
						
							 This version of is equivalent to (
 .ToString()).
							
								 As described
 above.
							
							 The default implementation uses
 the () method.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a specified to the text stream.
						
						 The to write. If is , nothing is written.
						 An I/O error occurred.
						
							 This version of is equivalent to (.ToByteArray()).
							
								 This method does
 not search the specified for individual newline characters (hexadecimal 0x000a)
 and replace them with
 .
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified to the text stream.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (
 .ToString ()).
							
								 As
 described above.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified to the text stream.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (
 .ToString()).
							
								 As
 described above.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified to the text stream.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (
 .ToString()).
							
								 As
 described above.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified to the text
 stream.
						
						
						 The to write.
						 An I/O error occurred.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This version of is equivalent to (
 .
()).
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified to the text
 stream.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (
 .
()).
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a to the text stream.
						
						
						 The to write.
						 An I/O error occurred.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This version of is equivalent to (
 .ToString ()).
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a
 specified to the text stream.
						
						 The to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (
 .
()).
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified
value to the text stream.
						
						 The value to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (
 .ToString ()).
							
								 As
 described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a subarray of characters to the text stream.
						
						 The character array from which characters are read.
						 Starting index in the buffer.
						 The number of characters to write.
						
							 is .
						 (+) >
							 Length.
						
							 0 or < 0.
						 An I/O error occurred.
						
							
								 This method does not search the
 specified array for individual newline characters (hexadecimal 0x000a) and
 replace them with .
							
							
								 As
 described
 above.
							
							 The default implementation uses
 the ([]) method.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a character array to the text stream.
						
						 The array to write to the text stream. If is , nothing is written.
						 An I/O error occurred.
						
							 This version of is equivalent to (, 0,
 .Length).
							
								 This method does not search the
 specified array for individual newline characters (hexadecimal 0x000a) and
 replace them with .
							
							
								 As described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a character to the text stream.
						
						 The to write to the text stream.
						 An I/O error occurred.
						
							
								 As described
 above.
							
							
								 This method is not
 implemented in this abstract class.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified value followed by a line
 terminator to the text stream.
						
						 The value to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (.ToString()).
							
								 As described
 above.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified value followed by a
 line terminator to the text stream.
						
						 The value to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (. ()
).
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified value followed by
 a line terminator to the text stream.
						
						
						 The value to write.
						 An I/O error occurred.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This version of is equivalent to (.ToString ()
).
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified value followed by a line
 terminator to the text stream.
						
						 The value to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (.ToString()).
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a value
 followed by a line terminator to the text stream.
						
						 The value to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (.ToString ()
).
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a sub-array of characters from a specified character array, followed by a line terminator to
 the text stream.
						
						 The array from which characters are read.
						 A that specifies the index in at which to begin reading.
						 A that specifies the maximum number of characters to write.
						
							 is .
						 (+) > .Length.
						
							
								 0
							 -or-
							
								 < 0.
						
						 An I/O error occurred.
						
							 This version of is equivalent to (
 , ,) followed by ().
							
								 This method does not search the
 specified array for individual newline characters (hexadecimal 0x000a) and
 replace them with .
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a specified character array followed by a line terminator to
 the text stream.
						
						 The array from which data is read. If is , only the line terminator is written.
						 An I/O error occurred.
						
							 This version of is equivalent to (
) followed by ().
							
								 This method does not search the
 specified array for individual newline characters (hexadecimal 0x000a) and
 replace them with .
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a specified character followed by a line terminator to the text
 stream.
						
						 The to write to the text stream.
						 An I/O error occurred.
						
							 This version of is equivalent to (
) followed by ().
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Writes a line terminator to the text stream.
						
						 An I/O error occurred.
						
							 This version of is equivalent to (.ToCharArray()).
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified value followed by a
 line terminator to the text stream.
						
						
						 The value to write.
						 An I/O error occurred.
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This version of is equivalent to (.ToString ()
).
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a specified followed by a line terminator to the text stream.
						
						 The to write. If is , only the line terminator is written.
						 An I/O error occurred.
						
							 This version of is equivalent to (
 .ToByteArray()).
							 The line terminator string is defined by the property.
							
								 This method does not search the
 specified
 for individual newline characters (hexadecimal 0x000a) and replace them with
 .
							
							
								 As described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified object followed by a line
 terminator to the text stream.
						
						 The object to write. If is , only the line terminator is written.
						 An I/O error occurred.
						
							 This version of is equivalent to (.ToString()
).
							
								 As described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified value followed by a line
 terminator to the text stream.
						
						 The value to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (.ToString()).
							
								 As described
 above.
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes out a formatted string followed by a line
 terminator to the text stream.
						
						 A containing the format string.
						 The object referenced in the format string.
						
							
								 is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (1).
						
						
							 This version of is equivalent to ((,)).
							
								 If the specified object is not referenced in the format string, it is
 ignored.
								 This method does not search the specified for individual newline characters
 (hexadecimal 0x000a) and replace them with .
							
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes out a formatted string followed by a line
 terminator to the text stream.
						
						 A containing the format string.
						 The first object referenced in the format string.
						 The second object referenced in the format string.
						
							
								 is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (2).
						
						
							 This version of is equivalent to ((,
 ,)).
							
								 If the specified object is not referenced in the format string, it is
 ignored.
								 This method does not search the specified for individual newline characters
 (hexadecimal 0x000a) and replace them with .
							
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Writes out a formatted string followed by a line
 terminator to the text stream.
						
						 A containing the format string.
						 The first object referenced in the format string.
						 The second object referenced in the format string.
						 The third object referenced in the format string.
						
							
								 is .
						
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to the number of provided objects to be formatted (3).
						
						
							 This version of is equivalent to ((,
 , ,)).
							 If the value of any object parameter is null, it is treated as an empty string.
							
								 If the specified object is not referenced in the format string, it is
 ignored.
								 This method does not search the specified for individual newline characters
 (hexadecimal 0x000a) and replace them with .
							
							
								 As
 described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
							
								
									 ParamArrayAttribute
									 1
									 System.ParamArrayAttribute
									 RuntimeInfrastructure
								
							
						
					
					
						
							 Writes out a formatted string followed by a line
 terminator to the text stream.
						
						 A containing the format string.
						 The array of objects referenced from the format string.
						
							 or is .
						 An I/O error occurred.
						
							 The format specification in is invalid.
							 -or-
							 The number indicating an argument to be formatted is less than zero, or greater than or equal to
								 Length.
						
						
							 This version of is equivalent to ((,
)).
							
								 If the specified object is not referenced in the format string, it is
 ignored.
								 This method does not search the specified for individual newline characters
 (hexadecimal 0x000a) and replace them with .
							
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the text representation of a specified value followed by a line
 terminator to the text stream.
						
						 The value to write.
						 An I/O error occurred.
						
							 This version of is equivalent to (.ToString()).
							
								 As described
 above.
							
						
					
					 1
					 ExtendedNumerics
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a sequential
 thread of execution.
				
				
					 A process can create
 and execute one or more threads to execute a portion of the program
 code associated with the process. A delegate is used to specify
 the program code
 executed by a thread.
					 Some operating systems might
 not utilize the concepts of threads or preemptive scheduling. Also, the concept
 of "thread priority" might not exist at all or its meaning might vary, depending on
 the underlying operating system. Implementers of the

 type are required to describe their threading policies,
 including what thread priority means, how many threading priority
 levels exist, and
 whether scheduling is preemptive.
					 For the duration of its existence, a thread is always in one
 or more of the states defined by . A scheduling priority level, as defined
 by , can be requested for a thread, but it might
 not be honored
 by the operating system.
					 If an unhandled exception is thrown in the code executed by a thread created
 by an application, a event is raised (is set to), and the thread
 is terminated; the current process is not terminated.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A delegate that references the methods to be invoked when the new thread begins executing.
						
							 is .
						
							
								
									 To schedule the thread for execution, call .
								
							
							
								 Until is called, the thread's state includes .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Raises a in the thread on which it is
 invoked to begin the process of terminating the thread. In all but the most extraordinary situations, calling this method will terminate
 the thread.

						
						 A that contains application-specific information , such as state,
							 which can be used by the thread being aborted.
						
						
							
								 Caller does not have security permission for this thread.
							
						
						
							 The object passed as the
parameter can be obtained by accessing the

property.
							
								 For details on
 aborting threads, see
 ().
							
						
						 Requires permission to control the thread to be aborted. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Raises a in the thread on
 which it is invoked to begin the process of terminating the thread. In all but
 the most extraordinary situations, calling this method will terminate
 the thread.

						
						
							
								 Caller does not have security permission for the thread to be aborted.
							
						
						
							 When this method is invoked on a thread, the system
 throws a in the
 thread to abort it. Invoking on a thread is similar
 to arranging for the target thread to throw a . Because, unlike other
 exceptions, a is sent to another thread, the exception might
 be delayed. A is required to be delayed if and while the
 target thread is executing any of the following:

							
								
									

 unmanaged code
								
								
									

 a catch handler
								
								
									

 a finally clause
								
								
									

 a filter clause
								
								
									

 a type initializer
								
							
							 A thread abort proceeds as follows:
							
								
									
										 An abort begins at the earliest of the following
 times:
										 a. when the thread transitions from unmanaged to managed code execution;
										 b. when the thread finishes the outermost currently executing catch handler;
										 c. immediately if the thread is running managed code outside of any catch handler, finally clause, filter clause or type initializer
									
								
								
									
										 Whenever an outermost catch handler finishes
 execution, the
 is rethrown unless the thread being
 aborted has called since the call to .

									
								
								
									
										 When all finally blocks have been called and the
 thread is about to transition to any unmanaged code which executed before the
 first entry to managed code,
 is called so that a return to managed code will consider the abort to have been successfully processed.

									
								
							
							 Unexecuted blocks
 are executed before the thread is aborted; this includes any finally block that
 is executing when the exception is thrown. The thread is not guaranteed to abort
 immediately, or at all. This situation can occur if a thread does an unbounded
 amount of computation in the finally blocks that are called as part
 of the abort procedure, thereby indefinitely delaying the abort. To ensure a thread has aborted, invoke
 on the thread after calling .
							 If is called on a thread that has not been
 started, the thread aborts when is called. If the target thread is blocked or sleeping in managed code and is not inside any of the code blocks that are required to delay an abort, the thread is resumed and immediately aborted.
							 After
is invoked on a thread, the state
of the thread includes . After the thread has
terminated as a result of a successful call to , the state of the thread includes
 and
.
							
								 With sufficient permissions, a
 thread that is the target of a can cancel the abort using
 the
 method. For an example that demonstrates calling the method, see
 .
							
						
						 Requires permission to control the thread to be aborted. See .
					
					 0
				
				
					
					
					 Property
					
						 System.Threading.Thread
					
					
					
						
							
								 Gets a
instance that represents the currently executing thread.
							
						
						
							 An instance of representing the current thread.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Releases the resources held by this instance.

						
						
							
								 Application code
 does not call this method; it is automatically invoked during garbage
 collection.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.AppDomain
					
					
					
						
							 Returns an object representing the application domain in
 which the current thread is executing.
						
						
							 A object that represents the current application domain.
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value
 indicating the execution status of the current thread.

						
						
							
								
if this thread has been started, and has not terminated; otherwise,
 .
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a
value indicating whether a thread is a background thread.
						
						
							
								 if the thread is or is to become
 a background thread; otherwise, .

						
						 The thread has reached the state.
						
							 The default value of this property is . The property value can be changed before
 the thread is started and before it terminates.
							
								 A thread is either
 a background thread or a foreground thread. Background threads are identical to
 foreground threads except for the fact that background threads do not
 prevent a process from terminating. Once all foreground threads belonging to a
 process have terminated, the execution engine ends the process by invoking
 on any background threads that

 are
 still alive.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Blocks the calling thread until the thread on which this method
 is invoked terminates.

						
						 The caller attempted to join a thread that is in the state.
						
							
								 Use this method to
 ensure a thread has terminated. The caller will block indefinitely if the thread
 does not
 terminate.
							
							
								 cannot be invoked on a thread that is in the state.
							 This method changes the state of the calling thread to include .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Blocks the calling thread until the thread on which this method is invoked terminates or the specified time
 elapses.

						
						 A set to the amount of time to wait for the thread to terminate. Specify milliseconds to wait indefinitely.
						
							
								 if the thread has terminated;
 if the thread has not terminated after the amount
 of time specified by
 has elapsed.
						
						 The value of is negative and is not equal to milliseconds, or is greater than milliseconds.
						 The caller attempted to join a thread that is in the state.
						
							 This method converts to milliseconds,
 tests the validity of the converted value, and calls ().
							
								 If milliseconds is specified for
 , this method
behaves identically to (),
except for the return value.
							
							
								 cannot be invoked on a thread that is in the state.
							 This method changes the state of the current thread to include .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Blocks the calling thread until the thread on which this method is invoked terminates or the specified time elapses.

						
						 A containing the number of milliseconds to wait for the thread to terminate.
						
							
								 if the thread has terminated; if the
 thread has not terminated after
 has elapsed.
						
						 The value of is negative and is not equal to .
						 The caller attempted to join a thread that is in the state.
						
							
								 If is specified for , this method
 behaves identically to
 (), except for the return value.
							
							
								 cannot be invoked on a thread
that is in the state.
							 This method changes the state of the calling thread to include .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Guarantees that all subsequent loads or stores from the current thread will not access memory until after all previous loads and stores from the current thread have completed, as observed from this or other threads.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or
 sets the name of
 the thread.

						
						
							 A containing the
 name of the thread, or if no name
 was set.
						
						 A set operation was requested, and the property has already been set.
						
							 This property is write-once. Once this property has been
 set to a non-null value, attempts to set this property to a new value cause an exception.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Threading.ThreadPriority
					
					
					
						
							
								
 Gets or sets a value indicating the scheduling priority of a thread.
							
						
						
							 A value.

						
						 The thread is in the state.
						 The value specified for a set operation is not a valid value.
						
							 A thread can be assigned any one of the following
 priority values:
							
								
									
										
									
								
								
									
										
									
								
								
									
										
									
								
								
									
										
									
								
								
									
										
									
								
							
							 The default value is .
							 Operating systems are not required to honor the priority
 of a thread.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Cancels a requested for the current thread.
						
						
							 was not invoked on the current thread.
						
							 Caller does not have security permission for the current thread.
						
						
							 This method cannot be called by untrusted code.

							 When a call is made to
to destroy a thread, the system throws a . is a special
exception that can be caught by application code, but is rethrown at the end of
the catch block unless is called.
 cancels the request to
abort, and prevents the
from terminating the thread.
						
						
							 For an example that demonstrates calling
 this method, see .
						
						 Requires permission to control the current thread. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Blocks the current thread for the specified number of milliseconds.

						
						 A containing the number of milliseconds for which the thread is blocked. Specify zero to indicate that this thread should be suspended temporarily to allow other waiting threads to execute. Specify to block the thread indefinitely.
						 The value of is negative and is not equal to .
						
							 The thread will not be scheduled for execution by
 the operating system for the amount of time specified. This method changes the
 state of the thread to include .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Blocks the current thread for a specified time.

						
						 A set to the amount of time for which the current thread will be blocked. Specify zero to indicate that this thread should be suspended temporarily to allow other waiting threads to execute. Specify milliseconds to suspend the thread indefinitely.
						 The value of is negative and is not equal to milliseconds, or is greater than milliseconds.
						
							 This method converts to milliseconds,
 tests the validity of the converted value, and calls ().
							 The thread will not be scheduled for execution by the operating system
 for the amount of time specified. This method changes the state of the thread to
 include .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Causes the operating system to consider the thread ready
 to be scheduled for execution.
						
						 There is not enough memory available to start the thread.
						 This method was invoked on a thread reference.
						 The thread has already been started.
						
							 Calling removes the state from the
 of the thread.
							 Once a thread is started,
 the operating system can schedule it for execution. When the thread begins executing, the
 delegate supplied to the constructor for the thread invokes its
 methods.
							 Once the thread terminates, it cannot be restarted with another call to .
						
						
							 The following example demonstrates creating a thread and starting it.
							 using System;
using System.Threading;
public class ThreadWork {
 public static void DoWork() {
 for (int i = 0; i<3;i++) {
 Console.WriteLine ("Working thread ...");
 Thread.Sleep(100);
 }
 }
}
class ThreadTest{
 public static void Main() {
 ThreadStart myThreadDelegate = new ThreadStart(ThreadWork.DoWork);
 Thread myThread = new Thread(myThreadDelegate);
 myThread.Start();
 for (int i = 0; i<3; i++) {
 Console.WriteLine("In main.");
 Thread.Sleep(100);
 }
 }
}

							 One possible set of output is
							
								 In main.
								 Working thread ...
								 In main.
								 Working thread ...
								 In main.
								 Working thread ...
							
							 Note that the sequence of the output statements is not guaranteed to be identical across systems.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Threading.ThreadState
					
					
					
						
							
								 Gets a value containing the
 states of the current thread.
							
						
						
							 A combination of one or more values, which indicate
 the state of the current thread.
						
						
							 This property is read-only.
							 A thread is running if the value returned by this property does not include and does not include .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.UInt64
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.UIntPtr
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.IntPtr
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.UInt32
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.UInt16
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.SByte
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Performs a volatile read from the specified address.
						
						 A reference to a that specifies the address in memory from which to read.
						
							 A containing the value at the specified address after any pending writes.
						
						
							 The value at the given address is atomically loaded with acquire semantics, meaning that the read is guaranteed to occur prior to any references to memory that occur after the execution of this method in the current thread. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the load CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Performs a volatile write to the specified address.
						
						 A reference to a that specifies the address in memory at which to write.
						 A that specifies the value to write.
						
							 The value is written atomically to the specified address with release semantics, meaning that the write is guaranteed to happen after any references to memory that occur prior to the execution. It is recommended that and be used in conjunction. Calling this method affects only this single access; other accesses to the same location are required to also be made using this method or if the volatile semantics are to be preserved. This method has exactly the same semantics as using the volatile prefix on the store CIL instruction, except that atomicity is provided for all types, not just those 32 bits or smaller in size. For additional information, see Partition I of the CLI Specification.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Thrown by the system when a call is made to
 .
				
				
					 Instances of this exception type can only
 be created by the system.
					 When a call is made to
to terminate a thread, the system throws a in the target
thread. is a
special exception that can
be caught by application code, but is rethrown at the end of the catch block
unless is called. When the

exception is raised, the system executes any blocks for the target thread. The finally blocks are executed even if
 is called. If the abort is successful,
the target thread is left in the and
 states.
				
				
					 The following example demonstrates aborting a thread.
 The thread that receives the uses the method to cancel the abort request and
 continue executing.
					 using System;
using System.Threading;
using System.Security.Permissions;

public class ThreadWork {
 public static void DoWork() {
 try {
 for (int i=0; i<100; i++) {
 Console.WriteLine("Thread - working.");
 Thread.Sleep(100);
 }
 }
 catch (ThreadAbortException e) {
 Console.WriteLine("Thread - caught ThreadAbortException - resetting.");
 Thread.ResetAbort();
 }
 Console.WriteLine("Thread - still alive and working.");
 Thread.Sleep(1000);
 Console.WriteLine("Thread - finished working.");
 }
}

class ThreadAbortTest{
 public static void Main() {
 ThreadStart myThreadDelegate = new ThreadStart(ThreadWork.DoWork);
 Thread myThread = new Thread(myThreadDelegate);
 myThread.Start();
 Thread.Sleep(100);
 Console.WriteLine("Main - aborting my thread.");
 myThread.Abort();
 myThread.Join();
 Console.WriteLine("Main ending.");
 }
}

					 The output is
					
						 Thread - working.
						 Main - aborting my thread.
						 Thread - caught ThreadAbortException - resetting.
						 Thread - still alive and working.
						 Thread - finished working.
						 Main ending.
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets an object that contains application-specific
 information related to the thread abort.

						
						
							 A .
						
						
							 This property is read-only.
							 The object returned by this property is specified via the
 parameter of . This property returns
 if no
 object was specified, or the method with no parameters was
 called. The exact content and usage
 of this object is application-defined; it is typically used to convey
 information that is meaningful to the thread being aborted.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the scheduling priority of a .

				
				
					
						
values specify the relative scheduling priority of
threads.
					 Operating systems are not guaranteed to support
 preemptive scheduling. Also, the concept of "thread priority" might not exist at
 all or its meaning might vary, depending on the underlying operating system.
 Implementers of this type are required to describe how the notion of thread
 priority maps to operating system priority. For more information about threads,
 see the
 class.
					 The
property sets and returns the priority value information for a thread.
Applications can request a scheduling priority for a thread by setting the
 property to the appropriate

value. The
default thread priority is
.
					
						 A thread cannot be scheduled if it is in the state or
the state.

					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Threading.ThreadPriority
					
					
					 AboveNormal
					
						
							 Threads with this priority can be scheduled after threads
 with priority and before those with priority.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadPriority
					
					
					 BelowNormal
					
						
							 Threads with this priority can be scheduled
 after threads with priority, and before those with
 priority.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadPriority
					
					
					 Highest
					
						
							
								 Threads with this priority can be scheduled before threads with any
 other priority.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadPriority
					
					
					 Lowest
					
						
							
								 Threads with
 this priority can be scheduled after threads with any other
 priority.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadPriority
					
					
					 Normal
					
						
							 Threads with this priority can be scheduled after threads with priority and before those with
priority.
							 Threads have priority by
default.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the shape of methods that are called when
 a is started.

				
				
					
						 A new instance of
 the class is created using a constructor that
 takes a delegate as its only parameter. When is invoked and the thread begins
 executing, all of the methods in the invocation list of the specified delegate
 are invoked in the execution
 context of the thread. If a method in the invocation list receives an unhandled
 exception, the thread is terminated, but not the process that contains the thread.
					
					
						 For an example that
 demonstrates creating a
 delegate, see .
					
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the execution states of a .
				
				
					
						
defines the set of possible execution states for threads. Once a thread is
created, it is in one or more of these states until it terminates. Not all
combinations of values are valid; for example,
a thread cannot be in both the and
states.
					 The following table shows the actions that cause a thread to
 change state.
					
						
							 Action
							 ThreadState after Action
						
						
							 The
 thread is created
							 Unstarted
						
						
							
								 is invoked on the thread
							 Running
						
						
							 The thread calls
							
							 WaitSleepJoin
						
						
							 The thread calls to wait
 on an object
							 WaitSleepJoin
						
						
							 The thread calls to wait for
 another thread to terminate
							 WaitSleepJoin
						
						
							 The

 delegate methods finish executing
							 Stopped
						
						
							 Another thread requests
 the thread to
							
							 AbortRequested
						
						
							 The thread accepts a request
							 Aborted
						
					
					 In addition to the states noted above, there is also the state, which indicates whether the thread is
running in the background or foreground.
					 The current state of a thread can be retrieved from the property,
whose value is a combination of the
values. Once a thread has reached the state, it cannot change to any other state.
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Threading.ThreadState
					
					
					 Aborted
					
						
							 The thread represented by an instance of has terminated as a result of a call to . A thread in this
 state is also in the state.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadState
					
					
					 AbortRequested
					
						
							 The method has been invoked on the thread, but the thread
 has not yet received the pending that will attempt to terminate it.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadState
					
					
					 Background
					
						
							 The thread represented by an instance of is being
 executed as a background thread, as opposed to a foreground thread. This state is controlled by setting the

 property.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadState
					
					
					 Running
					
						
							 The thread represented by an instance of has been started and has not terminated.
							 To determine if a thread
 is running, check that its state does not include and does not include .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadState
					
					
					 Stopped
					
						
							 The thread represented by an instance of
has terminated.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadState
					
					
					 Unstarted
					
						
							 The method
has not been invoked on the thread.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.Threading.ThreadState
					
					
					 WaitSleepJoin
					
						
							 The thread represented by an instance of is
 blocked as
 a result of
 a call to , , or .
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents errors that occur when a method is invoked on
 a and the
 thread is in a that is
 invalid for the method.
				
				
					 Once a thread is created, it is in one or more states, as defined
 by , until it
 terminates. is
 thrown by methods that cannot perform the requested operation due to
 the current state of
 a thread. For example, calling
 on a thread that has terminated results in a exception.
				
				
					 The following example demonstrates an error that causes
 a exception to be thrown.
					 using System;
using System.Threading;
public class ThreadWork {
 public static void DoWork() {
 Console.WriteLine("Working thread...");
 }
}

class ThreadStateTest{
 public static void Main() {
 ThreadStart myThreadDelegate = new ThreadStart(ThreadWork.DoWork);
 Thread myThread = new Thread(myThreadDelegate);
 myThread.Start();
 Thread.Sleep(0);
 Console.WriteLine("In main. Attempting to restart myThread.");
 try {
 myThread.Start();
 }
 catch (ThreadStateException e) {
 Console.WriteLine("Caught: {0}", e.Message);
 }

 }
}

					 The output is
					
						 Working thread...
						 In main. Attempting to restart myThread.
						 Caught: Thread is running or terminated. Cannot restart.
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new
 instance to a system-supplied message that describes the error, such as "The
 requested operation cannot be performed on the thread due to its current state."
 This message takes into account the current system culture.
							 The property
of the new instance is initialized to

.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property
 of the new instance using . If is
 , the property is initialized to
 the system-supplied message provided by the constructor that takes no
 arguments.
							 The property of the new
instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling
						
						
							 This constructor initializes the property
 of the new instance using and the property using
 . If is
 , the property is initialized to
 the system-supplied message provided by the constructor that takes no
 arguments.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates that there is a unique instance of the designated static field for each thread.
				
				
					 A static field marked with this attribute is not shared between threads. Each executing thread has a separate instance of the field, and independently sets and gets values for that field.
					
						 Do not specify initial values for fields marked with this attribute, because such initialization occurs only once, when the class constructor executes, and therefore affects only one thread. If you do not specify an initial value, you can rely on the field being initialized to its default value if it is a value type, or to if it is a reference type.
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Field, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
 Contains a constant used to specify an infinite amount
 of time.

			
			
				 System.Object
			
			
			
				
					
					
					 Field
					
						 System.Int32
					
					
					
						
							 A constant used to specify an infinite waiting period.

						
						
							 The value of this
 constant is -1.
							
								 For threading methods that accept a timeout
 parameter, such as and , this value is used to suppress method behavior that would normally occur due to
 elapsed time.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides a mechanism for executing methods at specified intervals.

				
				
					 A delegate
 is used to specify the methods associated with a . The methods do
 not execute in the thread that created the timer; they execute in a separate thread that is automatically
 allocated by the system. The timer delegate
 is specified when the timer is constructed, and cannot be changed.
					 When creating a timer, the application specifies an
 amount of time to wait before the first invocation of the delegate methods (due time), and an amount
 of time to wait between subsequent invocations (period). A timer invokes its methods once
 when its due time elapses, and invokes its methods once per
 period thereafter. These values can be changed, or the timer disabled using the

 method.
					 When a timer is no longer needed, use the
method to free the resources held by the timer.
				
				
					 The following example demonstrates the features of the
class.
					 using System;
using System.Threading;

class TimerExampleState {
 public int counter = 0;
 public Timer tmr;
}

class App {
 public static void Main() {
 TimerExampleState s = new TimerExampleState();

 // Create the delegate that invokes methods for the timer.
 TimerCallback timerDelegate = new TimerCallback(CheckStatus);

 // Create a timer that waits one second, then invokes every second.
 Timer timer = new Timer(timerDelegate, s, 1000, 1000);

 // Keep a handle to the timer, so it can be disposed.
 s.tmr = timer;

 // The main thread does nothing until the timer is disposed.
 while (s.tmr != null)
 Thread.Sleep(0);
 Console.WriteLine("Timer example done.");
 }
 // The following method is called by the timer's delegate.

 static void CheckStatus(Object state) {
 TimerExampleState s = (TimerExampleState) state;
 s.counter++;
 Console.WriteLine("{0} Checking Status {1}.",DateTime.Now.TimeOfDay, s.counter);
 if (s.counter == 5) {
 // Shorten the period. Wait 10 seconds to restart the timer.
 (s.tmr).Change(10000,100);
 Console.WriteLine("changed...");
 }
 if (s.counter == 10) {
 Console.WriteLine("disposing of timer...");
 s.tmr.Dispose();
 s.tmr = null;
 }
 }
}

					 An example of some output is
					
						 10:51:40.5809015 Checking Status 1.
						 10:51:41.5823515 Checking Status 2.
						 10:51:42.5838015 Checking Status 3.
						 10:51:43.5852515 Checking Status 4.
						 10:51:44.5867015 Checking Status 5.
						 changed...
						 10:51:54.5911870 Checking Status 6.
						 10:51:54.6913320 Checking Status 7.
						 10:51:54.7914770 Checking Status 8.
						 10:51:54.8916220 Checking Status 9.
						 10:51:54.9917670 Checking Status 10.
						 disposing of timer...
						 Timer example done.
					
					 The exact timings returned by this example will vary.
				
			
			
				 System.MarshalByRefObject
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A delegate.
						 A containing application-specific information relevant to the methods invoked by , or .
						 A containing the amount of time to delay before invokes its methods, in milliseconds. Specify to prevent the timer from starting. Specify zero to start the timer immediately.
						 A containing the time interval between invocations of the methods referenced by in milliseconds. Specify to disable periodic signaling.
						
							 or is negative and is not equal to .
						
							 is a reference.
						
							
								 invokes its methods once after elapses, and then invokes
 its methods each time the time interval elapses.
							 If is zero,
 performs
its first invocation immediately. If is
 ,
does not invoke its methods; the timer is disabled, but can be re-enabled using
the
method.
							 If is zero
or and
 is not ,
invokes its methods exactly once; the periodic behavior of the timer is
disabled, but can be re-enabled using the
method.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A delegate.
						 A containing application-specific information relevant to the methods invoked by , or .
						 A set to the amount of time to delay before invokes its methods. Set the value to milliseconds to prevent the timer from starting. Specify zero to start the timer immediately.
						 A set to the time interval between invocations of the methods referenced by . Set the value to milliseconds to disable periodic signaling.
						 The number of milliseconds in the value of or is negative and not equal to , or is greater than .
						
							 is a reference.
						
							 The delegate invokes its methods
 once after elapses, and then invokes its
 methods each time the time interval
 elapses.
							 If in milliseconds, is zero,
 performs its first invocation immediately. If is
, no method invocation occurs. The timer is disabled, but can be re-enabled using
the
method.
							
If is zero or milliseconds and is not ,
invokes its methods exactly once. The periodic behavior of the timer is
disabled, but can be re-enabled using the
method.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							
								
									
									
										
										
											
											
												 Changes the
 start time and interval between method invocations for a timer.
										
									
								
							
						
						 A containing the amount of time to delay before the delegate specified at construction time invokes its methods, in milliseconds. Specify to prevent the timer from restarting. Specify zero to restart the timer immediately.
						 A containing the time interval between invocations of the methods referenced by the delegate specified at construction time in milliseconds. Specify to disable periodic signaling.
						
							
								
if the current instance has not been disposed; otherwise, .
						
						
							 or is negative and is not equal to .
						
							 The delegate specified at construction time invokes its methods once after elapses, and
 then invokes its methods each time the time interval elapses.
							 If is zero, the
delegate specified at
construction time performs its next invocation
immediately. If is
, no method invocation occurs. The timer is disabled, but can be re-enabled by
calling this method and specifying a non-negative value for

.
							
If is zero or and is not , the
delegate specified at
construction time invokes its methods exactly once. The periodic
behavior of the timer is disabled, but can be re-enabled by calling this method
and specifying a positive value for
.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							
								
									
									
										 Changes the start time and
 interval between method invocations for a timer.
								
							
						
						 A set to the amount of time to delay before the delegate specified at construction time invokes its methods. Specify milliseconds to prevent the timer from restarting. Specify zero to restart the timer immediately.
						 A set to the time interval between invocations of the methods referenced by the delegate specified at construction time. Specify milliseconds to disable periodic signaling.
						
							
								 if the current instance has
 not been disposed; otherwise, .

						
						
							 or is negative and is not equal to .
						
							 The delegate specified at construction time invokes its methods once after elapses, and
 then invokes its methods each time the time interval elapses.
							 If in milliseconds,
is zero, the delegate specified at construction time performs its
next invocation immediately. If is milliseconds, no method invocation occurs. The timer is disabled, but can be re-enabled by
calling this method and specifying a non-negative value for
.
							
If is zero or milliseconds and is not
 milliseconds, the delegate specified at
construction time
invokes its methods exactly once. The periodic behavior of the timer is
disabled, but can be re-enabled by calling this method and specifying a positive
value for
.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Releases the resources held by the current instance.
						
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Releases the resources held by the current instance.

						
						 Specifies a to be signaled when the timer has been disposed of.
						
							
								 if the call succeeds;
 otherwise, .

						
						
							 is .
						
							 When this method completes, the specified by is
 signaled.

							 This method calls to prevent the garbage collector from finalizing the
current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Releases the resources held by the current instance.
						
						
							
								 Application code does not call this method; it is
 automatically invoked by during garbage collection unless finalization by the
 garbage collector has been disabled. For more information, see ,
 and .
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the shape of methods that are called by an instance of
 the class.

				
				 A containing application-specific information relevant to the methods invoked by instances of this delegate, or .
				
					 A delegate invokes its
 methods once after the start time elapses, and continues invoking its methods
 once per period until the method is called. The start time for a is passed in the
 parameter of the constructors, and the period
 is passed via the parameter.
					
					
						 For an example that
 demonstrates creating and using a
 delegate, see the
 class.
					
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an interval of time.
				
				
					 The structure represents an interval of time with values
 ranging from to 100-nanosecond .
					
						 The value of a is represented internally as a number
 of 100-nanosecond ticks. Both the specification of a number of ticks and the
 value of a can be positive or negative.
						 A can be represented as a string in the format
"[-]d.hh:mm:ss.ff" where "-" is an optional sign for negative values, the "d" component is
days, "hh" is hours, "mm" is minutes, "ss" is seconds, and "ff" is fractions of
a second. For example, a initialized with 10
ticks would
be represented as "11.13:46:40", which is 11 days, 13 hours, 46 minutes, and 40
seconds.
						 Due to a varying number of days in months and years, the
 longest unit of time that is used by this structure is the day.
					
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IComparable<System.TimeSpan>
					 0
				
				
					 System.IEquatable<System.TimeSpan>
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new with the
 specified number of ticks.
						
						 A that specifies the number of ticks with which to initialize the new .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new with the
 specified numbers of hours, minutes, and seconds.
						
						 A that specifies the number of hours with which to initialize the new .
						 A that specifies the number of minutes with which to initialize the new .
						 A that specifies the number of seconds with which to initialize the new .
						 The parameters specify a value less than or greater than .
						
							 The specified , , and
 are converted to ticks, and that value is used to initialize
 the new .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
						
					
					
						
							 Constructs and initializes a new with the specified numbers of days,
 hours, minutes, seconds, and milliseconds.
						
						 A that specifies the number of days with which to initialize the new .
						 A that specifies the number of hours with which to initialize the new .
						 A that specifies the number of minutes with which to initialize the new .
						 A that specifies the number of seconds with which to initialize the new .
						 A that specifies the number of milliseconds with which to initialize the new .
						 The parameters specify a value less than or greater than .
						
							 The specified , ,
 , , and are converted to
 ticks, and that value is used to initialize the new .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new with the specified numbers of days,
 hours, minutes, and seconds.
						
						 A that specifies the number of days with which to initialize the new .
						 A that specifies the number of hours with which to initialize the new .
						 A that specifies the number of minutes with which to initialize the new .
						 A that specifies the number of seconds with which to initialize the new .
						 The parameters specify a value less than or greater than .
						
							 The specified , ,
 , and are converted to ticks, and that value is
 used to initialize the new .
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Adds the specified to the current instance.
						
						 A instance to add to the current instance.
						
							 A that represents the value of the current instance plus
 the value of .
						
						 The sum of the value of the current instance and the value of is less than or greater than .
						
							 This example demonstrates the method.
							 using System;
public class TimeSpanAddExample {
 public static void Main() {
 TimeSpan ts = new TimeSpan(Int32.MaxValue);
 Console.WriteLine("The value of the timespan 'ts' is {0}", ts);
 Console.WriteLine("ts.Add(ts) = {0}", ts.Add(ts));
 }
}

							 The output is
							
								 The value of the timespan 'ts' is 00:03:34.7483647
								 ts.Add(ts) = 00:07:09.4967294
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the sort order of two
structures.
						
						 The first to compare.
						 The second to compare.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Condition
								
								
									 Any
 negative
 number
									
										 < .
								
								
									 Zero
									
										 == .
								
								
									 Any
 positive
 number
									
										 >
 .
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Condition
								
								
									 Any
 negative
 number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 Any
 positive
 number
									
										 Current instance > , or
 is a null reference.
									
								
							
						
						
							
								 is not a and is not a null reference.
						
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Condition
								
								
									 Any
 negative
 number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 Any
 positive
 number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number days represented by the current instance.
						
						
							 A represents the days component of the current instance. See for a more detailed description of the days
 component.
							
						
						
							 This property is read-only.
							
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanPropertiesExampleOne {
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12+3456789);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("Days: {0}", ts.Days);
 }
}

							 The output is
							
								 11.13:46:40.3456789
								 Days: 11
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
					
						
							 Returns a whose value is the absolute value of the current
 instance.
						
						
							 A
whose value is
the absolute value of the current instance.
						
						 The value of the current instance is .
						
							 The following example demonstrates the method.
							 using System;
public class TimeSpanDurationExample {
 public static void Main() {
 TimeSpan ts = new TimeSpan(Int32.MinValue);
 Console.Write("The absolute value of TimeSpan {0} ", ts);
 Console.WriteLine("is {0}", ts.Duration());
 }
}

							 The output is
							
								 The absolute
 value of TimeSpan -00:03:34.7483648 is 00:03:34.7483648
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two structures represent the same type and value.
						
						 The first instance of to compare for equality.
						 The second instance of to compare for equality.
						
							
								 if and
represent the same value; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the
 same type and value.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same type and value as the current instance. If is
 a null reference or is not a , returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the same value as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns a that represents the specified number of days where the
 specification is accurate to the nearest millisecond.
						
						 A that specifies the number of days with which the new is initialized.
						
							 A that represents .
						
						 The represented by is greater than or less than .
						
							 is equal to .
						
							
								 will only be considered accurate to the
 nearest millisecond.
							 If is ,
a with
the value is returned. If is , a
with the value is returned.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns a that represents the specified number of hours where the
 specification is accurate to the nearest millisecond.
						
						
							 A that specifies the number of hours with which the new is initialized.
						
						
							 A that represents .
						
						 The represented by is greater than or less than .
						
							 is equal to .
						
							
								 will only be considered accurate to the
 nearest millisecond.
							 If is ,
a with
the value is returned. If is , a
with the value is returned.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns a that represents the specified number of milliseconds
 where the specification is accurate to the nearest millisecond.
						
						
							 A that specifies the number of milliseconds with which the new is initialized.
						
						
							 A that represents .
						
						 The represented by is greater than or less than .
						
							 is equal to .
						
							
								 will only be considered accurate to the nearest
 millisecond.
							 If is , a with the value is
returned. If is , a with the value is
returned.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns a that represents the specified number of
 minutes where the specification is accurate to the nearest millisecond.
						
						
							 A that specifies the number of minutes with which the new is initialized.
						
						
							 A that represents .
						
						 The represented by is greater than or less than .
						
							 is equal to .
						
							
								 will only be considered accurate to the nearest
 millisecond.
							 If is , a with the value is
returned. If is , a with the value is
returned.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns a that represents the specified number of seconds where
 the specification is accurate to the nearest millisecond.
						
						
							 A that specifies the number of seconds with which the new is initialized.
						
						
							 A that represents .
						
						 The represented by is greater than or less than .
						
							 is equal to .
						
							
								 will only be considered accurate to the
 nearest millisecond.
							 If is ,
a with
the value is returned. If is ,
a with
the value is returned.
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns a that represents the specified number of ticks.
						
						 A that specifies the number of ticks with which the new is initialized.
						
							 A with a value of .
						
						
							 This method is equivalent to the ()
 constructor.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
value containing a hash code for the current instance.
						
						
							 The algorithm used to generate
 the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of hours represented by the current instance.
						
						
							 A between 0 and 23 inclusive, that represents
 the hours component of the current instance. See for a
 more detailed description of the hours component.
							
						
						
							 This property is read-only.
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanPropertiesExampleOne {
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12+3456789);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("Hours: {0}", ts.Hours);
 }
}

							 The output is
							
								 11.13:46:40.3456789
								 Hours: 13
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.TimeSpan
					
					
					
						
							 Returns a whose value is the maximum value for the
 type.
						
						
							 This field is read-only.
							 This field is a containing ticks,
 the maximum value. The string representation of this value is
 positive 10675199.02:48:05.4775807.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of milliseconds represented by the current instance.
						
						
							 A between 0 and 999 inclusive, that represents
 the fractional seconds component of the current instance converted to
 milliseconds. See for a more
 detailed description of the fractional seconds component.
							
						
						
							 This property is read-only.
							
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanPropertiesExampleOne {
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12+3456789);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("Milliseconds: {0}", ts.Milliseconds);
 }
}

							 The output is
							
								 11.13:46:40.3456789
								 Milliseconds: 345
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of minutes represented by the current instance.
						
						
							 A between 0 and 59 inclusive, that represents
 the minutes component of the current instance. See for
 a more detailed description of the minutes component.
							
						
						
							 This property is read-only.
							
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanPropertiesExampleOne {
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12+3456789);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("Minutes: {0}", ts.Minutes);
 }
}

							 The output is
							
								 11.13:46:40.3456789
								 Minutes: 46
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.TimeSpan
					
					
					
						
							 Returns a whose value is the minimum value for the
 type.
						
						
							 This field is read-only.
							 This field is a containing ticks,
 the minimum value. The string representation
 of this value is negative 10675199.02:48:05.4775808.
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
					
						
							 Returns a with the same absolute value but opposite sign as the current
 instance.
						
						
							 A with the same absolute value but with the opposite sign as the current instance.
						
						 The value of the current instance is .
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
						
					
					
						
							 Adds the values of two instances.
						
						 The first .
						 The second .
						
							 A whose value is the sum of the values of and
 .
						
						 The sum of and is less than or greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the value of one is equal to the
 value of another .
						
						 The first
						
						 The second
						
						
							
								 if the values of and
 are equal; otherwise, .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the value one is greater than the value of another
 .
						
						 The first .
						 The second .
						
							
								 if the value of is
 greater than the value of ; otherwise, .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the value of one is greater than or equal to the value
 of another .
						
						 The first .
						 The second .
						
							
								 if the value of is
 greater than or equal to the value of ; otherwise,
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the value of one is unequal to the value of another
 .
						
						 The first .
						 The second .
						
							
								 if the values of and
 are unequal; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the value of one is less than the value of another
 .
						
						 The first .
						 The second .
						
							
								 if the value of is
 less than the value of ; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the value of one is less than or equal to the value of
 another .
						
						 The first .
						 The second .
						
							
								 if the value of is
 less than or equal to the value of ; otherwise,
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
						
					
					
						
							 Subtracts the value of one from the value
 of another .
						
						 The first .
						 The second .
						
							 A whose value is the result of the value of
minus the value of .
						
						 The value of subtracted from is less than or greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns a whose value is the negated value of a
 specified .
						
						 A whose value will be negated.
						
							 A with the same absolute value but the opposite sign as
 .
						
						
							 equals .
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns the specified instance of .
						
						 A .
						
							
								
								 .
						
						
							 This method returns
								 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						
							 A containing the value to convert. contains a time interval in the following form:
							 [ws][-][d.]hh:mm:ss[.ff][ws]
							 Items in square brackets ('[' and']') are optional. Colons and periods (':' and'.') are literal characters. For details on the remaining symbols, see the description section.
						
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is in an invalid format.
						
							
								 represents a number greater than or less than .
							 -or-
							 At least one of the hours, minutes, or seconds components is outside its valid range.
						
						
							 The symbols used in the parameter description for
 are as follows:
							
								
									 Item
									 Description
								
								
									 ws
									 White space (zero or more space and/or tab
 characters).
								
								
									 "-"
									 Minus sign, indicating a negative time interval.
								
								
									 "d"
									 Days.
								
								
									 "hh"
									 Hours, ranging from 0 to 23 inclusive.
								
								
									 "mm"
									 Minutes, ranging from 0 to 59 inclusive.
								
								
									 "ss"
									 Seconds, ranging from 0 to 59 inclusive.
								
								
									 "ff"
									 Fractional seconds, from 1 to 7 decimal digits
 inclusive.
								
							
						
						
							 This example demonstrates parsing a string to obtain a
 .
							 using System;
public class TimeSpanParseExample {
 public static void Main() {
 String str = " -5.12:34:56.789 ";
 TimeSpan ts = TimeSpan.Parse(str);
 Console.WriteLine(@"The string ""{0}""", str);
 Console.WriteLine("parses to TimeSpan {0}", ts);
 }
}

							 The output is
							
The string " -5.12:34:56.789 "
parses to TimeSpan -5.12:34:56.7890000

						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of seconds represented by the current instance.
						
						
							 A between 0 and 59 inclusive, that represents
 the seconds component of the current instance. See for
 a more detailed description of the seconds component.
							
						
						
							 This property is read-only.
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanPropertiesExampleOne {
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12+3456789);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("Seconds: {0}", ts.Seconds);
 }
}

							 The output is
							
								 11.13:46:40.3456789
								 Seconds: 40
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Subtracts the value of the specified from the value of the current
 instance.
						
						 A whose value to subtract from the value of the current instance.
						
							 A whose value is equal to the value of the current
 instance minus the value of .
						
						 The difference between the value of the current instance and is less than or greater than .
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets the number of ticks represented by the current instance.
						
						
							 A specifying the
 number of ticks represented by the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int64
					
					
					 864000000000
					
						
							 Represents the number of ticks in 1 day.
						
						
							 The value of this constant is 864 billion
 (8.64x10 11).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int64
					
					
					 36000000000
					
						
							 Represents the number of ticks in 1 hour.
						
						
							 The value of this constant is 36 billion
 (3.6x10 10).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int64
					
					
					 10000
					
						
							 Represents the number of ticks in 1
 millisecond.
						
						
							 The value of this constant is 10 thousand
 (10 4).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int64
					
					
					 600000000
					
						
							 Represents the number of ticks in 1 minute.
						
						
							 The value of this constant is 600 million
 (6x10 8).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int64
					
					
					 10000000
					
						
							 Represents the number of ticks in 1 second.
						
						
							 The value of this constant is 10 million
 (10 7).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted as follows:
							 [-][d.]hh:mm:ss[.ff]
							 Items in square brackets ('[' and ']') are included
 provisionally: '-' is included if and only if the current instance is negative;
 "d." and ".ff" are included if and only if those components are non-zero. Colons
 and periods (':' and '.') are literal characters. Other components are as follows.
							
								
									 Component
									 Description
								
								
									 "-"
									 Minus sign, indicating a negative time
 interval.
								
								
									 "d"
									 Days.
								
								
									 "hh"
									 Hours, ranging from 0 to 23 inclusive.
								
								
									 "mm"
									 Minutes, ranging from 0 to 59 inclusive.
								
								
									 "ss"
									 Seconds, ranging from 0 to 59 inclusive.
								
								
									 "ff"
									 Fractional seconds.
								
							
						
						
							
								 This method
 overrides .
							
						
						
							 This example demonstrates the method.
							 using System;
public class TimeSpanToStringExample {
 public static void Main() {
 TimeSpan tsOne = new TimeSpan(1, 23, 45, 54, 321);
 TimeSpan tsTwo = new TimeSpan(0, 23, 45, 54, 0);
 Console.Write("TimeSpan one, with d. and .ff: ");
 Console.WriteLine("{0}", tsOne.ToString());
 Console.Write("TimeSpan two, without d. and .ff: ");
 Console.WriteLine("{0}", tsTwo.ToString());
 }
}

							 The output is
							
								 TimeSpan one, with d. and .ff: 1.23:45:54.3210000
								 TimeSpan two, without d. and .ff: 23:45:54
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Double
					
					
					
						
							 Gets the value of the current instance expressed in days.
						
						
							 A that specifies the total number of days represented by the current instance.
						
						
							 This property is read-only.
							
								 This property converts the value of the
 current instance from ticks to days. This number can include whole and
 fractional days.
							
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanTotalUnitsProperties{
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("TotalDays: {0}", ts.TotalDays);
 }
}

							 The output is
							
								 11.13:46:40
								 TotalDays: 11.5740740740741
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Property
					
						 System.Double
					
					
					
						
							 Gets the value of the current instance expressed in hours.
						
						
							 A that specifies the total number of hours represented by the current instance.
						
						
							 This property is read-only.
							
								 This property converts the value of the
 current instance from ticks to hours. This number can include whole and
 fractional hours.
							
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanTotalUnitsProperties{
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("TotalHours: {0}", ts.TotalHours);
 }
}

							 The output is
							
								 11.13:46:40
								 TotalHours: 277.777777777778
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Property
					
						 System.Double
					
					
					
						
							 Gets the value of the current instance expressed in milliseconds.
						
						
							 A that specifies the total number of milliseconds represented by the current instance.
						
						
							 This property is read-only.
							
								 This property converts the value of the
 current instance from ticks to milliseconds. This number can include whole and
 fractional milliseconds.
							
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanTotalUnitsProperties{
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("TotalMilliseconds: {0}", ts.TotalMilliseconds);
 }
}

							 The output is
							
								 11.13:46:40
								 TotalMilliseconds: 1000000000
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Property
					
						 System.Double
					
					
					
						
							 Gets the value of the current instance expressed in minutes.
						
						
							 A that specifies the total number of minutes represented by the current instance.
						
						
							 This property is read-only.
							
								 This property converts the value of the
 current instance from ticks to minutes. This number can include whole and
 fractional minutes.
							
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanTotalUnitsProperties{
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("TotalMinutes: {0}", ts.TotalMinutes);
 }
}

							 The output is
							
								 11.13:46:40
								 TotalMinutes: 16666.6666666667
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Property
					
						 System.Double
					
					
					
						
							 Gets the value of the current instance expressed in seconds.
						
						
							 A that specifies the total number of seconds represented by the current instance.
						
						
							 This property is read-only.
							
								 This property converts the value of the
 current instance from ticks to seconds. This number can include whole and
 fractional seconds.
							
						
						
							 This example demonstrates using the property.
							 using System;
public class TimeSpanTotalUnitsProperties{
 public static void Main() {
 TimeSpan ts = new TimeSpan((Int64)10e12);
 Console.WriteLine(ts.ToString());
 Console.WriteLine("TotalSeconds: {0}", ts.TotalSeconds);
 }
}

							 The output is
							
								 11.13:46:40
								 TotalSeconds :1000000
							
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Field
					
						 System.TimeSpan
					
					
					
						
							 Returns a whose value is 0.
						
						
							 This field is read-only.
							 This field is a whose value is 0 ticks. This provides a convenient source for 0 in calculations.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Provides information about a type.
				
				
					 The class is abstract, as is the
class and its subclasses , , ,
and . and
are subclasses of . The runtime
provides non-public implementations of these classes. For example, is typed
as returning a object. The
returned object is actually an instance of the non-public runtime type that
implements .
					
					 A conforming CLI program which is written to run on only the Kernel profile
 cannot subclass . This only applies
 to conforming programs not conforming implementations.
					
					 A object that represents a type is unique; that is, two
 object
references refer to the same object if and only if they represent the same type.
This allows for comparison of
objects using reference
equality.
					
						 An instance of
can represent any one of the following
types:
						
							
								 Classes
							
							
								 Value types
							
							
								 Arrays
							
							
								 Interfaces
							
							
								 Pointers
							
							
								 Enumerations
							
							
								 Constructed generic types and generic type definitions
							
							
								 Type arguments and type parameters of constructed generic types, generic type definitions, and generic method definitions
							
						
						 The following table shows what members of a base class are returned by the
 methods that return members of types, such as and
 .
						
							
								
									 Member Type
									 Static
									 Non-Static
								
								
									 Constructor
									 No
									 No
								
								
									 Field
									 No
									 Yes. A field is always
 hide-by-name-and-signature.
								
								
									 Event
									 Not applicable
									 The common type system rule is
 that the inheritance of an event is the same as that of
 the accessors that implement the event.
 Reflection treats events as hide-by-name-and-signature.
								
								
									 Method
									 No
									 Yes. A method (both virtual and non-virtual)
 can be hide-by-name or hide-by-name-and-signature.
								
								
									 Nested Type
									 No
									 No
								
								
									 Property
									 Not applicable
									 The common type system
 rule is that the inheritance is the same as that of the
 accessors that implement the property. Reflection treats
 properties as hide-by-name-and-signature.
								
							
						
						 For reflection, properties and events are hide-by-name-and-signature. If a
 property has both a get and a set accessor in the base class, but the derived
 class has only a get accessor, the derived class property hides the base class
 property, and the setter on the base class will not be accessible.
					
					 The description of contains definitions for some important terms.
				
			
			
				 System.Object
				 System.Reflection.MemberInfo
				 Reflection
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.

						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Reflection.Assembly
					
					
					
						
							 Gets the in which the type is declared. For generic types, gets the that contains the generic type definition.
						
						
							 A instance that describes the assembly containing the current type. For generic types, the instance describes the assembly that contains the definition of the generic type.
						
						
							 If the current instance represents a generic type, this property returns the assembly in which the type was defined. For example, suppose you create an assembly named MyGenerics.dll that contains a class named . If you create an instance of in another assembly, the property for the constructed type returns a that represents MyGenerics.dll.
							 Similarly, if the current instance represents a generic parameter T, this property returns the assembly that contains the generic type definition that defines T.
							
								 This property is read-only.
							
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the fully qualified name of the type represented by
 the current instance
 including the name of the assembly from which the was loaded.
						
						
							 The assembly-qualified name of the , including the name of the assembly from which the was loaded. If the current object represents a generic parameter, this property returns .
						
						
							
								
 This property is read-only.
								 Compilers emit the simple name of a nested class, and reflection constructs a
 mangled name when queried, in accordance with the following conventions.
								
									
										 Delimiter
										 Meaning
									
									
										 Backslash (\)
										 Escape character.
									
									
										 Comma (,)
										 Precedes the Assembly name.
									
									
										 Plus sign (+)
										 Precedes a nested class.
									
									
										 Period (.)
										 Denotes namespace identifiers.
									
									
										 Square brackets ([])
										
											 After a type name, denotes an array of that type.
											 -or-
											 For a generic type, encloses the entire generic type argument list.
											 -or-
											 Within a type argument list, encloses an assembly-qualified type.
										
									
								
								
									 For example, the fully qualified name for a class might look like this:
									 TopNamespace.SubNameSpace.ContainingClass+NestedClass,MyAssembly
									 If the namespace were TopNamespace.Sub+Namespace, then the string would
 have to precede the plus sign (+) with an escape character (\) to prevent
 it from being interpreted as a nesting separator. Reflection
 emits this string as follows:
									 TopNamespace.Sub\+Namespace.ContainingClass+NestedClass,MyAssembly
									 A "++" becomes "\+\+", and a "\" becomes "\\".
								
								 Type names are permitted to include trailing characters that denote
 additional information about the type, such as whether the type is a reference
 type, a pointer type or an array type. To retrieve the type name without these
 trailing characters, use t.GetElementType().ToString(), where
 is the type.
								 Spaces are significant in all type name components except the assembly
 name. In the assembly name, spaces before the ',' separator are significant, but
 spaces after the ',' separator are ignored.
								 Generic arguments of generic types are themselves fully qualified. For example, the output from the following C# program, if compiled to an assembly called Try64
								 using System;
using System.Reflection;

class MyTest {
 public static void Main(String[] args) {
 Type b = typeof(B<string,object>);
 Console.WriteLine(b.AssemblyQualifiedName);
 }
}
public class B<T,U> { }
								 is as follows:
								 B`2[[System.String, mscorlib, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],[System.Object, mscorlib, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]], Try64, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null
							
							
								 The name returned by this method can be persisted and later used to load the .
 To search for and load a , use either with the type name only or with
 the assembly qualified type name. with the type name only will look for
 the
 in the caller's assembly and then in the System assembly. with the
 assembly qualified type name will look for the in any assembly.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Gets the attributes associated with the type represented
 by the current instance.
						
						
							 A object representing the attribute set of the .
						
						
							 This property is read-only.
							 If the current instance represents a generic type, this property returns the attributes of the generic type definition.
							 If the current instance represents a generic type parameter T, the returned by this property includes , , , , , and . These are arbitrary choices which have no meaning in the context of a type parameter.
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the base of the current .
						
						
							 A object
 representing the type from which the current directly inherits, or

if the current represents the class.
						
						
							 The base type is the type from which the current type directly inherits. is the only type that does not have a base type, therefore is returned as the base type of .
							 Interfaces inherit from and from zero or more base interfaces; therefore, the base type of an interface is considered to be .
							 If the current instance represents a constructed generic type, the base type reflects the generic arguments.
							 If the current instance represents an unassigned type parameter, returns the base class type constraint declared for that parameter, or if no base class type constraint was declared.
							
								 This property is read-only.
							
						
						
							 The following example demonstrates using the
property.
							 using System;
class TestType {
 public static void Main() {
 Type t = typeof(int);
 Console.WriteLine("{0} inherits from {1}", t,t.BaseType);
 }
}

							 The output is
							
								 System.Int32
 inherits from System.ValueType
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether a object contains unassigned generic parameters.
						
						
							
								 if a object contains unassigned generic parameters; otherwise .
						
						
							 In order to create an instance of a generic type, there must be no generic type definitions or open constructed types in the type arguments. For other constructed types, such as arrays and managed pointers, the types from which they are constructed must be able to be instantiated. If the property returns , the type cannot be instantiated.
							 The property searches recursively for type parameters. For example, it returns true for an array whose element type is , even though the array type itself is not generic. Contrast this with the behavior of the property, which returns for arrays.
							 For a set of example classes and a table showing the values of the property, see the property description.
							
								 This property is read-only.
							
						
						
							 For an example of using this method, see the example for .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Reflection.MethodBase
					
					
					
						
							 If the current represents a type parameter of a generic method, gets a that represents the declaring method.
						
						
							 If the current represents a type parameter of a generic method, a that represents the declaring method; otherwise .
						
						
							 The declaring method is a generic method definition. That is, if does not return , then returns .
							 The and properties identify the generic type definition or generic method definition where the generic type parameter was originally defined:
							
								
									
										 If the property returns a , that represents a generic method definition, and the current object represents a type parameter of that generic method definition.
									
								
								
									
										 If the property returns a , then the property always returns a object representing a generic type definition, and the current object represents a type parameter of that generic type definition.
									
								
							
							 For a list of the invariant conditions for terms used in generic reflection, see the property description.
							
								 This property is read-only.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the type that declares the type represented by the current instance.
						
						
							 The object for
 the class that declares the type represented by the current
 instance. If the type is a nested type, this property returns the enclosing type; otherwise, returns
 the current instance.
						
						
							
								 This property implements the abstract property inherited from .
							
							 If the current represents a type parameter of a generic type or method definition, the and properties identify the generic type definition or generic method definition where the generic type parameter was originally defined:
							
								
									
										 If the property returns a , that represents a generic method definition, and the current object represents a type parameter of that generic method definition.
									
								
								
									
										 If the property returns a , then the property always returns a object representing a generic type definition, and the current object represents a type parameter of that generic type definition.
									
								
							
							 For a type parameter of a generic method, this property returns the type that contains the generic method definition.
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Reflection.Binder
					
					
					
						
							 Gets the default binder used by the system.
						
						
							 The default used by the system.
						
						
							 This property is read-only.
							 Reflection models the accessibility rules of the common
 type system. For example, if the caller is in the same assembly, the caller does
 not need special permissions for internal members. Otherwise, the caller needs

 . This is consistent with lookup of members that
 are protected, private, and so on.
							
								 The general principle is that
typically performs only widening coercions,
which never lose data. An example of a widening coercion is coercing a
value that is a 32-bit signed integer to a value that is a 64-bit signed integer.
This is distinguished from a narrowing coercion, which can lose data. An
example of a narrowing coercion is coercing a 64-bit signed integer to a 32-bit
signed integer.
							
							 The following table lists the coercions performed by the default binder's implementation of
 .
							
								
									 Source Type
									 Target Type
								
								
									 Any type
									 Its base type.
								
								
									 Any type
									 The interface it implements.
								
								
									 Char
									 Unt16, UInt32, Int32, UInt64, Int64, Single, Double
								
								
									 Byte
									 Char, Unt16, Int16, UInt32, Int32, UInt64, Int64, Single, Double
								
								
									 SByte
									 Int16, Int32, Int64, Single, Double
								
								
									 UInt16
									 UInt32, Int32, UInt64, Int64, Single, Double
								
								
									 Int16
									 Int32, Int64, Single, Double
								
								
									 UInt32
									 UInt64, Int64, Single, Double
								
								
									 Int32
									 Int64, Single, Double
								
								
									 UInt64
									 Single, Double
								
								
									 Int64
									 Single, Double
								
								
									 Single
									 Double
								
								
									 Non-reference
									 By-reference.
								
							
						
					
					 1
					 Reflection
				
				
					
					
					 Field
					
						 System.Char
					
					
					
						
							 Specifies the character that separates elements in the fully qualified name
 of a
 .
						
						
							 This field is read-only.
						
					
					 1
					 Reflection
				
				
					
					
					 Field
					
						 System.Type
					
					
					
						
							 Returns an empty array of type .
						
						
							 This field is read-only.
							 The empty array returned by this field is used to specify that
 lookup methods in the class, such as and ,
 search for members that do not take parameters. For example, to locate the public instance constructor that takes no
 parameters, invoke (| , , ,
).
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines if the underlying system type of the current is the same as the
 underlying system type of the specified .
						
						 The whose underlying system type is to be compared with the underlying system type of the current .
						
							
								 if the underlying system type of is the same
 as the underlying system type of the current ; otherwise, .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the fully qualified name of the type represented by
 the current instance.
						
						
							 A containing the fully qualified name of the .
						
						
							
								 For example, the
 fully qualified name of the C# string type is "System.String".
							
							 If the current instance represents a generic type, the type arguments in the string returned by are qualified by their assembly, version, and so on, even though the string representation of the generic type itself is not qualified by assembly. Thus, produces the same result as , as with types that are not generic.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
							
								 This property is
 read-only.
							
						
						
							 The following example demonstrates using the
property.
							 using System;
class TestType {
 public static void Main() {
 Type t = typeof(Array);
 Console.WriteLine("Full name of Array type is {0}",t.FullName);
 }
}

							 The output is
							
								 Full name of
 Array type is System.Array
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets a combination of flags that describe the variance and special constraints of the current generic type parameter.
						
						
							 A value that describes the variance and special constraints of the current generic type parameter.
						
						 The current object is not a generic type parameter. That is, the property returns .
						
							 This property is read-only.
							 The value of this property contains flags that describe whether the current generic type parameter is variant, and flags that describe any special constraints. Use to select the variance flags, and to select the constraint flags. Use to get the type constraints.
							 For a list of the invariant conditions for terms used in generic reflection, see the property description.
						
					
					 0
					 Reflection
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 For a object that represents a type parameter of a generic type or generic method, gets the position of the type parameter in the type parameter list of the generic type or generic method.
						
						
							 A zero-based integer representing the position of a type parameter in the type parameter list of the generic type or generic method that declared the parameter.
						
						 The current type does not represent a type parameter. That is, returns .
						
							 This read-only property returns the position of a type parameter in the parameter list of the generic type definition or generic method definition where the type parameter was originally defined. The and properties identify the generic type or method definition:
							
								
									
										 If the property returns a , that represents a generic method definition, and the current object represents a type parameter of that generic method definition.
									
								
								
									
										 If the property returns a , then the property always returns a object representing a generic type definition, and the current object represents a type parameter of that generic type definition.
									
								
							
							 To provide the correct context for the value of the property, it is necessary to identify the generic type or method a type parameter belongs to. For example, consider the return value of the generic method in the following C# code:
							 public class B<T, U> { }
 public class A<V>
 {
 public B<V, X> GetSomething<X>()
 {
 return new Base<V, X>();
 }
 }
							 The type returned by depends on the type arguments supplied to class and itself. You can obtain a for and from that you can obtain the return type. When you examine the type parameters of the return type, returns zero for both. The position of is zero because is the first type parameter in the type parameter list for class . The position of is zero because is the first type parameter in the type parameter list for .
							
								 Calling the property causes an exception if the current does not represent a type parameter. When you examine the type arguments of an open constructed type, use the property to tell which are type parameters and which are types. The property returns for a type parameter; you can then use the method to obtain its position, and the and properties to determine the generic method or type definition that defines it.
							
						
						
							 The following example defines a generic class with two type parameters, and a generic class that derives from it. The base class of the derived type has one unbound type parameter and one type parameter bound to . The example displays information about these generic classes, including the positions reported by .
							 using System;
using System.Reflection;
using System.Collections.Generic;
// Define a base class with two type parameters.
public class Base<T, U> { }

// Define a derived class. The derived class inherits from a constructed
// class that meets the following criteria:
// (1) Its generic type definition is Base<T, U>.
// (2) It specifies int for the first type parameter.
// (3) For the second type parameter, it uses the same type that is used
// for the type parameter of the derived class.
// Thus, the derived class is a generic type with one type parameter, but
// its base class is an open constructed type with one type argument and
// one type parameter.
public class Derived<V>: Base<int,V> { }

public class Test
{
	public static void Main()
	{
		Console.WriteLine("\n--- Display a generic type and the open constructed");
		Console.WriteLine(" type from which it is derived.");

		// Create a Type object representing the generic type Derived.
		//
		Type derivedType = Type.GetType("Derived");

		DisplayGenericTypeInfo(derivedType);

		// Display its open constructed base type.
		DisplayGenericTypeInfo(derivedType.BaseType);
	}

	private static void DisplayGenericTypeInfo(Type t)
	{
		Console.WriteLine("\n{0}", t);
		Console.WriteLine("\tIs this a generic type definition? {0}", t.IsGenericTypeDefinition);
		Console.WriteLine("\tDoes it have generic arguments? {0}", t.HasGenericArguments);
		Console.WriteLine("\tDoes it have unbound generic parameters? {0}", t.ContainsGenericParameters);
		if (t.HasGenericArguments)
		{
			// If the type is a generic type definition or a
			// constructed type, display the type arguments.
			//
			Type[] typeArguments = t.GetGenericArguments();

			Console.WriteLine("\tList type arguments ({0}):", typeArguments.Length);
			foreach (Type tParam in typeArguments)
			{
				// IsGenericParameter is true only for generic type
				// parameters.
				//
				if (tParam.IsGenericParameter)
				{
					Console.WriteLine("\t\t{0} (unbound - parameter position {1})", tParam, tParam.GenericParameterPosition);
				}
				else
				{
					Console.WriteLine("\t\t{0}", tParam);
				}
			}
		}
		else
		{
			Console.WriteLine("\tThis is not a generic or constructed type.");
		}
	}
}

/* This example produces the following output:

--- Display a generic type and the open constructed
 type from which it is derived.

Derived[V]
 Is this a generic type definition? True
 Does it have generic arguments? True
 Does it have unbound generic parameters? True
 List type arguments (1):
 V (unbound - parameter position 0)

Base[System.Int32, V]
 Is this a generic type definition? False
 Does it have generic arguments? True
 Does it have unbound generic parameters? True
 List type arguments (2):
 System.Int32
 V (unbound - parameter position 0)
 */
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Returns the number of dimensions in the current .
						
						
							 A containing the number of dimensions in the current
 .
						
						 The current is not an array.
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 When overridden in a derived type implements the
property and returns the attributes specified for the type represented by the current instance.
						
						
							 A value that signifies the attributes of the
 type represented by the current instance.
						
						
							
								 This property is read-only.
								 This method returns a value that indicates the attributes set in
 the metadata of the type represented by the current
 instance.
							
							
								 Use this property to determine the
 visibility, semantics, and layout format of the type represented by the
 current instance. Also use this property to determine if the type represented by
 the current instance has a special name.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.ConstructorInfo
					
					
						
						
						
						
					
					
						
							 Returns a constructor defined in the type represented by the current
 instance. The parameters of the constructor match the specified argument types
 and modifiers, under the specified binding constraints.
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns null.
						
						
							 A object that defines a set of properties and enables the binding, coercion of argument types, and invocation of members using reflection. Specify to use the .
						
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the constructor to be returned.
						
						 The only defined value for this parameter is .
						
							 A object that reflects the constructor
 that matches the specified criteria. If an exact match does not exist,
 will attempt to coerce the parameter types specified in
 to select a match. If is unable to select a
 match, returns . If the type represented by the current
 instance is contained in a loaded assembly, the constructor that matches the
 specified criteria is not public, and the caller does not have sufficient
 permissions, returns .
						
						
							
								 is , or at least one of the elements in is .
						
						
							
								 has more than one dimension.
						
						
							 The following are used to define which
 constructors to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public constructors
 in the search.
								
								
									

 Specify to include non-public
 constructors (that is, private and protected constructors) in the
 search.
								
							
							
								 For more information, see .
							
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments. If the current instance represents an unassigned type parameter of a generic type or method, this method always returns .
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.ConstructorInfo
					
					
						
					
					
						
							 Returns a public instance constructor defined in the type represented by the
 current instance. The parameters of the constructor match the specified argument
 types.
						
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the constructor to be returned. Specify to obtain a constructor that takes no parameters.
						
						
							 A object representing the public instance
 constructor whose parameters match exactly the types in , if found;
 otherwise, . If the type represented by the current
 instance is contained in a loaded assembly, the constructor that matches the
 specified criteria is not public, and the caller does not have sufficient
 permissions, returns .
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments. If the current instance represents an unassigned type parameter of a generic type or method, this method always returns .
						
						
							
								 is , or at least one of the elements in is .
						
						
							
								 has more than one dimension.
						
						
							 This version of is equivalent to (| , ,
 ,).
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.ConstructorInfo[]
					
					
					
						
							 Returns an array of the public constructors defined in the type represented
 by the current instance.
						
						
							 An array of objects that reflect the public constructors
 defined in the type represented by the current instance. If no public
 constructors are defined in the type represented by the current instance, or if the current instance represents an unassigned type parameter of a generic type or method,
 returns an empty array.
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents a generic type parameter, the method returns an empty array.
						
						
							 This version of is equivalent to (|).
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.ConstructorInfo[]
					
					
						
					
					
						
							 Returns an array of constructors defined in the type represented by the
 current instance, under the specified binding constraints.
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 An array of objects that reflect the constructors that
 are defined in the type represented by the current instance and match the
 constraints of . If and are specified, this array
 includes the type initializer if it is defined. If no constructors meeting the
 constraints of are defined in the type represented by the
 current instance, or if the current instance represents an unassigned type parameter of a generic type or method, returns an empty array. If the type represented by the current
 instance is contained in a loaded assembly, the constructors that match the
 specified criteria are not public, and the caller does not have sufficient
 permission, returns .
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents a generic type parameter, the method returns an empty array.
						
						
							 The following are used to define which
 constructors to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public constructors
 in the search.
								
								
									

 Specify to include non-public
 constructors (that is, private and protected constructors) in the
 search.
								
							
							
								 For more information, see .
							
							
								 As described above.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MemberInfo[]
					
					
					
						
							 Returns an array of objects that reflect the default members
 defined in the type represented by the current instance.
						
						
							 An array of objects reflecting the default members of the
 type represented by the current instance. If the type represented by the current
 instance does not have any default members, returns an empty array.
						
						
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the members of the class constraint, or the members of if there is no class constraint; the members of all interface constraints; and the members of any interfaces inherited from class or interface constraints.
							
								 The members returned
 by this method have the
 attribute.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
					
						
							 Returns the element type of the current
.
						
						
							 A that represents
 the type used to create the current instance if the current
 instance represents an array, pointer, or an argument
 passed by reference. Otherwise, returns
 if the current instance is not an array or a pointer, or is not passed by reference, or represents a generic type or a type parameter of a generic type or method.
						
						
							 The following example demonstrates the
method.
							 using System;
class TestType {
 public static void Main() {
 int[] array = {1,2,3};
 Type t = array.GetType();
 Type t2 = t.GetElementType();
 Console.WriteLine("{0} element type is {1}",array, t2.ToString());

 TestType newMe = new TestType();
 t = newMe.GetType();
 t2 = t.GetElementType();
 Console.WriteLine("{0} element type is {1}", newMe, t2==null? "null" : t2.ToString());
 }
}

							 The output is
							
								 System.Int32[] element type is System.Int32
								 TestType element type is null
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.EventInfo
					
					
						
					
					
						
							 Returns a object reflecting the public event that has the
 specified name and is defined in the type represented by the current
 instance.
						
						 A containing the name of the public event to be returned.
						
							 A object
 reflecting the public event that is named
 and is defined in the type represented by the current instance, if
 found; otherwise, .
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
						
						
							 is .
						
							 This version of is equivalent to (, | |).
							 The search for is case-sensitive.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the events of the class constraint; the events of all interface constraints; and the events of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.EventInfo
					
					
						
						
					
					
						
							 Returns a object reflecting the event that has the
 specified name, is defined in the type represented by the current instance, and
 matches the specified binding constraints.
						
						 A containing the name of the event to be returned.
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns null.
						
						
							 A object reflecting the event that is named
 , is defined in the type represented by the current instance, and
 matches the constraints of . If an event
 matching these criteria is not found, returns . If the event is not
 public, the current instance represents
 a type from a loaded assembly, and the caller does not have sufficient
 permission, returns .
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
						
						
							 is .
						
							 The following are used to define which
 events to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public events in
 the search.
								
								
									

 Specify to include non-public
 events(that is, private and protected events) in the search.
								
							
							 The following value can be used to change how the
search works:
							
								
									
										 to search only the events
 declared on the type, not events that were simply inherited.
								
							
							
								 For more information, see .
							
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the events of the class constraint; the events of all interface constraints; and the events of any interfaces inherited from class or interface constraints.
							
								 As described above.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.EventInfo[]
					
					
					
						
							 Returns an array of objects that reflect the public events
 defined in the type represented by the current instance.
						
						
							 An array of objects that reflect the public events
 defined in the type represented by the current instance. If no public events
 are defined in the type represented by the current instance, returns an empty
 array.
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
						
						
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the events of the class constraint; the events of all interface constraints; and the events of any interfaces inherited from class or interface constraints.
							
								 As described above.
							
							
								 This version of is
 equivalent to (| |).
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.EventInfo[]
					
					
						
					
					
						
							 Returns an array of objects that reflect the events that are
 defined in the type represented by the current instance and match the specified
 binding constraints.
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns null.
						
						
							 An array of objects that reflect the events that are
 defined in the type represented by the current instance and match the
 constraints of . If no events match
 these constraints, returns an empty array. If the type reflected by the current
 instance is from a loaded assembly and the caller does not have permission to
 reflect on non-public objects in loaded assemblies, returns only public
 events.
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
						
						
							 The following are used to define which
 events to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public events in
 the search.
								
								
									

 Specify to include non-public
 events (that is, private and protected events) in the
 search.
								
							
							
								 For more information, see .
							
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the events of the class constraint; the events of all interface constraints; and the events of any interfaces inherited from class or interface constraints.
							
								 As described above.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo
					
					
						
						
					
					
						
							 Returns a object reflecting the field that has the
 specified name, is defined in the type represented by the current instance, and
 matches the specified binding constraints.
						
						 A containing the name of the field to be returned.
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 A object reflecting the field that is named
 , is defined in the type represented by the current instance, and
 matches the constraints of . If a field matching these criteria
 cannot be found, returns . If the field is not public, the current type is
 from a loaded assembly, and the caller does not have sufficient permission,
 returns .
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.

						
						
							 is .
						
							 The following are used to define which
 fields to include in the search:
							
								
									
 Specify either or
 to get a return value other than .
								
								
									
 Specify to include public fields in
 the search.
								
								
									
 Specify to include non-public fields
 (that is, private and protected fields) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the fields
 declared in the type, not fields that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the fields of the class constraint; the fields of all interface constraints; and the fields of any interfaces inherited from class or interface constraints.
							
								 As described above.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo
					
					
						
					
					
						
							 Returns a object reflecting the field that has the
 specified name and is defined in the type represented by the current
 instance.
						
						 A containing the name of the field to be returned.
						
							 A object reflecting the field that is named
 and is defined in the type represented by the current instance, if
 found; otherwise, . If the selected field is non-public, the type represented by the
 current instance is from a loaded assembly and the caller does not have
 sufficient permission to reflect on non-public objects in loaded assemblies,
 returns .
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.

						
						
							 is .
						
							 The search for is case-sensitive.
							 This version of is equivalent to (
 , | |).
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the fields of the class constraint; the fields of all interface constraints; and the fields of any interfaces inherited from class or interface constraints.
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo[]
					
					
					
						
							 Returns an array of objects that reflect the public fields
 defined in the type represented by the current instance.
						
						
							 An array of objects that reflect the public fields
 defined in the type represented by the current instance. If no public fields
 are defined in the type represented by the current instance, returns an empty
 array.
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
						
						
							 This version of is equivalent to (| |).
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the fields of the class constraint; the fields of all interface constraints; and the fields of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo[]
					
					
						
					
					
						
							 Returns an array of objects that reflect the fields that are
 defined in the type represented by the current instance and match the specified
 binding constraints.
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 An array of objects that reflect the fields that are
 defined in the type represented by the current instance and match the
 constraints of . If no fields match
 these constraints, returns an empty array. If the type represented by the
 current instance is from a loaded assembly and the caller does not have
 sufficient permission to reflect on non-public objects in loaded assemblies,
 returns only public fields.
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
						
						
							 The following are used to define which
 fields to include in the search:
							
								
									

 Specify either or in
 order to get a return value other than .
								
								
									

 Specify to include public fields in
 the search.
								
								
									

 Specify to include non-public fields
 (that is, private and protected fields) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the fields
 declared in the type, not fields that were simply inherited.
								
							
							
								 For more information, see .
							
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the fields of the class constraint; the fields of all interface constraints; and the fields of any interfaces inherited from class or interface constraints.
							
								 As described above.
							
						
						 Requires permission to retrieve information on non-public members of a type in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type[]
					
					
					
						
							 Returns an array of objects that represent the type arguments of a generic type or the type parameters of a generic type definition.
						
						
							 An array of objects that represent the type arguments of a generic type or the type parameters of a generic type definition. Returns an empty array if the current type is not a generic type. The array elements are returned in the order in which they appear in the list of type arguments for the generic type.
						
						
							 If the current type is a closed constructed type, the array returned by the method contains the type arguments that are bound to the type parameters. If the current type is a generic type definition, the array contains the type parameters. If the current type is an open constructed type in which some of the type parameters are bound to specific types, the array contains both type arguments and type parameters.
							 For a list of the invariant conditions for terms used in generic reflection, see the property description.
						
						
							 For an example of using this method, see the example for .
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type[]
					
					
					
						
							 Returns an array of objects that represent the type constraints on the current generic type parameter.
						
						
							 An array of objects that represent the type constraints on the current generic type parameter.
						
						 The current object is not a generic type parameter. That is, the property returns .
						
							 Each constraint on a generic type parameter is expressed as a object. The first element of the array is the class constraint, if any. If a type parameter has no class constraint and no interface constraints, an empty array of is returned for that type parameter. Use to get the special constraints.
							 For a list of the invariant conditions for terms used in generic reflection, see the property description.
						
					
					 0
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
					
						
							 Returns a object that represents a generic type from which the current type can be constructed.
						
						
							 A object representing a generic type from which the current type can be constructed.
						
						 The current type is not a generic type. That is, returns .
						
							 If two constructed types are created from the same generic type definition, the method returns the same object for both types.
							 If you call on a object that already represents a generic type definition, it returns the current .
							
								 An array type whose element type is a generic type is not itself generic. Use to determine whether a type is generic before calling .
							
							 For a list of the invariant conditions for terms used in generic reflection, see the property description.
						
						
							 For an example of using this method, see the example for .
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for this instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Type
					
					
						
						
					
					
						
							 Returns the specified interface,
 specifying whether to do a case-sensitive search.
						
						 A containing the name of the interface to return.
						
							 A where indicates that the name search is to be done case-insensitively, and performs a case-sensitive search.
						
						
							 A object representing
 the interface with the specified name, implemented or inherited by the type
 represented by the instance, if found; otherwise, .
						
						
							 is .
						 The current instance represents a type that implements the same generic interface with different type arguments.
						
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the interface constraints and any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
							
								 Even with the introduction of generics, this method continues to return only non-generic members. To get the generic ones, one must call , and filter them out.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
					
					
						
							 Searches for the interface with the specified name.

						
						 A containing the name of the interface to get.
						
							 A object
 representing the interface with the specified name, implemented or inherited by
 the current , if found; otherwise, .

						
						
							 is .
						 The current instance represents a type that implements the same generic interface with different type arguments.
						
							 The search for is case-sensitive.

							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the interface constraints and any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
							
								 Even with the introduction of generics, this method continues to return only non-generic members. To get the generic ones, one must call , and filter them out.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type[]
					
					
					
						
							 Returns all interfaces implemented or inherited by the
 type represented by the current instance.
						
						
							 An array of objects representing the interfaces implemented or
 inherited by the type represented by the current instance. If no interfaces are
 found, returns an empty array.
						
						
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the interface constraints and any interfaces inherited from class or interface constraints.
							
								 Even with the introduction of generics, the overloads of continue to return only non-generic members. To get the generic ones, one must call , and filter them out.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MemberInfo[]
					
					
						
						
					
					
						
							 Returns an array of objects that reflect the members defined in
 the type represented by the current instance that have the specified name
 and match the specified binding constraints.
						
						 A containing the name of the member to be returned.
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 An array of objects that reflect the members
 named , are defined in the type represented by the current instance
 and match the constraints of .
 If no members match these constraints, returns an empty array.
 If the selected member is non-public, the type reflected by the current instance is from a
 loaded assembly and the caller does not have sufficient permission to reflect on
 non-public objects in loaded assemblies, returns .
						
						
							 is .
						
							 The following are used to define which
 members to include in the search:
							
								
									
 Specify either or
 to get a return value other than .
								
								
									
 Specify to include public members in
 the search.
								
								
									
 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the members of the class constraint, or the members of if there is no class constraint; the members of all interface constraints; and the members of any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
							
								 As described above.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MemberInfo[]
					
					
						
					
					
						
							 Returns an array of objects that reflect the public members that
 have the specified name and are defined in the type represented by the current
 instance.
						
						 A containing the name of the members to be returned.
						
							 An array of objects that reflect the public members that
 are named and are defined in the type represented by the current instance. If no public
 members with the specified name are defined in the type represented by the
 current instance, returns an empty array.
						
						
							 is .
						
							 This version of is equivalent to (, | |).
							 The search for is case-sensitive.
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the members of the class constraint, or the members of if there is no class constraint; the members of all interface constraints; and the members of any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MemberInfo[]
					
					
						
					
					
						
							 Returns an array of objects that reflect the members that are
 defined in the type represented by the current instance and match the specified
 binding constraints.
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 An array of objects that reflect the members
 defined in the type represented by the current instance that match the
 constraints of . If no members match these constraints,
 returns an empty array. If the type represented by the current instance is from
 a loaded assembly and the caller does not have sufficient permission to reflect
 on non-public objects in loaded assemblies, returns only public members.
						
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
							
							
								 For more information, see .
							
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the members of the class constraint, or the members of if there is no class constraint; the members of all interface constraints; and the members of any interfaces inherited from class or interface constraints.
							
								 As described above.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MemberInfo[]
					
					
					
						
							 Returns an array of objects that reflect the public members
 defined in the type represented by the current instance.
						
						
							 An array of objects that reflect the public members
 defined in the type represented by the current instance. If no public members
 are defined in the type represented by the current instance, returns an empty
 array.
						
						
							 This version of is equivalent to (| |).
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the members of the class constraint, or the members of if there is no class constraint; the members of all interface constraints; and the members of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
						
						
						
						
					
					
						
							 Returns a object that reflects the method that matches the
 specified criteria and is defined in the type represented by the current
 instance.
						
						 A containing the name of the method to be returned.
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 A object that defines a set of properties and enables the binding, coercion of argument types, and invocation of members using reflection. Specify to use the .
						
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the method to be returned.
						
						 The only defined value for this parameter is .
						
							 A object that reflects
 the method defined in the type represented by the current instance that
 matches the specified criteria. If no method matching the specified criteria is found, returns
 . If the
 selected method is non-public, the type reflected by
 the current instance is from a loaded assembly, and the caller
 does not have permission to reflect on non-public objects in loaded assemblies,
 returns .
						
						 More than one method matching the specified criteria was found.
						
							
								 or is .
							 -or-
							 At least one of the elements in is .
						
						
							
								 has more than one dimension.
						
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the methods of the class constraint, or the methods of if there is no class constraint; the methods of all interface constraints; and the methods of any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
						
					
					
						
							 Returns a object that reflects the method that has the
 specified name and is defined in the type represented by the current
 instance.
						
						 A containing the name of the method to be returned.
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 A object
 that reflects the method that is defined
 in the type represented by the current instance and matches the specified
 criteria, if found; otherwise, .
						
						 More than one method matching the specified criteria was found.
						
							 is .
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							 This version of is equivalent to (, ,
 , ,).
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the methods of the class constraint, or the methods of if there is no class constraint; the methods of all interface constraints; and the methods of any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
					
					
						
							 Returns a object that reflects the public method that
 has the specified name and is defined in the type represented by the current
 instance.
						
						 A containing the name of the public method to be returned.
						
							 A object reflecting the public method that is
 defined in the type represented by the current instance and has the specified
 name, if found; otherwise, .
						
						 More than one method matching the specified criteria was found.
						
							 is .
						
							 The search for is case-sensitive.
							 This version of is equivalent to (, | | , ,
 ,).
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the methods of the class constraint, or the methods of if there is no class constraint; the methods of all interface constraints; and the methods of any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
						
					
					
						
							 Returns a object that reflects the public method defined in
 the type represented by the current instance that has the specified name and parameter
 information.
						
						 A containing the name of the public method to be returned.
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the method to be returned.
						
						
							 A object reflecting
 the public method defined in the type represented by the current instance
 that matches the specified criteria. If no public method matching the specified criteria
 is found, returns .
						
						 More than one method matching the specified criteria was found.
						
							
								 or is .
							 -or-
							 At least one of the elements in is .
						
						
							
								 has more than one dimension.
						
						
							 The search for is case-sensitive.
							 This version of is equivalent to (, | | , ,
 ,).
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the methods of the class constraint, or the methods of if there is no class constraint; the methods of all interface constraints; and the methods of any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
						
						
					
					
						
							 Returns a object that reflects the public method that
 has the specified name and is defined in the type represented by the current
 instance.
						
						 A containing the name of the public method to be returned.
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the method to be returned.
						
						 The only defined value for this parameter is .
						
							 A object reflecting the public method that is
 defined in the type represented by the current instance and matches the
 specified criteria, if found; otherwise, .
						
						 More than one method matching the specified criteria was found.
						
							
								 or is .
							 -or-
							 At least one of the elements in is .
						
						
							
								 has more than one dimension.
						
						
							 The default binder does not process
 .
							 The search for is case-sensitive.
							 This version of is equivalent to (, | | , , ,).
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the methods of the class constraint, or the methods of if there is no class constraint; the methods of all interface constraints; and the methods of any interfaces inherited from class or interface constraints.
							
								 The parameter cannot include type arguments.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo[]
					
					
						
					
					
						
							 Returns an array of objects that reflect the methods defined in the type
 represented by the current instance that match the specified binding constraints.
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 An array of objects reflecting the methods defined in the type
 represented by the current instance that match the constraints of
 . If no such methods found, returns an
 empty array. If the type represented by the current instance is from a loaded
 assembly and the caller does not have permission to reflect on non-public
 objects in loaded assemblies, returns only public methods.
						
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
							
							
								 For more information, see .
							
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the methods of the class constraint, or the methods of if there is no class constraint; the methods of all interface constraints; and the methods of any interfaces inherited from class or interface constraints.
							
								 As described above.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo[]
					
					
					
						
							 Returns the public methods defined in the type represented by the current
 instance.
						
						
							 An array of objects reflecting the public methods defined in the type represented by the current instance. If no methods are found, returns an empty array.
						
						
							 This version of is equivalent to (| |).
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the methods of the class constraint, or the methods of if there is no class constraint; the methods of all interface constraints; and the methods of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
					
					
						
							 Returns the public nested type defined in the type represented by the current instance
						
						 A containing the name of the public nested type to return. Specify the unqualified name of the nested type. For example, for a type B nested within A, if typeA represents the type object for A, the correct invocation is typeA.GetNestedType("B").
						
						
							 A object
 representing the public nested type with the specified
 name, if found; otherwise, .
						
						
							 is .
						
							 The search for is case-sensitive.
							 Use the simple name of the nested class for ; do not qualify it with the name of the outer class. CLS rules require a naming pattern for nested types; see Partition I.
							 If the current instance represents an unassigned type parameter of a generic type or method definition, this method does not search the nested types of the class constraint.
							
								 The parameter cannot include type arguments. For example, passing "MyGenericNestedType<int>" to this method searches for a nested type with the text name "MyGenericNestedType<int>", rather than for a nested type named MyGenericNestedType that has one generic argument of type .
								 If the nested type is generic, what is returned is always a generic type definition.
							
							 For information on constructing nested generic types from their generic type definitions, see the
								 method.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
						
					
					
						
							 Returns a nested types defined in the type represented by the current instance that match the specified binding constraints.
						
						 A containing the name of the nested type to return. Specify the unqualified name of the nested type. For example, for a type B nested within A, if typeA represents the type object for A, the correct invocation is typeA.GetNestedType("B").
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 A object representing the nested type that
 matches the specified criteria, if found; otherwise, . If the selected nested
 type is non-public, the current instance represents a type contained in a loaded
 assembly and the caller does not have sufficient permissions, returns

.
						
						
							 is .
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the nested types of the class constraint.
							
								 The parameter cannot include type arguments.
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type[]
					
					
					
						
							 Returns all the public types nested within the current .
						
						
							 An array of objects representing all public types nested within the type
 represented by the current instance, if any. Otherwise, returns an empty array.
						
						
							 This version of is equivalent to ().
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the nested types of the class constraint.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type[]
					
					
						
					
					
						
							 Returns an array containing the nested types defined in
 the type represented by the current instance that match the specified binding constraints.
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 An array of objects representing all types nested within the type
 represented by the current instance that match the specified binding constraints,
 if any. Otherwise, returns an empty array. If the type reflected by the current instance is
 contained in a loaded assembly, the type that matches the specified criteria is
 not public, and the caller does not have sufficient permission, returns only
 public types.
						
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
							
							
								 For more information, see .
							
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the nested types of the class constraint.
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo[]
					
					
						
					
					
						
							 Returns an array of objects that reflect the properties
 defined for the type represented by the current instance that match the specified
 binding constraints.
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 An array of objects that reflect the properties
 defined in the type represented by the current instance and match the
 constraints of . If no matching properties are found,
 returns an empty array. If the type represented by the current instance is from
 a loaded assembly and the caller does not have permission to reflect on
 non-public objects in loaded assemblies, returns only public properties.
						
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
							
							
								 For more information, see .
							
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the properties of the class constraint; the properties of all interface constraints; and the properties of any interfaces inherited from class or interface constraints.
							
								 A property is considered by
 reflection to be if it has at least one accessor that is
 . Otherwise, the property is not
 .
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo[]
					
					
					
						
							 Returns an array of objects that reflect the public properties
 defined in the type represented by the current instance.
						
						
							 An array of
objects that reflect the public properties defined in the type
represented by the current instance. If no public properties are found, returns
an empty array.
						
						
							 This version of is equivalent to (
 | |).
							 A property is considered by reflection
 to be if it has at least one accessor that is
 . Otherwise, the property is considered to be not
 .
							 If the current instance represents a generic type, this method returns the objects with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the properties of the class constraint; the properties of all interface constraints; and the properties of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo
					
					
						
						
						
					
					
						
							 Returns a object that reflects the public property
 defined in the type represented by the current instance that matches the specified search
 criteria.
						
						 A containing the name of the public property to be returned.
						 A object that represents the type of the public property to be returned.
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the indexer to be returned. Specify for a property that is not indexed.
						
						
							 A object
 reflecting the public property defined in the type represented by
 the current instance that matches the specified criteria. If no matching property is
 found, returns .
						
						 More than one property matching the specified criteria was found.
						
							
								 or is , or at least one of the elements in is .
						
						
							 has more than one dimension.
						
							 This version of is equivalent to (, | | ,
 , , ,
).
							 The search for is case-sensitive.
							 Different programming languages use different syntax to
 specify indexed properties. Internally, this property is referred to by the name
 "Item" in the metadata. Therefore, any attempt to retrieve an indexed
 property using reflection is required to
 specify this internal name in order for the to be returned correctly.
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the properties of the class constraint; the properties of all interface constraints; and the properties of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo
					
					
						
						
					
					
						
							 Returns a object that reflects the public property defined
 in the type represented by the current instance that matches the specified search
 criteria.
						
						 A containing the name of the public property to be returned.
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the indexer to be returned. Specify to obtain a property that is not indexed.
						
						
							 A object reflecting the public property defined
 on the type represented by the current instance that matches the specified
 criteria. If no matching property is found, returns .
						
						 More than one property matching the specified criteria was found.
						
							
								 or is , or at least one of the elements in is .
						
						
							
								 has more than one dimension.
						
						
							 This version of is equivalent to (, | | ,
 , , ,
).
							 The search for is case-sensitive.
							 Different programming languages use different syntax to
 specify indexed properties. Internally, this property is referred to by the name
 "Item" in the metadata. Therefore, any attempt to retrieve an indexed property
 using reflection is required to
 specify this internal name in order for the to be returned correctly.
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the properties of the class constraint; the properties of all interface constraints; and the properties of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo
					
					
						
						
					
					
						
							 Returns a
object that reflects the public property defined in the type represented by the current
instance that matches the specified search criteria.
						
						 A containing the name of the property to be returned.
						 A object that represents the type of the property to be returned.
						
							 A object reflecting the public property defined
 on the type represented by the current instance that matches the specified
 criteria. If no matching property is found, returns .
						
						 More than one property matching the specified criteria was found.
						
							
								 is .
						
						
							 This version of is equivalent to (, | | ,
 , , ,
).
							 The search for is case-sensitive.
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the properties of the class constraint; the properties of all interface constraints; and the properties of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo
					
					
						
					
					
						
							 Returns a object that reflects the public
 property defined in the type represented by the current instance that has the specified
 name.
						
						 A containing the name of the property to be returned.
						
							 A object reflecting the public property defined
 on the type represented by the current instance that has the specified name. If
 no matching property is found, returns .
						
						 More than one property matching the specified criteria was found.
						
							
								 is .
						
						
							 This version of is equivalent to (, | | ,
 , , ,
).
							 The search for is case-sensitive.
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the properties of the class constraint; the properties of all interface constraints; and the properties of any interfaces inherited from class or interface constraints.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo
					
					
						
						
					
					
						
							 Returns a object that reflects the property defined
 in the type represented by the current instance that matches the specified search
 criteria.
						
						 A containing the name of the property to be returned.
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 A
object reflecting the property defined in the type represented by
the current instance that matches the specified criteria. If no matching property is
found, returns . If the type reflected by the current
instance is contained in a loaded assembly, the property that matches the
specified criteria is not public, and the caller does not have sufficient
permission, returns .
						
						 More than one property matching the specified criteria was found.
						
							
								 is .
						
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							 This version of is equivalent to (, ,
 , , ,
).
							 The search for is case-sensitive.
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the properties of the class constraint; the properties of all interface constraints; and the properties of any interfaces inherited from class or interface constraints.
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo
					
					
						
						
						
						
						
						
					
					
						
							 Returns a object that reflects the property
 defined in the type represented by the current instance that matches the specified search
 criteria .
						
						 A containing the name of the property to be returned.
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 A object that defines a set of properties and enables the binding, coercion of argument types, and invocation of members using reflection. Specify to use the .
						
						 A object that represents the type of the property to be returned.
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the indexer to be returned. Specify to obtain a property that is not indexed.
						
						 The only defined value for this parameter is .
						
							 A object
 reflecting the property that is defined in the type represented by the
 current instance and matches the specified criteria. If no matching property is
 found, returns . If the type reflected by the current
 instance is contained in a loaded assembly, the property that matches the
 specified criteria is not public, and the caller does not have sufficient
 permission, returns .
						
						 More than one property matching the specified criteria was found.
						
							
								 or is , or at least one of the elements in is .
						
						
							
								 has more than one dimension.
						
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							 This version of is equivalent to (, , ,
 , ,).
							 Different programming languages use different syntax to
 specify indexed properties. Internally, this property is referred to by the name
 "Item" in the metadata. Therefore, any attempt to retrieve an indexed property
 using reflection is required to specify this internal
 name in order for the to be returned correctly.
							 If the current instance represents a generic type, this method returns the with the type parameters replaced by the appropriate type arguments.
							 If the current instance represents an unassigned type parameter of a generic type or method, this method searches the properties of the class constraint; the properties of all interface constraints; and the properties of any interfaces inherited from class or interface constraints.
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo
					
					
						
						
						
						
						
						
					
					
						
							 When overridden in a derived class implements the

 method and returns a object that reflects the property defined
 in the type represented by the current instance that matches the specified search
 criteria.
						
						 A containing the name of the property to be returned.
						
							 A bitwise combination of values that control the binding process. If zero is specified, this method returns .
						
						
							 A object that defines a set of properties and enables the binding, coercion of argument types, and invocation of members using reflection. Specify to use the .
						
						 A object that represents the type of the property to be returned.
						
							 An array of objects. The elements in the array are of the same number, in the same order, and represent the same types as the parameters for the indexer to be returned. Specify to obtain a property that is not indexed.
						
						 The only defined value for this parameter is .
						
							 A object representing the property that matches the
 specified search criteria, if found; otherwise, . If the type reflected by the current
 instance is from a loaded assembly, the matching property is not
 public, and the caller does not have permission to reflect on non-public
 objects in loaded assemblies, returns .
						
						 More than one property matching the specified criteria was found.
						
							
								 or is , or at least one of the elements in is .
						
						
							
								 has more than one dimension.
						
						
							 The following are used to define which
 members to include in the search:
							
								
									

 Specify either or
 to get a return value other than .
								
								
									

 Specify to include public members in
 the search.
								
								
									

 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							
								 Different
 programming languages use different syntax to specify indexed properties.
 Internally, this property is referred to by the name "Item" in the metadata.
 Therefore, any attempt to retrieve an indexed property using reflection is required to
 specify this internal name in order for the to be returned correctly.

							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
						
						
					
					
						
							 Returns the
with the specified name, optionally performing a case-insensitive search
and optionally throwing an exception if an error occurs while loading the .
						
						 A containing the name of the to return.
						
							 A . Specify to throw a if an error occurs while loading the . Specify to ignore errors while loading the .
						
						
							 A . Specify to perform a case-insensitive search for Specify to perform a case-sensitive search for .
						
						
							 The with the specified name, if found; otherwise, . If the
 requested type is non-public and the caller does not have permission to reflect non-public objects
 outside the current assembly, this method returns .
						
						
							 is .
						 A type initializer was invoked and threw an exception.
						
							 is and an error was encountered while loading the selected .
						
							
								 can be a simple
 type name, a fully qualified name, or a complex name that includes an assembly
 name.
									
 returns a fully qualified type name including nested types,
 the assembly name, and generic type arguments.
							
							 If includes only the name of the , this method searches in the
calling object's assembly, then in the mscorlib.dll assembly. If

is fully qualified with the partial or complete assembly name, this
method searches in the specified assembly.
							
								
									
								
								 The following table shows calls to
 for various types. (Some long strings have been wrapped to fit in the right column.)
								
									
										 To Get this Type
										 Use this String
									
									
										 An unmanaged pointer to
										
										
											 Type.GetType("MyType*")
										
									
									
										 An unmanaged pointer to a pointer to
										
										
											 Type.GetType("MyType**")
										
									
									
										 A managed pointer or reference to
										
										
											 Type.GetType("MyType&")Note that unlike pointers, references are limited to one level.
									
									
										 A parent class and a nested class
										
											 Type.GetType("MyParentClass+MyNestedClass")
										
									
									
										 A one-dimensional array with a lower bound of 0
										
											 Type.GetType("MyArray[]")
										
									
									
										 A one-dimensional array with an unknown lower bound
										
											 Type.GetType("MyArray[*]")
										
									
									
										 An n-dimensional array
										 A comma (,) inside the brackets a total of n-1 times. For example, System.Object[,,] represents a three-dimensional array.
									
									
										 A two-dimensional array's array
										
											 Type.GetType("MyArray[][]")
										
									
									
										 A rectangular two-dimensional array with unknown lower bounds
										
											 Type.GetType("MyArray[*,*]") or Type.GetType("MyArray[,]")
										
									
									
										 A generic type with one type argument
										
											 Type.GetType("MyGenericType[MyType]")
										
									
									
										 A generic type with two type arguments
										
											 Type.GetType("MyGenericType[MyType,AnotherType]")
										
									
									
										 A generic type with two assembly-qualified type arguments
										
											 Type.GetType("MyGenericType[[MyType,MyAssembly],
[AnotherType,AnotherAssembly]]")

										
									
									
										 An assembly-qualified generic type with an assembly-qualified type argument
										
											 Type.GetType("MyGenericType[[MyType,MyAssembly]]
,MyGenericTypeAssembly")
										
									
									
										 A generic type whose type argument is a generic type with two type arguments
										
											 Type.GetType("MyGenericType[AnotherGenericType
[MyType,AnotherType]]")

										
									
								
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
						
					
					
						
							 Returns the with the specified name, optionally throwing an
 exception if an error occurs while loading the .
						
						 A containing the case-sensitive name of the to return.
						
							 A . Specify to throw a if an error occurs while loading the . Specify to ignore errors while loading the .
						
						
							 The with the specified name, if found; otherwise, . If the
 requested type is non-public and the caller does not have permission to reflect non-public objects
 outside the current assembly, this method returns .
						
						
							 is .
						 A type initializer was invoked and threw an exception.
						
							 is and an error was encountered while loading the .
						
							 This method is equivalent to (, ,
).
							
								 can be a simple
type name, a fully qualified name, or a complex name that includes an assembly
name specification. If includes only the name of the , this method searches in the
calling object's assembly, then in the mscorlib.dll assembly. If

is fully qualified with the partial or complete assembly name, this method
searches in the specified assembly.
							
								
									 can return a fully
qualified type name including nested types, the assembly name, and generic type arguments. For complete
details, see (, ,).
							
						
						 Requires permission to retrieve information on non-public objects. See
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
					
					
						
							 Returns the with the specified name.
						
						 A containing the case-sensitive name of the to return.
						
							 The with the specified name, if found; otherwise, . If the
 requested type is non-public and the caller does not have permission to reflect
 non-public objects outside the current assembly, this method returns
 .
						
						
							 is .
						 A type initializer was invoked and threw an exception.
						
							 This method is equivalent to (, ,
).
							
								 can be a simple
type name, a type name that includes a namespace, or a complex name that
includes an assembly name specification. If includes only the name of the , this method
searches in the calling object's assembly, then in the mscorlib.dll assembly. If

is fully qualified with the partial or complete assembly name, this method
searches in the specified assembly.
							
								
									 can return a fully qualified type name including
 nested types, the assembly name, and generic type arguments. For complete details, see (, ,).
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type[]
					
					
						
					
					
						
							 Returns the types of the objects in the specified array.

						
						 An array of objects whose types are to be returned.
						
							 An array of objects representing the types of the corresponding
 elements in . If a requested type is not public
 and the caller does not have permission to
 reflect non-public objects outside the current assembly, the corresponding element in the
 array returned by this method will be .

						
						
							 is .
						 The type initializers were invoked and at least one threw an exception.
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
					
					
						
							 Gets the referenced by the specified type handle.
						
						 The object that refers to the desired .
						
							 The referenced by the specified .
						
						
							 is .
						 The requested type is non-public and outside the current assembly, and the caller does not have the required permission.
						 A type initializer was invoked and threw an exception.
						
							 The handles are valid only in the application domain in which they were obtained.
						
						 Requires permission to retrieve information on non-public objects. See
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.RuntimeTypeHandle
					
					
						
					
					
						
							 Returns the handle for the of the specified object.
						
						 The object for which to get the type handle.
						
							 The for the of the specified .
						
						
							 The handle is valid only in the application domain in which it was obtained.
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the type represented by the
 current instance encompasses or refers
 to another type; that is, whether the current is an array, a pointer, or is passed by reference.
						
						
							
								 if the is an array, a pointer, or is passed by reference; otherwise, .
						
						
							 This property is read-only.
							
								 For example, (" []").HasElementType returns
 , but (" ").HasElementType returns
 . also returns
 for "Int32*" and "Int32&".
							
							 If the current instance represents a generic type, or a type parameter of a generic type or method, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 When overridden in a derived class, implements the property and
 determines whether the current encompasses or
 refers to another type; that is,
 whether the current is an array, a pointer, or is passed by
 reference.
						
						
							
								 if the is an array, a pointer, or is passed by reference; otherwise, .
						
						
							
								 For example,
 ("System.Int32[]").HasElementTypeImpl returns
 , but ("System.Int32").HasElementTypeImpl returns
 . also returns for "System.Int32*" and "System.Int32&".
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
					
						 System.Object
					
					
						
						
						
						
						
						
					
					
						
							 Invokes the specified member, using the specified binding constraints
 and matching the specified argument list and culture.
						
						
							 A containing the name of the constructor or method to invoke, or property or field to access. If the type represented by the current instance has a default member, specify to invoke that member. For more information on default members, see .
							
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, | is used by default.
						
						
							 A object that defines a set of properties and enables the binding, coercion of argument types, and invocation of members using reflection. Specify to use the .
						
						 A on which to invoke the member that matches the other specified criteria. If the matching member is , this parameter is ignored.
						 An array of objects containing the arguments to pass to the member to be invoked. The elements of this array are of the same number and in the same order by assignment-compatible type as specified by the contract of the member to be bound. Specify an empty array or for a member that has no parameters.
						
							 The only defined value for this parameter is .
						
						
							 A
containing the return value of the invoked member. If the invoked member does
not have a return value, returns a containing .
						
						
							
								
								 is .
						
						
							
								 has more than one dimension.
							 -or-
							
								 is not a valid value.
							 -or-
							 The member to be invoked is a constructor and is not specified in .
							 -or-
							 The member to be invoked is a method that is not a type initializer or instance constructor, and is not specified in .
							 -or-
							 The member to be accessed is a field, and neither nor is specified in .
							 -or-
							 The member to be accessed is a property, and neither nor is specified in .
							 -or-
							
								 contains and at least one of , , , , or .
							 -or-
							
								 contains both and .
							 -or-
							
								 contains both and .
							 -or-
							
								 contains and at least one of or .
							 -or-
							
								 contains and has more than one element.
						
						 A field or property matching the specified criteria was not found.
						
							 A method matching the specified criteria was not found.
							 -or-
							 The current instance object represents a type that contains open type parameters (that is,
							
							 returns
							
).
						
						 The requested member is non-public and the caller does not have the required permission.
						 The member matching the specified criteria cannot be invoked on .
						 The member matching the specified criteria threw an exception.
						 More than one member matches the specified criteria.
						
							 This version of is equivalent to (
 , , , , ,
 , ,).
						
						
							 For an example that demonstrates
 , see (
 , ,
 , , [], [], , []).

						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
					
						 System.Object
					
					
						
						
						
						
						
					
					
						
							 Invokes the specified member, using the specified binding constraints and
 matching the specified argument list.
						
						
							 A containing the name of the constructor or method to invoke, or property or field to access. If the type represented by the current instance has a default member, specify to invoke that member. For more information on default members, see .
							
						
						 A bitwise combination of values that control the binding process. If zero is specified, | is used by default.
						
							 A object that defines a set of properties and enables the binding, coercion of argument types, and invocation of members using reflection. Specify to use the .
						
						 A on which to invoke the member that matches the other specified criteria. If the matching member is , this parameter is ignored.
						 An array of objects containing the arguments to pass to the member to be invoked. The elements of this array are of the same number and in the same order by assignment-compatible type as specified by the contract of the member to be bound. Specify an empty array or for a member that has no parameters.
						
							 A
containing the return value of the invoked member. If the invoked member does
not have a return value, returns a containing .
						
						
							
								 is .
						
						
							
								 has more than one dimension.
							 -or-
							
								 is not a valid value.
							 -or-
							 The member to be invoked is a constructor and is not specified in .
							 -or-
							 The member to be invoked is a method that is not a type initializer or instance constructor, and is not specified in .
							 -or-
							 The member to be accessed is a field, and neither nor is specified in .
							 -or-
							 The member to be accessed is a property, and neither nor is specified in .
							 -or-
							
								 contains and at least one of , , , , or .
							 -or-
							
								 contains both and .
							 -or-
							
								 contains both and .
							 -or-
							
								 contains and at least one of or .
							 -or-
							
								 contains and has more than one element.
						
						 A field or property matching the specified criteria was not found.
						
							 A method matching the specified criteria cannot be found.
							 -or-
							 The current instance object represents a type that contains open type parameters (that is,
							
							 returns
							
).
						
						 The requested member is non-public and the caller does not have the required permission.
						 The member matching the specified criteria cannot be invoked on .
						 The member matching the specified criteria threw an exception.
						 More than one member matches the specified criteria.
						
							 This version of is equivalent to (, , ,
 , , , ,
).
							
								 For a demonstration of the use of
 , see the example for (
 , ,
 , , [], [], , []).
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
						
						
						
						
						
					
					
						
							 Invokes or
 accesses a member defined on the type represented by the current instance
 that matches the specified binding criteria.
						
						
							 A containing the name of the constructor or method to invoke, or property or field to access. If the type represented by the current instance has a default member, specify to invoke that member. For more information on default members, see .
							
						
						
							 A bitwise combination of values that control the binding process. If zero is specified, | is used by default.
							
						
						 A that defines a set of properties, and enables the binding, coercion of argument types, and invocation of members using reflection. Specify to use .
						 A on which to invoke the member that matches the other specified criteria. If the matching member is , this parameter is ignored.
						 An array of objects containing the arguments to pass to the member to be invoked. The elements of this array are of the same number and in the same order by assignment-compatible type as specified by the contract of the member to be bound if and only if is . If is not , the order of the elements in corresponds to the order of the parameters specified in . Specify an empty array or for a member that takes no parameters.
						
							 The only defined value for this parameter is .
						
						
							 The only defined value for this parameter is .
						
						 An array of objects containing the names of the parameters to which the values in are passed. These names are processed in a case-sensitive manner and have a one-to-one correspondence with the elements of . Specify an empty array or for a member that takes no parameters. Specify to have this parameter ignored.
						
							 A
containing the return value of the invoked or accessed member. If the member
does not have a return value, returns a containing .
						
						
							
								 is .
						
						
							
								 has more than one dimension.
							 -or-
							
								 is not a valid value.
							 -or-
							 The member to be invoked is a constructor and is not specified in .
							 -or-
							 The member to be invoked is a method that is not a type initializer or instance constructor, and is not specified in .
							 -or-
							 The member to be accessed is a field, and neither nor is specified in .
							 -or-
							 The member to be accessed is a property, and neither nor is specified in .
							 -or-
							
								 contains and at least one of , , , , or .
							 -or-
							
								 contains both and .
							 -or-
							
								 contains both and .
							 -or-
							
								 contains and at least one of or .
							 -or-
							
								 contains and has more than one element.
							 -or-
							
								 .Length > .Length .
							 -or-
							 At least one element in is .
							 -or-
							 At least one element in is not assignment-compatible with the corresponding parameter in .
						
						 A field or property matching the specified criteria was not found.
						
							 A method matching the specified criteria cannot be found.
							 -or-
							 The current instance object represents a type that contains open type parameters (that is,
							
							 returns
							
).
						
						 The requested member is non-public and the caller does not have the required permission.
						 The member matching the specified criteria cannot be invoked on .
						 The member matching the specified criteria threw an exception.
						 More than one member matches the specified criteria.
						
							
								 calls a constructor or a method , gets or sets a property , gets or sets a field, or gets or sets an element of an array.
							 The binder finds all of the matching members. These
 members are found based upon the type of binding specified by . The is
 responsible for selecting the method to be invoked. The default binder selects
 the most specific match. The set of members is then filtered by name, number of
 arguments, and a set of search modifiers defined in the binder. After the member is selected, it is invoked or accessed.
 Accessibility is checked at that point. Access restrictions are ignored for fully trusted code; that is, private constructors, methods, fields, and properties can be accessed and invoked via reflection whenever the code is fully trusted.
							 The following are used to define which
members to include in the search:
							
								
									
 Specify either or
 to get a return value other than .
								
								
									
 Specify to include public members in
 the search.
								
								
									
 Specify to include non-public members
 (that is, private and protected members) in the search.
								
							
							 The following values can be used to change how the
search works:
							
								
									
										 to search only the members
 declared in the type, not members that were simply inherited.
								
								
									
										 to ignore the case of
 .
								
							
							
								 For more information, see .
							
							
								 Each parameter in the array is assigned the value in the
 corresponding element in the array. If the length of is
 greater than the length of , the remaining argument values
 are passed in order.
								 A member will be found only
 if the number of parameters in the member declaration equals the number of
 arguments in the args array (unless default arguments are defined on the
 member). Also, The type of each argument is required to be convertible by
 the binder to the type
 of the parameter.
								 It is required that the caller specify values for as
follows:
								
									
										
											 Action
											 BindingFlags
										
										
											 Invoke a constructor.
											
												 . This
 flag is not valid with the other flags in this table. If this flag is
 specified, is ignored.
										
										
											 Invoke a method.
											
												 . This
 flag if not valid with , , or .
										
										
											 Define a field value.
											
												 . This
 flag is not valid with , , or .
										
										
											 Return a field value.
											
												 . This
 flag is not valid with , , or .
										
										
											 Set a property.
											
												 . This
 flag is not valid with , , or .
										
										
											 Get a property.
											
												 . This
 flag is not valid with , , or .
										
									
								
								
									 For more information, see .
								
							
							
								
									 can be used to invoke methods with
 parameters that have default values. To bind to these methods, must be specified. For a parameter that has a
 default value, the caller can supply a value or supply

 to use the default value.
								
									 can be used to set a field to a
particular value by specifying . For example, to set a public instance field named F on class C, where F is a string, the value is set using the following statement:
								
									 typeof(C).InvokeMember("F", BindingFlags.SetField, null, C, new Object{
 "strings new value"}, null, null, null);
								
								 A string array F can be initialized as follows:
								
									 typeof(C).InvokeMember("F", BindingFlags.SetField, null, C, new Object{new
 String[]{"a","z","c","d"}, null, null, null);
								
								 Use to set the value of an element in an array by specifying the index of the value and the new value for the element as follows:
								
									 typeof(C).InvokeMember("F", BindingFlags.SetField, null, C, new Object{1,
 "b"}, null, null, null);
								
								 The preceding statement changes "z" in array
 F to "b".
							
						
						
							 The following example demonstrates the use of to
 construct a , obtain its property, invoke on it, and
 then set its value using the field.
							 using System;
using System.Reflection;

class InvokeMemberExample
{
 static void Main(string[] args)
 {
 // Create the parameter arrays that will
 // be passed to InvokeMember.
 char[] cAry =
 new char[] {'A',' ','s','t','r','i','n','g'};
 object[] oAry = new object[] {cAry, 0, cAry.Length};

 Type t = typeof(string);

 // Invoke the constructor of a string.
 string str =
 (string)t.InvokeMember(null, BindingFlags.Instance |
 BindingFlags.Public | BindingFlags.CreateInstance, null,
 null, oAry, null, null, null);
 Console.WriteLine("The string is \"{0}\".", str);

 // Access a property of the string.
 int i =
 (int) t.InvokeMember("Length", BindingFlags.Instance |
 BindingFlags.Public | BindingFlags.GetProperty, null,
 str, null, null, null, null);
 Console.WriteLine("The length of the string is {0}.", i);

 // Invoke a method on the string.
 string newStr = "new ";
 object[] oAry2 = new Object[] {2, newStr};
 str = (string) t.InvokeMember("Insert", BindingFlags.Instance |
 BindingFlags.Public | BindingFlags.InvokeMethod, null, str,
 oAry2, null, null, null);
 Console.WriteLine("The modified string is \"{0}\".", str);

 // Access a field of the string.
 str = (string) t.InvokeMember("Empty", BindingFlags.Static |
 BindingFlags.Public | BindingFlags.GetField, null, str,
 null);
 Console.WriteLine("The empty string is \"{0}\".", str);

 }
}

							 The output is
							
								 The string is "A string".
								 The length of the string is 8.
								 The modified string is "A new string"
								 The empty string is "".
							
						
						 Requires permission to retrieve information on non-public members of types in loaded assemblies. See .
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating
 whether the type represented by the current instance is abstract and is required to be overridden.
						
						
							
								 if the is abstract; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents an unassigned type parameter of a generic type, this property always returns . This is because it is not possible to create an instance of a generic type parameter.
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Indicates whether the type attribute is selected for the current type.
						
						
							 if the type attribute is selected for the current type; otherwise, .
						
							 This property is read-only.
							 If the current represents a generic type, this property applies to the definition of the type. If the current represents a type parameter of a generic type or method, this property always returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current represents an array.
						
						
							
								 if the current represents an
 array; otherwise .
						
						
							 This property is read-only.
							 This property returns for an array of objects, but
 not for the
 type itself, which is a class.
							 If the current instance represents a generic type, or a type parameter of a generic type or method, this property returns .
						
						
							 The following example demonstrates using the
property.
							 using System;
class TestType {
 public static void Main() {
 int [] array = {1,2,3,4};
 Type at = typeof(Array);
 Type t = array.GetType();
 Console.WriteLine("Type is {0}. IsArray? {1}", at, at.IsArray);
 Console.WriteLine("Type is {0}. IsArray? {1}", t, t.IsArray);
 }
}

							 The output is
							
								 Type is System.Array. IsArray? False
								 Type is System.Int32[]. IsArray? True
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 When overridden in a derived class implements the property returning a
 value that indicates whether
 the type represented by the current instance is an array.
						
						
							
								 if the is an array; otherwise, .
						
						
							 An instance of the class is required to return because it is an object, not an
 array. As described above.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether an instance of the current can be assigned
 from an instance of the specified .

						
						 The to compare with the current .
						
							
								 if is a null reference.
							
								 if one or more of the following
statements are true; otherwise .
							
								
									

 If and the current represent the same type.
								
								
									

 If the current is in the inheritance hierarchy of .
								
								
									

 If the current is an interface and supports that
 interface.
								
								
									 If is a generic type parameter and the current instance represents one of the constraints of .
								
							
							
						
						
							
								 A generic type definition is not assignable from a closed constructed type.
							
						
						
							 The following example demonstrates the
method using arrays.
							 using System;
class ArrayTypeTest {
 public static void Main() {
 int i = 1;
 int [] array10 = new int [10];
 int [] array2 = new int[2];
 int [,]array22 = new int[2,2];
 int [,]array24 = new int[2,4];
 int [,,]array333 = new int[3,3,3];
 Type array10Type = array10.GetType();
 Type array2Type = array2.GetType();
 Type array22Type = array22.GetType();
 Type array24Type = array24.GetType();
 Type array333Type = array333.GetType();

 // If X and Y are not both arrays, then false
 Console.WriteLine("int[2] is assignable from int? {0} ", array2Type.IsAssignableFrom(i.GetType()));
 // If X and Y have same type and rank, then true.
 Console.WriteLine("int[2] is assignable from int[10]? {0} ", array2Type.IsAssignableFrom(array10Type));
 Console.WriteLine("int[2,2] is assignable from int[2,4]? {0}", array22Type.IsAssignableFrom(array24Type));
 Console.WriteLine("int[2,4] is assignable from int[2,2]? {0}", array24Type.IsAssignableFrom(array22Type));
 Console.WriteLine("");
 // If X and Y do not have the same rank, then false.
 Console.WriteLine("int[2,2] is assignable from int[10]? {0}", array22Type.IsAssignableFrom(array10Type));
 Console.WriteLine("int[2,2] is assignable from int[3,3,3]? {0}", array22Type.IsAssignableFrom(array333Type));
 Console.WriteLine("int[3,3,3] is assignable from int[2,2]? {0}", array333Type.IsAssignableFrom(array22Type));
 }
}

							 The output is
							
								 int[2] is assignable from int? False
								 int[2] is assignable from int[10]? True
								 int[2,2] is assignable from int[2,4]? True
								 int[2,4] is assignable from int[2,2]? True
								 int[2,2] is assignable from int[10]? False
								 int[2,2] is assignable from int[3,3,3]? False
								 int[3,3,3] is assignable from int[2,2]? False
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Indicates whether the type attribute is selected for the current type.
						
						
							 if the type attribute is selected for the current type; otherwise, .
						
							 This property is read-only.
							 If the current represents a generic type, this property applies to the definition of the type. If the current represents a type parameter of a generic type or method, this property always returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating
 whether the type layout attribute is specified for the .
						
						
							
								 if the type
 layout attribute is specified for the current ; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents a generic type, this property applies to the definition of the type. If the current instance represents an unassigned type parameter of a generic type or method, this property always returns .
							
								 The attribute specifies that the system
 selects the layout the objects of the type. Types marked with this attribute indicate that the
 system will choose the appropriate way to lay out the type; any layout information
 that might have been specified is ignored.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the is
 passed by reference.
						
						
							
								 if the is passed by reference; otherwise, .
						
						
							 This property is read-only.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 When overridden in a derived class, implements the
property and determines whether the is passed by reference.
						
						
							
								 if the is passed by reference; otherwise, .
						
						
							
								 As described above.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current represents a class.
						
						
							
								 if the current represents a class;
 otherwise .
						
						
							 This property is read-only.
							 Note that this property returns for
 instances
 representing and .
							 If the current instance represents a generic type, this property returns if the generic type definition is a class definition (that is, it does not define an interface or a value type).
							 If the current instance represents an unassigned type parameter of a generic type or method, this property always returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Reserved.
						
						
							
								
							
						
						
							 This abstract method is required to be present for
 legacy implementations. Conforming implementations are permitted to throw the

 as their implementation.
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current represents an enumeration.
						
						
							
								 if the current represents an
 enumeration; otherwise .
						
						
							 This property is read-only.
							 This property returns for an enumeration, but not
 for the
 type itself, which is a class.
							 If the current instance represents a generic type, this property applies to the definition of the type. If the current instance represents an unassigned type parameter of a generic type or method, this property always returns .
						
						
							 The following example demonstrates using the
property.
							 using System;
public enum Color {
Red, Blue, Green
}
class TestType {
 public static void Main() {
 Type colorType = typeof(Color);
 Type enumType = typeof(Enum);
 Console.WriteLine("Color is enum ? {0}", colorType.IsEnum);
 Console.WriteLine("Color is valueType? {0}", colorType.IsValueType);
 Console.WriteLine("Enum is enum Type? {0}", enumType.IsEnum);
 Console.WriteLine("Enum is value? {0}", enumType.IsValueType);
 }
}

							 The output is
							
								 Color is enum ? True
								 Color is valueType? True
								 Enum is enum Type? False
								 Enum is value? False
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating
 whether the type layout attribute is specified for the .
						
						
							
								 if the type layout attribute is specified for the current ; otherwise,
 .
						
						
							 This property is read-only.
							
								 Types marked with the attribute cause
 the system to ignore field sequence and to use the explicit layout rules provided,
 in the form of field offsets, overall class size and alignment.
							
							 If the current instance represents a generic type, this property applies to the definition of the type. If the current instance represents an unassigned type parameter of a generic type or method, this property always returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current type represents a type parameter of a generic type or method.
						
						
							 if the current object represents a type parameter of a generic type or method; otherwise .
						
							 This property is read-only.
							 Use this property to distinguish between type parameters and type arguments. When you call to obtain the type arguments of a generic type, some elements of the array might be specific types (type arguments) and others might be type parameters. returns for the types and for the type parameters.
							 For a list of the invariant conditions for terms used in generic reflection, see the property description.
						
						
							 For an example of using this method, see the example for .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current type has type arguments, and is therefore a generic type.
						
						
							 if the current type has type arguments; otherwise .
						
							 Use this property to determine whether a object represents a generic type. Use the property to determine whether a object represents an open constructed type or a closed constructed type.
							
								 The property returns if the immediate type is not generic.
							
							 The following table summarizes the invariant conditions for common terms used in generic reflection.
							
								
									
										 Term
										 Invariant
									
									
										 generic type definition
										
											 The property is .
											 Defines a generic type. A constructed type is created by calling the
												 method on a object that represents a generic type definition, and specifying an array of type arguments.
											
												
												 can be called only on generic type definitions.
											 Any generic type definition is a generic type, but the converse is not true.
										
									
									
										 generic type
										
											 The property is .
											 Can be a generic type definition, an open constructed type, or a closed constructed type.
											 Note that an array type whose element type is generic is not itself a generic type. The same is true of a object representing a pointer to a generic type.
										
									
									
										 open constructed type
										
											 The property is .
											 It is not possible to create an instance of an open constructed type.
											 Note that not all open constructed types are generic, such as an array type whose element type is a generic type definition.
										
									
									
										 closed constructed type
										
											 The property is .
											 When examined recursively, the type has no unassigned generic parameters. The containing type or method has no generic type parameters, and, recursively, no type arguments have unassigned generic type parameters.
										
									
									
										 generic type parameter
										
											 The property is .
											 In a generic type definition, a placeholder for a type that will be assigned later.
										
									
									
										 generic type argument
										
											 Can be any type, including a generic type parameter.
											 Type arguments are specified as an array of objects passed to the
												 method when creating a constructed generic type. If instances of the resulting type are to be created, the property must be for all the type arguments.
										
									
								
							
							
								 This property is read-only.
							
						
						
							 For an example of using this method, see the example for .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current object represents the definition of a generic type, or whether one or more of its type parameters has been specified.
						
						
							 if the current object represents the definition of a generic type, none of whose type parameters have been bound to specific types; otherwise .
						
							 This property is read-only.
							 Use this property to determine whether type arguments have been specified for any of the type parameters of a generic type. If type arguments have been specified (that is, bound to the corresponding type parameters), this property returns .
							 For a list of the invariant conditions for terms used in generic reflection, see the property description.
							
								 An open generic type can have type parameters even if types have been specified for its type parameters.
							
						
						
							 For an example of using this method, see the example for .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the was imported from another class.
						
						
							
								 if the was imported from another class; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents a generic type, this property applies to the definition of the type. If the current instance represents an unassigned type parameter of a generic type or method, this property always returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified object is an instance
 of the current .

						
						 The object to compare with the current .
						
							
								 if either of the following
 statements is true; otherwise .

							
								
									

 If the current is in the inheritance hierarchy of .
								
								
									

 If the current is an interface and supports that
 interface.
								
							
							 If is a null reference or if the current instance is an open generic type (that is, returns) returns .
						
						
							 As described above.
							
								 A constructed type is not an instance of its generic type definition.
							
							
								 As described above.
							
						
						
							 The following example demonstrates the
method.
							 using System;
public interface IFoo { }
public class MyClass : IFoo {}
public class MyDerivedClass : MyClass {}
class IsInstanceTest {
 public static void Main() {
 Type ifooType=typeof(IFoo);
 MyClass mc = new MyClass();
 Type mcType = mc.GetType();
 MyClass mdc = new MyDerivedClass();
 Type mdcType = mdc.GetType();
 int [] array = new int [10];
 Type arrayType = typeof(Array);
 Console.WriteLine("int[] is instance of Array? {0}", arrayType.IsInstanceOfType(array));
 Console.WriteLine("myclass instance is instance of MyClass? {0}", mcType.IsInstanceOfType(mc));
 Console.WriteLine("myderivedclass instance is instance of MyClass? {0}", mcType.IsInstanceOfType(mdc));
 Console.WriteLine("myclass instance is instance of IFoo? {0}", ifooType.IsInstanceOfType(mc));
 Console.WriteLine("myderivedclass instance is instance of IFoo? {0}", ifooType.IsInstanceOfType(mdc));
 }
}

							 The output is
							
								 int[] is instance of Array? True
								 myclass instance is instance of MyClass? True
								 myderivedclass instance is instance of MyClass? True
								 myclass instance is instance of IFoo? True
								 myderivedclass instance is instance of IFoo? True
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current represents an interface.
						
						
							
								 if the current represents an
 interface; otherwise .
						
						
							 This property is read-only.
							 If the current instance represents an unassigned type parameter of a generic type or method, this property always returns .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating
 whether the type layout attribute is specified for the .
						
						
							
								 if the type layout attribute
 is specified for the current
 ; otherwise,
 .
						
						
							 This property is read-only.
							
								 The attribute is used
 to indicate that
 the system is to preserve field order as emitted, but otherwise the specific offsets are calculated based on the type
 of the field; these might be shifted by explicit offset, padding, or alignment information.
							
							 If the current instance represents a generic type, this property applies to the definition of the type. If the current instance represents an unassigned type parameter of a generic type or method, this property always returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current type is marshaled by reference.
						
						
							
								 if the is marshaled by reference; otherwise, .
						
						
							 This property is read-only.
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current is nested and visible only within its own assembly.
						
						
							
								 if the is nested and visible only within its own assembly; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current is nested and visible only to classes that belong to both its own family and
 its own assembly.
						
						
							
								 if the is nested
 and visible only to classes that belong to both its own family and its own assembly; otherwise, .
						
						
							 This property is read-only.
							 A object's family is defined as all objects of the exact
 same and of its subclasses.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current is nested and visible only within its
 own family.
						
						
							
								 if the is nested
 and visible only within its own family; otherwise, .
						
						
							 This property is read-only.
							 A object's family is defined as all objects of the exact
 same and of its subclasses.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current is nested and visible only to classes that belong to either its
 own family or to its own assembly.
						
						
							
								 if the is nested
 and visible only to classes that belong to its own family or to its own assembly; otherwise, .
						
						
							 This property is read-only.
							 A object's family is defined as all objects of the exact
 same and of its subclasses.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current is nested and declared private.
						
						
							
								 if the is nested and declared private; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating
 whether the current is a public nested class.
						
						
							
								 if
 the class is nested and declared public; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the top-level is not declared public.
						
						
							
								 if the
 top-level is not declared public; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current represents a pointer.
						
						
							 This property is read-only.
							
								 if the current represents a
 pointer; otherwise .
						
						
							 This property is read-only.
							 If the current instance represents a generic type, or a type parameter of a generic type or method, this property always returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 When overridden in a derived class, implements the property and determines whether the
 is a pointer.
						
						
							
								 if the is a pointer; otherwise, .
						
						
							
								 As described above.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current is one of the primitive types.
						
						
							
								 if the is one of the primitive types; otherwise, .
						
						
							 This property is read-only.
							 The primitive types are , , , , , , , , , , , and .
							 If the current instance represents a generic type, or a type parameter of a generic type or method, this property always returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 When overridden in a derived class, implements the property and determines whether the
 is one of the primitive types.
						
						
							
								 if the is one of the primitive types; otherwise, .
						
						
							
								 This method
 returns if the underlying type of the current instance is
 one of the following: , , , , , , , , , , , and .
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the top-level is declared public.
						
						
							
								 if the top-level is declared public; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current is declared sealed.
						
						
							
								 if the is declared sealed; otherwise, .
						
						
							 This property is read-only.
							 If the current instance represents an unassigned type parameter of a generic type, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current has a name that requires special handling.
						
						
							
								 if the has a name that requires special handling; otherwise, .
						
						
							 This property is read-only.
							
								 Names that begin with or contain an
 underscore character (_) are examples of type names that
 might require special treatment by some tools.
							
							 If the current instance represents a generic type, this property applies to the definition of the type. If the current instance represents an unassigned type parameter of a generic type or method, this property always returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current derives from the
 specified .
						
						 The to compare with the current .
						
							
								 if and the current
 represent
 classes, and the class represented by the current derives from the class represented by
 ; otherwise . Returns if
 and the current represent the same class.
						
						
							 Interfaces are not considered.
							 If the current instance represents an unassigned type parameter of a generic type or method, it derives from its class constraint, or from if it has no class constraint.
						
						
							 The following example demonstrates the
method.
							 using System;
public interface IFoo { }
public interface IBar:IFoo{}
public class MyClass : IFoo {}
public class MyDerivedClass : MyClass {}
class IsSubclassTest {
 public static void Main() {
 Type ifooType = typeof(IFoo);
 Type ibarType = typeof(IBar);
 MyClass mc = new MyClass();
 Type mcType = mc.GetType();
 MyClass mdc = new MyDerivedClass();
 Type mdcType = mdc.GetType();
 int [] array = new int [10];
 Type arrayOfIntsType = array.GetType();
 Type arrayType = typeof(Array);

 Console.WriteLine("Array is subclass of int[]? {0}", arrayType.IsSubclassOf(arrayOfIntsType));
 Console.WriteLine("int [] is subclass of Array? {0}", arrayOfIntsType.IsSubclassOf(arrayType));
 Console.WriteLine("IFoo is subclass of IBar? {0}", ifooType.IsSubclassOf(ibarType));
 Console.WriteLine("myclass is subclass of MyClass? {0}", mcType.IsSubclassOf(mcType));
 Console.WriteLine("myderivedclass is subclass of MyClass? {0}", mdcType.IsSubclassOf(mcType));
 Console.WriteLine("IBar is subclass of IFoo? {0}", ibarType.IsSubclassOf(ifooType));
 }
}

							 The output is
							
								 Array is subclass of int[]? False
								 int [] is subclass of Array? True
								 IFoo is subclass of IBar? False
								 myclass is subclass of MyClass? False
								 myderivedclass is subclass of MyClass? True
								 IBar is subclass of IFoo? False
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Indicates whether the type attribute is selected for the current type.
						
						
							 if the type attribute is selected for the current type; otherwise, .
						
							 This property is read-only.
							 If the current represents a generic type, this property applies to the definition of the type. If the current represents a type parameter of a generic type or method, this property always returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current represents a value type.
						
						
							
								 if the current represents a value
 type (structure); otherwise .
						
						
							 This property is read-only.
							 This property returns true for enumerations, but not for
 the type
 itself, which is a class. For an example
 that demonstrates this behavior, see
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Type
					
					
					
						
							 Returns a object representing a one-dimensional array type whose element type is the current type, with a lower bound of zero.
						
						
							 A object representing a one-dimensional array type whose element type is the current type, with a lower bound of zero.
						
						
							 This method provides a way to generate an array type with any possible element type, including generic types.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
					
					
						
							 Returns a object representing an array of the current type, with the specified number of dimensions.
						
						 The number of dimensions for the array.
						
							 A object representing an array of the current type, with the specified number of dimensions.
						
						
							
								 is invalid (being less than 1, for example).
						
						
							 This method provides a way to generate an array with any possible element type, including generic types.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
					
						
							 Returns a object that represents the current type when passed as a byref parameter.
						
						
							 A object that represents the current type when passed as a byref parameter.
						
						
							 This method provides a way to generate a byref type for any type.
							
								 Using ilasm syntax, if the current object represents , this method returns a object representing .
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
						
					
					
						
							 Substitutes the elements of an array of types for the type parameters of the current generic type definition, and returns a object representing the resulting constructed type.
							 The current type shall be a generic type definition.
						
						 An array of types to be substituted for the type parameters of the current generic type definition.
						
							 A representing the constructed type formed by substituting the elements of for the type parameters of the current generic type definition.
						
						
							 The number of elements in
 is not the same as the number of type parameters of the current generic type definition.
							 -or-
							 An element of does not satisfy the constraints specified for the corresponding type parameter of the current generic type definition.
						
						
							
								 is .
							 -or-
							 An element of is .
						
						
							 The current type does not represent the definition of a generic type. That is, returns .
						
						
							 This method allows you to write code that assigns specific types to the type parameters of a generic type definition, thus creating a object that represents a particular constructed type. You can use this object to create runtime instances of the constructed type.
							 The object returned by this method is the same as that obtained by calling the method of the resulting constructed type, or the method of any constructed type that was created from the same generic type using the same type arguments.
							
								 An array type whose element type is a generic type is not itself a generic type. Thus, you cannot call this method to bind an array type. To bind a type argument to this type, call to obtain the generic type, then this method to bind the type argument to the generic type, and, finally, to create the array type.
							
							 For a list of the invariant conditions for terms used in generic reflection, see the property description.
						
						
							 The following example uses and to create a constructed type from the generic type. The constructed type represents a of objects with string keys.
							 using System;
using System.Reflection;
using System.Collections.Generic;

public class Test
{
	public static void Main()
	{
		Console.WriteLine("\n--- Create a constructed type from the generic Dictionary type.");

		// Create a type object representing the generic Dictionary
		// type.
		Type generic = Type.GetType("System.Collections.Generic.Dictionary");

		DisplayTypeInfo(generic);

		// Create an array of types to substitute for the type
		// parameters of Dictionary. The key is of type string, and
		// the type to be contained in the Dictionary is Test.
		Type[] typeArgs = { typeof(string), typeof(Test) };
		Type constructed = generic.MakeGenericType(typeArgs);

		DisplayTypeInfo(constructed);

		// Compare the type objects obtained above to type objects
		// obtained using typeof() and GetGenericTypeDefinition().
		Console.WriteLine("\n--- Compare types obtained by different methods:");

		Type t = typeof(Dictionary<string, Test>);

		Console.WriteLine("\tAre the constructed types equal? {0}", t == constructed);
		Console.WriteLine("\tAre the generic types equal? {0}", t.GetGenericTypeDefinition() == generic);
	}

	private static void DisplayTypeInfo(Type t)
	{
		Console.WriteLine("\n{0}", t);
		Console.WriteLine("\tIs this a generic type definition? {0}", t.IsGenericTypeDefinition);
		Console.WriteLine("\tDoes it have generic type arguments? {0}", t.HasGenericArguments);

		Type[] typeArguments = t.GetGenericArguments();

		Console.WriteLine("\tList type arguments ({0}):", typeArguments.Length);
		foreach (Type tParam in typeArguments)
		{
			Console.WriteLine("\t\t{0}", tParam);
		}
	}
}

/* This example produces the following output:

--- Create a constructed type from the generic Dictionary type.

System.Collections.Generic.Dictionary[KeyType,ValueType]
 Is this a generic type definition? True
 Does it have generic type arguments? True
 List type arguments (2):
 K
 V

System.Collections.Generic.Dictionary[System.String, Test]
 Is this a generic type definition? False
 Does it have generic type arguments? True
 List type arguments (2):
 System.String
 Test

--- Compare types obtained by different methods:
 Are the constructed types equal? True
 Are the generic types equal? True
 */

						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type
					
					
					
						
							 Returns a object that represents the type of an unmanaged pointer to the current type.
						
						
							 A object that represents the type of an unmanaged pointer to the current type.
						
						
							 This method provides a way to generate an unmanaged pointer type for types computed at runtime.
							
								 Using ilasm syntax, if the current object represents , this method returns a object representing .
							
						
					
					 1
					 Reflection
				
				
					
					
					 Field
					
						 System.Object
					
					
					
						
							 Represents a missing value in the information.
						
						
							 This field is read-only.
							 Use the
field for invocation through reflection to ensure that a call will be made
with the default value of a parameter as specified in the metadata. If the field is specified for a
parameter value and there is no default value for that parameter, a is
thrown.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Reflection.Module
					
					
					
						
							 Gets the module in which the current is defined.
						
						
							 A that reflects the module in which the current is defined.
						
						
							 If the current instance represents a generic type, this property returns the module in which the type was defined.
							 Similarly, if the current instance represents a generic parameter T, this property returns the assembly that contains the generic type that defines T.
							
								 This property is
 read-only.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the namespace of the .
						
						
							 A containing the namespace of the current .
						
						
							 If the current instance represents a generic type, this property returns the namespace that contains the generic type definition. Similarly, if the current instance represents a generic parameter T, this property returns the namespace that contains the generic type that defines T.
							
								 A namespace is a
 logical design-time naming convenience, used mainly to define scope in an
 application and organize classes and other types in a hierarchical structure.
 From the viewpoint of the system, there are no namespaces.
							
							
								 This property is
 read-only.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the type that was used to obtain the current
 instance.
						
						
							 The object
 through which the current instance was obtained.
						
						
							 This property is read-only.
							 If the current instance represents a generic type, or a type parameter of a generic type or method, this property returns the current instance.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the current .

						
						
							 Returns .
						
						
							
								 This method
 overrides
 .
							
							 If the current instance represents a generic type, the type and its type arguments are qualified by namespace and by nested type, but not by assembly. If the current instance represents an unassigned type parameter of a generic type or method, this method returns the unqualified name of the type parameter.
						
					
					 0
				
				
					
					
					 Property
					
						 System.RuntimeTypeHandle
					
					
					
						
							 Gets the handle for the current .
						
						
							 The for the current .
						
						
							 This property is read-only.
							 The encapsulates a pointer to an internal data structure that represents the type. This
 handle is unique during the process lifetime. The handle is valid only in
 the application domain in which it was obtained.
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Property
					
						 System.Reflection.ConstructorInfo
					
					
					
						
							 Gets the initializer for the type
 represented by the current instance.
						
						
							 A containing the name of the static
 constructor for the type represented by the current instance
						
						
							 This property is read-only.
							
								 Type initializers are available through ,
 , and .
							
							 If the current instance represents an unassigned type parameter of a generic type or method, this property returns .
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Returns the system-supplied type
 that represents the current type.
						
						
							 The underlying system type for the .
						
						
							 This property is read-only.
							
								 As described
 above.
							
						
					
					 1
					 Reflection
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an exception is thrown inside the
 static constructor of a type.
				
				
					 When a static constructor fails to initialize a type, a
 instance is created and passed a reference to the exception
 thrown by the static constructor. The property stores the exception that was thrown
 by the static constructor.
				
				
					 The following example demonstrates an error that causes
 a exception.
					 using System;
class TypeInit {
 // Static constructor
 static TypeInit () {
 // Throw an application-defined exception.
 throw new ApplicationException("Error in Class TypeInit");
 }
 public TypeInit() {}
}
class TestTypeInit {
 static public void Main() {
 try {
 TypeInit t = new TypeInit ();
 }
 catch (TypeInitializationException e) {
 Console.WriteLine("Error: {0}",e);
 }
 }
}

					 The output is
					
Error: System.TypeInitializationException: The type initializer for "TypeInit" threw an exception. ---> System.ApplicationException: Error in Class TypeInit
 at TypeInit..cctor()
 --- End of inner exception stack trace ---
 at TypeInit..ctor()
 at TestTypeInit.Main()

				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the fully qualified name of the type that causes the
 exception.
						
						
							 A that contains the fully qualified name of the type that caused the exception.
						
						
							 This property is read-only.
							 The property returns the same value as was
 passed into the constructor.
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents a 16-bit unsigned integer.
				
				
					 The data type represents integer values ranging from 0 to
 positive 65,535 (hexadecimal 0xFFFF).
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.UInt16>
					 0
				
				
					 System.IEquatable<System.UInt16>
					 0
				
			
			
				
					 CLSCompliantAttribute(false)
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									
										 Current instance > , or
 is a null reference.
									
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same value and type.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same value and type as the current instance. If is a null reference
 or is not an instance of , returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same type.
						
						 The to compare to the current instance.
						
							
								 if represents the
 same value and type as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.UInt16
					
					
					 65535
					
						
							 Contains the maximum value for the type.
						
						
							 The value of this constant is 65,535 (hexadecimal
 0xFFFF).
						
					
					 0
				
				
					
					
					 Field
					
						 System.UInt16
					
					
					 0
					
						
							 Contains the minimum value for the type.
						
						
							 The value of this constant is 0.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting
information in a initialized for the current system
culture. For more information, see
 .
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use ().
							
						
						
							 This example demonstrates parsing a string to a .
							 using System;
public class UInt16ParseClass {
 public static void Main() {
 string str = " 100 ";
 Console.WriteLine("String: \"{0}\" <UInt16> {1}",str,UInt16.Parse(str));
 }
}

							 The output is
							
								 String: " 100
 " <UInt16> 100
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting
information in a initialized for the current system
culture. For
more information, see .
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the culture-specific
formatting information from the instance supplied by .
If is
 or a cannot be obtained from
 , the formatting information for the current system culture is
used.
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (,
).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 The string is parsed using the
 culture-specific formatting information from the
 instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (, ,).
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the
 current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to ("G",
).
							 If is null or a cannot
be obtained from , the formatting information for the current
system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A containing a character that specifies the format of the returned string.
						 A that supplies a instance containing culture-specific formatting information.
						
							 A
representation of the current instance formatted as specified by
 . The string takes into account the formatting information in the

instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot
 be obtained from , the formatting information for the current
 system culture is used.
							 If is a null reference, the general
format specifier "G" is used.
							
								 For a detailed
 description of formatting, see the interface.
								 This method is implemented
 to support the interface.
							
							 The following table lists the characters that are valid for the type.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "D", "d"
									 Decimal format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "X", "x"
									 Hexadecimal
 format.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using the general format specifier ("G"). The string takes into account the current system culture.
						
						
							 This version of is equivalent to (,
).
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system
 culture.
						
						
							 is invalid.
						
							 This method is equivalent to (, null).
							 If is a null reference, the general
format specifier "G" is used.
						
						
							 This example demonstrates converting a to a string.
							 using System;
public class UInt16ToStringExample {
 public static void Main() {
 UInt16 i = 16;
 Console.WriteLine(i);
 String[] formats = {"c", "d", "e", "f", "g", "n", "p", "x" };
 foreach(String str in formats)
 Console.WriteLine("{0}: {1}", str, i.ToString(str));
 }
}

							 The output is
							
								 16
								 c: $16.00
								 d: 16
								 e: 1.600000e+001
								 f: 16.00
								 g: 16
								 n: 16.00
								 p: 1,600.00 %
								 x: 10
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Represents a 32-bit unsigned integer.
				
				
					 The data type represents integer values ranging from 0 to
 positive 4,294,967,295 (hexadecimal 0xFFFFFFFF).
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.UInt32>
					 0
				
				
					 System.IEquatable<System.UInt32>
					 0
				
			
			
				
					 CLSCompliantAttribute(false)
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									
										 Current instance > , or
 is a null reference.
									
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the
 same type and value.
						
						 The to compare to the current instance.
						
							
								 if represents the same
 type and value as the current instance. If is a null reference or
 is not an instance of , returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the same value as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.UInt32
					
					
					 4294967295
					
						
							 Contains the maximum value for the type.
						
						
							 The value of this constant is 4,294,967,295 (hexadecimal
 0xFFFFFFFF).
						
					
					 0
				
				
					
					
					 Field
					
						 System.UInt32
					
					
					 0
					
						
							 Contains the minimum value for the type.
						
						
							 The value of this constant is 0.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							
								 represents a number greater than or less than .
						
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting
information in a initialized for the current system culture. For more information, see .
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use ().
						
						
							 This example demonstrates parsing a string to a .
							 using System;
public class UInt32ParseClass {
 public static void Main() {
 string str = " 100 ";
 Console.WriteLine("String: \"{0}\" <UInt32> {1}",str,UInt32.Parse(str));
 }
}

							 The output is
							
								 String: "
 100 " <UInt32> 100
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							
								 represents a number greater than or less than .
						
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting information in
 a initialized for the current
 system culture. For more information, see
 .
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the
culture-specific formatting information from the
instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use
 (,).
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							
								 represents a number greater than or less than .
						
						
							 The string is parsed using the
 culture-specific formatting information from the
 instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (, ,).
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to ("G",
).
							 If is
 or a cannot
be obtained from , the formatting information for the current
system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of
 the current instance.
						
						 A containing a character that specifies the format of the returned string.
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the formatting
 information in the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot
 be obtained from , the formatting information for the current system
 culture is used.
							 If is a null reference the general format
specifier "G" is used.
							
								 For a detailed
 description of formatting, see the
 interface.
								 This method is implemented
 to support the
 interface.
							
							 The following table lists the characters that are valid for the type.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "D", "d"
									 Decimal format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "X", "x"
									 Hexadecimal
 format.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A
representation of the current instance formatted using the general format
specifier, ("G"). The string takes into account the current system culture.
						
						
							 This version of is equivalent to (,
).
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system culture.
						
						
							 is invalid.
						
							 This method is equivalent to
(,
).
							 If is a null reference, the general
format specifier "G" is used.
						
						
							 This example demonstrates converting a to a string.
							 using System;
public class UInt32ToStringExample {
 public static void Main() {
 UInt32 i = 32;
 Console.WriteLine(i);
 String[] formats = {"c", "d", "e", "f", "g", "n", "p", "x" };
 foreach(String str in formats)
 Console.WriteLine("{0}: {1}", str, i.ToString(str));
 }
}

							 The output is
							
								 32
								 c: $32.00
								 d: 32
								 e: 3.200000e+001
								 f: 32.00
								 g: 32
								 n: 32.00
								 p: 3,200.00 %
								 x: 20
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a 64-bit unsigned integer.
				
				
					 The data type represents integer values ranging from
 0 to positive 18,446,744,073,709,551,615 (hexadecimal 0xFFFFFFFFFFFFFFFF).
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.UInt64>
					 0
				
				
					 System.IEquatable<System.UInt64>
					 0
				
			
			
				
					 CLSCompliantAttribute(false)
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									
										 Current instance > , or
 is a null reference.
									
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the
 interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 Current instance > .
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the
 same value and type.
						
						 The to compare to the current instance.
						
							
								 if represents the same
 value and type as the current instance. If is a null reference or
 is not an instance of , returns .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the same value as the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.UInt64
					
					
					 18446744073709551615
					
						
							 Contains the maximum value for the
type.
						
						
							 The value of this constant is 18,446,744,073,709,551,615 (hexadecimal 0xFFFFFFFFFFFFFFFF).
						
					
					 0
				
				
					
					
					 Field
					
						 System.UInt64
					
					
					 0
					
						
							 Contains the minimum value for the
type.
						
						
							 The value of this constant is 0.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							
								 represents a number greater than or less than .
						
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting
information in a initialized for the current system
culture. For
more information, see .
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use ().
						
						
							 This example demonstrates parsing a string to a .
							 using System;
public class UInt64ParseClass {
 public static void Main() {
 string str = " 100 ";
 Console.WriteLine("String: \"{0}\" <UInt64> {1}",str,UInt64.Parse(str));
 }
}

							 The output is
							
								 String: "
 100 " <UInt64> 100
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							
								 represents a number greater than or less than .
						
						
							 This version of is equivalent to (,
 ,).
							 The string is parsed using the formatting
information in a initialized for the current system culture. For more information, see .
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
						
					
					
						
							 Returns the specified converted to a
value.
						
						 A containing the value to convert. The string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the
culture-specific formatting information from the
instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							
								 represents a number greater than or less than .
						
						
							 The string is parsed using the
 culture-specific formatting information from the
 instance supplied by . If is
 or a

cannot be obtained from , the formatting information for the
current system culture is used.
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use (, ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the
 current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to ("G",
).
							 If is
 or a cannot
be obtained from , the formatting information for the current
system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A containing a character that specifies the format of the returned string.
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the formatting
 information in the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot
 be obtained from , the formatting information for the current
 system culture is used.
							 If is a null reference, the general
format specifier "G" is used.
							
								 For a detailed
 description of formatting, see the interface.
								 This method is implemented
 to support the interface.
							
							 The following table lists the characters that are valid for the type.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "D", "d"
									 Decimal format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "X", "x"
									 Hexadecimal
 format.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using the general format specifier, ("G"). The string takes into account the current system culture.
						
						
							 This method is equivalent to (,
).
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system
 culture.
						
						
							 is invalid.
						
							 This method is equivalent to (,
).
							 If is a null reference, the general format specifier "G" is
used.
						
						
							 This example demonstrates converting a to a string.
							 using System;
public class UInt64ToStringExample {
 public static void Main() {
 UInt64 i = 64;
 Console.WriteLine(i);
 String[] formats = {"c", "d", "e", "f", "g", "n", "p", "x" };
 foreach(String str in formats)
 Console.WriteLine("{0}: {1}", str, i.ToString(str));
 }
}

							 The output is
							
								 64
								 c: $64.00
								 d: 64
								 e: 6.400000e+001
								 f: 64.00
								 g: 64
								 n: 64.00
								 p: 6,400.00 %
								 x: 40
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
 Represents the error that occurs when an I/O operation
 cannot be performed because of incompatible file access levels.

				
					
						 is typically thrown when a request is
 made to write to a read-only file, or a file I/O
 operation is requested on a directory.
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message
that describes the error, such as "Attempted to perform an unauthorized
operation." This message takes into account the current system culture.
							 The
property of the new instance is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property of the new
instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of
 the new instance using and the property using . If is , the
 property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 For more
 information on inner exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Designates the general Unicode category of a .
				
				
					 These categories conform to Version 3.1 of the Unicode
 Standard.

					
						 For information on mapping specific
 Unicode characters to categories, see the UnicodeData.txt file in the
 Unicode Character Database at http://www.unicode.org/Public/UNIDATA/UnicodeCharacterDatabase.html. The
 UnicodeData.txt file format is described at http://www.unicode.org/Public/3.1-Update/UnicodeData-3.1.0.html.
					
					 This enumeration
 is used to support methods such as
 ,

 , etc.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 ClosePunctuation
					
						
							 Designates a Unicode 'Pe' (punctuation, close).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 ConnectorPunctuation
					
						
							 Designates a Unicode 'Pc' (punctuation, connector).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 Control
					
						
							 Designates a Unicode 'Cc' (other, control).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 CurrencySymbol
					
						
							 Designates a Unicode 'Sc' (symbol, currency).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 DashPunctuation
					
						
							 Designates a Unicode 'Pd' (punctuation, dash).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 DecimalDigitNumber
					
						
							 Designates a Unicode 'Nd' (number, decimal digit).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 EnclosingMark
					
						
							 Designates a Unicode 'Me' (mark, enclosing).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 FinalQuotePunctuation
					
						
							 Designates a Unicode 'Pf' (punctuation, final quote).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 Format
					
						
							 Designates a Unicode 'Cf' (other, format).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 InitialQuotePunctuation
					
						
							 Designates a Unicode 'Pi' (punctuation, initial quote).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 LetterNumber
					
						
							 Designates a Unicode 'Nl' (number, letter).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 LineSeparator
					
						
							 Designates a Unicode 'Zl' (separator, line).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 LowercaseLetter
					
						
							 Designates a Unicode 'Ll' (letter, lowercase).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 MathSymbol
					
						
							 Designates a Unicode 'Sm' (symbol, math).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 ModifierLetter
					
						
							 Designates a Unicode 'Lm' (letter, modifier).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 ModifierSymbol
					
						
							 Designates a Unicode 'Sk' (symbol, modifier).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 NonSpacingMark
					
						
							 Designates a Unicode 'Mn' (mark, non-spacing).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 OpenPunctuation
					
						
							 Designates a Unicode 'Ps' (punctuation, open).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 OtherLetter
					
						
							 Designates a Unicode 'Lo' (letter, other: not an
 uppercase letter, a lowercase letter, a titlecase letter, or a modifier letter).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 OtherNotAssigned
					
						
							 Designates a Unicode 'Cn' (other, not assigned).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 OtherNumber
					
						
							 Designates a Unicode 'No' (number, other: not a decimal
 digit number or a letter number).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 OtherPunctuation
					
						
							 Designates a Unicode 'Po' (punctuation, other: not
 connector, dash, open, close, initial quote, or final quote punctuation).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 OtherSymbol
					
						
							 Designates a Unicode 'So' (symbol, other: not a math,
 currency, or modifier symbol).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 ParagraphSeparator
					
						
							 Designates a Unicode 'Zp' (separator, paragraph).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 PrivateUse
					
						
							 Designates a Unicode 'Co' (other, private use).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 SpaceSeparator
					
						
							 Designates a Unicode 'Zs' (separator, space).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 SpacingCombiningMark
					
						
							 Designates a Unicode 'Mc' (mark, spacing combining).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 Surrogate
					
						
							 Designates a Unicode 'Cs' (other, surrogate).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 TitlecaseLetter
					
						
							 Designates a Unicode 'Lt' (letter, titlecase).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Globalization.UnicodeCategory
					
					
					 UppercaseLetter
					
						
							 Designates a Unicode 'Lu' (letter, uppercase).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a Unicode implementation of .
				
				
					
						 encodes each Unicode character in UTF-16, i.e. as
 two consecutive bytes. Both little-endian and big-endian encodings are
 supported.
					
						 On little-endian platforms such as Intel
 machines, it is generally more efficient to store Unicode characters in
 little-endian. However, many other platforms can store Unicode characters in
 big-endian. Unicode files can be distinguished by the presence of the byte order
 mark (U+FEFF), which is written as either 0xfe 0xff or 0xff 0xfe.
						 This implementation can detect a byte order mark automatically
 and switch byte orders, based on a parameter specified in the constructor.
						 ISO/IEC 10646 defines UCS-2 and UCS-4. UCS-4 is a four-byte (32-bit)
 encoding containing 2 31 code positions, divided into 128
groups of 256 planes. Each plane contains 2 16 code
positions. UCS-2 is a two-byte (16-bit) encoding containing the
2 16 code positions of UCS-4 for which the upper two bytes
are zero, known as Plane Zero or the Basic Multilingual Plane (BMP).
For example, the code position for LATIN CAPITAL LETTER A in UCS-4
is 0x00000041 whereas in UCS-2 it is 0x0041.
						 ISO/IEC 10646 also defines UTF-16, which stands for "UCS
 Transformation Format for 16 Planes of Group 00". UTF-16 is a two
 byte encoding that uses an extension mechanism to represent
 2 21 code positions. UTF-16 represents code
positions in Plane Zero by its UCS-2 code value and code positions in
Planes 1 through 16 by a pair of special code values,
called surrogates. UTF-16 is equivalent to the Unicode Standard. For a
detailed description of UTF-16 and surrogates, see "The Unicode Standard Version 3.0"
Appendix C.
					
				
			
			
				 System.Text.Encoding
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes
 a new instance of the
 class.

						
						
							 The new instance uses little-endian encoding and includes the Unicode byte-order
 mark in conversions.

						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class using the specified Boolean
 flags.
						
						 A value that specifies the byte-ordering to use for the new instance. Specify to use big-endian ordering; specify to use little-endian ordering.
						 A value that specifies whether to include the Unicode byte order mark in translated strings. Specify to include the Unicode byte-order mark; otherwise, specify .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the
 same type and value.
						
						 The to compare to the current instance.
						
							
								 if represents the same type and value as the
 current instance. If is a null reference or is not an
 instance of , returns .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Determines the exact number of bytes required to encode the specified range
 of the specified array of characters as Unicode-encoded characters.
						
						 A array to encode as Unicode-encoded characters.
						 A that specifies the first index of to encode.
						 A that specifies the number of elements in to encode.
						
							 A whose
 value equals the number of bytes required to encode the range in
 from to + - 1 as Unicode-encoded
 characters.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the number of bytes required to encode the
 specified string as Unicode-encoded characters.
						
						 A to encode as Unicode-encoded characters.
						
							 A
containing the number of bytes needed to encode as Unicode-encoded
characters.
						
						
							 is .
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Encodes the specified range of the specified string into the specified range
 of the specified array of bytes as Unicode-encoded characters.
						
						 A to encode as Unicode-encoded characters.
						 A that specifies the first index of from which to encode.
						 A that specifies the number of elements in to encode.
						 A array to encode into.
						 A that specifies the first index of to encode into.
						
							 A whose
 value equals the number of bytes encoded into as Unicode-encoded
 characters.
						
						
							
								 does not contain sufficient space to store the encoded characters.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
							 -or-
							
								 >= .Length.
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
					
					
						
							 Encodes the specified string as Unicode-encoded characters.
						
						 A to encode as Unicode-encoded characters.
						
							 A array containing the encoded representation of
 as Unicode-encoded characters.
						
						
							 is .
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Encodes the specified range of the specified character array into
 the specified range of the specified byte array as Unicode-encoded characters.
						
						 A array of characters to encode as Unicode-encoded characters.
						 A that specifies the first index of to encode.
						 A that specifies the number of elements in to encode.
						 A array to encode into.
						 A that specifies the first index of to encode into.
						
							 A
containing the number of bytes encoded into as Unicode-encoded
characters.
						
						
							
								 does not contain sufficient space to store the encoded characters.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
							 -or-
							
								 > .Length.
						
						
							
								 This method overrides .
								
									 can be used to determine the exact number of
 bytes that will be produced for a given range of characters. Alternatively,

can be used to determine the maximum number of bytes that will be produced for
a given number of characters, regardless of the actual character values.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Determines the exact number of characters that will be produced by decoding
 the specified range of the specified array of bytes as Unicode-encoded
 characters.
						
						 A array to decode as Unicode-encoded characters.
						 A that specifies the first index in to decode.
						 A that specifies the number of elements in to decode.
						
							 A
whose value equals the number of characters a call to will produce if presented with the
specified range of as Unicode-encoded characters.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Decodes the specified range of the specified array of bytes into the
 specified range of the specified array of characters as Unicode-encoded
 characters.
						
						 A array to decode as Unicode-encoded characters.
						 A that specifies the first index of from which to decode.
						 A that specifies the number of elements in to decode.
						 A array to decode into.
						 A that specifies the first index of to store the decoded bytes.
						
							 A
containing the number of characters decoded into as
Unicode-encoded characters.
						
						
							
								 does not contain sufficient space to store the decoded characters.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
							 -or-
							
								 > .Length.
						
						
							
								 This method overrides .
								
									 can be used to determine the exact number of
 characters that will be produced for a given range of bytes. Alternatively,

can be used to determine the maximum number of characters that will be
produced for a given number of bytes, regardless of the actual byte values.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.Decoder
					
					
					
						
							 Returns a object
 for the current instance.
						
						
							 A object for
 the current
 instance.
						
						
							
								 This method overrides .
								 Unlike the method, the
method provided by a
object can convert partial sequences of bytes into
partial sequences of characters by maintaining the appropriate state between
the conversions.
								 This implementation returns a decoder that
 simply forwards calls to and to the corresponding methods of the
 current instance. It is recommended that
 encoding implementations that requires state to be maintained between successive
 conversions override this method and return an instance of an appropriate decoder
 implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for the current instance.
						
						
							 The algorithm used to generate the hash code is
 unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the maximum number of bytes required to encode the specified number of characters as Unicode-encoded characters, regardless
 of the actual character values.
						
						 A whose value represents a number of characters to encode as Unicode-encoded characters.
						
							 A
containing the maximum number of bytes required to encode
characters as Unicode-encoded characters.
						
						
							
								 < 0.
						
						
							
								 This method overrides .
								 Use this method to determine an appropriate minimum
 buffer size for byte arrays passed to or
 for the
 current instance. Using this minimum buffer size can help ensure that buffer overflow exceptions do
 not occur.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the maximum number of characters produced by decoding the specified number of bytes
 as Unicode-encoded characters, regardless of the actual byte values.

						
						 A specifies the number of bytes to decode as Unicode-encoded characters.
						
							 A
containing the maximum number of characters that would be produced by
decoding bytes as Unicode-encoded characters.
						
						
							
								 < 0.
						
						
							
								 This method overrides .
								 Use this method to determine an appropriate
 minimum buffer size for byte arrays passed to or
 for the current instance. Using
 this minimum buffer size can help ensure that no buffer overflow exceptions will
 occur.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
					
						
							 Returns the bytes used at the beginning of a instance to
 determine which implementation the stream was created with.
						
						
							 A array that identifies the
implementation used to create a .
						
						
							
								 returns the Unicode byte order mark (U+FEFF) in
 either big-endian or little-endian order, according the ordering that the current
 instance was initialized with.
							
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a UTF8 character .
				
				
					
						
encodes Unicode characters
using the UTF-8 encoding (UCS Transformation Format, 8-bit form). This encoding supports
all Unicode character values.
					
						 UTF-8 encodes Unicode characters with a variable number of bytes per
 character. This encoding is optimized for the lower 127 ASCII characters,
 yielding an efficient mechanism to encode English in an internationalizable way.
 The UTF-8 identifier is the Unicode byte order mark (0xFEFF) written in UTF-8
 (0xEF 0xBB 0xBF). The byte order mark is used to distinguish UTF-8 text from
 other encodings.
						 This class offers an error-checking feature that can be
 turned on when an instance of the class is constructed. Certain methods in this
 class check for invalid sequences of surrogate pairs. If error-checking is
 turned on and an invalid sequence is detected, is
 thrown. If error-checking is not turned on and an invalid sequence is
 detected, no exception is thrown and execution continues in a method-defined
 manner. For more information regarding surrogate pairs, see

 .
					
				
			
			
				 System.Text.Encoding
			
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs a new instance of the
 class using the specified flags.
						
						 A that indicates whether the Unicode byte order mark in UTF-8 is recognized or emitted when reading from or writing to a .
						 A that indicates whether error-checking is turned on for the current instance.
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the
 class with the specified that
 indicates whether the Unicode byte order mark in UTF-8 is recognized or emitted
 when reading from or writing to a .
						
						 A that indicates whether the Unicode byte order mark in UTF-8 is recognized or emitted when reading from or writing to a .
						
							 This constructor is equivalent to
(,
).
							
								 By default, this constructor turns
 error-checking off for the new instance.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the

 class.
						
						
							 This constructor is equivalent to
(,).
							
								 By default, this constructor turns
 error-checking off for the new instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the
 same type and value.
						
						 A to compare with the current instance.
						
							
								 if value is a and represents the same type and value as the
 current instance; otherwise, .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Determines the number of bytes required to encode the
 characters in the specified as
 a .
						
						
							 A to encode as a .
						
						
							 A that specifies the number of bytes necessary to encode as a .
						
						
							 is .
						
							 Error-checking is turned on for the current instance and contains an invalid surrogate sequence.
						
						
							 The return value is greater than .
						
						
							 If error-checking is turned off and an invalid surrogate sequence is detected, the invalid characters are
 ignored and do not affect the return value, and no exception is
 thrown.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Determines the number of bytes required to encode the specified
 range of characters in the specified Unicode character array as a .

						
						 The array to encode as a .
						 A that specifies the first index of to encode.
						 A that specifies the number of characters to encode.
						
							 A containing the number of bytes necessary to encode the range in from
 to + - 1 as a .
						
						
							 is .
						
							 The return value is greater than .
							 -or-
							
								 or is less than zero.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
						
						
							 Error-checking is turned on for the current instance and contains an invalid surrogate sequence.
						
						
							 If error-checking is turned off and an invalid surrogate sequence is detected, the invalid
 characters are ignored and do not affect the return value, and no exception
 is thrown.
							
								 This method overrides

 .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Encodes the specified range of the specified
								 into the specified
 range of the specified array as a .
						
						 The to encode as a .
						 A that specifies the first index of to encode.
						 A that specifies the number of characters to encode.
						 The array to encode into.
						 A that specifies the first index of to encode into.
						
							 A that indicates the number of bytes encoded into as a .
						
						
							
								 does not contain sufficient space to store the encoded characters.
							 -or-
							 Error-checking is turned on for the current instance and contains an invalid surrogate sequence.
						
						
							 or is .
						
							
								 , , or is less than zero.
							 -or-
							 (.Length -) < .
							 -or-
							
								 >= .Length.
						
						
							 If error-checking is turned off and an invalid surrogate sequence is
 detected, the invalid characters are ignored and are not encoded into
 , and no exception is thrown.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
					
					
						
							 Encodes the specified as a .
						
						 The to encode as a .
						
							 A array
 containing the values encoded from as a .
						
						
							 Error-checking is turned on for the current instance and contains an invalid surrogate sequence.
						
						
							 is .
						
							 If error-checking is turned off and an invalid surrogate
 sequence is detected, the invalid characters are ignored and are not encoded
 into the returned array, and no exception is
 thrown.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Encodes the specified range of the specified array into the specified range of the
 specified array as a .
						
						 The array to encode as a .
						 A that specifies the first index of to encode.
						 A that specifies the number of characters to encode.
						 The array to encode into.
						 A that specifies the first index of to encode into.
						
							 A that indicates the number of bytes encoded into as a .
						
						
							
								 does not contain sufficient space to store the encoded characters.
							 -or-
							 Error-checking is turned on for the current instance and contains an invalid surrogate sequence.
						
						
							 or is .
						
							
								 , , or is less than zero.
							 -or-
							 (.Length -) < .
							 -or-
							
								 > .Length.
						
						
							 If error-checking is turned off and an invalid surrogate sequence is
 detected, the invalid characters are ignored and are not encoded into
 , and no exception is thrown.
							
								 This method overrides .
								
									 can be used to determine the exact number of bytes that will be
 produced for a given range of characters. Alternatively, can be used to determine the maximum
 number of bytes that will be produced for a specified number of characters,
 regardless of the actual character values.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Returns the number of characters produced by decoding the specified range of
 the specified array as a .
						
						 The array to decode as a .
						 A that specifies the first index of to decode.
						 A that specifies the number of bytes to decode.
						
							 A that indicates the number of characters produced by decoding the range in from
 to + - 1 as a .
						
						
							 is .
						
							
								 or is less than zero.
							 -or-
							
								 and do not specify a valid range in (i.e. (+) > .Length).
						
						
							 Error-checking is turned on for the current instance and contains an invalid surrogate sequence.
						
						
							 If error-checking is turned off and an invalid surrogate sequence is detected, the invalid bytes are
 ignored and do not affect the return value, and no exception is
 thrown.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Decodes the specified range of the specified array into the specified range of the
 specified array as a
 .
						
						 The array to decode as a .
						 A that specifies the first index of to decode.
						 A that specifies the number of bytes to decode.
						 The array to decode into.
						 A that specifies the first index of to decode into.
						
							 The number of characters decoded into as a .
						
						
							
								 does not contain sufficient space to store the decoded characters.
							 -or-
							 Error-checking is turned on for the current instance and contains an invalid surrogate sequence.
						
						
							
								 or is .
						
						
							
								 , , or is less than zero.
							 -or-
							 (.Length -) < .
							 -or-
							
								 > .Length.
						
						
							 If error-checking is turned off and an invalid surrogate sequence is
 detected, the invalid bytes are ignored and are not encoded into , and no exception is thrown.
							
								 This method overrides .
								
									 can be used to determine the
 exact number of characters that will be produced for a specified range of bytes.
 Alternatively,
 can be used to determine the maximum number of characters that will be produced
 for a specified number of bytes, regardless of the actual byte values.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.Decoder
					
					
					
						
							 Returns a for the current instance.
						
						
							 A for the current instance.
						
						
							
								 This method overrides .
								 Contrary to , a decoder can convert partial
 sequences of bytes into partial sequences of characters by maintaining the
 appropriate state between the conversions.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Text.Encoder
					
					
					
						
							 Returns a for the current instance.
						
						
							 A for the current instance.
						
						
							
								 This method overrides .
								 Contrary to , an encoder can convert partial
 sequences of characters into partial sequences of bytes by maintaining the
 appropriate state between the conversions.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
value containing a hash code for the current instance
						
						
							 The algorithm used to generate the hash code is
 unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the maximum number of bytes required to encode
 the specified number of characters as a , regardless of the actual character
 values.
						
						 A that specifies the number of characters to encode as a .
						
							 A that specifies the maximum number of bytes required to encode characters as a .
						
						
							
								 < 0.
						
						
							
								 This method overrides .
								 This method can be used to determine an appropriate
 buffer size for byte arrays passed to . Using
 this minimum buffer size can help ensure that no buffer overflow exceptions will
 occur.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the maximum number of characters produced by
 decoding the specified number of bytes as a , regardless of the actual byte
 values.
						
						 A that specifies the number of bytes to decode as a .
						
							 A that specifies the maximum number of characters produced by decoding bytes as a .
						
						
							
								 < 0.
						
						
							
								 This method overrides .
								 This method can be used to determine an appropriate minimum
 buffer size for character arrays passed to
 . Using
 this minimum buffer size can help ensure that no buffer overflow exceptions will
 occur.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
					
						
							 Returns the bytes used at the beginning of a stream to determine which
 encoding a file was created with.
						
						
							 A array
 containing the UTF-8 encoding preamble.
						
						
							
								 This method overrides .
								
									 returns the Unicode byte order mark
 (U+FEFF) written in UTF-8 (0xef, 0xbb, 0xbf) if this instance
 was constructed with a request to emit the UTF-8 identifier.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides support for value types. This class is the base class for all value types.
				
				
					
						 Data types are separated into value types and reference
 types. Value types are either stack-allocated or allocated inline in a
 structure. Reference types are heap-allocated. Both reference and value types
 are derived from the ultimate base class . In cases where a value type needs to
 act like an object, a wrapper that makes the value type look like a reference
 object is allocated on the heap, and the value type's value is copied into it.
 The wrapper is marked so that the system knows that it contains a value type.
 This process is known as boxing, and the reverse process is known as unboxing.
 Boxing and unboxing allow any type to be treated as an object.
					
				
				
					 In the following example, the number 3 is boxed as a , and () is
 called.
					 using System;
class Boxer {
 public static void Main() {
 Console.WriteLine("Value is {0}.", 3.ToString());
 }
}

					 The output is
					
						 Value is 3.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and a specified
 represent the same value.
						
						 The to compare the current instance to.
						
							
								 if and the current
 instance are of the same type and represent the same value; otherwise,
 .
						
						
							
								 This method
 overrides
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The
 algorithm used to generate the hash code is unspecified.
							
								 This method
 overrides

 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the fully-qualified name of the type of the current instance.
						
						
							 A representation of the fully-qualified name of
 the type of the current instance.
						
						
							
								 This method overrides .
								 This method returns the property.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when the security system requires code to be type-safe and the verification process is unable to verify that the
 code is type-safe.
				
				
					
						 The following CIL instructions throw :
						
							
								 ldloc
							
							
								 ldloca.<length>
							
						
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property
 of the new instance to a system-supplied message that describes the error, such
 as "Could not verify the code." This message takes into account the current
 system culture.
							 The property is initialized
to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new
 instance using If is ,
 the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							 The
property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current . If is non-null, then the current was raised in a catch block handling .
						
							 This constructor initializes the property of
 the new instance using and the property using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the version number of an assembly.
				
				
					
						 numbers for an
 assembly consist of two to four components: , ,
 , and . Components and must
 be defined. and components are optional. Component
 can be
 used if and only if build is defined. All defined components must be
 a
 greater than or equal to zero.
					
						 By convention, the components are used as follows:
						
							
								

 Major: Assemblies with the same name but different
 major versions are not interchangeable. This would be appropriate, for
 example, for a major rewrite of a product where backwards compatibility cannot
 be assumed.
							
							
								

 Minor: If the name and major number on two assemblies
 are the same, but the minor number is different, this indicates significant
 enhancement with the intention of backwards compatibility. This would be
 appropriate, for example, on a "point release" of a product or a fully
 backward compatible new version of a product.
							
							
								

 Assemblies with the same name, major, and minor
 version numbers but different revisions are intended to be fully
 interchangeable. This would be appropriate, for example, to fix a security
 hole in a previously released assembly.
							
							
								

 A difference in build number is intended to represent a recompilation of
 the same source. This would be appropriate, for example, because of processor,
 platform, or compiler changes.
							
						
					
				
			
			
				 System.Object
			
			
				
					 System.ICloneable
					 0
				
				
					 System.IComparable
					 0
				
				
					 System.IComparable<System.Version>
					 0
				
				
					 System.IEquatable<System.Version>
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of
 the class.
						
						
							
								 and are set to zero.
and are unspecified.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the
 specified major, minor, build, and revision numbers.
						
						 A specifying the major component.
						 A specifying the minor component.
						 A specifying the build component.
						 A specifying the revision component.
						
							 , , , or is less than zero.
						
							 The following example sets the version to "6.1.2.4" and writes the result to the console.
							
using System;

public class Vers {
 public static void Main() {

 Version vers = new Version(6, 1, 2, 4);
 Console.WriteLine("Version is {0}", vers.ToString());
 }
}

							 The output is
							
Version is 6.1.2.4
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class using the
 specified major, minor, and build values.
						
						 A specifying the major component.
						 A specifying the minor component.
						 A specifying the build component.
						
							 , , or is less than zero.
						
							 The following example sets the version to "6.1.2" and writes the result to the console.
							
using System;

public class Vers {
 public static void Main() {

 Version vers = new Version(6, 1, 2);
 Console.WriteLine("Version is {0}", vers.ToString());
 }
}

							 The output is
							
Version is 6.1.2
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class using the
 specified major and minor values.
						
						 A specifying the major component.
						 A specifying the minor component.
						
							 or is less than zero.
						
							 The following example sets the version to "6.1" and writes the result to the console.
							
using System;

public class Vers {
 public static void Main() {

 Version vers = new Version(6, 1);
 Console.WriteLine("Version is {0}", vers.ToString());
 }
}

							 The output is
							
Version is 6.1
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class using
 the values represented by the specified .
						
						
							 A that represents 2 to 4 integers separated by period characters ('.'). Each component delineated by a period character will be parsed to a with (). The numbers will be processed in the following order: , , , . If the or the and the components are not represented by , their values will be undefined.
							
								 The formatting of must be as follows, with optional components shown in square brackets ('[' and']'): . [. [.]], where each component returns a with ().
							
						
						
							 has fewer than 2 components or more than 4 components (i.e. fewer than 1 or more than 3 period characters).
						
							 is a null reference.
						
							 , , , or is less than zero.
						 At least one component of does not parse to a with ().
						
							 The following example sets the version to "6.1.2.4" and writes the result to the console.
							
using System;

public class Vers {
 public static void Main() {

 Version vers = new Version("6.1.2.4");
 Console.WriteLine("Version is {0}", vers.ToString());
 }
}

							 The output is
							
Version is 6.1.2.4
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the value of the build component of the current instance.
						
						
							 A specifying the build component, or -1 if the build component is undefined.
						
						
							 This property is read-only.
							
								 If the version
 number is 6.1.2.4, the build component is 2. If the version number is 6.1, the build
 component is -1, which is considered to be undefined.
							
						
						
							 using System;
class VersionBuildExample {
 public static void Main() {
 Version vers = new Version("6.1.2.4");
 Console.Write("The build component of ");
 Console.WriteLine("version vers = {0}.", vers.Build);
 }
}

							 The output is
							
								 The build
 component of version vers = 2.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
					
						
							 Returns a new with values equal to the property values of the current
 instance.
						
						
							 A new
whose values are equal to the property values of the current instance.
						
						
							 The returned by this method must be explicitly cast to a
 before it can be used as
 one.
							
								 This method is
 implemented to support the interface.
							
						
						
							 The following example clones the version number and
 writes the result to the console.
							 using System;
class VersionCloneExample {
 public static void Main() {
 Version vers = new Version("6.1.2.4");
 Console.WriteLine("The string representation of the" +
 " version is {0}.",
 vers.ToString());
 Version clone = (Version) vers.Clone();
 Console.WriteLine("The original version was" +
 " successfully cloned.");
 Console.Write("The string representation of the" +
 " cloned version is {0}.",
 clone.ToString());
 }
}

							 The output is
							
								 The string representation of the version is 6.1.2.4.
								 The original version was successfully cloned.
								 The string representation of the cloned version is 6.1.2.4.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance ==
 .
								
								
									 A positive number
									
										 Current instance >
 , or is a null
 reference.
									
								
							
							
						
						
							 is not a and is not a null reference
						
							
								 The components of in decreasing order of importance are: ,
 , , and . An undefined component
 is assumed to be older than any defined component.

								 This method is implemented to support the
interface.
							
						
						
							 using System;
class VersionTest {
 static string Test (Version v1, Version v2) {
 int i = v1.CompareTo(v2);
 if (i < 0)
 return "older than";
 else if (i == 0)
 return "the same as";
 else
 return "newer than";
 }
 public static void Main() {
 Version vers1 = new Version("6.1.2.4");
 Version vers2 = new Version(6, 1);
 Version vers3 = new Version(6, 1, 3);
 Console.Write("Version {0} is {1} ",
 vers1, Test(vers1, vers2));
 Console.WriteLine("version {0}", vers2);
 Console.Write("Version {0} is {1} ",
 vers1, Test(vers1, vers3));
 Console.WriteLine("version {0}", vers3);
 Console.Write("Version {0} is {1} ",
 vers3, Test(vers3, vers3));
 Console.WriteLine("version {0}", vers3);
 Console.Write("Version {0} is {1} ",
 vers2, Test(vers2, vers1));
 Console.WriteLine("version {0}", vers1);
 }
}

							 The output is
							
								 Version 6.1.2.4 is newer than version 6.1
								 Version 6.1.2.4 is older than version 6.1.3
								 Version 6.1.3 is the same as version 6.1.3
								 Version 6.1 is older than version 6.1.2.4
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance ==
 .
								
								
									 A positive number
									
										 Current instance >
 , or is a null
 reference.
									
								
							
							
						
						
							
								 The components of in decreasing order of importance are: ,
 , , and . An undefined component
 is assumed to be older than any defined component.

							
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same type and
 value.
						
						 The to compare to the current instance.
						
							 A where
indicates is
the same type as the current instance and has equal , , , and properties as the current
instance. If is a null reference or is not an instance of , returns .
						
						
							
								 This method
 overrides .
							
						
						
							 using System;
class VersionEqualsExample {
 static void testEquals(Version v1, Version v2) {
 Console.Write("It is {0} that version ",
 v1.Equals(v2));
 Console.WriteLine("{0} is equal to {1}.",
 v1, v2);
 }
 public static void Main() {
 Version vers1 = new Version("6.1.2.4");
 Version vers2 = new Version(6, 1);
 testEquals(vers1, vers1);
 testEquals(vers1, vers2);
 }
}

							 The output is
							
								 It is True that version 6.1.2.4 is equal to 6.1.2.4.
								 It is False that version 6.1.2.4 is equal to 6.1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same value.
						
						 The to compare to the current instance.
						
							 A where
indicates has equal , , , and properties as the current
instance. If is a null reference, returns .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for the current instance.
						
						
							 The algorithm used to generate the hash code is
 unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the value of the major component of the current instance.
						
						
							 A
specifying the major component.
						
						
							 This property is read-only.
							
								 If the version number is 6.1, the major version is 6.
							
						
						
							 using System;
class VersionMajorExample {
 public static void Main() {
 Version vers = new Version("6.1.2.4");
 Console.Write("The major component ");
 Console.WriteLine("of version vers = {0}.",
 vers.Major);
 }
}

							 The output is
							
								 The major component of version vers = 6.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the value of the minor component of the current instance.
						
						
							 A
specifying the minor component.
						
						
							 This property is read-only.
							
								 If the version number is 6.1, the minor component is 1.
							
						
						
							 using System;
class VersionMinorExample {
 public static void Main() {
 Version vers = new Version("6.1.2.4");
 Console.Write("The minor component ");
 Console.WriteLine("of version vers = {0}.",
 vers.Minor);
 }
}

							 The output is
							
								 The minor
 component of version vers = 1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two instances of
are equal.
						
						 An instance of the class.
						 An instance of the class.
						
							 A where

indicates and have equal , , , and properties, or both and
 are ; otherwise .
						
						
							 The parts of the version number are compared
 independently starting with the property and then the , , and properties, in order. This method returns
 as soon as one of the properties is determined not to be equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the first instance of
 is greater than
 the second instance of .

						
						 An instance of the class.
						 An instance of the class.
						
							 A where indicates is greater
 than ; otherwise . If is
 , is returned.
						
						
							 is a reference.
						
							 The parts of the version number are compared independently starting with the

 property and then the , , and properties, in order. This
 method returns as soon as one of the properties is determined not to be
 equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the first instance of
 is greater than or
 equal to the second instance of .

						
						 An instance of the class.
						 An instance of the class.
						
							 A where indicates is greater
 than or equal to ; otherwise . If
 is , is returned.
							
						
						
							 is a reference.
						
							 The parts of the version number are compared independently starting with the

 property and then the , , and properties, in order. This
 method returns as soon as one of the properties is determined not to be
 equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two instances of are
 not equal.
						
						 An instance of the class.
						 An instance of the class.
						
							 A
where indicates and have at least
one unequal property; otherwise
 . If
 and are
both , returns false; if one is

but not the other, returns .
						
						
							 The parts of the version number are compared independently starting with the

 property and then the , , and properties, in order. This
 method returns as soon as one of the properties is determined not to be
 equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the first instance of
 is less than the
 second instance of .

						
						 An instance of the class.
						 An instance of the class.
						
							 A where indicates is less than
 ; otherwise . If is ,
 is returned.
						
						
							 is a reference.
						
							 The parts of the version number are compared independently starting with the

 property and then the , , and properties, in order. This
 method returns as soon as one of the properties is determined not to be
 equal.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the first instance of
 is less than or
 equal to the second instance of .

						
						 An instance of the class.
						 An instance of the class.
						
							 A where indicates is less than or
 equal to ; otherwise . If is
 , is returned.
							
						
						
							 is a reference.
						
							 The parts of the version number are compared independently starting with the

 property and then the , , and properties, in order. This
 method returns as soon as one of the properties is determined not to be
 equal.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the value of the revision component of the current instance.
						
						
							 A
specifying the revision component, or -1 if the revision component is
undefined.
						
						
							 This property is read-only.
							
								 If the version number is 6.1.2.4, the revision component is 4. If the version number
 is 6.1, the revision component is considered to be undefined.
							
						
						
							 using System;
class VersionRevisionExample {
 public static void Main() {
 Version vers = new Version("6.1.2.4");
 Console.Write("The revision component of ");
 Console.WriteLine("version vers = {0}.",
 vers.Revision);
 }
}

							 The output is
							
								 The revision component of version vers = 4.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 BCL
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Encapsulates operating-system
 specific objects that wait for exclusive access
 to shared resources.
				
				
					
						 This class is typically used as a base class for
 synchronization objects. Classes derived from define a signaling mechanism to indicate
 taking or releasing exclusive access to a shared
 resource, but use the inherited

 methods to block while waiting for access to shared
 resources.

						 The static methods of this class are used to block a

 until one or more synchronization objects receive a
 signal.

					
				
			
			
				 System.MarshalByRefObject
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Releases all resources held by the current instance.
						
						
							 This method is the public version of the method implemented to
 support the interface.
							
								
 This method releases any unmanaged resources held by the current instance. This method can, but is not required to,
 suppress finalization during garbage collection by calling the method.
							
							
								 As described above.
							
							
								 Override this property to release resources allocated in subclasses.

							
							
								 Use this method to
 release all resources held by an instance of . Once this method is called, references
 to the current instance cause undefined behavior.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the and
 optionally releases the managed resources.
						
						
							 to release both managed and unmanaged resources; to release only unmanaged resources.
						
							
								 This method
 releases all unmanaged resources held by the current instance. When the parameter is , this method releases all resources held by
 any managed objects referenced by the current
 instance. This method invokes the method of each referenced
 object.
							
							
								 Override this method to dispose of resources allocated by
 types derived from . When overriding
 (), be careful not to
 reference objects that have been previously disposed in an earlier call to
 or . can be called multiple
 times by other objects.
							
							
								 This method is called by the public method and the method.
 invokes this method with the
 parameter
set to . invokes with
 set to
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Releases the resources held by the current instance.
						
						
							
								 Application code does not call this method; it
 is automatically invoked during garbage collection unless finalization by the
 garbage collector has been disabled. For more information, see ,
 and .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Waits for all of the
 elements in the specified array to receive a signal.
						
						 A array containing the objects for which the current instance will wait. This array cannot contain multiple references to the same object (duplicates).
						
							 Returns when
 every element in has received a
 signal. If the current
 thread receives a request to abort before the signals are received, this method
 returns .
						
						
							 is or one or more elements in the array is .
						
							 contains elements that are duplicates.
						 The number of objects in is greater than the system permits.
						
							
								 The maximum number of objects specified in the
 array is system defined.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Waits for any of the
 elements in the specified array to receive a signal.
						
						 A array containing the objects for which the current instance will wait. This array cannot contain multiple references to the same object (duplicates).
						
							 Returns a set to the index of
 the element in that received a signal.
						
						
							 is or one or more elements in the array is .
						
							 contains elements that are duplicates.
						 The number of objects in is greater than the system permits.
						
							
								 The maximum number of objects specified in the
 array is system defined.
							
							
								
									
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Blocks the current thread until the current instance receives a signal.
						
						
							 Returns
when the
current instance receives a signal.
						
						 The current instance has already been disposed.
						
							
								 The caller
 of this method blocks indefinitely until a signal is received by the current
 instance.
							
							
								 Override
 this method to customize the behavior of types derived from .
							
							
								 Use this method to
 block until a
 receives a signal from another thread, such as is
 generated when an asynchronous operation completes. For more information, see
 the interface.
							
						
					
					 0
				
			
			 0
		
	
	
		
			
			
			 ExtendedNumerics
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is not guaranteed to be safe for multithreaded operations.
			
				
					 Represents a floating-point decimal data type with at least 28 significant
 digits, suitable for financial and commercial calculations.
				
				
					 The type can represent values with at least 28 significant digits. The data type is ideally suited
to financial calculations that require a large number of significant digits and
no round-off errors.
					 The type shall represent values in at least the range -79228162514264337593543950335 to 79228162514264337593543950335, and having scale f such that 0 <= <= at least 28.
					 A value occupies 128 bits; however, its representation is unspecified (see note below).
					 The result of an operation on values of type is that which would result
from calculating an exact result
(preserving scale, as defined for each operator) and then rounding to fit the representation. That is, results
are exact to at least 28 digits, but not necessarily to more than
28 decimal places. A zero result has a sign of 0.
					 Results are rounded to the nearest representable
 value, and, when a result is equally close to two representable values,
 to the value that has an even number in the least significant digit
 position (banker's rounding).
					 The default initial value of an instance of type is zero with a scale of zero.
					
						 Unlike the and data types,
 decimal fractional numbers such as 0.1 can be represented exactly in the representation.
 In the and
 representations, such numbers are often infinite fractions, making
 those representations prone to round-off errors.
						 Further, the representation preserves scale, so that 1.23 + 1.27 will give the answer 2.50, not 2.5.
					
					 If a arithmetic operation produces a value that is too small
for the
format after rounding, the result of the operation is zero. If a arithmetic
operation produces a result that is too large for the format, a
 is thrown.
					
						 The class implements implicit conversions from the , , , , , , , and types to . These implicit
 conversions never lose information and never throw exceptions. The class also
 implements explicit conversions from to , , , , , , , and . These explicit conversions round the
 value
 towards zero to the nearest integer, and then convert that integer to the
 destination type. A is thrown if the result is not within the range of the
 destination type.
						 The class provides narrowing conversions to and from the
 and
 types. A
conversion from to or can lose precision. If the value being converted is not within the range of the destination type, a is thrown. A conversion from or to throws a if the value is not within the range of
the
type.
					
					
						 Although different implementations of can have different representations, interchange of a decimal value within the range of the internal format can still be achieved by converting it to a string, exporting it, and then converting it back to internal format.
					
					
						 In Version 1 of this standard, the representation of was well-defined, as follows.
						 When considered as an array of four s, it contains the following four elements:
						 Index 0 (bits 0-31) contains the low-order 32 bits of the decimal's coefficient.
						 Index 1 (bits 32-63) contains the middle 32 bits of the decimal's coefficient.
						 Index 2 (bits 64-95) contains the high-order 32 bits of the decimal's coefficient.
						 Index 3 (bits 96-127) contains the sign bit and scale, as follows:
						
							
								 Bit Positions
								 Name
								 Description
							
							
								 0-15
								 (None.)
								 Zero.
							
							
								 16-23
								 Scale
								 Contains a value between 0 and 28.
							
							
								 24-30
								 (None.)
								 Zero.
							
							
								 31
								 Sign
								 0 (positive) or 1 (negative).
							
						
						 In order to allow alternate representations (such as in the update to the IEC floating-point standard, IEC-60559, currently in preparation), the representation has been made unspecified.
					
				
			
			
				 System.ValueType
			
			
				
					 System.IFormattable
					 0
				
				
					 System.IComparable
					 0
				
				
					 System.IComparable<System.Decimal>
					 0
				
				
					 System.IEquatable<System.Decimal>
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new
value.
						
						 The value used to initialize the new .
						
							 This constructor initializes the new to the value
 specified by . The scale of the new is 0.
						
					
					 0
				
				
					
					
					 Constructor
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
					
						
					
					
						
							 Constructs and initializes a new
value.
						
						 The value used to initialize the new .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use the
 () constructor.
							 This constructor initializes the new to the value
 specified by . The scale of the new is 0.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new
value.
						
						 The value used to initialize the new .
						
							 This constructor initializes the new to the value
 specified by . The scale of the new is 0.
						
					
					 0
				
				
					
					
					 Constructor
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
					
						
					
					
						
							 Constructs and initializes a new
value.
						
						 The value used to initialize the new .
						
							 This constructor initializes the new to the value
 specified by . The scale of the new is 0.
							 This member is not CLS-compliant. For a CLS-compliant alternative, use the
 () constructor.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new
value.
						
						 The value used to initialize the new .
						
							
								 is one of the following:
							 greater than
							
							 less than
							
							 equal to , but the Decimal representation does not support NaNs.
							 equal to , but the Decimal representation does not support infinities.
							 equal to , but the Decimal representation does not support infinities.
						
						
							 This constructor initializes the new to the value
 specified by . This constructor rounds to 7 significant digits using banker's rounding. The scale of the new is the same as that produced by
								
								
								 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new
value.
						
						 The value used to initialize the new .
						
							
								 is one of the following:
							 greater than
							
							 less than
							
							 equal to , but the Decimal representation does not support NaNs.
							 equal to , but the Decimal representation does not support infinities.
							 equal to , but the Decimal representation does not support infinities.
						
						
							 This constructor initializes the new to the value
 specified by . This constructor rounds to 15 significant digits using banker's rounding. The scale of the new is the same as that produced by
								
								
								 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new value.
						
						
							 An array of four containing an unspecified 128-bit representation of a in its raw form.
						
						
							 is a null reference.
						
							
								 does not contain four elements.
						
						
							 This constructor initializes the new to the value represented by the elements of

.
							
								 A numeric
 value can have several possible binary representations; they are numerically equal
 but have different scales. Also, the bit representation differentiates between
 -0, 0.00, and 0; these are all treated as 0 in operations, and any zero result will
 have a sign of 0.
							
							 The format of is the same as that returned by
								
.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Adds two values
 together.
						
						 The first addend.
						 The second addend.
						
							 A containing the sum of and . The
 scale of the result, before any rounding, is the larger of the scales of d1 and
 d2. For example, 1.1 + 2.22 gives 3.32, and 2.50 + 1 gives 3.50.
						
						 The sum of and is less than or greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Compares the values of two values and returns
 sort order information.
						
						 The first value to compare.
						 The second value to compare.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of as compared to . Trailing zero digits in the fractional part of are ignored. For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value. Each comparison compares the numerical values of and .
							
								
									 Return Value
									 Meaning
								
								
									 Any
 negative
 number
									
										 <
									
								
								
									 Zero
									
										 ==
									
								
								
									 A positive
 number
									
										 >
									
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . Trailing zero digits in the fractional part of the current instance and . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 current instance > .
								
							
						
						
							
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified
 .

						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . Trailing zero digits in the fractional part of the current instance and . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 A negative number
									 Current instance < .
								
								
									 Zero
									 Current instance == .
								
								
									 A positive number
									 current instance > , or is
 a null reference.
								
							
						
						
							 is not a and is not a null reference.
						
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Divides the value of one by
 another.
						
						 The dividend.
						 The divisor.
						
							 A containing the result of dividing by
 . The scale of the result, before any rounding, is
 the closest scale to the preferred scale which will preserve a result equal to the exact result. The preferred scale is the scale of less the scale of . For example, 2.20 / 2 gives 1.10.
						
						
							 is zero.
						 The result is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified have the same value. Trailing zero digits in the fractional part are ignored.
						
						 The to compare to the current instance.
						
							
								 if is numerically equal to (has the same value as) the current instance; otherwise, .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified
 have the same type and value. Trailing zero digits in the fractional part are ignored.
						
						 The to compare to the current instance.
						
							
								 if has the same type and is numerically equal to
 (has the same value as) the current instance. If is a null
 reference or is not an instance of , returns
 .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two values have the same value. Trailing zero digits in the fractional part are ignored.
						
						 The first to compare.
						 The second to compare.
						
							
								 if and are numerically
 equal
 (have the same value), otherwise .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Rounds a value to the closest integer towards negative infinity.
						
						 The to round downward.
						
							 A value such that is an integer and
 - 1 <
 <=

 . The scale of the result will be zero.

						
						
							 The following example demonstrates the method.
							 using System;
class DecimalTest {
 public static void Main() {
 Console.WriteLine("floor {0} is {1}", 3.14159m, Decimal.Floor(3.14159m));
 Console.WriteLine("floor {0} is {1}", -3.9m, Decimal.Floor(-3.9m));
 Console.WriteLine("floor {0} is {1}", 3.0m, Decimal.Floor(3.0m));
 }
}

							 The output is
							
								 floor 3.14159 is 3
								 floor -3.9 is -4
								 floor 3.0 is 3
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32[]
					
					
						
					
					
						
							 Returns a binary representation of the specified
value.
						
						 The value for which a binary representation is returned.
						
							 An array of four containing an unspecified 128-bit representation of a in its raw form.

						
						
							 The format of the bits in the 4-element array returned is the same as that used by the parameter to
								
.
							 A numeric value can have several possible binary
 representations; they are numerically equal but have different scales. Also, the
 bit representation differentiates between -0, 0.00, and 0; these are all
 treated as 0 in operations, and any zero result will have a
 sign of 0.
						
						
							 The following example demonstrates the different
 representations of 1.00 and 1.
							 using System;
public class Class1 {
 public static void Print (int [] bs) {
 foreach (int b in bs) {
 Console.Write (b+" ");
 }
 }
public static void Main () {
 decimal d = 1.00m;
 decimal d1 = 1;
 Console.Write (d);
 Console.Write (" - bits: ");
 Print (decimal.GetBits(d));
 Console.WriteLine();
 Console.Write (d1);
 Console.Write (" - bits: ");
 Print (decimal.GetBits(d1));
 Console.WriteLine();
 Console.WriteLine ("d1.CompareTo(d) == {0}", d1.CompareTo(d));
 Console.WriteLine ("d1 == d {0}", d1 == d);
}
}

						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance. Trailing zero digits in the fractional part are ignored.
						
						
							 A containing the hash code for this instance.
						
						
							 The algorithm used to
 generate the hash code value is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						
							 DecimalConstantAttribute
							 1
							 System.Runtime.CompilerServices.DecimalConstantAttribute
							 RuntimeInfrastructure
						
					
					
						 System.Decimal
					
					
					 79228162514264337593543950335
					
						
							 Contains the maximum positive value for the type.
						
						
							 The value of this constant is implementation-specific, but shall be greater than or equal to 79228162514264337593543950335. The scale shall be 0.
							 This field is
 read-only.
						
					
					 0
				
				
					
					
					 Field
					
						
							 DecimalConstantAttribute
							 1
							 System.Runtime.CompilerServices.DecimalConstantAttribute
							 RuntimeInfrastructure
						
					
					
						 System.Decimal
					
					
					
						
							 Contains negative one (-1).
						
						
							 The value of this constant is -1. The scale shall be 0.
							 This field is read-only.
						
					
					 0
				
				
					
					
					 Field
					
						
							 DecimalConstantAttribute
							 1
							 System.Runtime.CompilerServices.DecimalConstantAttribute
							 RuntimeInfrastructure
						
					
					
						 System.Decimal
					
					
					
						
							 Contains the minimum (most negative) value for the
 type.
						
						
							 The value of this constant is implementation-specific, but shall be less than or equal to -79228162514264337593543950335. The scale shall be 0.
							 This field
 is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Returns the result of multiplying two
values.
						
						 The multiplier.
						 The multiplicand.
						
							 The result of multiplying and
 . The scale of the result, before any
 rounding, is the sum of the scales of d1 and
 d2.
							 For example, 123 x 3 gives 369, and 2.2 x 1.35 gives 2.970.
						
						 The result is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Returns the result of multiplying a value by
 negative
 one.

						
						 The value to negate.
						
							 The negated value of . If is zero then zero is returned (with 0 sign); otherwise the scale of the result is the same as the scale of

.
						
					
					 0
				
				
					
					
					 Field
					
						
							 DecimalConstantAttribute
							 1
							 System.Runtime.CompilerServices.DecimalConstantAttribute
							 RuntimeInfrastructure
						
					
					
						 System.Decimal
					
					
					 1
					
						
							 Contains one (1).
						
						
							 The value of this constant is 1. The scale shall be 0.
							 This field is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Adds two values together.
						
						 The first addend.
						 The second addend.
						
							 The value returned by
(,).
						
						 The sum of and is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Returns the specified value decremented by
 one.
						
						 A value.
						
							 The value returned by (,).
						
						 The result is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Divides one value by another .
						
						 The dividend.
						 The divisor.
						
							 The value returned by (,
).
						
						 The divisor is zero.
						 The result is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two decimals have the
 same value.
						
						 The first to compare.
						 The second to compare.
						
							
								 if
(,) returns
zero; otherwise .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A with the specified value.
						
						
							
								 This operation can
 produce round-off errors due to the fact that has fewer significant digits than, and has a different radix than, .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A with the specified value.
							
								 This operation can
 produce round-off errors due to the fact that has fewer significant digits than, and has a different radix than, .
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing
 rounded towards zero to the nearest
 integer.
						
						 The resulting integer value is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant
 alternative to , use .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing
 rounded towards zero to the nearest
 integer.
						
						 The resulting integer value is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing rounded towards zero to the
 nearest integer.
						
						 The resulting integer value is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant
 alternative to , use).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing
 rounded towards zero to the nearest
 integer.
						
						 The resulting integer value is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing
 rounded towards zero to the nearest
 integer.
						
						 The resulting integer value is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant
 alternative to , use .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing
 rounded towards zero to the nearest
 integer.
						
						 The resulting integer value is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
						
							
								 is one of the following:
							 greater than
							
							 less than
							
							 equal to , but the Decimal representation does not support NaNs.
							 equal to , but the Decimal representation does not support infinities.
							 equal to , but the Decimal representation does not support infinities.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
						
							
								 is one of the following:
							 greater than
							
							 less than
							
							 equal to , but the Decimal representation does not support NaNs.
							 equal to , but the Decimal representation does not support infinities.
							 equal to , but the Decimal representation does not support infinities.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing
 rounded towards zero to the nearest
 integer.
						
						 The resulting integer value is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing
 rounded towards zero to the nearest
 integer.
						
						 The resulting integer value is greater than or less than .
						
							 This member is not CLS-compliant. For a CLS-compliant
 alternative to , use .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Perform an explicit conversion of a value to .
						
						 The value to convert to .
						
							 A containing
 rounded towards zero to the nearest
 integer.
						
						 The resulting integer value is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether one value is greater than another
 value.
						
						 The first to compare.
						 The second to compare.
						
							
								 if (,
) returns a value that is greater than zero; otherwise
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether one value is greater than or equal to
 another
 value.
						
						 The first to compare.
						 The second to compare.
						
							
								 if (,
) returns a value that is greater than or equal to zero; otherwise
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
						
							
 This member is not CLS-compliant.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
						
							 This member is not CLS-compliant.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
						
							
 This member is not CLS-compliant.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Decimal
					
					
						
					
					
						
							 Perform an implicit conversion of a value to .
						
						 The value to convert to .
						
							 A
with the
specified value.
						
						
							 This member is not CLS-compliant.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Returns the specified value incremented by one.
						
						 A value.
						
							 The value returned by (,
).
						
						 The result is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two decimals do not have
 the same value.
						
						 The first to compare.
						 The second to compare.
						
							
								 if (,
) does not return zero; otherwise .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether one value is less than another

value.
						
						 The first to compare.
						 The first to compare.
						
							
								 if (,
) returns a value that is less than zero; otherwise
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether one value is less than or equal to another

value.
						
						 The first to compare.
						 The second to compare.
						
							
								 if (,
) returns a value that is less than or equal to zero; otherwise
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Divides one value by another and returns the
 remainder.
						
						 The dividend.
						 The divisor.
						
							 The value returned by (,
).
						
						
							 is zero.
						
							 divided by is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Returns the result of multiplying two
values.
						
						 The multiplier.
						 The multiplicand.
						
							 The value returned by (,
).
						
						 The result is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Subtracts one value from
 another.
						
						 The minuend.
						 The subtrahend.
						
							 The value returned by (,

).
						
						 The result is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Returns the specified value multiplied by negative one
 (-1).
						
						 A value.
						
							 The value returned by ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							
 Returns the specified value.
						
						 A value.
						
							 Returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style, preserving scale.
						
							 The value obtained from .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the formatting information
in a initialized for the current system
culture. For more information, see .
							
							 If necessary, the value of s is rounded using banker's
 rounding. Any scale apparent in the string s is preserved unless the value
 is rounded. If the value is zero, the sign will be
 0. Hence the string "2.900" will be parsed to form the decimal with sign
 0, coefficient 2900, and scale 3.
						
						
							 The following example demonstrates the method.
							 using System;
using System.Globalization;
class DecimalParseClass {
 public static void Main() {
 string s1 = " -1.001 ";
 string s2 = "+1,000,111.99";
 string s3 = "2.900";
 Console.WriteLine("String: {0} (decimal) {1}",s1,Decimal.Parse(s1));
 Console.WriteLine("String: {0} (decimal) {1}",s2,Decimal.Parse(s2));
 Console.WriteLine("String: {0} (decimal) {1}",s3,Decimal.Parse(s3));
 }
}

							 The output is
							
								 String: -1.001 (decimal) -1.001
								 String: +1,000,111.99 (decimal) 1000111.99
								 String: 2.900 (decimal) 2.900
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by , preserving scale.
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						
							 The value obtained from
.
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the formatting
information in a initialized for the current system
culture. For more information, see .
							
							 If necessary, the value of is rounded using banker's rounding.
						
						
							 The following example demonstrates supplying values to the
method to allow for a symbol separating groups
of digits, and a decimal separator. This example uses the symbols from the U.S.
English culture, namely a comma and a decimal point.
							 using System;
using System.Globalization;
class DecimalParseClass {
public static void Main() {
 string s = "1,000,111.99";
 NumberStyles ns = NumberStyles.AllowThousands | NumberStyles.AllowDecimalPoint;
 decimal d = Decimal.Parse(s,ns);
 Console.WriteLine("{0} parsed to decimal {1}",s,d);
}
}

							 The output is
							
								 1,000,111.99 parsed to decimal 1000111.99
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The is interpreted using the style, preserving scale.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from
.
						
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 is a null reference.
						
							 This version of is equivalent to
(, ,).
							 The string is parsed using the
culture-specific formatting information from the instance supplied by . If
 is
 or a cannot be obtained from
 , the formatting information for the current system culture is
used.
							 If necessary, the value of s is rounded using banker's
 rounding. Any scale apparent in the string s is preserved unless the value
 is rounded. If the value is zero, the sign scale will be
 0. Hence the string "2.900" will be parsed to form the decimal with sign
 0, coefficient 2900, and
 scale 3.
						
						
							 The following example demonstrates supplying a to the

method to allow a decimal point, and commas separating groups of digits.
							 using System;
using System.Globalization;
class DecimalParseClass {
public static void Main() {
 string s = "1,000,111.99";
 //Get the default formatting symbols.
 NumberFormatInfo nfi = new NumberFormatInfo();
 // Default group separator is ','
 // Default decimal separator is '.'
 decimal d = Decimal.Parse(s,nfi);
 Console.WriteLine("{0} parsed to decimal {1}",s,d);
}
}

							 The output is
							
								 1,000,111.99
 parsed to decimal 1000111.99
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by , preserving scale.
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from
.
						
						
							
								 is a null reference.
						
						
							 is not in the correct style.
						
							 represents a number greater than or less than .
						
							 The string is parsed using the
 culture-specific formatting information from the instance supplied by . If
 is
 or if a cannot be obtained from
 , the formatting information for the current system culture is used.
							 If necessary, the value of is rounded using banker's rounding.
						
						
							 The following example demonstrates supplying values and a to the

method to allow colons separating
groups of digits, and a decimal point.
							 using System;
using System.Globalization;
class DecimalParseClass {
public static void Main() {
 string s = "1:000:111.99";
 NumberStyles ns = NumberStyles.AllowThousands | NumberStyles.AllowDecimalPoint;
 NumberFormatInfo nfi = new NumberFormatInfo();
 //Change the format info to separate digit groups using a colon.
 nfi.NumberGroupSeparator = ":";
 decimal d = Decimal.Parse(s,ns,nfi);
 Console.WriteLine("{0} parsed to decimal {1}",s,d);
}
}

							 The output is
							
								 1:000:111.99 parsed to decimal 1000111.99
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Computes the remainder after dividing two values.
						
						 The dividend.
						 The divisor.
						
							 The remainder after dividing d1 by d2 to give an integer
 result. The sign of the result, if non-zero, is the same as the sign of d1, and
 the scale of the result is the larger of the scales of d1 and d2.
							 For example, -10 % 3 gives -1, and 3.6 % 1.3 gives 1.0 (where % indicates the
 remainder operation).
						
						
							 is zero.
						
							 divided by is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Rounds a value
 to a specified number of decimal places.
						
						 The to round.
						 The number of decimal places to round to. 0 <= <= 28.
						
							 The result of rounding to
decimal places.
						
						
							 is not between 0 and 28, inclusive.
						
							 When is exactly half way
 between two rounded values, the result is the rounded value that has an even
 digit in the rightmost decimal position. For example, when rounded to two
 decimals, the value 2.345 becomes 2.34 and the value 2.355 becomes 2.36.
 This process is known as rounding half towards even, or banker's
 rounding.
							
							 The scale of the result will be the smaller of
 and the scale of
 d.
							
								 The scale of is never
 increased, so cannot cause overflow.
							
						
						
							 The following example demonstrates the method.
							 using System;
class MyClass {
public static void Main() {
 decimal d1 = 2.5m;
 decimal d2 = 3.5m;
 decimal d3 = 2.98765432m;
 decimal d4 = 2.18765432m;
 Console.WriteLine("Rounding to 0 places...");
 Console.WriteLine("round {0} = {1}",d1, Decimal.Round(d1,0));
 Console.WriteLine("round {0} = {1}",d2, Decimal.Round(d2,0));
 Console.WriteLine("round {0} = {1}",d3, Decimal.Round(d3,0));
 Console.WriteLine("round {0} = {1}",d4, Decimal.Round(d4,0));
 Console.WriteLine("Rounding to 2 places...");
 Console.WriteLine("round {0} = {1}",d1, Decimal.Round(d1,2));
 Console.WriteLine("round {0} = {1}",d2, Decimal.Round(d2,2));
 Console.WriteLine("round {0} = {1}",d3, Decimal.Round(d3,2));
 Console.WriteLine("round {0} = {1}",d4, Decimal.Round(d4,2));
}
}

							 The output is
							
								 Rounding to 0 places...
								 round 2.5 = 2
								 round 3.5 = 4
								 round 2.98765432 = 3
								 round 2.18765432 = 2
								 Rounding to 2 places...
								 round 2.5 = 2.5
								 round 3.5 = 3.5
								 round 2.98765432 = 2.99
								 round 2.18765432 = 2.19
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Subtracts one value from
 another.
						
						 The left-side operand.
						 The right-side operand.
						
							 A containing the result of subtracting from
 . The scale of the result, before any rounding, is
 the larger of the scales of d1 and
 d2.
							 For example, 1.1 - 2.22 gives -1.12, and 2.50 - 1 gives 1.50.
						
						 The result is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current
 instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system
 culture.
						
						
							 is invalid.
						
							 This version of is equivalent to
(,

).
							 If
is a null reference, the general format specifier "G" is used.
						
						
							 The following example shows the effects of various
 formats on the string returned by .
							 using System;
class test {
 public static void Main() {
 decimal d = 1234.56789m;
 Console.WriteLine(d);
 string[] fmts = {"C","E","F","G","N","P"};
 for (int i=0;i<fmts.Length;i++)
 Console.WriteLine("{0}: {1}",
 fmts[i],d.ToString(fmts[i]));
 }
}

							 The output is
							
								 1234.56789
								 C: $1,234.57
								 E: 1.234568E+003
								 F: 1234.57
								 G: 1234.56789
								 N: 1,234.57
								 P: 123,456.79 %
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a canonical representation of the value of the current instance.
						
						
							 A representation of
 the current instance formatted using the general format specifier, ("G"). The string
 takes into account the current system culture and
 preserves the scale of the number.
						
						
							 This version of is equivalent to (,

).
							
								 The general format specifier formats the number in either fixed-point or exponential notation form, preserving
 the scale of the number. For a detailed description of the
 general format, see the
 interface.
								 This method overrides
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of the current
 instance.
						
						 A containing a character that specifies the format of the returned string, optionally followed by a non-negative integer that specifies the precision of the number in the returned .
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the information in
 the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or if a cannot
 be obtained from , the formatting information for the current system culture is used.
							 The following table lists the characters that are valid for the
 parameter.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
							
							 If is a null reference, the general format specifier "G" is used.
							
								 For a detailed description of formatting, see the interface.
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current
 instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by .
						
						
							 This version of is equivalent to (
,).
							 If is
 or if a cannot
be obtained from , the formatting information for the current
system culture is used.
							
								 The general format
 specifier formats the number in either fixed-point or exponential notation form.
 For a detailed description of the general format, see the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Rounds a value towards zero, to the closest integer value.
						
						 The to truncate.
						
							 The result of truncating . the scale of the result is
 0.
						
						
							 The following example demonstrates using the method.
							 using System;
class MyClass {
public static void Main() {
 decimal d1 = 1234.56789m;
 decimal d2 = -1234.56789m;
 Console.WriteLine("{0} truncated is {1}", d1, Decimal.Truncate(d1));
 Console.WriteLine("{0} truncated is {1}", d2, Decimal.Truncate(d2));
}
}

							 The output is
							
								 1234.56789 truncated is 1234
								 -1234.56789 truncated is -1234
							
						
					
					 0
				
				
					
					
					 Field
					
						
							 DecimalConstantAttribute
							 1
							 System.Runtime.CompilerServices.DecimalConstantAttribute
							 RuntimeInfrastructure
						
					
					
						 System.Decimal
					
					
					 0
					
						
							 Contains zero (0).
						
						
							 The value of this constant is 0. The scale shall be 0.
							 This field is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 ExtendedNumerics
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is not guaranteed to be safe for multithreaded operations.
			
				
					 Represents a 64-bit double-precision floating-point number.
				
				
					
						 is a 64-bit double
 precision floating-point type that represents values ranging from approximately
 5.0E-324 to 1.7E+308 and from approximately -5.0E-324 to -1.7E+308
 with a precision of 15-16 decimal digits. The type conforms to
 standard IEC 60559:1989, Binary Floating-point Arithmetic for Microprocessor
 Systems.
					 A can
represent the following values:
					
						
							
 The finite set of non-zero values of the form * 2 e, where
 is 1 or -1, and 0 <
< 2 53 and -1075 <= <= 970.
						
						
							
 Positive infinity and negative infinity. Infinities
 are produced by operations that produce results with a magnitude greater than
 that which can be represented by a , such as dividing a non-zero number
 by zero. For example, using
 operands , 1.0 / 0.0 yields
 positive infinity, and -1.0 /
 0.0 yields negative infinity. Operations
include passing parameters and returning values.
						
						
							
 The value (NaN). NaN values are produced by
 invalid floating-point operations, such
 as dividing zero by zero.
						
					
					 When performing binary operations, if one of the
 operands is a , then the other operand is required to be an integral
 type or a floating-point type (or). Prior to
 performing the operation, if the other operand is not a , it is converted
 to , and
 the operation is performed using at least range and precision. If the operation
 produces a numeric result, the type of the result is .
					 The floating-point operators, including the assignment operators, do not
 throw exceptions. Instead, in exceptional situations, the result of a
 floating-point operation is zero, infinity, or NaN, as described below:
					
						
							
 If the result of a floating-point operation is too
 small for the destination format, the result of the operation is zero.
						
						
							
 If the magnitude of the result of a floating-point
 operation is too large for the destination format, the result of the operation
 is positive infinity or negative infinity, as appropriate for the sign of the
 result.
						
						
							
 If a floating-point operation is invalid, the result
 of the operation is NaN.
						
						
							
 If one or both operands of a floating-point operation are NaN, the result
 of the operation is NaN.
						
					
					 Conforming implementations of the CLI are permitted to perform floating-point
 operations using a precision that is higher than that required by the type. For example, hardware
 architectures that support an "extended" or "long double" floating-point type
 with greater range and precision than the type could implicitly perform all floating-point
 operations using this higher precision type. Expressions evaluated using a
 higher precision might cause a finite result to be produced instead of an
 infinity.

				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.Double>
					 0
				
				
					 System.IEquatable<System.Double>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Description
								
								
									 Any
 negative
 number
									
										 Current instance < .
										 -or-
										 Current instance is a NaN and is
 not a NaN.
									
								
								
									 Zero
									
										 Current instance ==
 .
										 -or-
										 Current instance and
 are both NaN, positive infinity, or negative
 infinity.
									
								
								
									 A positive number
									
										 Current instance > .
										 -or-
										 Current instance is not a NaN and
is a NaN.
									
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Value
									 Description
								
								
									 Any
 negative
 number
									
										 Current instance < .
										 -or-
										 Current instance is a NaN and is
 not a NaN and is not a null reference.
									
								
								
									 Zero
									
										 Current instance ==
 .
										 -or-
										 Current instance and
 are both NaN, positive infinity, or negative
 infinity.
									
								
								
									 A positive number
									
										 Current instance > .
										 -or-
										
											 is a null reference.
										 -or-
										 Current instance is not a NaN and
is a NaN.
									
								
							
						
						
							 is not a null reference and is not of type .
						
							
								 This method is implemented to support the interface. Note that,
 although a NaN is not considered to be equal to another NaN (even itself), the
 interface requires that
 A.
 (A) return zero.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Double
					
					
					
						
							 Represents the smallest positive value
 greater than zero.
						
						
							 The value of this constant is
 4.9406564584124654E-324.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same value.
						
						 The to compare to the current instance.
						
							
								 if has the same value as the current instance, otherwise . If either or the current instance is a NaN and the other is not, returns . If and the current instance are both
NaN, positive infinity, or negative infinity, returns .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same type and value.
						
						 The to compare to the current instance.
						
							
								 if is a
with the same value as the current instance, otherwise .
If is a null reference or is not an instance of , returns
 . If
either or the current instance is a NaN and the other is not,
returns . If and the current instance are both
NaN, positive infinity, or negative infinity, returns .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for this instance.
						
						
							
 The algorithm used to generate the hash code is
 unspecified.
							
								

This method overrides .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified represents an infinity,
 which can be either positive or negative.
						
						 The to be checked.
						
							
								 if represents a
 positive or negative infinity value; otherwise .
						
						
							
								
 Floating-point operations return positive or negative
 infinity values to signal an overflow condition.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the value of the specified
is undefined (Not-a-Number).
						
						 The to be checked.
						
							
								 if represents a NaN
 value; otherwise
							
						
						
							
								 Floating-point operations return NaN
 values to signal that the result of the operation is undefined. For example,
 dividing (Double) 0.0 by 0.0 results in a NaN value.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified
represents a negative infinity value.
						
						 The to be checked.
						
							
								 if represents a negative
 infinity value; otherwise
 .
						
						
							
								
 Floating-point operations return negative infinity values
 to signal an overflow condition.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified
represents a positive infinity value.
						
						 The to be checked.
						
							
								 if represents a positive
 infinity value; otherwise .
						
						
							
								
 Floating-point operations return positive infinity values
 to signal an overflow condition.

							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Double
					
					
					
						
							 Contains the maximum positive value for the type.
						
						
							 The value of this constant is
 1.7976931348623157E+308.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Double
					
					
					
						
							 Contains the minimum (most negative) value for the
 type.
						
						
							 The value of this constant is
 -1.7976931348623157E+308.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Double
					
					
					 NaN
					
						
							 Represents an undefined result of operations involving

 .
						
						
							 Not-a-Number (NaN) values are returned when the result of
 a
 operation is
 undefined.
							 A NaN value is not equal to any other value, including another NaN value.
							 The value of this field is obtained by dividing zero
 by zero.
							
								
									
represents one of many possible NaN values. To test whether a
 value is
a NaN, use the method.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Double
					
					
					
						
							 Represents a negative infinity of type .
						
						
							 The value of this constant is obtained by dividing a
 negative by zero.
							
								 To test whether a value is a negative infinity value, use the method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the and/or style.
						
							 The value obtained from . If
 equals
 , this method returns
 .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a value that is less than or greater than .
						
							 This version of is equivalent to (, | ,
).
							 The string is parsed using the formatting
information in a initialized for the current system
culture. For more information, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the and styles.
						
							 The value obtained from . If
 equals , this method returns
 .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a value that is less than or greater than .
						
							 This version of is equivalent to (, ,).
							 The string is parsed using the formatting information in a initialized for the current system
culture. For more information, see
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the and/or style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from . If
 equals , this method returns
 .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a value that is less than or greater than .
						
							 This version of is equivalent to (,
 |
,).
							 The string is parsed using the culture-specific formatting
information from the instance supplied by . If
 is
 or a cannot be
obtained from , the
formatting information for the current system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the and styles.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from . If equals
 , this method returns
 .
						
						
							 is a null reference
						
							 is not in the correct style.
						
							 represents a value that is less than or greater than .
						
							 The string is parsed using
 the culture-specific formatting information from the
 instance supplied by . If
 is
 or a cannot be obtained from
 , the formatting information for the current system culture is
 used.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Double
					
					
					 Infinity
					
						
							 Represents a positive infinity of type .
						
						
							 The value of this constant is obtained by dividing a
 positive by zero.
							
								 To test whether a value is a positive infinity value, use the method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A containing a character that specifies the format of the returned string, optionally followed by a non-negative integer that specifies the precision of the number in the returned .
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the information in
 the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot be obtained from , the
 formatting information for the current system culture is used.
							 If is a null reference, the general format specifier "G" is used.
							 The following table lists the format characters that are valid for the type.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "R", "r"
									 Round-trip format.
								
							
							
								 For a detailed description of formatting, see the
interface.
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the
 current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to (,
).
							 If is
 or a cannot be obtained from
 , the formatting information for the current system culture is
used.
							
								 The general format specifier formats the number in either fixed-point or
 exponential notation form. For a detailed description of the general format, see
 the
 interface.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string
 takes into account the current system culture.
						
						
							 This version of is equivalent to (,
).
							
								 The general format specifier formats the number in either fixed-point or
 exponential notation form. For a detailed description of the general format, see
 the
 interface.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A that specifies the format of the returned string. For a list of valid values, see (,).
							
						
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the current system
 culture.
						
						
							 is invalid.
						
							 This version of is equivalent to (
).
							 If is a null reference, the general
format specifier "G" is used.
						
						
							 The following example shows the effects of various
 formats on the string returned by .
							 using System;
class test {
 public static void Main() {
 double d = 1234.56789;
 Console.WriteLine(d);
 string[] fmts = {"C","E","e5","F","G","N","P","R"};
 for (int i=0;i<fmts.Length;i++)
 Console.WriteLine("{0}: {1}",
 fmts[i],d.ToString(fmts[i]));
 }
}

							 The output is
							
								 1234.56789
								 C: $1,234.57
								 E: 1.234568E+003
								 e5: 1.23457e+003
								 F: 1234.57
								 G: 1234.56789
								 N: 1,234.57
								 P: 123,456.79 %
								 R: 1234.56789
							
						
					
					 0
				
			
			 0
		
		
			
			
			 ExtendedNumerics
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides constants and static methods for trigonometric, logarithmic,
 and other common mathematical functions.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Returns the absolute value of the specified .
						
						
							 A .
						
						
							 A containing the absolute value of .
						
						
							 The following example demonstrates the () method.
							
using System;

public class MathAbsExample
{
 public static void Main()
 {
 Decimal d1 = Math.Abs((Decimal)0.00);
 Decimal d2 = Math.Abs((Decimal)(-1.23));
 Console.WriteLine("Math.Abs((Decimal)0.00) returns {0}",d1);
 Console.WriteLine("Math.Abs((Decimal)(-1.23)) returns {0}",d2);
 }
}

							 The output is
							
								 Math.Abs((Decimal)0.00) returns 0
								 Math.Abs((Decimal)(-1.23)) returns 1.23
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the absolute value of the specified .
						
						 A .
						
							 A containing the absolute value of . If
is equal to or ,
returns . If value is equal to , returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Returns the absolute value of the specified .
						
						 A .
						
							 A
containing the absolute value of . If is equal to
or , returns . If is equal to , returns
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Returns the absolute value of the specified .
						
						 A .
						
							 A containing the absolute value of .
						
						
							 equals .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the absolute value of the specified .
						
						 A .
						
							 A containing the absolute value of .
						
						
							 equals .
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Returns the absolute value of the specified .
						
						 A .
						
							 A
containing the absolute value of .
						
						
							 equals .
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Returns the absolute value of the specified .
						
						 A .
						
							 A containing the absolute value of .
						
						
							 equals .
						
							 This method is not CLS-compliant. For a CLS-compliant
 alternative, use ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the angle whose cosine is the specified .
						
						 A representing a cosine, where -1 <= <= 1.
						
							 A containing the
 value of an angle, , measured in radians, for which
 is the cosine, such that 0 <= <= . If
 < -1, > 1, or = , returns .
						
						
							
								 Multiply the return
 value by 180/ to convert from radians to degrees.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the angle whose sine is the specified .
						
						 A representing a sine, where -1 <= <= 1.
						
							 A containing the
 value of an angle, , measured in radians, for which is the sine, such that - /2 <= <=
 /2. If < -1, > 1, or =

 , returns

.
						
						
							
								 A positive return value represents a counterclockwise angle from the positive
 x-axis; a negative return value represents a clockwise angle.
								 Multiply the return value by 180/ to convert from radians to degrees.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the angle whose tangent is the specified .
						
						 A that represents a tangent.
						
							 A containing the
 value of the angle, , measured in radians, for which is the tangent, such that - /2 <=
 <=

 /2.
							 The
 following table specifies the return value if d is equal to , ,
 or .
							
								
									 Return Value
									 Condition
								
								
									
										
									
									
										 is equal to .
								
								
									 - /2 rounded to double precision (-1.5707963267949)
									
										 is equal to .
								
								
									
										 /2 rounded to double precision (1.5707963267949)
									
										 is equal to .
								
							
						
						
							
								 A positive return value represents a counterclockwise angle from the positive x-axis; a
 negative return value represents a clockwise angle.
								 Multiply the return value by
 180/ to convert from radians to degrees.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the angle whose tangent is the quotient of two
 specified
 values.
						
						 A representing the y coordinate of a point.
						 A representing the x coordinate of a point.
						
							 A containing the
 value of an angle, , measured in radians, such that - <=
 <=

 and tan =

 , where () is a
 point in the Cartesian plane.
							 If both and are any combination of and , is
returned.
							 If either or is equal to , is
returned.
							 The following table specifies the return value if
 or
is equal to or .
							
								
									 Condition
									 Return Value
								
								
									
										
											 is equal to or , and
										
											 is equal to or .
									
									
										 .
								
								
									
										
											 is equal to , and
										
											 is not equal to or .
									
									 - /2.
								
								
									
										
											 is equal to , and
										
											 is not equal to or .
									
									
										 /2.
								
								
									
										
											 is equal to , and
										
											 is not equal to or .
									
									 0.
								
								
									
										
											 is equal to , and
										
											 >= 0 and not equal to .
									
									
										 .
								
								
									
										
											 is equal to , and
										
											 < 0 and not equal to .
									
									 - .
								
							
						
						
							 The return value is the angle in the Cartesian plane
 formed by the x-axis, and a vector starting from the origin, (0,0), and
 terminating at the point, ().
							
								
									
										

 For (,) in quadrant 1, 0 < < /2.
									
									
										

 For (,) in quadrant 2, /2 < < .
									
									
										

 For (,) in quadrant 3, - < < - /2.
									
									
										

 For (,) in quadrant 4, - /2 < < 0.
									
								
							
						
						
							 The following example demonstrates using the method.
							 using System;

public class MathAtan2Example
{

 public static void Main()
 {

 Double d1 = Math.Atan2(2,0);
 Double d2 = Math.Atan2(0,0);
 Console.WriteLine("Math.Atan2(2,0) returns {0}", d1);
 Console.WriteLine("Math.Atan2(0,0) returns {0}", d2);

 }

}

							 The output is
							
								 Math.Atan2(2,0) returns 1.5707963267949
								 Math.Atan2(0,0) returns 0
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							
 Produces the full product of two 32-bit numbers.

						
						 The first to multiply.
						 The second to multiply.
						
							 A containing the product of the specified numbers.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the smallest integer greater than or equal to the
 specified .
						
						 A .
						
							 A containing the value of the smallest integer greater
 than or equal to . If is equal to , ,
 or
 , that value
 is returned.
						
						
							 The following example demonstrates using the method.
							 using System;

public class MathCeilingExample
{

 public static void Main()
 {

 Double d1 = Math.Ceiling(3.4);
 Double d2 = Math.Ceiling(-3.4);
 Console.WriteLine("Math.Ceiling(3.4) returns {0}", d1);
 Console.WriteLine("Math.Ceiling(-3.4) returns {0}", d2);

 }

}

							 The output is
							
								 Math.Ceiling(3.4) returns 4
								 Math.Ceiling(-3.4) returns -3
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the cosine of the specified that represents an angle.
						
						 A that represents an angle measured in radians.
						
							 A containing the value of the cosine of . If
 is equal to , , or ,
 returns .
						
						
							
								 Multiply by
 /180 to convert degrees to radians.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the hyperbolic cosine of the specified that represents an angle.
						
						 A that represents an angle measured in radians.
						
							 The hyperbolic cosine of . If
 is equal to or ,
 returns . If is equal to , returns
 .
						
						
							
								 Multiply by
 /180 to convert degrees to radians.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							
 Returns the quotient of two numbers, also passing the remainder as an output parameter.

						
						 A that contains the dividend.
						 A that contains the divisor.
						 A that receives the remainder.
						
							 A containing the quotient of the specified numbers.

						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
						
					
					
						
							
 Returns the quotient of two numbers, also passing the remainder as an output parameter.

						
						 A that contains the dividend.
						 A that contains the divisor.
						 A that receives the remainder.
						
							 A containing the quotient of the specified numbers.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Double
					
					
					
						
							 A constant, , which specifies the natural logarithmic base rounded to
 double precision.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns raised to the specified
 that represents
 an exponent.
						
						 A that represents an exponent.
						
							 A equal to the number raised to the power of
 . If equals or ,
 returns that value. If equals ,
 returns 0.
						
						
							
								 Use the method to
 calculate powers of other bases.
								
									 is the inverse of

.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the largest integer less than or equal to the
 specified .
						
						 A .
						
							 A containing the value of the largest integer less than or
 equal to . If is equal to , ,
 or , that value is returned..
						
						
							 The behavior of this method follows IEEE Standard 754, section 4.
						
						
							 The following example demonstrates using the method.
							 using System;

public class MathFloorExample
{

 public static void Main()
 {

 Double d1 = Math.Floor(3.4);
 Double d2 = Math.Floor(-3.4);
 Console.WriteLine("Math.Floor(3.4) returns {0}", d1);
 Console.WriteLine("Math.Floor(-3.4) returns {0}", d2);

 }

}

							 The output is
							
								 Math.Floor(3.4) returns 3
								 Math.Floor(-3.4) returns -4
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the remainder resulting from the division of one
 specified
 by another specified .
						
						 A that represents a dividend.
						 A that represents a divisor.
						
							 A
whose value is as follows:
							
								
									 Value
									 Description
								
								
									
										 - (
 Q),
									 Q is the quotient of rounded to
 the nearest integer (if is exactly halfway between two
 integers, the even integer is returned).
								
								
									 +0
									 Q is the quotient of rounded to the nearest integer (if
 is exactly halfway between two integers, the even integer is
 returned), - (y Q) is zero, and is positive.
								
								
									 -0
									 Q is the quotient of rounded to the nearest integer (if
 is exactly halfway between two integers, the even integer is
 returned), - (y Q) is zero, and is negative.
								
								
									
										
									
									 y = 0.
								
							
						
						
							 This operation complies with the remainder operation defined in Section 5.1
 of ANSI/IEEE Std 754-1985; IEEE Standard for Binary Floating-Point Arithmetic;
 Institute of Electrical and Electronics Engineers, Inc; 1985.
							
								 For more
 information regarding the use of +0 and -0, see Section 3.1
 of ANSI/IEEE Std 754-1985; IEEE Standard for Binary Floating-Point Arithmetic;
 Institute of Electrical and Electronics Engineers, Inc; 1985.
							
						
						
							 The following example demonstrates using the
method.
							 using System;

public class MathIEEERemainderExample
{

 public static void Main()
 {

 Double d1 = Math.IEEERemainder(3.54,0);
 Double d2 = Math.IEEERemainder(9.99,-3.33);
 Double d3 = Math.IEEERemainder(-9.99,3.33);
 Double d4 = Math.IEEERemainder(9.5,1.5);
 Console.WriteLine("Math.IEEERemainder(3.54,0) returns {0}", d1);
 Console.WriteLine("Math.IEEERemainder(9.99,-3.33) returns {0}", d2);
 Console.WriteLine("Math.IEEERemainder(-9.99,3.33) returns {0}", d3);
 Console.WriteLine("Math.IEEERemainder(9.5,1.5) returns {0}", d4);

 }

}

							 The output is
							
								 Math.IEEERemainder(3.54,0) returns NaN
								 Math.IEEERemainder(9.99,-3.33) returns 0
								 Math.IEEERemainder(-9.99,3.33) returns 0
								 Math.IEEERemainder(9.5,1.5) returns 0.5
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the natural logarithm of the specified .
						
						 A whose natural logarithm is to be found.
						
							 Returns a whose value is as
 follows.
							
								
									 Condition
									 Returns
								
								
									
										

 >
 0.
									 The value of the natural logarithm of .
								
								
									
										 == 0.
									
										 .
								
								
									
										
											 <
 0.
										 -or-
										
											 is equal to .
										 -or-
										
											 is equal to .
									
									
										 .
								
								
									
										
is equal to .
									
										 .
								
							
						
						
							
								 is specified as a base 10 number.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the logarithm of the specified
in the specified base.
						
						 A whose logarithm is to be found.
						 A containing the value of the base of the logarithm.
						
							 Returns a whose value is as follows:
							
								
									 Condition
									 Returns
								
								
									
										 > 0, > 0, but != 1
									 log
											
										
										
									
								
								
									
										 < 0
									
										
									
								
								
									
										 < 0
									
										
									
								
								
									
										 == 0, != 1
									
										
									
								
								
									
										 == 0, == 1
									 Zero
								
								
									 0 < < 1, == 0
									
										
									
								
								
									 0 < < 1, == +infinity
									
										
									
								
								
									
										 == 1
									
										
									
								
								
									
										 > 1, == 0
									
										
									
								
								
									
										 > 1, == +infinity
									
										
									
								
								
									
										 == +infinity, != 1
									
										
									
								
								
									
										 == +infinity, == 1
									 Zero
								
								
									
										 == NaN or == NaN
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns log 10 of the specified .
						
						 A whose logarithm is to be found.
						
							 Returns a as indicated by the following table.
							
								
									 Condition
									 Returns
								
								
									
										 >
 0.
									 A

 containing the value of log 10
										 .
								
								
									
										 == 0.
									
										 .
								
								
									
										
											 <
 0.
										 -or-
										
											 is equal to .
										 -or-
										
											 is equal to .
									
									
										 .
								
								
									
										
											 is equal to
 .

									
									
										 .
								
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
						
					
					
						
							 Returns the greater of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that
 is equal to if is greater than or equal to ; otherwise, the return value
 is equal
 to .
						
						
							 This method is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
						
					
					
						
							 Returns the greater of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that
 is equal to if is greater than or equal to ; otherwise, the return value
 is equal
 to .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
						
					
					
						
							 Returns the greater of two specified values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that
 is equal to if is greater than or equal to ; otherwise, the return value is equal
 to .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
						
					
					
						
							 Returns the greater of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that
 is equal to if is greater than or equal to ; otherwise, the return value is equal
 to .
						
						
							 This method is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the greater of two specified values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that
 is equal to if is greater than or equal to ; otherwise, the return value is equal
 to .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
						
					
					
						
							 Returns the greater of two specified values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that
 is equal to if is greater than or equal to ; otherwise, the return value is equal
 to .
						
						
							 This method is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Returns the greater of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that
 is equal to if is greater than or equal to ; otherwise, the return value is equal
 to .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
						
					
					
						
							 Returns the greater of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
 A
 equal to if is greater than or equal to
 ; otherwise, the return value is equal to .

						
							 This method is not CLS-compliant. For a CLS-compliant alternative, use
 (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
						
					
					
						
							 Returns the greater of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A
equal to if is greater than or equal to
 ; otherwise, the return value is equal to . If , , or
both are equal to , is
returned.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the greater of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A equal to if is greater than or equal to
 ; otherwise, the return value is equal to . If , , or both
 are equal to , is returned.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Returns the greater of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that is equal to if is greater than or
 equal to ; otherwise, the return value is equal to .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A equal to if is less
 than or equal to ; otherwise, the return value is equal to .
						
						
							 This method is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A that
 is equal to if is less than or equal to ; otherwise, the return value is equal
 to .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A equal
 to
 if is less than or equal
 to ; otherwise, the return value is equal to .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A
equal to if is less than or equal to ; otherwise, the return value is equal to .
						
						
							 This method is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
						
					
					
						
							 Returns the lesser of two specified values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A
equal to if is less than or equal to ; otherwise, the return value is equal to .
						
						
							 This method is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A
equal to if is less than or equal to
 ; otherwise, the return value is equal to . If , , or both
are equal to , is
returned.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A
equal to if is less than or equal to ; otherwise, the return value is equal to .
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A
equal to if is less than or equal to ; otherwise, the return value is equal to .
						
						
							 This method is not CLS-compliant. For a CLS-compliant
 alternative, use (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A
equal to if is less than or equal to ; otherwise, the return value is equal to .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A
equal to if is less than or equal to
 ; otherwise, the return value is equal to . If ,
 , or both
are equal to , is
returned.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
						
					
					
						
							 Returns the lesser of two specified
values.
						
						 The first of two specified values to compare.
						 The second of two specified values to compare.
						
							 A equal to if is less than or equal to ; otherwise, the return value is equal to
 .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Double
					
					
					
						
							 A constant, , which specifies the ratio of the circumference of a circle to
 its diameter rounded to double precision.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the specified raised to the specified power.
						
						 A to be raised to a power.
						 A that specifies that power.
						
							 A equal to raised to the power .
 The following table specifies the results if or
 is equal to , , or .
							
								
									 Parameter Values
									 Returns
								
								
									
										 or == NaN

									
										
									
								
								
									
										 == any value except NaN, == 0

									 1
								
								
									
										 == -infinity, < 0

									 0
								
								
									
										 == -infinity, is a positive odd integer

									
										
									
								
								
									
										 == -infinity, is not 0 or a positive odd integer

									
										
									
								
								
									
										 < 0, (-1 < < 0) or (0 < < 1)
									
										
									
								
								
									
										 < -1, == -infinity
									 0
								
								
									
										 < -1, == +infinity
									
										
									
								
								
									
										 == -1, == -infinity or +infinity
									
										
									
								
								
									 (-1 < <= 0), == -infinity
									
										
									
								
								
									 (-1 < <= 0), == +infinity
									 0
								
								
									
										 == 0, < 0

									
										
									
								
								
									
										 == 0, > 0

									 0
								
								
									 (0 < < 1), == -infinity
									
										
									
								
								
									 (0 < < 1), == +infinity
									 0
								
								
									
										 == 1 == any value except NaN

									 1
								
								
									
										 > 1, == -infinity
									 0
								
								
									
										 > 1, == +infinity
									
										
									
								
								
									
										 == +infinity < 0
									 0
								
								
									
										 == +infinity > 0
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Returns the integer nearest the specified .
						
						 A to be rounded.
						
							 A containing the value of the integer nearest . If
is exactly halfway between two integers, one of which is even and the other odd, then the even integer is returned.
						
						
							 The behavior of this method follows IEEE Standard 754, section 4.1.
						
						
							 The following example demonstrates using the () method.
							 using System;

public class MathRoundExample
{

 public static void Main()
 {

 Double d1 = Math.Round(4.4);
 Double d2 = Math.Round(4.5);
 Double d3 = Math.Round(4.6);
 Console.WriteLine("Math.Round(4.4) returns {0}", d1);
 Console.WriteLine("Math.Round(4.5) returns {0}", d2);
 Console.WriteLine("Math.Round(4.6) returns {0}", d3);

 }

}

							 The output is
							
								 Math.Round(4.4) returns 4
								 Math.Round(4.5) returns 4
								 Math.Round(4.6) returns 5
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
						
					
					
						
							 Returns the number nearest the specified within the
 specified precision.
						
						 A to be rounded.
						 A containing the value of the number of significant fractional digits (precision) in the return value. This number is required to be greater than or equal to 0 and less than or equal to 15.
						
							 A containing the value of the number
 nearest with a precision
 equal to . If the digit
 in that is in the 10 -(+ 1) place is equal
to 5 and there are no non-zero numbers in any less significant place, then the
digit in the 10 -
								 place will be unchanged if it is even, else it
will be set to the closest even integer value in the direction of the digit in
the 10 -(+ 1) place. If the precision of is less
than , then is returned unchanged. If
 is zero, this method behaves in the same manner as
().
						
						
							
								 < 0
							 -or-
							
								 > 15
						
						
							 The behavior of this method follows IEEE Standard 754, section 4.1.
						
						
							 The following example demonstrates using the (,) method.
							 using System;

public class MathRoundExample
{

 public static void Main()
 {

 Double d1 = Math.Round(3.44,1);
 Double d2 = Math.Round(3.45,1);
 Double d3 = Math.Round(3.55,1);
 Console.WriteLine("Math.Round(3.44, 1) returns {0}", d1);
 Console.WriteLine("Math.Round(3.45, 1) returns {0}", d2);
 Console.WriteLine("Math.Round(3.55, 1) returns {0}", d3);

 }

}

							 The output is
							
								 Math.Round(3.44, 1) returns 3.4
								 Math.Round(3.45, 1) returns 3.4
								 Math.Round(3.55, 1) returns 3.6
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the integer nearest the specified .
						
						 A to be rounded.
						
							 A containing the value of the integer nearest .
 If is exactly halfway between two integers, one of which is even and the other odd, then the even integer is returned.
						
						
							 The behavior of this method follows IEEE Standard 754, section 4.1.
						
						
							 The following example demonstrates using the () method.
							 using System;

public class MathRoundExample
{

 public static void Main()
 {

 Double d1 = Math.Round(4.4);
 Double d2 = Math.Round(4.5);
 Double d3 = Math.Round(4.6);
 Console.WriteLine("Math.Round(4.4) returns {0}", d1);
 Console.WriteLine("Math.Round(4.5) returns {0}", d2);
 Console.WriteLine("Math.Round(4.6) returns {0}", d3);

 }

}

							 The output is
							
								 Math.Round(4.4) returns 4
								 Math.Round(4.5) returns 4
								 Math.Round(4.6) returns 5
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns a value indicating the sign of the specified .
						
						 A number whose sign is to be determined.
						
							 A indicating the sign of .
							
								
									 Number
									 Description
								
								
									 -1
									
										 <
 0.
								
								
									 0
									
										 == 0.
								
								
									 1
									
										 > 0.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns a value indicating the sign of the specified .
						
						 A whose sign is to be determined.
						
							 A
indicating the sign of .
							
								
									 Number
									 Description
								
								
									 -1
									
										 <
 0.
								
								
									 0
									
										 == 0.
								
								
									 1
									
										 > 0.
								
							
						
						
							 is equal to .
						
							 The following example demonstrates using the () method.
							 using System;

public class MathSignExample
{

 public static void Main()
 {

 Double d1 = Math.Sign(4.4);
 Double d2 = Math.Sign(0.0);
 Double d3 = Math.Sign(-4.5);
 Console.WriteLine("Math.Sign(4.4) returns {0}", d1);
 Console.WriteLine("Math.Sign(0.0) returns {0}", d2);
 Console.WriteLine("Math.Sign(-4.5) returns {0}", d3);

 }

}

							 The output is
							
								 Math.Sign(4.4) returns 1
								 Math.Sign(0.0) returns 0
								 Math.Sign(-4.5) returns -1
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns a value indicating the sign of the specified .
						
						 A whose sign is to be determined.
						
							 A indicating the sign of value.
							
								
									 Number
									 Description
								
								
									 -1
									
										 <
 0.
								
								
									 0
									
										 == 0.
								
								
									 1
									
										 > 0.
								
							
						
						
							 is equal to .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns a value indicating the sign of the specified .
						
						 A whose sign is to be determined.
						
							 A indicating the sign of .
							
								
									 Number
									 Description
								
								
									 -1
									
										 <
 0.
								
								
									 0
									
										 == 0.
								
								
									 1
									
										 > 0.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns a value indicating the sign of the specified .
						
						 A whose sign is to be determined.
						
							 A indicating the sign of .
							
								
									 Number
									 Description
								
								
									 -1
									
										 <
 0.
								
								
									 0
									
										 == 0.
								
								
									 1
									
										 > 0.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns a value indicating the sign of the specified .
						
						 A whose sign is to be determined.
						
							 A indicating the sign of .
							
								
									 Number
									 Description
								
								
									 -1
									
										 <
 0.
								
								
									 0
									
										 == 0.
								
								
									 1
									
										 > 0.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Int32
					
					
						
					
					
						
							 Returns a value indicating the sign of the specified .
						
						 A whose sign is to be determined.
						
							 A indicating the
 sign of .
							
								
									 Number
									 Description
								
								
									 -1
									
										 <
 0.
								
								
									 0
									
										 == 0.
								
								
									 1
									
										 > 0.
								
							
						
						
							 This method is not CLS-compliant. For a CLS-compliant alternative, use
 ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the sine of the specified that represents an angle.
						
						 A containing the value of an angle measured in radians.
						
							 A containing the value of the sine of . If
 is equal to , , or ,
 returns .
						
						
							
								 Multiply by
 /180 to convert degrees to radians.
							
						
						
							 The following example demonstrates using the method.
							 using System;

public class MathSinExample
{

 public static void Main()
 {

 Double d1 = Math.Sin(0);
 Double d2 = Math.Sin(Math.PI/2.0);
 Console.WriteLine("Math.Sin(0) returns {0}", d1);
 Console.WriteLine("Math.Sin(Math.PI/2.0) returns {0}", d2);

 }

}

							 The output is
							
								 Math.Sin(0) returns 0
								 Math.Sin(Math.PI/2.0) returns 1
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the hyperbolic sine of the specified that represents an angle.
						
						 A containing the value of an angle measured in radians.
						
							 A containing the value of the hyperbolic sine of
 . If is equal to ,
 , or , returns a equal to .
						
						
							
								 Multiply by /180 to convert degrees
 to radians.
							
						
						
							 The following example demonstrates using the method.
							 using System;

public class MathSinhExample
{

 public static void Main()
 {

 Double d1 = Math.Sinh(0);
 Double d2 = Math.Sinh(Math.PI);
 Console.WriteLine("Math.Sinh(0) returns {0}", d1);
 Console.WriteLine("Math.Sinh(Math.PI) returns {0}", d2);

 }

}

							 The output is
							
								 Math.Sinh(0) returns 0
								 Math.Sinh(Math.PI) returns 11.5487393572577
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the square root of the specified .
						
						 A .
						
							 A whose value is indicated as
 follows:
							
								
									 Condition
									 Returns
								
								
									
										 >=
 0
									 A

 containing the positive square root of .
								
								
									
										
											 <
 0
										
											 is equal to .
										
											 is equal to .
									
									
										 .
								
								
									
										
											 is equal to
										
									
									
										
											 .
									
								
							
						
						
							 The following example demonstrates using the method.
							 using System;

public class MathSqrtExample
{

 public static void Main()
 {

 Double d1 = Math.Sqrt(16.0);
 Double d2 = Math.Sqrt(0.0);
 Double d3 = Math.Sqrt(-10.0);
 Console.WriteLine("Math.Sqrt(16.0) returns {0}", d1);
 Console.WriteLine("Math.Sqrt(0.0) returns {0}", d2);
 Console.WriteLine("Math.Sqrt(-10.0) returns {0}", d3);

 }

}

							 The output is
							
								 Math.Sqrt(16.0) returns 4
								 Math.Sqrt(0.0) returns 0
								 Math.Sqrt(-10.0) returns NaN
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the tangent of the specified that represents an angle.
						
						 A that represents an angle measured in radians.
						
							 A containing the value of the tangent of . If a
 is equal to , , or ,
 returns .
						
						
							
								 Multiply by /180 to convert degrees
 to radians.
							
						
						
							 The following example demonstrates using the method.
							 using System;

public class MathTanExample
{

 public static void Main()
 {

 Double d1 = Math.Tan(0);
 Double d2 = Math.Tan(Math.PI/2.0);
 Console.WriteLine("Math.Tan(0) returns {0}", d1);
 Console.WriteLine("Math.Tan(Math.PI/2.0) returns {0}", d2);

 }

}

							 The output is
							
								 Math.Tan(0) returns 0
								 Math.Tan(Math.PI/2.0) returns 1.63317787283838E+16
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Returns the hyperbolic tangent of the specified that represents an angle.
						
						 A that represents an angle measured in radians.
						
							 A containing the value of the hyperbolic tangent of
 . If is equal to , returns -1. If value is equal to ,
 returns 1. If value is equal to , returns .
						
						
							
								 Multiply by /180 to convert degrees to radians.
							
						
						
							 The following example demonstrates using the method.
							 using System;

public class MathTanhExample
{

 public static void Main()
 {

 Double d1 = Math.Tanh(0);
 Double d2 = Math.Tanh(Math.PI);
 Console.WriteLine("Math.Tanh(0) returns {0}", d1);
 Console.WriteLine("Math.Tanh(Math.PI) returns {0}", d2);

 }

}

							 The output is
							
								 Math.Tanh(0) returns 0
								 Math.Tanh(Math.PI) returns 0.99627207622075
							
						
					
					 0
				
			
			 0
		
		
			
			
			 ExtendedNumerics
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an arithmetic operation cannot be performed on a floating-point value that
 is not a finite number.
				
				
					 This exception is thrown when an operand of an arithmetic operation is, and
 is not permitted to be, one of the following:
					
						
							 Positive infinity
						
						
							 Negative infinity
						
						
							 NaN (Not-a-Number)
						
					
					
						 Operations involving or operations throw
this exception.
					
				
			
			
				 System.ArithmeticException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "The number encountered was not a
 finite quantity." This message takes into account the current system culture.
							 This constructor initializes the property to zero. The
property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that specifies the value of the argument that caused the Exception.
						
							 This constructor initializes the property of the new instance to a system-supplied
 message that describes the error, such as "The number encountered was not a
 finite quantity." This message takes into account the current system
 culture.
							 This constructor initializes the property using . The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance
 using , and
 initializes the
 property to zero. If is , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The
property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A that specifies the value of the argument that caused the current Exception.
						
							 This constructor initializes the property of the new instance using and
 the property using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A that specifies the value of the argument that caused the current exception.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , the
 property using , and the property using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 For information on inner exceptions, see
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Double
					
					
					
						
							 Gets the value of the argument that caused the current Exception.
						
						
							 A that contains the invalid value.
						
						
							 This property is read-only.
							 The
property returns the same value as was passed into the
constructor, or zero if no value was supplied.
						
					
					 0
				
			
			 0
		
		
			
			
			 ExtendedNumerics
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a 32-bit single-precision floating-point number.
				
				
					
						 is a 32-bit single
 precision floating-point type that represents values ranging from approximately
 1.5E-45 to 3.4E+38 and from approximately -1.5E-45 to -3.4E+38 with a precision of 7 decimal
 digits. The type conforms to standard IEC 60559:1989, Binary
 Floating-point Arithmetic for Microprocessor Systems.
					 A can
represent the following values:
					
						
							

 The finite set of non-zero values of the form * * 2 e, where s is 1 or -1, and 0 <
 < 2 24 and -149 <= <= 104.
						
						
							

 Positive infinity and negative infinity. Infinities are produced by
 operations that produce results with a magnitude greater than that which can
 be represented by a , such as dividing a non-zero number by zero. For
 example, using operands, 1.0 / 0.0 yields positive infinity, and -1.0 / 0.0 yields negative infinity. Operations
 include passing parameters and returning values.
						
						
							

 The value (NaN). NaN values are produced by invalid
 floating-point operations, such as dividing zero by zero.
						
					
					 When performing binary operations, if one of the
 operands is a floating-point type (or
), then the other operand is
 required to be an integral type or a floating-point type and the operation is
 evaluated as follows:
					
						
							

 If one of the operands is of an integral type, then
 that operand is converted to the floating-point type of the other operand.
						
						
							

 Then, if either of the operands is of type , the other operand is converted to
 , and
 the operation is performed using at least the range and precision of the
 type.
 For numeric operations, the type of the result is .
						
						
							

 Otherwise, the operation is performed using at least the range and
 precision of the type and, for numeric operations, the type of the
 result is .
						
					
					 The floating-point operators, including the assignment operators, do not
 throw exceptions. Instead, in exceptional situations, the result of a
 floating-point operation is zero, infinity, or NaN, as described below:
					
						
							

 If the result of a floating-point operation is too
 small for the destination format, the result of the operation is zero.
						
						
							

 If the magnitude of the result of a floating-point
 operation is too large for the destination format, the result of the operation
 is positive infinity or negative infinity.
						
						
							

 If a floating-point operation is invalid, the result
 of the operation is NaN.
						
						
							

 If one or both operands of a floating-point operation are NaN, the result
 of the operation is NaN.
						
					
					 Conforming implementations of the CLI are permitted to perform floating-point
 operations using a precision that is higher than that required by the type. For
 example, hardware architectures that support an "extended" or "long double"
 floating-point type with greater range and precision than the type could implicitly perform all floating-point
 operations using this higher precision type. Expressions evaluated using a
 higher precision might cause a finite result to be produced instead of an
 infinity.
				
			
			
				 System.ValueType
			
			
				
					 System.IComparable
					 0
				
				
					 System.IFormattable
					 0
				
				
					 System.IComparable<System.Single>
					 0
				
				
					 System.IEquatable<System.Single>
					 0
				
			
			
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 Any
 negative
 number
									
										 Current instance < .
										 -or-
										 Current instance is a NaN and is not a NaN.
									
								
								
									 Zero
									
										 Current instance == .
										 -or-
										 Current instance and are both NaN,
 positive infinity, or negative infinity.
									
								
								
									 A positive number
									
										 Current instance > .
										 -or-
										 Current instance is not a NaN and
is a NaN.
									
								
							
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the sort order of the current instance compared
 to the specified .
						
						 The to compare to the current instance.
						
							 The return value is a negative number, zero, or a positive number reflecting the sort order of the current instance as compared to . For non-zero return values, the exact value returned by this method is unspecified. The following table defines the return value:
							
								
									 Return Value
									 Description
								
								
									 Any
 negative
 number
									
										 Current instance < .
										 -or-
										 Current instance is a NaN and is
 not a NaN and is not a null reference.
									
								
								
									 Zero
									
										 Current instance == .
										 -or-
										 Current instance and are both NaN,
 positive infinity, or negative infinity.
									
								
								
									 A positive number
									
										 Current instance > .
										 -or-
										
											 is a null reference.
										 -or-
										 Current instance is not a NaN and
is a NaN.
									
								
							
						
						
							 is not a null reference and is not of type .
						
							
								
 This method is implemented to support the interface.
 Note that, although a NaN is not considered to be equal to another NaN (even
 itself), the interface requires that
 A.CompareTo(A)
 return zero.

							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Single
					
					
					
						
							 Represents the smallest positive value
 greater than zero.
						
						
							 The value of this constant is 1.401298E-45.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same type and value.
						
						 The to compare to the current instance.
						
							
								 if represents the same type and value as the current
 instance, otherwise
 . If is
 a null reference or is not an instance of , returns . If either or the current
 instance is a NaN and the other is not, returns . If
 and the current instance are both NaN, positive infinity, or negative
 infinity, returns .
						
						
							
								
 This method overrides .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same value.
						
						 The to compare to the current instance.
						
							
								 if represents the same value as the current
 instance, otherwise . If either or the current
 instance is a NaN and the other is not, returns . If
 and the current instance are both NaN, positive infinity, or negative
 infinity, returns .
						
						
							
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for this instance.
						
						
							
 The algorithm used to generate the hash code is
 unspecified.

							
								
This method overrides .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified represents an infinity,
 which can be either positive or negative.
						
						 The to be checked.
						
							
								 if represents a
 positive or negative infinity value; otherwise .
						
						
							
								
 Floating-point operations return positive or negative
 infinity values to signal an overflow condition.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the value of the specified
is undefined (Not-a-Number).
						
						 The to be checked.
						
							
								 if represents a NaN
 value; otherwise .
						
						
							
								 Floating-point operations return NaN
 values to signal that the result of the operation is undefined. For example,
 dividing (Single) 0.0 by 0.0 results in a NaN value.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified
represents a negative infinity value.
						
						 The to be checked.
						
							
								 if represents a
 negative infinity value; otherwise
 .
						
						
							
								
 Floating-point operations return negative infinity
 values to signal an overflow condition.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified
represents a positive infinity value.
						
						 The to be checked.
						
							
								 if represents a
 positive infinity value; otherwise
 .
						
						
							
								
Floating-point operations return positive infinity
 values to signal an overflow condition.

							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Single
					
					
					
						
							 Contains the maximum positive value for the type.
						
						
							 The value of this constant is 3.40282346638528859E+38
 converted to
 .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Single
					
					
					
						
							 Contains the minimum (most negative) value for the

 type.
						
						
							 The value of this constant is -3.40282346638528859E+38
 converted to
 .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Single
					
					
					 NaN
					
						
							 Represents an undefined result of operations involving

 .
						
						
							 Not-a-Number (NaN) values are returned when the result of
 a
 operation is undefined.
							 A NaN value is not equal to any other value, including another NaN value.
							 The value of this field is obtained by dividing zero by zero.
							
								
									
represents one of many possible NaN values. To test whether a
 value is
a NaN, use the method.

							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Single
					
					
					
						
							 Represents a negative infinity of type .
						
						
							 The value of this constant can be obtained by dividing a negative by zero.
							
								
 To test whether a value is a negative infinity value, use the method.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the and/or style.
						
							 The value obtained from . If equals
 , this method returns
 .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a value that is less than or greater than .
						
							 This version of is equivalent to (, |
 ,).
							 The string is parsed using the formatting information in a
initialized for the current system culture.

 For more information, see .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the and styles.
						
							 The value obtained from . If
 equals , this method returns
 .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a value that is less than or greater than .
						
							 This version of is equivalent to (, , null).
							 The string is parsed using the formatting information in a
initialized for the current system culture.
 For more information, see .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the and/or style.
						 A that supplies a containing culture-specific formatting information about .
						
							 The
value obtained from . If equals , this method returns
 .
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a value that is less than or greater than .
						
							 This version of is equivalent to (, |
,).
							 The string is parsed using the culture-specific formatting
information from the instance supplied by . If is

or a cannot be obtained from , the formatting information
for the current system culture is used.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
						
						
					
					
						
							 Returns the specified converted to a value.
						
						 A containing the value to convert. The string is interpreted using the style specified by .
						 Zero or more values that specify the style of . Specify multiple values for using the bitwise OR operator. If is a null reference, the string is interpreted using the and styles.
						 A that supplies a containing culture-specific formatting information about .
						
							 The value obtained from . If
 equals , this method returns NaN.
						
						
							 is a null reference.
						
							 is not in the correct style.
						
							 represents a value that is less than or greater than .
						
							 The string is parsed using the culture-specific formatting
 information from the instance supplied by . If
 is
 or a
 cannot be obtained from
, the formatting information for the current
system culture is used.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Single
					
					
					 Infinity
					
						
							 Represents a positive infinity of type .
						
						
							 The value of this constant can be obtained by dividing a positive by zero.
							
								
 To test whether a value is a positive infinity value, use the method.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A containing a character that specifies the format of the returned string, optionally followed by a non-negative integer that specifies the precision of the number in the returned .
						 A that supplies a instance containing culture-specific formatting information.
						
							 A representation of the current instance formatted as
 specified by . The string takes into account the information in
 the instance supplied by .
						
						
							 is invalid.
						
							 If is
 or a cannot be obtained from
 , the formatting information for the current system culture is
 used.
							 If is a null reference, the general format specifier "G" is
used.
							 The following table lists the characters that are valid
for the
type.
							
								
									 Format Characters
									 Description
								
								
									 "C", "c"
									 Currency format.
								
								
									 "E", "e"
									 Exponential notation format.
								
								
									 "F", "f"
									 Fixed-point format.
								
								
									 "G", "g"
									 General format.
								
								
									 "N", "n"
									 Number format.
								
								
									 "P", "p"
									 Percent format.
								
								
									 "R", "r"
									 Round-trip format.
								
							
							
								 For a detailed description of the format strings, see the
interface.
								 This method is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the
 current instance.
						
						 A that supplies a containing culture-specific formatting information.
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string takes into account the
 formatting information in the instance supplied by
 .
						
						
							 This version of is equivalent to (,

).
							 If is
 or a cannot be obtained from , the
formatting information for the current system culture is used.
							
								

 The general format specifier formats the number in either
 fixed-point or exponential notation form. For a detailed description of the
 general format, see the
 interface.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current instance formatted using
 the general format specifier, ("G"). The string
 takes into account the current system culture.
						
						
							 This version of is equivalent to (,
).
							
								 The general format specifier formats the number in either
 fixed-point or exponential notation form. For a detailed description of the
 general format, see the
 interface.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a representation of the value of the current instance.
						
						 A that specifies the format of the returned string. For a list of valid values, see (,).
						
						
							 A representation of
 the current instance formatted as specified by
 . The string takes into account the current system
 culture.
						
						
							 is invalid.
						
							 This version of is equivalent to (,
).
							 If is a null reference, the general format specifier "G" is
used.
						
						
							 The following example shows the effects of various
 formats on the string returned by
 .
							 using System;
class test {
 public static void Main() {
 float f = 1234.567f;
 Console.WriteLine(f);
 string[] fmts = {"C","E","e5","F","G","N","P","R"};
 for (int i=0;i<fmts.Length;i++)
 Console.WriteLine("{0}: {1}",
 fmts[i],f.ToString(fmts[i]));
 }
}

							 The output is
							
								 1234.567
								 C: $1,234.57
								 E: 1.234567E+003
								 e5: 1.23457e+003
								 F: 1234.57
								 G: 1234.567
								 N: 1,234.57
								 P: 123,456.70 %
								 R: 1234.567
							
						
					
					 0
				
			
			 0
		
	
	
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the addressing schemes used by the class.
				
				
					 A member is specified to the
 class constructors to identify
 the addressing scheme that the socket instance will use to resolve an address. For example,
 indicates that an IP version 4 address is
 expected when a
 instance connects to an endpoint.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 AppleTalk
					
						
							 AppleTalk address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Atm
					
						
							 Native Asynchronous Transfer Mode (ATM) services address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Banyan
					
						
							 Banyan address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Ccitt
					
						
							 Addresses for CCITT protocols, such as X.25.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Chaos
					
						
							 Address for MIT CHAOS protocols.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Cluster
					
						
							 Address for Microsoft cluster products.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 DataKit
					
						
							 Address for Datakit protocols.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 DataLink
					
						
							 Direct data-link interface address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 DecNet
					
						
							 DECnet address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Ecma
					
						
							 European Computer Manufacturers Association (ECMA) address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 FireFox
					
						
							 FireFox address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 HyperChannel
					
						
							 NSC Hyperchannel address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Ieee12844
					
						
							 IEEE 1284.4 workgroup address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 ImpLink
					
						
							 ARPANET IMP address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 InterNetwork
					
						
							 Address for IP version 4.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 InterNetworkV6
					
						
							 Address for IP version 6.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 NS
					
						
							 Internetwork Packet Exchange (IPX) or Sequenced Packet
 Exchange (SPX) address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Irda
					
						
							 Infrared Data Association (IrDA) address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Osi
					
						
							 Address for ISO protocols.
							
								 Multiple names are defined for this value based on prior art.
 This value is identical to .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Lat
					
						
							 LAT address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 NetBios
					
						
							 NetBios address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 NetworkDesigners
					
						
							 Address for Network Designers OSI gateway-enabled protocols.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 NS
					
						
							 Address for Xerox NS protocols.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Osi
					
						
							 Address for ISO protocols.
							
								 Multiple names are defined for this value based on prior art.
 This value is identical to .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Pup
					
						
							 Address for PUP protocols.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Sna
					
						
							 IBM SNA address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Unix
					
						
							 Address is local to the host.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Unknown
					
						
							 Used to indicate an uninitialized state. This member is not to be used when
 constructing instances of the class.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 Unspecified
					
						
							 Unspecified address family.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.AddressFamily
					
					
					 VoiceView
					
						
							 VoiceView address.
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Manages the authentication modules called during the client authentication
 process.
				
				
					 The class manages
 authentication modules that are responsible for client authentication.
 The is called by instances to provide information
 that is sent to servers to authenticate the client. The authentication process
 might consist of requests to an authentication server separate from the resource
 server, as well as any other activities required to properly authenticate a
 client.
					
					 The
queries registered authentication modules by calling the method for each module. The
first authentication module that returns a instance is used to authenticate the request. An authentication module, which can be any object that
implements the interface, is registered using the
method. Authentication modules are called in the order in which they are registered.
					 Applications typically do not access this type directly;
 it provides authentication services for the type.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.Net.Authorization
					
					
						
						
						
					
					
						
							 Calls registered authentication modules to find a module that
 responds to the specified authentication challenge.
						
						 A containing the challenge returned by an Internet host. The content of this string is determined by the authentication protocol(s) used by the server that issued the challenge.
						 The that received .
						 The associated with . The property of is used to supply this argument.
						
						
							 A instance containing the response from the
 authentication module, or if no authentication module
 responded to the challenge.
							 Applications do not call this method; it is called by

instances.
						
						
							 , , or is .
						
							 The method invokes the method of each
 registered authentication module until one of the modules returns a
 instance. Authentication modules are called in the order in which they were registered via
 the
 method.
							
								 The property of the object returned by
this method contains the
client's response to the server challenge contained in
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.Authorization
					
					
						
						
					
					
						
							 Attempts to obtain a
instance used to initiate client authentication.
						
						 A containing a request for access to a resource.
						 The associated with .
						
							 A instance if an authentication module can provide
 authentication information to be sent with ;
 otherwise, . If
 is , this method returns .
						
						
							
								 is
							
						
						
							 The method invokes the method of each registered
 authentication module until one of the modules returns a
 instance. Authentication modules are called in the order in which they were
 registered via the method.
							
								 The instance contains the
information that will be
sent by a client to initiate authentication instead of waiting for the server to
request it. Authentication modules that support preauthentication allow clients
to improve server efficiency by avoiding extra round trips caused by
authentication challenges.
							
							
								 If an authorization module supports preauthentication
 of requests, its
 property returns . Note that
 preauthentication requires that an authentication of the client has already
 occurred. The information obtained from the initial authentication is used to
 provide the that is
 sent to the server as an authentication header in
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Adds an authentication module to the list of registered
 authentication modules managed by the authentication manager.
						
						 The to register.
						
							 is .
						
							 The method adds an authentication
 module to the end of the list of modules managed by the authentication manager.
 Each registered module is required to have a
 unique . If a module with the same
 is already registered, this method removes the
 registered module, and adds to the end of the
 list. Authentication
 modules are called in
 the order in which they were added to the list.
							
							
								 To remove a module,
 call one of the

 methods.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.IEnumerator
					
					
					
						
							 Gets a list of registered authentication modules.

						
						
							 A that
 provides access to the list of registered
 authentication modules.
						
						
							 This property is read-only.
							
								 The method adds modules to the
 list of registered authentication modules, and the method removes modules from
 it.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the specified authentication module from the list of registered modules.
						
						 The module to remove.
						
							 is .
						
							 is not a registered authentication module.
						
							
								 To add an authentication module to
 the list of registered modules, call the
 method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the authentication module with the specified
 authentication type from the list of registered modules.
						
						 A containing the authentication type of the module to remove.
						
							 is .
						 There is no registered module with the authentication type.
						
							 The is required to match
 the value returned by the property of a registered authentication module.
							
								 To add an authentication module to
 the list of registered modules, call the
 method.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Supplies authentication messages used to authenticate a client to server.
				
				
					 The class contains authentication information returned by
 a module. instances are used
 to pass server challenge responses and client preauthentication information.
					
						 Applications do not create or access instances of this type directly;
 instances of this type are created by authentication modules and used by the
 .
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 authorization message.
						
						 A containing the authorization message to be sent to the server.
						
							 This constructor creates a instance with the property set to and the property set to . If is or a zero-length string,
is set to . is set to
 .
							
								 The property
indicates whether the authentication, as defined by the authentication protocol implemented by
the caller, is finished or requires additional information exchange between the client and
server.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 authorization message and completion status.
						
						 A containing the authentication message to be sent to the server.
						 A value indicating the completion status of the client authentication. Specify if the authentication is complete; otherwise, .
						
							 This constructor creates a instance with the property set to and the
 property set to . If is or
 a zero-length string, is set to
 . is set to
 .
							
								 The property indicates
whether the authentication, as defined by the authentication protocol
implemented by the caller, is finished or requires additional information
exchange between the client and server.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 authorization message, completion status, and connection group identifier.

						
						 A containing the authentication message to be sent to the server.
						 A value indicating the completion status of the authentication. Specify if the authentication is complete; otherwise, .
						 A containing a unique identifier that will be used to identify the authenticated connection, or .
						
							 This constructor creates a instance with the property set to , the
 property set to , and
 the property set to . If is
 or a zero-length string, is set to . If
 is or a zero-length string,
 is set to .
							
								 The connection group identifier is used to restrict access to the
 server connection established with the current authorization instance. Only

 instances that have as their
 property value can use the connection. The connection group information
 set by this constructor is also available in the property of
 the service point that represents the connection.
								 The property indicates whether the
authentication, as defined by the authentication protocol implemented by the
caller, is finished or requires additional information exchange between the
client and server.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating the completion status of the authentication.
						
						
							
								 if the authentication process is complete; otherwise,
 .
						
						
							 This property is read-only.
							 The property is set to when the
 authentication process between the client and the server is finished.
							
								 Some authentication
 modules, such as a Kerberos module, use multiple
 round trips between the client and server to complete an authentication. The authentication module sets the
 property to
 until the authentication is complete.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the unique identifier for an authenticated connection.
						
						
							 A containing a unique
 connection identifier, or if no value was specified to the
 constructor for the
 current instance.
						
						
							 This property is read-only.
							 The connection group identifier is used to restrict access to the server connection
 established with the current authorization instance.
							
								 Only instances that have as
 their property value
 can use the connection. If the value of this property is
 , access to the connection is
 not restricted in this manner. The connection group information is also available in
 the property of the service point that
 represents the connection.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the response to an authentication
 challenge.
						
						
							 A containing the message that will be returned to the server in response to an
 authentication challenge.
						
						
							 This property is read-only.
							
								 The content of the
 string returned by this property is determined by the protocol implemented
 by the

 object that created
 the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String[]
					
					
					
						
							 Gets or sets the URIs that can be authenticated using the value in the property.
						
						
							 A array containing URIs.
						
						
							
								 A compares a URI
 to this list to determine if the current instance can be used to
 authenticate a request for a given URI.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides storage for multiple credentials.
				
				
					 The class stores credentials for multiple
 Internet resources. Applications that need to access multiple resources can
 store the credentials for those resources in a instance that then provides the proper set of credentials
 for a given resource when required. When the

method is called, it compares the URI and authentication type provided
with those stored in the cache, and returns the first set of credentials that
match.
				
			
			
				 System.Object
			
			
				
					 System.Net.ICredentials
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor creates a
instance with its
property initialized to the system
credentials of the current process.
							
								 Use the method to add additional
credentials to the instance.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Adds a
instance to the credential cache.
						
						 A that contains the URI prefix of resources to which grants access.
						 A containing the authentication type used by the resource named in . This string is required to be identical to the of the authentication module that uses the credential.
						 A to add to the credential cache.
						 The or parameter is .
						 The cache already contains a credential for the specified and
						
						
							 The cache stores credentials in the order in which they
 are added.
							
								 Use the
method
to retrieve
instances.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.ICredentials
					
					
					
						
							 Gets the system credentials in use for
 the current process.
						
						
							 A instance that represents the system credentials in use for the current process.
						
						
							 This property is read-only.
						
						 Requires read access to the environment variable that contains the user name. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Net.NetworkCredential
					
					
						
						
					
					
						
							 Returns the
instance associated with a URI and
authentication type.
						
						 A that contains the URI prefix of resources for which the client will be authenticated.
						 A containing the authentication type used by the resource named in . This string is required to be identical to the of the authentication module that uses the credential.
						
							 A , or if there is no
 matching credential in the cache.
						
						 The or parameter is .
						
							 This method searches the and
 returns the
 instance for the specified URI prefix
 and authentication type. This method uses the longest matching URI prefix in the cache
 to determine which credentials to return for an authentication
 type.
							
								 The following table shows the matches
 for a set of URI prefixes (assuming the URI prefixes are all cached for the
 specified authentication type).
								
									
										 URI Prefix
										 Matches
									
									
										 http://www.contoso.com/portal/news.htm
										 Matches only requests for
 http://www.contoso.com/portal/news.htm.
									
									
										 http://www.contoso.com/portal/
										 Matches requests for all resources in the portal
 path, except for requests for the http://www.contoso.com/portal/news.htm
 page.
									
									
										 http://www.contoso.com/
										 Matches requests for all resources at www.contoso.com, except
 those in the portal
 path.
									
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						
							 Returns an enumerator that iterates through credentials stored in the current
 instance.
						
						
							 A for the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Deletes a
instance from the cache.
						
						 A that specifies the resources for which the credential is used.
						 A containing the authentication type used by the resource named in . This string is required to be identical to the of the authentication module that uses the credential.
						
							 The method
 locates and removes the instance that is cached
 for the specified URI prefix and authentication type. If there is no match found
 in the cache for the specified values, this method has no effect. The
 and
values are required to exactly match the values supplied at the time the
credential was added to the cache. For
additional information, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Obtains domain information from the Domain Name System as
 defined by IETF RFC 1035 and RFC 1036.
				
				
					 The class creates
 and sends queries to obtain information about a host server from the Internet
 Domain Name System (DNS). In order to access DNS, the machine executing the
 query is required to be connected to a network. If the query is executed on a
 machine that does not have access to a domain name server, a
 is thrown.
					 Information from the DNS query is returned in an
 instance of the class. If the specified host
 has more than one entry in the DNS database, the instance contains
 multiple IP addresses and
 aliases.
					
						 See the
class page for an example that uses the class.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
					
					
						
							 Begins the asynchronous execution of a DNS query to obtain address information about the specified host.
						
						 A containing the DNS name of the host.
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						
							 is .
						 An error was encountered executing the DNS query .
						 The caller does not have permission to access DNS information.
						
							 This method starts an
 asynchronous request for information about the specified host. To retrieve the
 results of the query and release resources allocated by this method, call
 the method and specify the object
 returned by this method. The
 method should be called exactly once for each call to
 .
							
							 If the parameter is not
 , the method referenced by is invoked when the
 asynchronous operation completes. The object returned by this method is
 passed as the argument to the method referenced by
 . The method referenced by
 can retrieve the results of the query by calling
 .
The parameter can be any object
that the caller wishes to have available for the duration of the asynchronous
operation. This object is available via the
property of the object returned by this method.

						 Requires unrestricted permission for accessing DNS information. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
					
					
						
							 Begins the asynchronous execution of a DNS query to
 resolve a host name or IP address.
						
						 A containing the DNS name or IP address of the host.
						 A delegate or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						
							 is .
						 An error was encountered executing the DNS query .
						 The caller does not have permission to access DNS information.
						
							 This method starts an asynchronous request for DNS
 information about the specified host. To retrieve the results of the query and
 release resources allocated by this method, call the
 method, and specify the object returned by this method. The
 method should be called exactly once for each call to
								.
							 If the parameter is not
 , the method referenced by is
 invoked when the asynchronous operation completes. The object
 returned by this method is passed as the argument to the method referenced by
 . The method referenced by can
 retrieve the results of the query by calling .
							 The parameter can be any object that the caller wishes
 to have available for the duration of the asynchronous operation. This object is
 available via the property of the object returned by this
 method.
						
						 Requires unrestricted permission for accessing DNS information. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.Net.IPHostEntry
					
					
						
					
					
						
							 Ends an asynchronous query to obtain address information about the specified host.
						
						 The object that holds the state information for the asynchronous operation.
						
							 A object containing DNS address information about a host.
						
						
							 is .
						
							 This method blocks if the asynchronous operation has not completed.
							 The method completes an asynchronous request for
 DNS information that was started with a call to . The object
 specified for the parameter is required to be the same
 object as was returned by the method call that began the request.

							 If the method is invoked via the delegate
specified to the method, the
parameter is the argument passed to the delegate's method.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.IPHostEntry
					
					
						
					
					
						
							 Ends an asynchronous query to resolve a host name or IP address.
						
						
							 The object that holds the state information for the asynchronous operation.
						
						
							 A object containing address information about a host.
						
						
							 is .
						
							 This method blocks if the asynchronous operation has not
 completed.
							 The method completes an asynchronous request for
 DNS information that was started with a call to . The object specified for the
 parameter is required to be the same object as was returned
 by the method call that began the request.

							 If the method is invoked via the delegate
specified to the method, the parameter is the

argument passed to the delegate's method.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.IPHostEntry
					
					
						
					
					
						
							 Queries DNS for the DNS host name of the specified IP address.
						
						 A containing an IP address.
						
							 A instance containing the host information.
						
						
							 is .
						
							 is not a valid IP address.
						 An error was encountered executing the DNS query .
						 The caller does not have permission to access DNS information.
						
							 The IP address specified by the parameter
 is required to be in dotted-quad notation (for example, "192.168.1.2").
						
						 Requires unrestricted permission for accessing DNS information. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.Net.IPHostEntry
					
					
						
					
					
						
							 Queries DNS for the DNS host name of the specified IP
 address.
						
						 A instance.
						
							 A instance containing the host information.
						
						
							 is .
						 An error was encountered executing the DNS query .
						 The caller does not have permission to access DNS information.
						 Requires unrestricted permission for accessing DNS information. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.Net.IPHostEntry
					
					
						
					
					
						
							 Queries DNS for address information about the specified
 host.
						
						 A containing the DNS name of the host.
						
							 A object containing host information for the address
 specified in
 .
						
						
							 is .
						 An error was encountered executing the DNS query .
						 The caller does not have permission to access DNS information.
						
							
								 To retrieve host information asynchronously, use the and
 methods.
								 See the
class page for an example that uses the method.
							
						
						 Requires unrestricted permission for accessing DNS information. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Gets the DNS host name of the local machine.
						
						
							 A containing the DNS host name
 of the local machine.
						
						 An error was encountered resolving the local host name.
						 The caller does not have permission to access DNS information.
						 Requires unrestricted permission for accessing DNS information. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.Net.IPHostEntry
					
					
						
					
					
						
							 Resolves a DNS host name or IP address to a
instance.
						
						 A containing a DNS-style host name or IP address.
						
							 A instance
 containing address information about the host specified in

.
						
						
							 is .
						 An error was encountered executing the DNS query .
						 The caller does not have permission to access DNS information.
						
							 The method
 queries a DNS server for the IP address associated
 with a host name or an IP address in dotted-quad notation.
							 When is a DNS-style host name associated with multiple IP
addresses, only the first IP address that resolves to that host name is
returned.
						
						
							 The following example demonstrates the use of the method.
							 using System;
using System.Net;

public class DnsTest {
 public static void Main() {
 IPHostEntry hostInfo1 = Dns.Resolve("www.contoso.com");
 DisplayHostInfo(hostInfo1);
 Console.WriteLine();
 }

 public static void DisplayHostInfo(IPHostEntry hostInfo) {
 string[] aliases = hostInfo.Aliases;
 IPAddress[] addresses = hostInfo.AddressList;
 Console.WriteLine("The host name is: {0}", hostInfo.HostName);

 for(int x = 0; x < aliases.Length; x++)
 Console.WriteLine("Alias {0} == {1}", aliases[x], addresses[x]);
 }
}

							 The output is
							
								 The host name is: contoso.com
								 Alias www.contoso.com == 207.46.230.186
							
						
						 Requires unrestricted permission for accessing DNS information. This method also asserts unrestricted . See and .
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Controls access to Domain Name System (DNS) servers on the
 network.
				
				
					 The XML encoding of a instance is defined below in
 EBNF format. The following conventions are used:
					
						
							
								 All non-literals in the grammar below are shown in normal type.
							
						
						
							
								 All literals are in bold font.
							
						
					
					 The following meta-language symbols are used:
					
						
							

 '*' represents a meta-language symbol suffixing an
 expression that can appear zero or more times.
						
						
							

 '?' represents a meta-language symbol suffixing an
 expression that can appear zero or one time.
						
						
							

 '+' represents a meta-language symbol suffixing an
 expression that can appear one or more times.
						
						
							

 '(',')' is used to group literals, non-literals or a
 mixture of literals and non-literals.
						
						
							

 '|' denotes an exclusive disjunction between two
 expressions.
						
						
							

 '::= ' denotes a production rule where a left hand
 non-literal is replaced by a right hand expression containing literals,
 non-literals or both.
						
					
					 BuildVersion refers to the build version of the shipping CLI. This is a
 dotted build number such as '2412.0' .
					 ECMAPubKeyToken ::=
					
					
						 DnsPermissionXML ::=
						
							
						
						
							
						
						
							
						
						
							
						
						
							 BuildVersion
						
						
							
						
						
							 ECMAPubKeyToken
						
						
							
						
						 (
						
							
						
)
						 |
						
					
				
			
			
				 System.Security.CodeAccessPermission
			
			
				
					 System.Security.IPermission
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
value.
						
						
							 A value.
						
						
							 is not a valid value.
						
							
								 This constructor creates either fully restricted ()
 or access to DNS
 information.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new object containing the same values as the current
 instance.
						
						
							 A new instance containing the same values as the current instance.

						
						
							
								 The object returned by this method represents the same access to DNS information as
 the current instance.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reconstructs the state of a object using the specified XML encoding.
						
						 A instance containing the XML encoding to use to reconstruct the state of a object.
						
							
								 is
							
						
						
							
								 is not a element.
						
						
							 The state of the current instance is changed to the state encoded in
 .
							
								 For the XML encoding for this class, see the class
 page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a new object that is the intersection of the current
 instance and the specified object.
						
						 A instance to intersect with the current instance.
						
							 A new instance that represents the intersection of the
 current instance and . If the intersection is
 empty, returns . If the
 current instance is unrestricted, returns a copy of . If
 is unrestricted, returns a copy of
 the current instance.
						
						
							
								 The intersection of two permissions is a permission that secures the
 resources and operations secured by both permissions. Specifically, it
 represents the minimum permission such that any demand that passes both
 permissions will also pass their intersection.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of the specified
 object.
						
						 A instance that is to be tested for the subset relationship.
						
							
								 if the current instance is a
 subset of ; otherwise, . If the current
 instance is unrestricted, and is not, returns
 . If is unrestricted, returns
 . If is , returns
 .
						
						
							
								 The current instance is a subset of if the current instance
 specifies a set of accesses to resources that is wholly contained by
 . For example, a permission that represents read access to a file
 is a subset of a permission that represents read and write access to the file.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.SecurityElement
					
					
					
						
							 Returns the XML encoding of the current instance.
						
						
							 A containing the XML encoding of the state of the
 current instance.
						
						
							
								 For the XML encoding for this class, see the class page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a new object that is the union of the current instance and
 the specified object.
						
						 A instance to combine with the current instance.
						
							 A new instance that represents the union of the
 current instance and
 . If the current instance or is unrestricted,
 returns a instance that is unrestricted.
						
						
							
								 The result of a call to is a permission that represents all of
 the access to permissions represented by the current instance as well as the
 permissions represented by . Any demand that passes either the
 current instance or passes their union.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Used to declaratively specify permission to request information from Domain Name Servers.
				
				
					
						 The security information declared by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time.
 Security attributes are used for declarative security only. For imperative
 security, use the corresponding permission class, .
						 The allowable targets are determined by the passed to the constructor.
					
				
			
			
				 System.Security.Permissions.CodeAccessSecurityAttribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the class with the specified value.
						
						 A value.
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a instance that contains the security information of
 the current instance.
						
						
							 A object with the security information of the current instance.
						
						
							
								 Applications typically do not call this method; it is intended for use by the
 system.
								 The security information described by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time. The
 system uses the object returned by this method to convert the security
 information of the current instance into the form stored in metadata.
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 This is the base class used to derive classes that
 represent network addresses.

				
				
					
						 The class provides an
 abstract representation of the address of a network resource or
 service.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Property
					
						 System.Net.Sockets.AddressFamily
					
					
					
						
							 Gets the address family to which the endpoint belongs.

						
						
							 One of the values defined in .
						
						 This property is required to be overridden in types derived from .
						
							
								 This property is read-only.
								 The value returned
 by this property specifies the addressing scheme used
 by the network protocol of the current instance.
							
							
								 The default implementation throws .
							
							
								 Override this
 property to return the
 of the current instance.
							
							
								 Use this property to
 obtain the information of the current instance.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.EndPoint
					
					
						
					
					
						
							 Returns a new instance containing the address
 information from the specified
 instance.

						
						 A instance that provides the address information for the new instance.
						
							 A new instance containing the address
 information from the specified instance.
						
						 This method is required to be overridden in types derived from .
						
							
								 As described above.
							
							
								 The default implementation throws
 .
							
							
								 Override this
 method to return a instance that contains the address information from
 the specified .
							
							
								 Use this method to
 obtain a
 instance that represents the same network resource or service as the specified
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Contains a global
 default proxy instance for all HTTP requests.
				
				
					 The
stores the proxy settings for the default proxy that instances use to contact Internet sites beyond the
local network. The default proxy settings are initialized from a global or
application configuration file, and can be overridden for individual requests,
or disabled by setting the property to the object returned by the
method.
					 The proxy settings stored in are used by a instance
if its property is not set.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.Net.IWebProxy
					
					
					
						
							 Returns an empty proxy object.
						
						
							 A that contains no information.
						
						
							 The method returns an empty
instance indicating that no proxy is used to access an Internet resource.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.IWebProxy
					
					
					
						
							 Gets or sets the global proxy information.
						
						
							 A
that identifies the proxy server used by the method if no proxy information is
specified.
						
						 The caller does not have permission for the requested operation.
						 Requires full access. See .
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the shape of methods that are invoked when
 a response is received
 by a web client.

				
				 A containing the numeric value of the HTTP status from the server.
				 A containing the headers returned with the response.
				
					 Use a
instance to specify the methods that are automatically invoked
whenever HTTP 100 () responses are received from
a web server.
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Contains the values of status codes defined for the Hypertext Transfer Protocol (HTTP).
				
				
					 This enumeration is used by .
					
						 The enumeration contains the values of the status codes
 defined in IETF RFC 2616 - HTTP/1.1.
						 The status of an HTTP request is contained in the property.
					
				
				
					 The following example compares the status returned by a
 with a
 value to determine the status of the response.
					 using System;
using System.Net;

public class HttpStatusCodeExample {

 public static void Main() {
 string serverName = "http://www.contoso.com";
 HttpWebRequest httpReq = (HttpWebRequest) WebRequest.Create(serverName);
 httpReq.AllowAutoRedirect = false;
 HttpWebResponse httpRes = (HttpWebResponse) httpReq.GetResponse();
 if (httpRes.StatusCode==HttpStatusCode.Found) {
 Console.WriteLine("Request for {0} was redirected.", serverName);
 }
 }
}

					 The output is
					
						 Request for http://www.contoso.com was
 redirected.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Accepted
					
						
							 Equivalent
 to HTTP status 202. Indicates that the request has been
 accepted but not
 yet processed.
							
								 For a detailed description of the HTTP status code 202, see
 Section 10.2.3 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Ambiguous
					
						
							 Equivalent to HTTP status 300. Indicates that multiple
 representations, each with a specific location, correspond to the requested
 resource. Agent-driven negotiation information is provided so that the
 request can be redirected by the user (or user agent) to the location of the
 preferred representation.
							
								 The default action is to treat this status as a redirect and
 follow the contents of the Location header associated with the current
 response.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 300, see Section 10.3.1 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 BadGateway
					
						
							 Equivalent to HTTP status 502. Indicates that the
 server, acting as a gateway or proxy, received an invalid response from the upstream
 server that was accessed while attempting to fulfill the request.
							
								 For a detailed description of the HTTP status code 502, see
 Section 10.5.3 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 BadRequest
					
						
							 Equivalent to HTTP status 400.
 Indicates that improper syntax prevented the server from understanding the request .
							
								 For a detailed description of the HTTP status code 400, see Section 10.4.1 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Conflict
					
						
							 Equivalent to HTTP status 409. Indicates that a conflict with the current resource
 state prevented the completion of the request.
							
								 For a detailed description of the HTTP status code 409, see
 Section 10.4.10 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Continue
					
						
							 Equivalent to HTTP status 100. Indicates that the client is allowed to continue with the request.
							
								 For a detailed description of HTTP status code 100, see
 Section 10.1.1 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Created
					
						
							 Equivalent to HTTP status 201.
 Indicates that the request has been fulfilled, resulting in the creation of a new resource. The most specific URI for this resource is contained
 by the Location header field of the response.
							
								 For a detailed description of the HTTP status code 201, see
 Section 10.2.2 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 ExpectationFailed
					
						
							
 Equivalent to HTTP status 417. Indicates that the Expect request-header field condition could
 not be met by the server, or the server is a proxy and has unambiguous evidence
 that the next-hop server cannot meet the condition.
							
								 For a detailed description of the HTTP status code 417, see
 Section 10.4.18 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Forbidden
					
						
							 Equivalent to HTTP status 403. Indicates that the server understood but refuses to fulfill the request.
							
								 For a detailed description of the HTTP status code 403, see
 Section 10.4.4 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Found
					
						
							 Equivalent to HTTP status 302. Indicates
 that the requested resource is temporarily located on a different URI.
							
								
									 is a synonym for .
								 The default action when this status is received
 is to follow the Location header of the response. When the original
 request method was POST, the redirected request will use the GET method.
								 For a detailed description of the HTTP status code 302, see Section 10.3.3 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 GatewayTimeout
					
						
							
 Equivalent to HTTP status 504. Indicates that the server, acting as a gateway or proxy, timed out while waiting for a response from an
 upstream server accessed in an attempt to fulfill the request.
							
								 For a detailed description of the HTTP status code 504, see
 Section 10.5.5 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Gone
					
						
							 Equivalent to HTTP status 410. Indicates both that the
 requested resource is no longer available
 on the server and no forwarding address is known.
							
								 For a detailed description of the HTTP status code 410, see
 Section 10.4.11 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 HttpVersionNotSupported
					
						
							 Equivalent to HTTP
 status 505. Indicates that the HTTP protocol version used by the request is not
 supported by the server.
							
								 For a detailed description of the HTTP status code 505, see
 Section 10.5.6 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 InternalServerError
					
						
							 Equivalent to HTTP status 500. Indicates that the request could not be fulfilled by the server due to an unexpected condition.
							
								 For a detailed description of the HTTP status code 500, see
 Section 10.5.1 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 LengthRequired
					
						
							 Equivalent to HTTP status 411. Indicates that the server refuses to accept the request because its Content-length header is undefined.
							
								 For a detailed description of the HTTP status code 411, see
 Section 10.4.12 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 MethodNotAllowed
					
						
							 Equivalent to HTTP status 405. Indicates that the method specified in the Request-Line
 is not allowed for the requested resource.
							
								 For a detailed description of the HTTP status code 405, see
 Section 10.4.6 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 MovedPermanently
					
						
							 Equivalent to HTTP status 301. Indicates that a new, permanent URI has been
 assigned to the requested resource. All future references should use one of the
 returned URIs.
							
								 The default action when this status is received is to
 follow the Location header of the response. When the original request method was POST,
 the redirected request will use the GET method.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 301, see Section 10.3.2 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 MovedPermanently
					
						
							 Equivalent to HTTP status 301. Indicates that a new, permanent URI has been assigned to the requested resource. All future references should use one of the returned URIs.
							
								 The default action when this status is received is to
 follow the Location header of the response.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 301, see Section 10.3.2 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Ambiguous
					
						
							 Equivalent
 to HTTP status 300. Indicates that multiple representations, each with a specific location,
 correspond to the requested resource. Agent-driven negotiation information is provided
 so that the request can be redirected by the user (or user agent) to the location of the preferred representation.
							
								 The default action is to treat this status as a redirect
 and follow the contents of the Location header of the response.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 300, see Section 10.3.1 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 NoContent
					
						
							 Equivalent to HTTP status 204. Indicates that the request has been fulfilled by the
 server and no entity-body was returned by the server.
							
								 For a detailed description of the HTTP status code 204, see
 Section 10.2.5 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 NonAuthoritativeInformation
					
						
							 Equivalent to HTTP status 203.
 Indicates that a local or a third-party
 copy rather than the origin server provided the metainformation returned in the entity-header.
							
								 For a detailed description of the HTTP status code 203, see
 Section 10.2.4 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 NotAcceptable
					
						
							 Equivalent to HTTP status 406. Indicates that the only response entities that can be generated by the requested resource have content
 characteristics that are not acceptable according to the accept headers sent in the request.
							
								 For a detailed description of the HTTP status code 406, see
 Section 10.4.7 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 NotFound
					
						
							 Equivalent to HTTP status 404. Indicates that the server did not find a resource that matches
 the requested URI.
							
								 For a detailed description of the HTTP status code 404, see
 Section 10.4.5 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 NotImplemented
					
						
							 Equivalent to HTTP status 501. Indicates that
 the functionality required to fulfill the request is not supported by the server.
 This is appropriate, for example, if the server does not recognize the request method and cannot support it for any resource.
							
								 For a detailed description of the HTTP status code 501, see
 Section 10.5.2 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 NotModified
					
						
							 Equivalent to HTTP status 304. Indicates that the
 client has performed a conditional GET request and access is allowed, but the document has not been modified.
							
								 For a detailed description of the HTTP status code 304, see Section 10.3.5
 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 OK
					
						
							 Equivalent to HTTP status 200. Indicates that the request succeeded.
 The method used by the request determines the information returned with the response
 as described in the following table.
							
								
									 Method
									 Information returned
								
								
									 GET
									 The entity that corresponds to the requested
 resource.
								
								
									 HEAD
									
 The entity-header fields that correspond to the requested resource. Does
 not return the message-body.
								
								
									 POST
									 An entity
 that contains or describes the result of the action.
								
								
									 TRACE
									 An entity
 that contains the request message received by the server.
								
							
							
								 For a detailed description of the HTTP status code 200, see
 Section 10.2.1 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 PartialContent
					
						
							 Equivalent to HTTP status 206. Indicates that the server has
 fulfilled a partial GET request for the resource. The request is required to have
 included a Range header field that indicates the desired range.
							
								 For a detailed description of the HTTP status code 206, see
 Section 10.2.7 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 PaymentRequired
					
						
							 Equivalent to HTTP status 402.
 is reserved for future use.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 PreconditionFailed
					
						
							 Equivalent to HTTP status 412. Indicates
 that a precondition given in one or more of the request-header fields
 was tested on the server but evaluated to
 false.
							
								 Conditions are set with conditional request headers such as If-Match,
 If-None-Match, or If-Unmodified-Since.
								 For a detailed description of the HTTP status code 412, see Section 10.4.13 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 ProxyAuthenticationRequired
					
						
							 Equivalent to HTTP status 407. Indicates that
 the client is required to authenticate itself to the
 proxy before proceeding.
							
								 The Proxy-authenticate header contains the details of how to perform the
 authentication.
								 For a detailed description of the HTTP status code 407, see Section 10.4.8 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Found
					
						
							 Equivalent to HTTP status 302. Indicates that the requested resource is
 temporarily located on a different URI.
							
								 The default action when this status is received is to follow the
 Location header of the response. When the original request method was POST,
 the redirected request will use the GET method.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 302, see Section 10.3.3 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 TemporaryRedirect
					
						
							 Equivalent to HTTP status 307. Indicates that the requested resource is
 temporarily located under a different URI.
							
								 The default action when this status is received is to follow the Location
 header associated with the response. When the original request method was POST,
 the redirected request will also use the POST method.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 307, see Section 10.3.8 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 RedirectMethod
					
						
							 Equivalent to HTTP status 303.
 Automatically
 redirects the client to the URI specified in the Location header as the result
 of a POST.
							
								 The request to the resource specified by the Location header will be made
 with a GET.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 303, see Section 10.3.4 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 RequestedRangeNotSatisfiable
					
						
							 Equivalent to HTTP status
 416. Indicates that none of the values specified by the Range request-header field
 overlap the current extent of the
 selected resource, and no If-Range request-header field was contained by the request.
							
								 For a detailed description of the HTTP status code 416, see
 Section 10.4.17 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 RequestEntityTooLarge
					
						
							 Equivalent to HTTP status 413. Indicates that the
 request entity is larger that the server is willing or able to process, so the server is not
 processing the request.
							
								 For a detailed description of the HTTP
 status code 413, see Section 10.4.14 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 RequestTimeout
					
						
							 Equivalent to HTTP status 408. Indicates that the
 server timed out before the client produced a request.
							
								 For a detailed description of the HTTP status code 408, see
 Section 10.4.9 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 RequestUriTooLong
					
						
							
 Equivalent to HTTP status 414. Indicates
 that the Request-URI is longer than the server will interpret, so the server is not servicing the
 request.
							
								 For a detailed description of the HTTP status code 414, see
 Section 10.4.15 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 ResetContent
					
						
							 Equivalent to HTTP status 205. Indicates that the server
 has fulfilled the request and the document view that yielded the request is to be reset by
 the user agent.
							
								 For a detailed description of the HTTP status code 205, see
 Section 10.2.6 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 RedirectMethod
					
						
							 Equivalent to HTTP status 303. Automatically redirects the client to the URI
 specified in the Location header as the result of a POST.
							
								 The request to the resource specified by the Location header will be made
 with a GET.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 303, see Section 10.3.4 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 ServiceUnavailable
					
						
							 Equivalent to HTTP status 503. Indicates that a temporary overloading or maintenance of
 the server is preventing it from handling the request.
							
								 For a detailed description of the HTTP status code 503, see
 Section 10.5.4 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 SwitchingProtocols
					
						
							
 Equivalent to HTTP status 101. Indicates that the server understands
 and will comply with the client's request to switch the protocol
 being used by the current connection to the protocols defined by the response's Upgrade header.
							
								 For a detailed description of the HTTP status code 101, see
 Section 10.1.2 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 TemporaryRedirect
					
						
							 Equivalent to HTTP status 307. Indicates that the requested resource is temporarily
 located under a different URI.
							
								 The default action when this status is received is to follow the Location
 header associated with the response. When the original request method was POST,
 the redirected request will also use the POST method.
								
									 is a synonym for .
								 For a detailed description of the HTTP status code 307, see Section 10.3.8 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Unauthorized
					
						
							 Equivalent to HTTP status 401. Indicates that user authentication is required
 for the request.
							
								 The WWW-Authenticate header contains the details of how to perform the
 authentication.
								 For a detailed description of the HTTP status code 401, see Section 10.4.2 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 UnsupportedMediaType
					
						
							 Equivalent to HTTP status
 415. Indicates that the format of the entity of the request is not supported by the requested resource, so the server did not service the request.
							
								 For a detailed description of the HTTP status code 415, see
 Section 10.4.16 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 Unused
					
						
							 Equivalent to HTTP status 306.
							
								 This status code is not used in HTTP/1.1.
								 For a detailed description of the HTTP status code 306, see Section 10.3.7 of IETF RFC 2616 -
 HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.HttpStatusCode
					
					
					 UseProxy
					
						
							 Equivalent to HTTP status 305. Indicates that the requested
 resource is required to be accessed through the proxy identified in the Location header field.
							
								 For a detailed description of the HTTP status
 code 305, see Section 10.3.6 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Defines the HTTP version numbers supported by and
 .
				
				
					
						 This class defines the HTTP versions supported by
 and . The HTTP version number
 is used to control version-specific features of HTTP, such as pipelining and
 chunking.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Field
					
						 System.Version
					
					
					
						
							 Defines a instance for HTTP 1.0.
						
						
							 This field represents a with a value
 equal to 1, and a value equal to 0.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Version
					
					
					
						
							 Defines a instance for HTTP 1.1.
						
						
							 This field represents a with a value
 equal to 1, and a value equal to 1.
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides an HTTP-specific implementation of the
class.
				
				
					 This class implements
 properties and methods defined in and provides additional
 properties and methods that enable the user to interact directly with servers
 using the Hypertext Transfer Protocol (HTTP).
					
						 Instances of this class are
 automatically created by the class. For example,
 an instance of is created when the
 method is called and a Uniform Resource Identifier (URI) beginning with http:// is specified.
 It is expected that an instance of this class will be constructed for every
 request made to the server. For example, after a call to
 cancels an asynchronous operation, a call to causes a to
 be thrown.
						 Requests can be sent synchronously or
 asynchronously. The method
 sends a request to
 a server synchronously and returns a
 instance containing the response. An asynchronous request for a resource
 is sent using the and methods.
						 Request data is sent using a request stream. The
, , and methods
return a instance used to send
data.
						 When errors occur while accessing an Internet resource,
 the class throws a
 , and the
 property that indicates the source of the error. When is , the property contains the
 received from the Internet resource.
						 Certain HTTP headers are protected; the user cannot set
 them directly in the header collection obtained from the
 property. Instead, these headers are set using the
 associated properties of a instance, or are set by the system. The following table describes how
 each protected header is set.
						
							
								 Header
								 Set by
							
							
								 Accept
								
									
								
							
							
								 Connection
								
									
										
									
									
										
									
								
							
							
								 Content-Length
								
									
								
							
							
								 Content-Type
								
									
								
							
							
								 Expect
								
									
								
							
							
								 Date
								 Set to current date by the system.
							
							
								 Host
								 Set to current host by the
 system.
							
							
								 if-Modified-since
								
									
								
							
							
								 Range
								
									
								
							
							
								 Referer
								
									
								
							
							
								 Transfer-Encoding
								
									
										
									
									
										
									
								
							
							
								 User-Agent
								
									
								
							
						
					
				
			
			
				 System.Net.WebRequest
			
			
			
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Cancels
 an asynchronous operation.
						
						
							
								
cancels any pending asynchronous operation. After this method is called, calling , , , , , or will throw a with set to
.
							
								 If no pending request exists, calling this method does not cause an exception
 to be thrown.
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets a containing the value of the HTTP Accept header.
						
						
							 A containing the value of the HTTP Accept header. The default value of this property is
 .
						
						
							
								 For additional information see section
 14.1 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Adds a HTTP Range header to the current request for a specific range from the
 beginning or end of the requested data.
						
						 A that contains the description of the range.
						 A that designates the starting or ending point of the range. If this value is positive, the range is from the beginning of the data to . If this value is negative, the range is from to the end of the data.
						
							 is .
						
							 is invalid.
						 The range header could not be added.
						
							
								 The HTTP Range header specifies either a single range of bytes or a set of
 byte ranges in an entity-body to be returned. If the server accessed by the
 current instance supports the use of this header, this allows for the partial
 retrieval of the entity due to, for example, the entity being particularly
 large or there having been a failed transfer of data.
								 For more information on the HTTP Range header, see Section 14.35 of RFC
 2616.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Adds a HTTP Range header to the current instance for
 a specified range.
						
						 A that contains the description of the range.
						 A designating the position at which to start sending data.
						 A designating the position at which to stop sending data.
						
							 is .
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 > .
						
						
							 is invalid.
						 The range header could not be added.
						
							
								 The HTTP Range header specifies either a single range of bytes or a set of
 byte ranges in an entity-body to be returned. If the server accessed by the
 current instance supports the use of this header, this allows for the partial
 retrieval of the entity due to, for example, the entity being particularly
 large or there having been a failed transfer of data.
								 For more information on the HTTP Range header, see Section 14.35 of IETF RFC
 2616.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Adds a HTTP Range header to the current instance for
 a specific range from the beginning or end of the requested data.
						
						 A that specifies the starting or ending point of the range. If this value is positive, the range is from the beginning of the data to . If this value is negative, the range is from to the end of the data.
						 The range header could not be added.
						
							 This method is equivalent to ("bytes",).
							
								 The HTTP Range header specifies either a single range of bytes or a set of
 byte ranges in an entity-body to be returned. If the server accessed by the
 current instance supports the use of this header, this allows for the partial
 retrieval of the entity due to, for example, the entity being particularly
 large or there having been a failed transfer of data.
								 For more information on the HTTP Range header, see Section 14.35 of RFC
 2616.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Adds a HTTP Range header to the current instance for a specified range.
						
						 A indicating the starting byte position of the entity-body data to be returned.
						 A indicating the last byte.
						
							
								 < 0.
							 -or-
							
								 < 0.
							 -or-
							
								 > .
						
						 The range header could not be added.
						
							 This method is equivalent to ("bytes", ,).
							
								 The HTTP Range header specifies either a single range of bytes or a set
 of byte ranges in an entity-body to be returned. If the server accessed by
 the current instance supports the use of this header, this allows for the
 partial retrieval of the entity due to, for example, the entity being
 particularly large or there having been a failed transfer of data.
								 For more information on the HTTP Range header, see Section 14.35 of RFC
 2616.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Uri
					
					
					
						
							 Gets the URI that responds to the current request.
						
						
							 A
identifying the Internet resource that responds to the current request.
The default is the URI used by the
method to initialize
the current
instance.
						
						
							 This property is
 read-only.
							 The
 value of this property is set to the URI that is the source of
 the response after all redirections are complete.
							
								 The URI of the original request is kept in the property.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value that indicates whether the current request will follow redirection responses.
						
						
							
								 if the current request will automatically follow redirection
 responses from the Internet resource; otherwise
 . The default value is
 .
						
						
							
								 Set to to allow the current request to
 automatically follow HTTP redirection headers to the new location of a
 resource.
								 The maximum number
 of redirections to follow is set by the
 property.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value that indicates whether to buffer the data sent to the Internet resource requested by the
 current instance.
						
						
							
								 to enable
 buffering of the data sent
 to the Internet resource requested by the current instance; to disable buffering. The default is
 .
						
						
							
								 When is
 , the data is buffered in memory so it is ready to be resent in the
 event of redirections or authentication requests.
								 Depending on available memory, setting
as
might
impact system performance when uploading large amounts of data.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
					
					
						
							 Begins an asynchronous request for a stream in which to write data to
 be sent in the current instance.
						
						 A delegate to be called when the stream is available. Can be .
						 A containing state information for the asynchronous request. Can be .
						
							 A that contains information about the asynchronous operation.
						
						
							 The stream is being used by a previous call to .
							 -or-
							 No writeable stream is available.
						
						
							 The property of the current instance is not set.
							 -or-
							 The property of the current instance is "GET" or "HEAD".
						
						
							 This method starts an asynchronous operation. To get the
 request stream, call the method and specify the object returned by
 this method. The
 method
 should be called exactly once for each call to .
							
							 If the parameter is not
 , the method(s) referenced by are invoked
 when the asynchronous operation completes. The object
 returned by this method is passed as the argument to the method(s) referenced by

.
							 The parameter can be any object that the
caller wishes to have available for the duration of the asynchronous operation.
This object is available via the
property of the
object returned by this method.
							 The value of the property of the current instance is
required to be set prior to calling this method.
							
								 The method(s) invoked by
 the callback delegate can call the method to retrieve the stream.
								 This method is the asynchronous version of
 the method.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
					
					
						
							 Begins sending the current HTTP request
 asynchronously.
						
						 A delegate to be called when the stream is available. Can be .
						 A containing state information for the asynchronous request. Can be .
						
							 A that contains information about the asynchronous
 operation.
						
						
							 or was previously called on this instance.
						 The property of the current instance has not been set.
						
							 was previously called.
						
							 This method starts an asynchronous operation. To get
 the response, call the method and
 specify the object returned by
 this method. The method
 should be called exactly once for each call to .
							
							 If the parameter is not
 , the method referenced by is invoked
 when the asynchronous operation completes. The object
 returned by this method is passed as the argument to the method referenced by
 .
							 The parameter can be any object that the
caller wishes to have available for the duration of the asynchronous operation.
This object is available via the
property of the object returned by this method.
							
								 The method(s) invoked by the callback delegate can call the method to retrieve the response.
								 This method is the asynchronous version of the method.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the value of the Connection HTTP header.
						
						
							 A containing the
 value of the Connection HTTP header. The
 default value is .
						
						 The value of is set to "Keep-alive" or "Close". This value is case insensitive.
						
							 The current request sends the property to the Internet resource as
 the Connection
 HTTP header.
							
								 If is
 , the value "Keep-alive" is appended to the
 end of the Connection
 header.
								 For additional
 information see section 14.10 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the name of the connection group for the current instance.
						
						
							 A that contains the name of the connection group for the current instance. The default value is
 .
						
						
							
								 The property
 enables a request to be associated with a connection group. This is useful when
 an application makes requests to one server for different users, such as a Web
 site that retrieves customer information from a database server.
								 Each
 connection group creates additional connections for a server. This might
 result in exceeding for that server.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets or sets the Content-length HTTP header.
						
						
							 A value that specifies the number of bytes of data to send to the Internet resource. The default is -1,
 which indicates that this value has not been set.
						
						 Data has already been written to the request stream.
						 A value less than zero is specified for a set operation.
						
							 The property contains the value to send
 as the Content-length
 HTTP header of the request.
							 Any value other than -1 in the
property indicates that the request will upload data;
only methods that upload data are allowed in the
property.
							 This property is required to be set prior to writing data to the request data
 stream. Once the property is set to a value, that
 number of bytes is required to be written to the request data stream.
 Get the request data stream by calling , or and
.
							
							
								 For additional information see section 14.13 of IETF RFC
 2616 - HTTP/1.1.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the value of the Content-type HTTP header of the current instance.
						
						
							 The value of the Content-type HTTP header of the current instance. The default
 value is
 .
						
						
							 The property contains the media type
 of the current instance. Values assigned to the property replace any existing
 contents when the request sends the Content-type HTTP header.
							
								 To clear the Content-type HTTP header, set the property
 to
 .
								 For additional information see section 14.17 of IETF RFC
 2616 - HTTP/1.1.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.HttpContinueDelegate
					
					
					
						
							 Gets or sets the delegate method whose methods are invoked when an HTTP 100-continue response is received
 by the current instance.
						
						
							 A
that references the methods that are invoked when an HTTP Continue response is
received. The default value is
.
						
						
							
								
 This delegate is useful to display the status of responses received by the current
 instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.ICredentials
					
					
					
						
							 Gets or sets the credentials used for authenticating
 the current request.
						
						
							 A object containing
 the authentication credentials associated with
 the current instance. The default is
 .
						
						
							
								 The property contains
 authentication information to identify the client making the request. The property can be either an instance
 of , in which case the user, password, and domain
 information contained in the instance is used to authenticate
 the request, or it can be an instance of , in which case the uniform resource
 identifier (URI) of the request is used to determine the user, password, and
 domain information to use to authenticate the request.
								 This property overrides
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
						
					
					
						
							 Completes an asynchronous request for a stream that was
 started by the
 method.
						
						 The object that holds the state information for the asynchronous operation.
						
							 A to write request data to.
						
						
							 is .
						
							 was not returned by the current instance from a call to .
						
							 This method was called previously using
							
							 -or-
							 No stream is available.
						
						
							
								 was previously called.
							 -or-
							 An error occurred while processing the request.
						
						
							
								 The caller is responsible for calling the
 method to close the
 stream.

								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.WebResponse
					
					
						
					
					
						
							 Returns a that contains a response to the specified pending
 Internet request.
						
						 The object that hold the state information for the asynchronous operation.
						
							 A that contains a response to the Internet request
 referenced by .
						
						
							 is .
						
							 was not returned by the current instance from a call to .
						
							 This method was called previously using
							
							 -or-
							 The property of the current instance is greater than 0 but the data has not been written to the request stream.
						
						
							
								 was previously called.
							 -or-
							 An error occurred while processing the request.
						
						
							
								 This method completes an asynchronous request for
 an Internet resource that was started by calling .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the value of the HTTP Expect header.
						
						
							 A that contains the
 contents of the HTTP Expect header. The default value is
 .
						
						 The value specified for a set operation is "100-continue". This value is case insensitive.
						
							
								 By default, is . Other values can be added to the
 list that maintains, or all values except "100-continue" can be
 deleted from the list by setting to .
								 For additional information see section 14.20 of IETF RFC
 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
					
						
							 Returns a for writing data to the Internet resource requested by the current instance.
						
						
							 A for writing
 data to an Internet resource requested by the current instance.
						
						
							 The property of the current instance is "GET" or "HEAD".
							 -or-
							 The property of the current instance is not set.
						
						
							 The method was called more than once.
							 -or-
							 No writeable stream is available.
						
						
							
								 was previously called.
							 -or-
							 The timeout period for the request expired.
							 -or-
							 An error occurred while processing the request.
						
						
							 The value of the
 property is required to be set before writing data to the
 stream.

							
								 This method returns a stream to use to
 send data for the . Once the instance has been returned,
 data can be sent with the by using the method.
								 Call the method to close the stream and release
 the connection
 for reuse. Failure to close the stream might cause the application to run out of
 connections.

								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.WebResponse
					
					
					
						
							 Returns a response to an Internet request.
						
						
							 A containing the response from the Internet resource requested by the current
 instance.
						
						 The property of the current instance is not set.
						
							
								 was previously called.
							 -or-
							 The timeout period for the request expired.
							 -or-
							 An error occurred while processing the request.
						
						
							
								 This method returns a instance containing the response from the Internet resource requested
 by the current instance. The actual instance returned is an instance of
 , and can be typecast to that class to access
 HTTP-specific properties.
								 This method overrides
.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether a response has been received for the current
 instance.

						
						
							
								 if a response has been received; otherwise
 .
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.WebHeaderCollection
					
					
					
						
							 Gets or sets the collection of HTTP header name/value pairs associated with the
 current instance.
						
						
							 A containing the name/value pairs of the headers for
 the current instance.
						
						 A set operation was requested but data has already been written to the request data stream.
						
							
 The following table
 lists the HTTP headers that cannot be set using the collection
 returned by this property.
							
								
									 Header
									 Set by
								
								
									 Accept
									
										
 .
								
								
									 Connection
									
										
											
 .
										
											 .
									
								
								
									 Content-Length
									
										 .
								
								
									 Content-Type
									
										 .
								
								
									 Expect
									
										 .
								
								
									 Date
									 Set
 by the system to the current date.
								
								
									 Host
									 Set
 by the system to the current host information.
								
								
									 Range
									
										
.
								
								
									 Referer
									
										 .
								
								
									 Transfer-Encoding
									
										
											 .
										
										
											 .
									
								
								
									 User-Agent
									
										 .
								
							
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.DateTime
					
					
					
						
							 Gets or sets the value of the HTTP If-Modified-Since
 header.
						
						
							 A that contains the
 contents of the HTTP If-Modified-Since
 header. The default value is the current
 date and time of the system.
						
						
							
								 For additional
 information see section 14.25 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether to make a persistent connection to the server hosting the Internet resource requested by the current instance.
						
						
							
								 indicates
 that the current request will contain an HTTP Connection header with the value
 "Keep-alive"
 ; otherwise, . The default
 value is .
						
						
							
								 An application uses
to indicate a preference for persistent connections. When this property is , the application makes persistent connections to
the servers that support them.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the maximum number of redirects that the current instance will follow.
						
						
							 A value that
 indicates the maximum number of redirection responses that the current instance will follow. The
 default value is implementation-specific.
						
						 The value specified for a set operation is less than or equal to zero.
						
							
								 This
 property sets the maximum number of
 redirections for the request to follow if the property
 is .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the media type of the current request.
						
						
							 A that identifies the media type of the current request. The default value is
 .
						
						
							
								 The value of this
 property affects the property. When this property is set in
 the current instance,
 the corresponding media type is chosen from the list of character sets returned
 in the response HTTP Content-type
 header.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the HTTP protocol request method used by the current instance.
						
						
							 A containing an HTTP method. The default value
 is "GET".
						
						
							 , , or an invalid value was specified for a set operation.
						
							 If the property is set to any value other
 than -1, the property
 is
 required to be set to a protocol method that sends request data.
							 The
property
can be set to any of the following HTTP 1.1
protocol methods:
							
								
									 HTTP Method
									 Description
								
								
									 GET
									 Retrieves in entity-body form the
 information identified by the property of the current
 instance.
								
								
									 HEAD
									 Identical to GET except that the message-body is not
 returned in the response.
								
								
									 POST
									 Requests that the origin server accept the entity
 enclosed in the request as a new subordinate of the resource identified the
 Request-URI in the Request-Line.
								
								
									 PUT
									 Requests that the enclosed entity be stored
 under the supplied Request-URI.
								
								
									 DELETE
									 Requests that the origin server delete the resource
 identified by the Request-URI.
								
								
									 TRACE
									 Invokes a remote, application-layer loopback of the
 request message.
								
								
									 OPTIONS
									 Requests information about the communication
 options available on the request/response chain identified by the
 Request-URI. This allows the
 client to determine the options and/or requirements associated with a
 resource, or the capabilities of a server, without implying a resource
 action or initiating a resource
 retrieval.
									
								
							
							
								 For detailed information regarding these methods, see
 sections 9.2 to 9.8 of RFC 2616.
								 This property overrides
.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether to pipeline the current request to the Internet resource.
						
						
							
								 if the current request can be pipelined; otherwise,
 . The default is .
						
						
							 An application uses this property to indicate a preference for pipelined connections. If is , an application makes pipelined connections to servers that support them.
							
								 Pipelined connections are made only when the
property is .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a Boolean value that indicates whether to send HTTP
 preauthentication header information with current instance without waiting for
 an authentication challenge from the requested resource.
						
						
							
								 to send a HTTP
WWW-authenticate header with the current
 instance without waiting for an authentication challenge from the requested
 resource; otherwise, . The default is
 .
						
						
							 When is and credentials are supplied, the HTTP WWW-authenticate header is sent with the current
 instance without waiting for an authentication
 challenge from the requested resource; otherwise the request uses standard authentication procedures.
							
								 Set this property to to allow
 clients to improve server efficiency by avoiding extra round trips caused by
 authentication challenges.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Version
					
					
					
						
							 Gets or sets the version of the
 HTTP protocol to use for the current request.
						
						
							 A that represents
 the HTTP version to use for the request. The default is .
						
						 The HTTP version is set to a value other than 1.0 or 1.1.
						
							 The class supports only versions 1.0 and 1.1 of
 HTTP. Setting to a
 different version causes a exception to be thrown.
							
								 To set
 the property of the current instance, specify one of the members of
 the use the
 class.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.IWebProxy
					
					
					
						
							 Gets or sets network proxy information for the current instance.
						
						
							 The instance to
 use as a
 proxy for the current instance. The default value is set by calling .
						
						 A set operation was requested and the specified value was .
						 A set operation was requested but data has already been sent to the request stream.
						 The caller does not have permission for the requested operation.
						
							 The
property identifies the instance to use
to communicate with the destination server.
							
								 To specify that no proxy should be used, set the
property to the proxy instance returned by the method.
								 This property overrides .
							
						
						 Requires unrestricted . See .
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the value of the HTTP Referer header.
						
						
							 A containing the
 value of the HTTP Referer header. The default value is
 .
						
						
							
								 For additional
 information see section 14.36 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Uri
					
					
					
						
							 Gets the of the resource that receives requests sent by the current instance.
						
						
							 The of the resource that receives requests sent by the
 current instance.
						
						
							 This property is read-only.
							 This property is the instance passed to the current instance via the method.
							
								 Following a redirection header does not change the property.
 The URI of the resource
 that actually responded to the current instance is contained by property of the current
 instance.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether to send data in segments.
						
						
							
								
to send data in segments; otherwise,
 . The default value is .
						
						 A set operation was requested but data has already been written to the request data stream.
						
							 When is , the request sends data to the destination in segments. The
 destination server is required to support receiving chunked data.
							
								 Set this property
 to only if the server specified by the property of the current instance accepts chunked
 data (i.e. is HTTP/1.1 or greater in compliance). If the server does not
 accept chunked data, buffer all data to be written and send a HTTP Content-Length header with the
 buffered data.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.ServicePoint
					
					
					
						
							 Gets the service point to use for the current instance.
						
						
							 A that represents the network connection to the destination. The value of this property can be, but is not required to be, until the method is called.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the length of time before the request times out.
						
						
							 A indicating the number of milliseconds to wait for a response until the request times out,
 or to indicate that the request does not
 time out.
						
						
							 A value less than zero and not equal to is specified for a set operation.
						
						
							
								 is the number of milliseconds that a
 synchronous request made with the method waits for a response. If a resource does
 not respond within the time-out period, the request throws a with
 the property set to .
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the value of the HTTP
 Transfer-encoding header.
						
						
							 A that contains the value of the
 HTTP Transfer-encoding header.
 The default value is .
						
						
							 is set when is .
						
							 is set to the value "Chunked". This value is case insensitive.
						
							 This property can be set in the current instance only if
 the property in the current instance is
 .
							
								 Clearing by setting it to has no effect on
 the value of .
								 Values assigned to the property replace any
 existing contents.
								 For additional information see section 14.41 of IETF RFC
 2616 - HTTP/1.1.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the value of the HTTP
 User-agent header.
						
						
							 A containing the value of the HTTP User-agent header. The default value is
 .
						
						
							
								 For additional
 information see section 14.43 of IETF RFC 2616 - HTTP/1.1.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides an HTTP-specific implementation of the

 class.
				
				
					
						 The class contains support for the
 properties and methods included in with
 additional
 elements that
 enable the user to interact directly with the Hypertext Transfer Protocol (HTTP).
						 Expected usage is that instances of this class are not created directly but
 are obtained by calling
 . To obtain the response from the Internet resource as a

 , call the method.

						 Certain HTTP headers are protected such that the user
 cannot set them directly in the header collection. Instead, these headers can be
 set via the properties of the class or are set by the system. The following table
 details these protected headers.
						
							
								 Header
								 Set by
							
							
								 Accept
								
									
								
							
							
								 Connection
								
									
										
									
									
										
									
								
							
							
								 Content-Length
								
									
								
							
							
								 Content-Type
								
									
								
							
							
								 Expect
								
									
								
							
							
								 Date
								 Set to current date by the system.
							
							
								 Host
								 Set to current host by the system.
							
							
								 if-Modified-since
								
									
								
							
							
								 Range
								
									
								
							
							
								 Referer
								
									
								
							
							
								 Transfer-Encoding
								
									
										
									
									
										
									
								
							
							
								 User-Agent
								
									
								
							
						
					
				
			
			
				 System.Net.WebResponse
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the character set used for the current instance.
						
						
							 A that
 represents the character set used for the current instance.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							
								 For detailed
 information about character sets, see Section 3.4 of RFC 2616.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the response stream.
						
						
							 The method closes the response stream and releases the connection to the Internet resource for reuse by other requests.
							
								 Call either the or method to close the stream and release the connection for reuse. It is not necessary to call both and , but
 doing so does not cause an error. Failure to close the stream might cause an
 application to run out of connections.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the
 method used to encode the body of the response.
						
						
							 A that describes the method used to encode the body of the response.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 The property contains the value of the

header returned with the response.
							
								 For detailed information about content encoding,
 see Section 3.5 of RFC 2616.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets the content length of the response data being received.
						
						
							 A
containing the number of bytes returned from the Internet resource. This
value does not include header information.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 The property contains the value of the
 header returned with the response. If the

header
is not set in the response,
is set to the value -1.
							
								 This property
 overrides
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the content type of the
 response.

						
						
							 A that
 represents the content type of the response data.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 The property contains the value of the

header returned with the response.
							
								 This property
 overrides
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the current
 instance and optionally releases the managed resources.
						
						
							 to release both managed and unmanaged resources; to release only unmanaged resources.
						
							
								 When is ,
 this method releases all resources held by any managed objects that the current
 instance references.
							
							
								 When
 overriding (), be careful not to reference objects that have been
 previously disposed in an earlier call to as
 can be called multiple times by
 other objects. .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for the current instance.
						
						 The current instance has been disposed.
						
							 The algorithm used to generate the hash code is
 unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns a specified header from the current response.

						
						 A that specifies the header value to return.
						
							 A containing the value of the specified header.

						
						 The current instance has been disposed.
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
					
						
							 Returns a for reading the body of the response from the
 server.
						
						
							 A containing the body of the response.
						
						 The current instance has been disposed.
						
							 The
method returns the data stream from the requested Internet
resource.
							
								
 Call either the or method to close the stream and release the
 connection for reuse. It is not necessary to call both and , but doing so does
 not cause an error. Failure to close the stream might cause an application
 to run out of connections.

								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.WebHeaderCollection
					
					
					
						
							 Gets the
 headers associated with the current response from the server.
						
						
							 A containing the header information returned with the
 response.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							
								 The property is a collection
 of name/value pairs containing the HTTP header values returned
 with the response. The following table lists common headers and
 the properties that store their values.
								
									
										 Header
										 Property
									
									
										 Content-Encoding
										
											
										
									
									
										 Content-Length
										
											
										
									
									
										 Content-Type
										
											
										
									
									
										 Last-Modified
										
											
										
									
									
										 Server
										
											
										
									
								
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.DateTime
					
					
					
						
							 Gets the last
 date and time that the contents of the response were modified.
						
						
							 A
value containing the date and time the contents of the response were
modified.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 The property contains the value of the
 header
 received with the response.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the method used to return the response.

						
						
							 A that represents the HTTP method used to return the response.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							
								 The property can be set to any of the
 HTTP 1.1 protocol methods: GET, HEAD, POST, PUT, DELETE, TRACE, or OPTIONS. The
 following table describes these methods.
								
									
										 Item
										 Description
									
									
										 GET
										 Retrieves in entity-body form the
 information identified by the property of the request
 associated with the current instance.
									
									
										 HEAD
										 Identical to GET except that the
 message-body is not returned in the response.
									
									
										 POST
										 Requests that the origin server accept the
 entity enclosed in the request as a new subordinate of the resource
 identified the Request-URI in the Request-Line.
									
									
										 PUT
										 Requests that the enclosed entity be stored
 under the supplied Request-URI.
									
									
										 DELETE
										 Requests that the origin server delete the
 resource identified by the Request-URI.
									
									
										 TRACE
										 Invokes a remote, application-layer loopback
 of the request message.
									
									
										 OPTIONS
										 Requests information about the communication
 options available on the request/response chain identified by the
 Request-URI. This allows the client
 to determine the options and/or requirements associated with a resource,
 or the capabilities of a server, without implying a resource action or
 initiating a resource
 retrieval.
										
									
								
								 For detailed information regarding these methods, see sections 9.2 to 9.8 of
 RFC 2616.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Version
					
					
					
						
							 Gets
 the version of the HTTP protocol used in the response.

						
						
							 A
that contains the HTTP protocol version of the response.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 The property contains the number
 of the response sent by the Internet resource.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Uri
					
					
					
						
							 Gets the
of the Internet resource that actually responded to the request.
						
						
							 A
representing the resource that actually responded to the request.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							
								 The property contains the URI of the Internet resource that
 actually responded to the request. This URI might not be the same as the
 originally requested URI if the request was redirected by the original
 server.
								 This method overrides
.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the server that sent the response.

						
						
							 A containing the name of the server that sent the response.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 The
property contains the value of the header
returned with the response.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.HttpStatusCode
					
					
					
						
							 Gets the status of the response.
						
						
							 A value.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 The value
 indicates the status of the HTTP response. The expected values are defined in the enumeration.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the status description returned with the response.

						
						
							 A that describes the status of the response.
						
						 The current instance has been disposed.
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by types that perform client authentication.
				
				
					 The interface
 defines the properties and methods that types are required to implement to handle
 client authentication. Types that implement this interface are called
 authentication modules. In addition to implementing this interface, an
 authentication module implements an authentication protocol, such as the
 Kerberos protocol. The
 property
 value is a case-insensitive string that typically indicates the protocol implemented by
 the module. Each authentication module registered with the authentication
 manager is required to have a unique .
 The following string values are reserved for use by modules
 implementing the indicated protocols:

					
						
							 AuthenticationType
							 Protocol
						
						
							
								 "basic"
							
							 Basic as defined by IETF RFC 2617
						
						
							 "digest"
							 Digest access as defined by IETF RFC
 2617
						
						
							 "kerberos"
							 Kerberos as defined by IETF RFC
 1510
						
					
					
						 Authentication modules are registered with the
 authentication manager () by calling the
 method. When the authentication manager receives an
 authentication request, registered authentication modules are given the
 opportunity to handle the authentication in their method. Similarly, when a
 client wishes to avoid waiting for the server to request authentication, it can
 request preauthentication information to send with a request. If
 the property of a registered
 module returns , it is
 among the modules that are given the opportunity to provide the
 preauthentication information via the

 method.
						 Not all modules receive all authentication and
 preauthentication requests. The authentication manager searches for an
 authentication module by invoking the or method of each registered
 module in the order in which it was registered. Once a module returns
 a

 instance, indicating that it handles the
 authentication, the authentication manager terminates the search.
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Net.Authorization
					
					
						
						
						
					
					
						
							 Returns an instance of the class that provides a
 response to an authentication challenge.
						
						 A containing the authentication challenge sent by the server. The content of this string is determined by the authentication protocol(s) used by the server that issued the challenge.
						 The instance that received .
						 The credentials of the instance that received .
						
							 A instance containing the
 challenge response, or if the challenge cannot be handled.
						
						
							
								 If the
 authentication module can handle , this method
 proceeds with the authentication in accordance with the authentication protocol implemented by the current
 instance and returns a instance containing the challenge response. If the authentication module cannot handle
 the challenge, this method returns . If the authentication module encounters an
 error while conducting the authentication process, this method can, but
 is not required to throw an exception.
							
							
								 Implement this
 method to receive and optionally handle requests for client authentication from
 the authentication manager.
							
							
								 The class invokes the
method on registered authentication modules to allow modules to handle a
server challenge.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the authentication type of the current instance.
						
						
							 A indicating the
 authentication type of the current authentication module.
						
						
							 This property is read-only.
							
								 The following string values are reserved for use by modules implementing the
 indicated protocols:
								
									
										
											 AuthenticationType
											 Protocol
										
										
											 "basic"
											 Basic as defined by IETF RFC 2617
										
										
											 "digest"
											 Digest access as defined by IETF RFC 2617
										
										
											 "kerberos"
											 Kerberos as defined by IETF RFC 1510
										
									
								
							
							 Implement this
property to return a string that identifies all instances of the current type.
The string returned by this property typically indicates the protocol
implemented by the current type. For example, an authentication module that
implements the Digest protocol would typically return "digest" as its .
							
								 The
property must be unique for all registered authentication modules. The value of
this property is used by the method to determine if there
is already an authentication module registered for the type.
Modules can also be unregistered by passing the value of this property to the

method.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the authentication module supports
 preauthentication.
						
						
							
								 if the authentication module supports
 preauthentication; otherwise .
						
						
							 This property is read-only.
							
								 The property is set to to indicate that the authentication module can respond with a
 instance when the method is called. This
 property returns if the protocol implemented by
 the current authentication module does not support preauthentication.
							
							
								 This method is used by the authentication
 manager to determine which modules receive requests by clients for authentication
 information that will be supplied in anticipation of a server's request for
 authentication. This method controls whether the method can be
 called.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.Authorization
					
					
						
						
					
					
						
							 Returns an instance of the class containing client authentication information.
						
						 The instance associated with the authentication request.
						 The credentials associated with the authentication request.
						
							 A instance containing client authentication
 information to be sent with , or if the current instance does not support preauthentication.
						
						
							
								 This method returns an instance of the class containing authentication information to be
 sent with the request. This method is required to return
 if it cannot handle preauthentication requests
 from the authentication manager.
							
							
								 Implement this method if the
 protocol implemented by the current instance supports
 preauthentication.
							
							
								 This method is used by
 the authentication manager to handle requests by clients
 for authentication information that will be used to preempt a server's
 request for authentication. This method is not called unless the property returns
 .
							
							
								
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Implemented by types that supply network credentials used to authenticate clients.
				
				
					 The interface defines the method, which
 is used to supply network credentials for client authentication.
				
			
			
			
			
				
					
					
					 Method
					
						 System.Net.NetworkCredential
					
					
						
						
					
					
						
							 Returns a object that is associated with a Uniform Resource Identifier (URI) and authentication type.
						
						 A representing the URI for which the client is providing authentication.
						 A containing the type of authentication. This value is required to be identical to the of the authentication module that uses the credential returned by this method.
						
							 A associated with the specified URI and authentication
 type, or if the credentials cannot be provided.
						
						
							
								 As described above.
							
							
								 Implement this method to return
 credentials information appropriate for the specified authentication
 type.
							
							
								 This method returns an object suitable for passing to the method
 of the authorization module registered for the specified authentication type.
 For additional information, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an Internet Protocol (IP) address.
				
				
					 An instance of the class contains the
 value of an address on an IP
 network. This address is stored internally as a

 in network-byte-order.
					
						

 Different conventions are in use
 for ordering bytes within multi-byte data types. All IP address values must be sent over the network in
 network-byte-order. Network-byte-order puts the most significant byte first (also known
 as big-endian order). On the host, the ordering of bytes
 is platform-specific and this ordering is referred to as host-byte-order.
					
					 The IP address can be represented as four numbers in the range
 0-255 separated by periods (for example, "192.168.1.2"), known as dotted-quad notation.
					
						 The address space is fragmented into
 different types determined by bits 31-28 as shown in the following table.
						
							
								 Bits 31-28
								 Address type
								 Address range
							
							
								 0xxx
								 class A
								 0.0.0.0-127.255.255.255
							
							
								 10xx
								 class B
								 128.0.0.0-191.255.255.255
							
							
								 110x
								 class C
								 192.0.0.0-223.255.255.255
							
							
								 1110
								 multicast
								 224.0.0.0-239.255.255.255
							
							
								 1111
								 reserved
								 240.0.0.0-255.255.255.255
							
						
					
					 Instances of the class are provided for common IP address values as shown in the
following table.
					
						
							
								 Field
								 IP
 Address
							
							
								 Any
								 0.0.0.0
							
							
								 Broadcast
								 255.255.255.255
							
							
								 Loopback
								 127.0.0.1
							
							
								 None
								 255.255.255.255
							
						
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A containing the IP address in host-byte-order.
						
							 is less than 0 or greater than 0x00000000FFFFFFFF.
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets or sets an Internet Protocol (IP) address.
						
						
							 A containing
 the IP address in host-byte-order.
						
						 The value specified in a set operation is less than 0.
						
							
								 To convert
 to dotted-quad notation, use the
 method.
								 Values greater than 0x00000000FFFFFFFF are permitted for IPv6 extensibility.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.Sockets.AddressFamily
					
					
					
						
							 Gets the address family.
						
						
							
								
.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.IPAddress
					
					
					
						
							 Indicates that the protocol will
 select which address to use.
						
						
							 This field is read-only.
							 This is equivalent to (0x0000000000000000) and represents the address
 0.0.0.0.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.IPAddress
					
					
					
						
							 Provides the IP broadcast address.
						
						
							 This field is read-only.
							 This is equivalent to (0x00000000FFFFFFFF) and represents the address 255.255.255.255.
							 This value is used to simultaneously address every host on the network.
							
								 Multiple fields are defined for this IP address based on prior
 art. This field is identical to .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified
 represent the same IP address.
						
						 A to compare to the current instance.
						
							 A where indicates is an instance of the class
 and has the same property value
 as the current instance; otherwise
 .
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for the current instance.
						
						
							 The algorithm used to generate the hash code is
 unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a from host-byte-order to network-byte-order.
						
						 A in host-byte-order.
						
							 A in network-byte-order.
						
						
							 This method performs conversions on systems where the host-byte-order differs
 from network-byte-order. On systems where this is not the case, this method does
 nothing.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a from host-byte-order to network-byte-order.
						
						 A in host-byte-order.
						
							 A
in network-byte-order.
						
						
							 This method performs conversions on systems where the host-byte-order differs
 from network-byte-order. On systems where this is not the case, this method does
 nothing.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a from host-byte-order to network-byte-order.
						
						 A in host-byte-order.
						
							 A
in network-byte-order.
						
						
							 This method performs conversions on systems where the host-byte-order differs
 from network-byte-order. On systems where this is not the case, this method does
 nothing.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a that indicates whether the specified IP address is a loopback address.
						
						 A containing the IP address to check.
						
							
								 if
 is a loopback address; otherwise
 .
						
						
							 All IP addresses of the form 127.X.Y.Z, where X, Y, and Z are
 in the range 0-255, are forwarded to the IP loopback address 127.0.0.1.
 The address is
 used to specify the address of the local computer.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.IPAddress
					
					
					
						
							 Provides the IP loopback
 address.
						
						
							 This field is read-only.
							 This is equivalent to (0x000000000100007F) and represents the address
 127.0.0.1.
							 The loopback address is used to specify the address of the local computer.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a from network-byte-order to host-byte-order.
						
						 A in network-byte-order.
						
							 A in host-byte-order.
						
						
							 This method performs conversions on systems where the host-byte-order differs
 from network-byte-order. On systems where this is not the case, this method does
 nothing.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a from network-byte-order to host-byte-order.
						
						 A in network-byte-order.
						
							 A in host-byte-order.
						
						
							 This method performs conversions on systems where the host-byte-order differs
 from network-byte-order. On systems where this is not the case, this method does
 nothing.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a from network-byte-order to host-byte-order.
						
						 A in network-byte-order.
						
							 A
in host-byte-order.
						
						
							 This method performs conversions on systems where the host-byte-order differs
 from network-byte-order. On systems where this is not the case, this method does
 nothing.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.IPAddress
					
					
					
						
							 Provides the IP address that indicates
 that no network interface should be used.
						
						
							 This field is read-only.
							 This is equivalent to (0x00000000FFFFFFFF) and represents the address 255.255.255.255.
							
								 Multiple fields are defined for this IP address based on prior
 art. This field is identical to .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.IPAddress
					
					
						
					
					
						
							 Converts a representation of an IP address in dotted-quad notation, to a instance.
						
						 A in dotted-quad notation containing the IP address to convert.
						
							 A new instance that represents the address specified in .
						
						
							 is .
						
							 is not a valid IP address.
						
							
								 An example of a string in dotted-quad notation is "127.0.0.1".
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of
 the current instance. The returned string is an IP address expressed in dotted-quad notation (for example, "192.168.1.2").
						
						
							
								 The method converts the IP address stored in the property of the current instance to
 a
 containing

 the address in dotted-quad notation (for example, "192.168.1.2").
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a network endpoint as an Internet Protocol (IP) address and a port number.
				
				
					 The class contains
 the IP address of a host system and the number of a port to
 access on the host. The class represents a connection point used by the

class.
				
			
			
				 System.Net.EndPoint
			
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified address and port number.
						
						 A containing the IP address of the endpoint.
						 A containing the port number to use when accessing . Specify zero to indicate any available port.
						
							
								 is less than or greater than .
							 A negative number was specified for .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified address and port number.
						
						 A instance containing the IP address of the endpoint.
						 The port number to use when accessing . Specify zero to indicate any available port.
						
							 is .
						
							
								 is less than or greater than .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.IPAddress
					
					
					
						
							 Gets or sets the IP address of the endpoint.
						
						
							 A instance containing the IP address of the end
 point.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.Sockets.AddressFamily
					
					
					
						
							 Gets the Internet Protocol (IP) address family.
						
						
							 Returns .
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.EndPoint
					
					
						
					
					
						
							 Returns a new instance containing the address
 information from the specified
 instance.

						
						 A instance that provides the address information for the new instance.
						
							 A new instance containing the address
 information from the specified instance.
						
						 The of the specified is not equal to the of the current instance.
						
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent
 the same type and value.
						
						 The to compare to the current instance.
						
							
								 if represents
 the same endpoint as the current instance. If is a
 reference or is not an instance of , returns
 .
						
						
							 Two instances are equal if their
and properties contain the same values.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to generate the hash code is
 unspecified.
							
								 This method
 overrides
 .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					 65535
					
						
							 Specifies the maximum value that can be assigned to the
property.
						
						
							 This field is read-only. The value of this field is 65535.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					 0
					
						
							 Specifies the minimum value that can be assigned to the
property.
						
						
							 This field is read-only. The value of this field is zero.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the port number of the endpoint.
						
						
							 A value that is between and
inclusive.
						
						 The value specified for a set operation was less than or greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A
containing the IP address, in dotted-quad notation, followed by a colon and the port number for the
specified endpoint, for example, 127.0.0.1:80.
						
						
							
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides a container class for Internet host address information.
				
				
					 The class associates a Domain Name System (DNS) host
 name with an array of aliases and an array of matching IP addresses.
				
				
					 The following example queries the DNS database for information
 on the host "www.contoso.com" and
 displays the information in the
 returned instance.
					 using System;
using System.Net;

public class IPHostEntryTest {
 public static void Main() {

 IPHostEntry hostInfo = Dns.GetHostByName("www.contoso.com");

 string[] aliases = hostInfo.Aliases;
 IPAddress[] addresses = hostInfo.AddressList;

 Console.WriteLine("The host name is: {0}", hostInfo.HostName);

 for(int x = 0; x < aliases.Length; x++)
 Console.WriteLine("Alias {0} == {1}", aliases[x], addresses[x]);
 }
}

					 The output is
					
						 The host name is: contoso.com
						 Alias www.contoso.com == 207.46.230.186
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Property
					
						 System.Net.IPAddress[]
					
					
					
						
							 Gets or sets a list of IP addresses associated with a host.
						
						
							 A array containing IP addresses that resolve
 to the host names contained in the
 property.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String[]
					
					
					
						
							 Gets or sets a list of aliases associated with a host.
						
						
							 A array containing DNS names that resolve to the IP addresses
 in the property.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the DNS
 name of the host.
						
						
							 A containing the DNS host name that corresponds to
 the address and alias information contained in the current instance.
						
						
							
								 The property contains the primary host name for
 a server. If the DNS entry for the host defines additional aliases, they are
 available via the
 property.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the methods and properties required by types that
 support accessing hosts via proxy
 servers.
				
				
					
						 This interface is implemented by
 the type.
					
				
			
			
			
			
				
					
					
					 Property
					
						 System.Net.ICredentials
					
					
					
						
							 Gets or sets the credentials to submit to the proxy server for authentication.
						
						
							 A instance that contains the credentials needed to authenticate a request to the proxy server.
						
						
							
								 The instance set and returned
 by the property
 contains the credentials that are sent to the proxy server in response to an
 HTTP 407 () status code.
							
							
								 Use this property to set the
 credentials supplied in response to HTTP 407 status code
 messages.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Uri
					
					
						
					
					
						
							 Returns the Uniform Resource Identifier (URI) of a proxy server.
						
						 A specifying the requested Internet resource.
						
							 A instance
 containing the URI of the proxy used to contact
 .
						
						
							
								 The method returns the URI of the
 proxy server that handles requests to the Internet resource specified in the
 parameter.
							
							
								 Use this method to
 get the URI of the proxy server used to access the specified resource.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value that indicates whether the proxy server is not used to access a specified server.
						
						 The of the server to check for proxy use.
						
							
								 if
 the proxy server is not used to access the server specified in ;
 otherwise, .
						
						
							
								 The value
 returned by the method indicates whether
 requests that access the server specified in the
 parameter bypass the proxy server.
							
							
								 If
is , requests and responses between the
client and are not required to go through the proxy
server.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Provides a mechanism for creating new
instances.
				
				
					
						 The method is implemented by types that derive from
 . The
 method is invoked via the

 method.
						 Types that implement the interface are associated with a specific URI
scheme and registered with the class. When an application requests a

object for a specific URI, calls the method of the type associated
with the requested URI.
					
				
			
			
			
			
				
					
					
					 Method
					
						 System.Net.WebRequest
					
					
						
					
					
						
							 Returns a
instance.
						
						 The to be associated with the new instance.
						
							 A new
instance.
						
						
							
								 This
 method returns a new instance of a type that derives from

 .
							
							
								 This method is
 used by the
 class.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Maintains information that specifies how a instance
 with pending data behaves when the method of
 the socket is called.
				
				
					 An instance of this class is
 passed into the method
 and is returned by the method when the
 parameter is set to .
					 When the property is , any queued data continues to be sent until
 time equal to the setting of the property has passed or until
 the input queue is empty. At this time, the connection is closed.
					 When the property is zero or the property is
 , calling immediately closes the socket and any
pending data is lost.
When setting the option of an instance of
the class, a exception is thrown if the
 property is
less than zero or greater than .

			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of
 the class.
						
						 A where enables the linger option and disables the option.
						 A that contains the number of seconds to remain connected after the method is called.
						
							 The instance is created with the property set to and the
 property set to .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether the connection remains
 open (lingers) for a period of time after the method is
 called.
						
						
							
								 to enable lingering
 after the
 method is called; otherwise
 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the amount of time to remain connected after
 the method is called.
						
						
							 A that contains the amount of time, in seconds, to remain connected after
 calling the
 method.
						
						
							 When setting the option of an instance of
 the class, a exception is thrown if the

property is less than zero or greater than
 .
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Contains Internet Protocol (IP) addresses used
 when joining or leaving
 an IP multicast group.
				
				
					 Collectively, the hosts listening to a specific IP multicast address (the group address) are
 called a multicast group. Each member of the group receives any IP messages sent
 to the group address.
					 An instance of this class is passed into the method
 and returned by the method when the
 parameter is set to or .
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified IP
 multicast group and local addresses.
						
						 An instance of containing the group IP address.
						 An instance of containing the local IP address.
						
							
								 or is .
						
						
							 The property is set to and the
 property is set to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified IP multicast group
 address.
						
						 An instance of containing the IP address of a multicast group.
						
							
								 is .
						
						
							 This constructor initializes the property of the new instance using
 . The property is initialized to .
allows the protocol to decide which local IP address to
use.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.IPAddress
					
					
					
						
							 Gets or sets the IP address of a multicast group.
						
						
							 An instance of
containing the IP address of a multicast
group.
						
						
							 Collectively, the hosts listening to a specific IP
 multicast address are called a multicast group. Each member of the group receives any IP messages sent to this
 address.
							
								 Valid IP addresses for multicast groups are in the range 224.0.0.0 to
 239.255.255.255 with some addresses reserved for special purposes.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.IPAddress
					
					
					
						
							 Gets or sets the local IP address to receive data.
						
						
							 An instance of containing the local IP
 address.
						
						
							 This property specifies the local IP address used to receive data
 sent to the multicast group.
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a collection of associated keys and
values.
				
				
					 This class can be used for headers, query strings and
 form data. Each key in the collection is associated with one or more
 values. Multiple values for a particular key are contained in a single
 .
					 The capacity is the number of key-and-value pairs that the can contain. The default initial
 capacity is zero. The capacity is automatically increased as required.
					 The hash code provider dispenses hash codes for keys in the .
					 The comparer determines whether two keys are equal.
				
			
			
				 System.Object
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes new instance of the
class with the specified initial capacity, hash code provider,
and comparer.
						
						 A containing the initial number of entries that the can contain.
						 The that will supply the hash codes for all keys in the new instance.
						
							 The to use to determine whether two keys in the new instance are equal.
						
						
							 < 0.
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes new instance of the class
 that contains the same values as the specified and either the specified capacity or the
 capacity of the specified collection, whichever is
 greater.
						
						 A containing the initial number of entries that the new instance can contain.
						 The used to initialize the new instance.
						
							 is .
						
							 is < 0.
						
							 The new instance is initialized with the default and .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class with the specified initial capacity.
						
						 A containing the initial number of entries that the new instance can contain.
						
							 < 0.
						
							 The new instance is initialized with the default and
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified and the specified

 .
						
						
							 The that supplies the hash codes for all keys in the new instance; or, to use the default hash code provider.
						
						
							 The to use to determine whether two keys are equal. Specify to use the default comparer.
						
						
							 The new instance is initialized with the default capacity of zero.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and
 initializes a new instance of the class using the values of the specified
 .
						
						 The used to initialize the new instance.
						
							 is .
						
							 The capacity, values, and order of values of the new
 instance are equal to the capacity and values of
 . The and of the new instance are the
 default instances.
							 The elements of the new are sorted in the same
 order as the source .
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 The new instance is initialized with the default initial capacity, , and .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Adds an entry with the specified key and value to the current instance.
						
						
							 A that represents the key of the entry to add. Can be .
						
						
							 A that represents the value of the entry to add. Can be .
						
						 The current instance is read-only.
						
							
								 As described
 above.
							
							
								 If the specified key already exists in the current instance, the specified
 value is added to the existing comma-separated list of values associated with
 the same key.
								 Attempting to assign the same value to an existing key adds a new value to that key, thus providing two (or more) copies of the same value associated with the key.
							
							
								 Override this method to customize the default
 behavior in a type derived from the current
 type.
							
							
								 Use this method to
 add an entry to the current
 instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Copies the entries from the specified to
 the current instance.
						
						 The to copy to the current instance.
						 The current instance is read-only.
						
							 is .
						
							 If a key in already exists in the target instance, the associated value in
 is added to the existing comma-separated list of values
 associated with the same key in the target instance.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String[]
					
					
					
						
							 Gets all the keys in the current instance.
						
						
							 A array containing all the keys of the current instance.
 If the current instance is empty, the value of this property is an empty array.
						
						
							
								 This property
 is read-only.
							
							
								 The array returned by is cached for better
 performance and is automatically refreshed when the collection changes. A
 derived class can invalidate the cached version by calling , thereby forcing the array to be refreshed.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Invalidates the cached arrays and removes all entries from
 the current instance.
						
						 The current instance is read-only.
						
							 The value of each key and value in the current instance is set to

 .
							 If the current instance is empty, it remains unchanged and no exception is
 thrown.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Copies the elements from the current instance to the specified , starting at the specified
 index in that array.
						
						 A one-dimensional, zero-based that is the destination of the elements copied from the current instance.
						 A containing the zero-based index in at which copying begins.
						
							 is .
						
							 < 0.
						
							
								 has more than one dimension.
							 -or-
							
								 >= .Length.
							 -or-
							 The number of elements in the current instance is greater than the available space from to the end of the destination .
						
						 At least one element in the current instance is not assignment-compatible with the type of .
						
							 This method uses to copy the elements.
							
								 This method is
 implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of elements contained in the current
 instance.
						
						
							 A that indicates the number of elements contained in the current
 instance.
						
						
							 This property is read-only.
							
								 This property is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Gets the values associated with the specified key from
 the current instance combined into one comma-separated list.
						
						
							 A that specified the key of the entry that contains the values to get.
						
						
							 A that contains a
 comma-separated list of the values associated with the specified key from the
 current instance, if found;
 otherwise, .
						
						
							
								 As described
 above.
							
							
								 If is
 , the values associated with the null key, if any, are returned; otherwise, is returned.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the values at the
 specified index of the
 current instance.
						
						
							 A that specifies the zero-based index of the entry that contains the values to get from the current instance.
						
						
							 A that contains a
 comma-separated list of the values at the specified index of the current
 instance, if found;
 otherwise, .
						
						
							 is outside the valid range of indices for the current instance.
						
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Collections.IEnumerator
					
					
					
						
							 Returns a for the current instance.
						
						
							 A for the current instance.
						
						
							 If the current instance is modified while an enumeration is in progress, a call to or throws .
							
								 For detailed information regarding the use of an enumerator, see . This property is implemented to support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the key at the specified index of the current
 instance.
						
						
							 A that specifies the zero-based index of the key to get from the current instance.
						
						
							 A that contains the
 key at the specified index of the current instance, if found;
 otherwise, .
						
						
							 is outside the valid range of indices for the current instance.
						
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
					
					
						
							 Gets the values associated with the specified key from
 the current instance.
						
						
							 A that specifies the key of the entry that contains the values to get.
						
						
							 A
array containing the values associated with
from the current instance, if found;
otherwise, .
						
						
							
								 As described
 above.
							
							
								 If is
 , no exception is thrown and is returned.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
					
					
						
							 Returns an array that contains the values at the
 specified index of the current instance.
						
						
							 A that specifies the zero-based index of the entry that contains the values to get from the current instance.
						
						
							 A array containing the values at the specified index of the
 current instance, if found;
 otherwise, .
						
						
							 is outside the valid range of indices for the current instance.
						
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance
 contains keys that are not .
						
						
							
								 if the
 current instance contains
 keys that are not ; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Resets the cached arrays of the current instance to .
						
						
							
								 The array returned by is cached for better performance and is automatically refreshed
 when the collection changes. A derived class can invalidate the
 cached version by calling , thereby
 forcing the arrays to be recreated.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						 Gets or sets a value indicating whether the current instance is read-only.
						
							 if the current instance is read-only; otherwise, .
						
							 This property is read-write.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Implemented to support .
							
								 For more information, see .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
						
					
					
						
							 Gets or sets the value in the current instance that is associated with the
 specified key.
						
						
							 A containing the key of the entry to locate.
						
						
							 A that contains the
 comma-separated list of values associated with the specified key. If
 is not contained in the current instance, attempting to get it
 returns , and attempting to set it creates a new entry
 using
 .
						
						 The property is being set and the current instance is read-only.
						
							 If the specified key already exists in the collection,
 setting this property overwrites the existing values with the specified
 value. (If the existing value contains a string of multiple comma-delimited values, the complete string is replaced with a single instance of the specified value.) If the specified key does not exist in the collection, setting this
 property creates a new entry using the specified key and the specified
 value.
							
								 This property provides the ability to access a specific element in the
 current instance using the following notation: myCollection[key] .
								 To add the new value to
 the existing list of values, use the method.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
						
					
					
						
							 Gets the value in the current instance that is associated with the
 specified index.
						
						
							 A that specifies the zero-based index of the entry to locate in the current instance.
						
						
							 A that contains the comma-separated list of values at the specified
 index of the current instance.
						
						
							 is outside the valid range of indices for the current instance.
						 The property is being set and the current instance is read-only.
						
							 This property is read-only.
							
								 This property provides the ability to access a specific element in the
 collection by using the following syntax: myCollection[index].
								 This property cannot be set. To set the value at a specified index,
 use Item[GetKey(index)].
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the entry with the specified key from the current instance.
						
						 A containing the key of the entry to remove from the current instance.
						
							 The current instance is read-only.
						
						
							
								 If
is found, the key and its associated value are set
to .
Removing an element does not alter the capacity of a

.
							
							
								 This method uses the implementation of to locate in the
current instance. If is not found in the current
instance or is , no exception
is thrown and the current
instance is unchanged.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the value of the specified entry in the current
 instance to the specified value.
						
						
							 A containing the key of the entry to add the new value to.
						
						
							 A containing the new value to add to the specified entry.
						
						 The current instance is read-only.
						
							
								 If the
 specified key already exists in the current instance, this method overwrites the
 existing values with the specified value. (If the existing value contains a string of multiple comma-delimited values, the complete string is replaced with a single instance of value.) If the specified key does not exist in the current instance, this method creates
 a new entry using the specified key and the specified value.
							
							
								 Use the
method to add the new value to the existing list of values.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Implemented to support .
							
								 For more information, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies network access permission types.
				
				
					 This enumeration is used to indicate whether a
 permission object secures connect (client-side) or accept (server-side)
 operations.
					
						 The enumeration is used with the and classes.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.NetworkAccess
					
					
					 Accept
					
						
							 Specifies accept operations.

							
								 This access type is typically used by
 servers.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.NetworkAccess
					
					
					 Connect
					
						
							 Specifies connect operations.

							
								 This access type is typically used by clients.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides credentials for password-based authentication.
				
				
					 The class supplies
 client credentials used in password-based authentication schemes such as
 Kerberos.
					
						
 Classes that implement
 the interface, such as
 the class, return instances.
						 This class does not support public key-based authentication
 methods such as SSL client authentication.
					
				
			
			
				 System.Object
			
			
				
					 System.Net.ICredentials
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 The properties of the new instance are initialized to

.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified user name and password.
						
						 A containing the user name for the account associated with the credentials.
						 A containing the password for the account associated with the credentials.
						
							 This constructor initializes the property of the new instance to and the property to . The property is initialized to . The values specified for and
 are passed through to the operating system without
 modification.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified user name, password, and domain.
						
						 A containing the user name associated with the credentials.
						 A containing the password for the user name associated with the credentials.
						 A containing the domain associated with the credentials.
						
							 This constructor initializes the property of the new instance
 to , the property to ,
 and the property to . The values specified for
								 and are passed through to the
 operating system without modification.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the domain
 or machine name that verifies the current credentials.
						
						
							 A containing the
 name of the domain that verifies the current credentials.
						
						
							 The property indicates the domain or
 realm to which the account belongs. Typically, this is the host machine name where the application
 executes or the user domain for the currently logged in user.
							
						
						 Requires read access to the environment variable that contains the domain name. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Net.NetworkCredential
					
					
						
						
					
					
						
							 Returns the
 current instance.
						
						 A representing the resource for which the client is to be authenticated.
						 A containing the of the that will receive the credentials returned by this method.
						
							 The current instance.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the password of the account associated with the current credentials.
						
						
							 A containing the
 password of the account associated with the current credentials.
						
						 Requires permission to execute unmanaged code. See .
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the user name for the account associated with the current credentials.
						
						
							 A containing the
 user name for the account associated with the current credentials.
						
						 Requires read access to the environment variable that contains the user name. See .
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Implements the standard stream mechanism to read
 and write network data through an instance of the class.

				
				
					 The class allows network data to be read and written
 in the same manner as the
 class.
					 This class supports simultaneous synchronous and asynchronous access
 to the network data. Random access is not supported and thus
 the
 property always returns

					
					 The following properties and methods inherited from the class are
not supported and throw a
exception when
accessed:
					
						
							
								
							
						
						
							
								
							
						
						
							
								
							
						
						
							
								
							
						
					
					 The method is reserved for future use but does not throw an exception.
				
			
			
				 System.IO.Stream
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 An instance of the class.
						 One of the values of the enumeration.
						
							 if is owned by the current instance; otherwise, .
						
							 is .
						
							 The property of is .
							 -or-
							 The property of is .
							 -or-
							 The property of is not .
						
						
							
								 is required to be an
 instance of the class with its
 property equal to
 , property equal to ,
 and equal to .
							 When is , the current instance owns , meaning the
and methods call the
method of .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 An instance of the class.
						 One of the values of the enumeration.
						
							 is .
						
							 The property of is .
							 -or-
							 The property of is .
							 -or-
							 The property of is not .
						
						
							 This constructor is equivalent to
 (, ,).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 An instance of the class.
						
							 is .
						
							 The property of is .
							 -or-
							 The property of is .
							 -or-
							 The property of is not .
						
						
							 This constructor is equivalent to
 (, ,).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 An instance of the class.
						
							 if is owned by the current instance; otherwise, .
						
							 is .
						
							 The property of is .
							 -or-
							 The property of is .
							 -or-
							 The property of is not .
						
						
							 This constructor is
 equivalent to (, ,
).
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
					
					
						
							 Begins an asynchronous operation to read data from the current instance.

						
						 A array to store data read from the stream.
						 A containing the zero-based position in at which to begin storing the data.
						 A containing the number of bytes to read.
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.

						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							 An error occurred while accessing the underlying socket.
							
								 Any exception thrown by the method is caught and rethrown as an with the original exception stored in the property.
							
						
						 The current instance has been disposed.
						
							 To retrieve the results of the operation and release
 resources allocated by the method, call
 the method, and specify the
 object returned by this

 method.
							
								 The method should be
 called exactly once for each call to the method.
							
							 If the parameter is not
 , the method referenced by
 is invoked
when the asynchronous operation completes. The object returned by this method is
passed as the argument to the method referenced by . The method
referenced by can retrieve the results of the operation by calling
the
method.
							 The parameter
can be any object that the caller wishes to have available for the duration of
the asynchronous operation. This object is available via the

property of the object returned by this
method.
							
								 This method overrides .
							
						
						
							 For an outline of an asynchronous operation, see the method. For the complete example, see
 the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
					
					
						
							 Begins an asynchronous operation to write data to the current instance.

						
						 A array containing data to write to the stream.
						 A containing the zero-based position in containing the starting location of the data to write.
						 A containing the number of bytes to write to the stream.
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							 An error occurred while accessing the underlying socket.
							
								 Any exception thrown by the method is caught and rethrown as an with the original exception stored in the property.
							
						
						 The current instance has been disposed.
						
							 To release
 resources allocated by the method, call
 the method, and specify the
 object returned by this

 method.
							
								 The method should be
 called exactly once for each call to the method.
							
							 If the parameter is not
 , the method referenced by is invoked
when the asynchronous operation completes. The object returned by this method is
passed as the argument to the method referenced by . The method
referenced by can retrieve the results of the operation by calling
the
method.
							 The parameter
can be any object that the caller wishes to have available for the duration of
the asynchronous operation. This object is available via the

property of the object returned by this
method.
							
								 This method overrides .
							
						
						
							 For an outline of an asynchronous operation, see the
method. For the complete example, see the class overview.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports reading.

						
						
							
								 indicates that the current stream supports reading;
 . indicates that the current stream does not
 support reading.
						
						
							 This property is read-only.
							 The value of this property is initially set by the
 constructors.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Returns the value to indicate that the
 class
 cannot access a specific location in the data
 stream.

						
						
							
								 .
						
						
							 This property is read-only.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current stream supports writing.

						
						
							
								 indicates that the current stream supports writing;

indicates that the current stream does not support writing.
						
						
							 This property is read-only.
							 The value of this property is set by the

 constructors.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the stream and, if owned by the current instance, the underlying socket.

						
						
							 This method calls (), which frees both managed and unmanaged
 resources used by the current instance. When the underlying socket is owned by
 the current instance, the
 method of the socket is called, which frees both managed and unmanaged resources
 used by the socket.
							
								 Ownership of a socket is
 specified using the constructor.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether data is available to be read from the underlying socket buffer.

						
						
							
								 indicates that data is available to be
 read;
 indicates that there is no data available to be read.
						
						 The current instance has been disposed.
						
							 This property is read-only.
							
								 As
 described
 above.
							
							
								 Accessing this
 property causes a call to the method of the underlying instance. If the
 method returns a
 non-zero value, indicating data is available to be read, this property returns
 ; otherwise, this property returns
 .

							
							
								 Override this property
 to determine if data is available to be read in the underlying socket
 buffer.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Releases the unmanaged resources used by the current instance and optionally
 releases the managed resources.
						
						 A . Specify to release both managed and unmanaged resources; specify to release only unmanaged resources.
						
							
								 Ownership of a socket is specified using the
 constructor.
								 The
 method calls this method with
 the parameter set to . The finalizer
 calls this method with the parameter set to .
							
							
								

 This method
 closes the current
 instance releasing all unmanaged resources allocated by the current instance.
 When the underlying socket is owned by the current
 instance, the method of
 the socket is called, which frees
 the managed and unmanaged resources used by the
 socket. When the parameter is , this method also releases all resources held by any other
 managed objects allocated by the current
 instance.

							
							
								

 This method
 closes the current
 instance releasing all unmanaged resources allocated by the current instance.
 When the underlying socket is owned by the current
 instance, the method of
 the socket is called, which frees the managed and unmanaged resources used by the
 socket.

							
							
								

 The method can be called
 multiple times by other objects. When overriding this method, do not reference
 objects that have been previously disposed in an earlier call.

							
							
								

 Use this method to release
 resources allocated by
 the current
 instance.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Ends an asynchronous call to
 read data from the current instance.
						
						 A object that holds the state information for the asynchronous operation.
						
							 A containing the number of bytes read from the stream.

						
						
							 is .
						 An error occurred while accessing the underlying socket.
								 This method catches all exceptions thrown by the method.
							
						
						 The current instance has been disposed.
						
							 This method blocks if the asynchronous operation has not completed.
							 The
method completes an asynchronous request that was started with a call to the
 method. The object specified for the
 parameter is required to be the same object as was returned
by the
method call that began the
request.
							 If the
method is invoked via the delegate specified to the method, the
 parameter is the
argument passed to the
delegate's method.
							
								 This method overrides .
							
						
						
							 For an outline of an asynchronous operation, see the method.
 For the complete example, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Ends an asynchronous call to write data to the current instance.
						
						 A object that holds the state information for the asynchronous operation.
						
							 is .
						 An error occurred while accessing the underlying socket.
								 This method catches all exceptions thrown by the method.
							
						
						 The current instance has been disposed.
						
							 This method blocks if the asynchronous operation has not completed.
							 The
method completes an asynchronous request that was started with a call to the
 method. The object specified for the
 parameter is required to be the same object as was returned
by the
method call that began the
request.
							 If the
method is invoked via the delegate specified to the method, the
 parameter is the
argument passed to the
delegate's method.
							
								 This method overrides .
							
						
						
							 For an outline of an asynchronous operation, see the method.
 For the complete example, see the class
 overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Frees unmanaged resources used by the current instance.
						
						
							
								 Application code does not call this method; it is automatically invoked
 during garbage collection unless finalization by the garbage collector has been
 disabled. For more information, see , and .
								 This method calls (), which frees unmanaged resources used by
 the current instance. When the underlying socket is owned by the current
 instance, it is closed and the managed and unmanaged resources used by the
 socket are freed.
								 Ownership of a socket is specified using the constructor.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 This method is reserved for future use.

						
						
							 Calling this method does not throw an exception.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Throws a .

						
						 Any attempt to access this property.
						
							
								 The base class implements this property to return the length of the data
 available on the stream. This functionality is not supported in
 the class.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Throws a .

						
						 Any attempt to access this property.
						
							
								 The base class implements this property to return or set the
 current position in the stream. This functionality is not supported in the
 class.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads data from the current instance and stores it in a data buffer.

						
						 A array to store data read from the stream.
						 A containing the zero-based position in at which to begin storing the data.
						 A containing the number of bytes to read.
						
							 A containing the number of bytes read from the
 stream.

						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						 An error occurred while accessing the underlying socket.
								 This method catches all exceptions thrown by the method.
							
						
						 The current instance has been disposed.
						
							 When no incoming data is available, this method blocks and
 waits for data to arrive.
							 If the remote socket was shut down gracefully (was called on the socket or
 the option was enabled
 and was called on the socket) and all data was received, this
 method immediately returns zero.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
						
					
					
						
							 Throws a .
						
						 This parameter is not used.
						 This parameter is not used.
						 Any call to this method.
						
							
								 The base class uses this method to set the current
 position in the stream. This functionality is not supported in the
 class.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Throws a .
						
						 This parameter is not used.
						 Any call to this method.
						
							
								 The
 base class uses this method to set the length of the data available on the
 stream. This functionality is not supported in the class.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes data from a specific area of a data buffer to the current instance.
						
						 A array containing data to write to the stream.
						 A containing the zero-based position in containing the starting location of the data to write.
						 A containing the number of bytes to write to the stream.
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						 An error occurred while accessing the underlying socket.
								 This method catches all exceptions thrown by the method.
							
						
						 The current instance has been disposed.
						
							 When no buffer space is available within the underlying protocol, this method
 blocks unless the socket is in non-blocking mode.
							
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the protocols used by the class.

				
				
					 The enumeration is used with the
 class. This enumeration specifies the
 protocols that a socket instance can use to transport
 data.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Ggp
					
						
							 Specifies the Gateway To Gateway Protocol.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Icmp
					
						
							 Specifies the Internet Control Message Protocol (ICMP) as defined by IETF RFC 1792.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Idp
					
						
							 Specifies the Inter-Domain Policy Protocol (IDP) as defined by IETF RFC 1764.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Igmp
					
						
							 Specifies the Internet Group Management Protocol (IGMP) as defined by IETF RFC 2236.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 IP
					
						
							 Specifies the Internet Protocol (IP) as defined by IETF RFC 791, 792, 919,
 922, and 1112.
							
								 Multiple names are defined for this value based on prior art.
 This value is identical to .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Ipx
					
						
							 Specifies the Internetwork Packet Exchange Protocol.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 ND
					
						
							 Specifies the Net Disk Protocol.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Pup
					
						
							 Specifies the Xerox Post Office Update Protocol.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Raw
					
						
							 Specifies the Raw IP packet protocol.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Spx
					
						
							 Specifies the Sequenced Packet Exchange Protocol.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 SpxII
					
						
							 Specifies the Sequenced Packet Exchange Version 2 Protocol.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Tcp
					
						
							 Specifies the Transmission Control Protocol (TCP) as defined by IETF RFC 793.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Udp
					
						
							 Specifies the User Datagram Protocol (UDP) as defined by IETF RFC 768.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 Unknown
					
						
							 Used to indicate an uninitialized state. This member is not to
 be used when constructing instances of the class.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.ProtocolType
					
					
					 IP
					
						
							 Unspecified protocol.
							
								 Multiple names are defined for this value based on prior art.
 This value is identical to .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents errors that occur due to violating the rules of a network
 protocol.
				
				
					 A is thrown by types
 derived from and to indicate that an error has occurred as defined by the rules of the underlying
 protocol. For example, the type throws a
 when an application
 attempts to send content without specifying the content length.
				
			
			
				 System.InvalidOperationException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the
 new instance to a system-supplied message that describes the error, such as
 "Protocol error occurred." This message takes into account the current system
 culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property
 of the new instance using . If is
 , the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							 The property of the new
instance is initialized to .
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the mode used by the method of
 the class.

				
				
					 A member specifies the
 status information (read, write, or error) to retrieve from the
 current instance.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.Sockets.SelectMode
					
					
					 SelectError
					
						
							 Determine the error status of the current
instance.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SelectMode
					
					
					 SelectRead
					
						
							 Determine the read status of the current
instance.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SelectMode
					
					
					 SelectWrite
					
						
							 Determine the write status of the current instance.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents connections to Internet hosts.
				
				
					 The class handles connections to a resource based on the host information
 passed in the Uniform Resource Identifier (URI) of the resource. The initial
 connection to the host determines the information the maintains, which is then
 shared by all subsequent requests for resources residing on the host.
					
						
							 instances are
 created and managed by the
 class. The maximum number of instances is
 set by the
 property.
						 A instance that is not connected to any host is idle.
An idle
is managed by the
only until it has been
idle longer than the time specified in its property.
After a
instance exceeds the , it is
released by the service point
manager and subsequently freed. The default value of is set by the
property.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Property
					
						 System.Uri
					
					
					
						
							 Gets the Uniform Resource Identifier (URI) of the .

						
						
							 A instance
 representing the URI specified at the time the current instance was constructed
							
						
						
							 This property is read-only.
							
								 The property
 of the returned by this property names the host to which the current instance connects.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the maximum number of
 simultaneous connections that the can make to an Internet
 host.

						
						
							 A containing the
 maximum number of simultaneous connections allowed on the current .
						
						 The value specified for a set operation is less than or equal to zero.
						
							
								 When the is created, the value of
 this property is determined by the value of the

property.
Note that subsequent changes to have no effect on existing instances.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the connection group name specified by the that created the connection.

						
						
							 A containing the
 value of the property of the that
 initiated the connection provided
 by the current instance.
						
						
							 This property is read-only.
							
								 If this
 property is set, only
 instances with the same can communicate with
 the host using the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
 Gets the number of connections held by the current
 instance.

						
 A containing the number of connections held by
 the current instance.

						
							 This property is read-only.
							
								 The value of cannot
 exceed that of .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for this instance.
						
						
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.DateTime
					
					
					
						
							 Gets the date and time that the was last connected to a host.

						
						
							 A instance
 containing the date and time at which the was last
 connected.
						
						
							 This property is read-only.
							
								 When the difference between the current time
 and exceeds the
 value of , the current instance is released by
 the and subsequently freed.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
 Gets or sets the maximum amount of time the current
 instance can remain idle (unconnected to a host).

						
							 A containing the number of milliseconds that a can remain idle before it is released by the
and subsequently freed.
						
						 The value specified for a set operation is less than or greater than .
						
							
								 When the difference between the current
 time and exceeds the value of , the current instance is released by
 the and subsequently freed.
							
							 The default value of this property is the value of the
property at the time the was created.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Version
					
					
					
						
							 Gets the version of the protocol that the uses.

						
						
							 A instance
 containing the version of the protocol used by the .
						
						
							 This property is read-only.
							
								 As described
 above.
							
							
								 The value returned depends on the protocol. If the protocol is not set, is returned.
							
							
								 Override this property to return
 the version information for types derived from .
							
							
								 Use this property to determine the protocol
 version information used by the current instance.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 A value that indicates whether the supports pipelined connections.

						
						
							
								 if the supports pipelined connections;
 otherwise, .
						
						
							 This property is read-only.
							
								 For information on pipelining, see IETF
 RFC 2068.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 The public static fields exposed in ServicePointManager are not thread safe. Changing one of these values in one thread will change the value for any other thread subsequently accessing the field.
			
				
					 Manages instances.
				
				
					
						 creates, maintains,
 and deletes instances.
					 When an application requests a connection to an Internet resource through
 the , the
 returns a instance containing
 connection information for the host identified by
 the Uniform Resource Identifier (URI) of the resource. If there is an existing for that host, the

returns the existing , otherwise the creates a new
instance.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Property
					
						 System.Int32
					
					
					 2
					
						
							 Gets or sets the maximum number of concurrent connections allowed by a
 instance.
						
						
							 A containing the maximum number of concurrent connections allowed by a instance.
						
						 The value specified for a set operation is less than or equal to zero.
						
							 The property sets the default maximum number of concurrent
 connections that the assigns to the property
 when creating instances.
							
								 Changing the property has no effect on existing
instances; it affects only instances that
are initialized after the change.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					 4
					
						
							 The default number of non-persistent connections allowed on a .

						
						
							 This field is read-only.
							 The value of this field is
 4.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					 2
					
						
							 The default number of persistent connections allowed on a .

						
						
							 This field is read-only.
							 The value of this field is
 2.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.ServicePoint
					
					
						
					
					
						
							 Finds an existing or creates a new to connect to the specified host.
						
						 A containing the Internet host to contact.
						
							 A that connects to the host identified in

.
						
						
							 is .
						 The maximum number of service points defined in has been reached and there is no service point that connects to the specified host.
						
							 This method is identical to (,).
							 If no exists for the host named in , the attempts to
create one.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.ServicePoint
					
					
						
						
					
					
						
							 Finds an existing or creates a new to connect to the specified host.
						
						 A containing a URI that names the host to contact.
						 A that represents a proxy server to access.
						
							 A that connects to the host identified in

.
						
						
							 is .
						 The URI specified in is in an invalid form.
						 The maximum number of service points defined in has been reached and there is no service point that connects to the specified host.
						
							 This method is identical to (new (),
).
							 If no exists for the host named in , the
 attempts to create one.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.ServicePoint
					
					
						
						
					
					
						
							 Finds an existing or creates a new to connect to the specified host.
						
						 A instance containing the address of the Internet resource to contact.
						 A that represents a proxy server to access.
						
							 A that connects to the host identified in

.
						
						
							 is .
						 The maximum number of service points defined in has been reached and there is no service point that connects to the specified host.
						
							 If no exists for the specified in , the attempts to create one.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					 900000
					
						
							 Gets or sets the maximum amount of time a instance can be idle,
 after which resources allocated
 to the service point can be released.
						
						
							 A containing the maximum idle time, in milliseconds, of a instance.
						
						 The value specified for a set operation is less than or greater than
						
						
							 A
is idle when the list of
connections associated with the is empty.
							 The
property holds the value for the maximum idle time for service points. When a instance is created,
this value is assigned to its property. Changes to the value
of this property affect only instances that are initialized after this property
is changed.
							 After a has been idle for the time
specified in , it is
released by the service point manager, and
any resources allocated
for it are freed.
							 The default value of this property is
 implementation defined.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					 0
					
						
							 Gets or sets the maximum number of instances managed by this class at any
 time.
						
						
							 A containing the maximum number of instances to maintain.
						
						 The value specified for a set operation is less than zero or greater than
						
						
							 If this property is set to a value that is less than the
 number of instances currently in
 existence, the
 deletes the
 instances with the longest idle times.
 If the number of instances with active
 connections is greater than the value of
 , the
 deletes
 instances as they become idle.
							
								 The default value
 of the property is 0, which indicates
 there is no limit to the number of instances.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Creates a communication endpoint through which an application sends or receives data across a
 network.
				
				
					 This class enables a instance to communicate with another socket
 across a network. The communication can
 be through connection-oriented and connectionless protocols using either data streams or datagrams
 (discrete message packets).
					 Message-oriented protocols preserve message boundaries
 and require that for each method call there is one
 corresponding method call. For stream-oriented protocols, data
 is transmitted without regards to message boundaries. In this case, for
 example, multiple method calls might be necessary to
 retrieve all the data from one method call. The protocol is set in
 the

 class
 constructor.
					 A
instance has a local and a remote endpoint associated with it. The local
endpoint contains the connection information for the current socket instance.
The remote endpoint contains the connection information for the socket that the current instance communicates with. The
endpoints are required to be an instance of a type derived from
the class. For the Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) protocols, an endpoint
includes the address family, an Internet Protocol (IP) address, and a port number.
For connection-oriented protocols (for example, TCP), the remote endpoint
does not have to be specified when transferring data. For connectionless
protocols (for example, UDP), the remote endpoint is required to be specified.
					 Methods are provided for both synchronous and asynchronous
 operations. A synchronous method can operate in blocking mode, in which it waits
 (blocks) until the operation is complete before returning, or in non-blocking
 mode, where it returns immediately, possibly before the operation has completed.
 The blocking mode is set through the property.
					 An asynchronous method returns immediately and, by convention, relies on a delegate to
 complete the operation. Asynchronous methods have names which correspond to their
 synchronous counterparts prefixed with either 'Begin' or End'. For example, the
 synchronous method has asynchronous counterpart methods
 named and . The
 example for the method shows the basic
 steps for using an asynchronous operation. A complete working example follows this
 discussion.
					 Connection-oriented protocols commonly use the client/server model. In this model, one of
 the sockets is set up as a server, and one or more sockets are set
 up as clients. A general procedure demonstrating the synchronous communication process for this model is as
 follows.
					 On the server-side:
					
						
							
 Create a socket to listen for incoming connection
 requests.
						
						
							
 Set the local endpoint using the method.
						
						
							
 Put the socket in the
 listening state using the method.
						
						
							
 At this point incoming connection requests from a
 client are placed in a queue.
						
						
							
 Use the method to create a server socket
 for a connection request issued by a client-side socket. This sets the remote
 endpoint.
						
						
							
 Use the and methods to communicate with the
 client socket.
						
						
							
 When communication is finished, terminate the connection
 using the method.
						
						
							
 Release the resources allocated by the server socket using
 the method.
						
						
							
 Release the resources allocated by the listener socket using the method.
						
					
					 On the client-side:
					
						
							
 Create the client socket.
						
						
							
 Connect to the server socket using the method.
 This sets both the local and remote endpoints for the client socket.
						
						
							
 Use the and methods to communicate with the
 server socket.
						
						
							 When communication is finished, terminate the connection
 using the method.
						
						
							
 Release

 the resources allocated by the client socket using
 the

 method.
						
					
					 The shutdown step in the previous procedure is
 not necessary but ensures that any pending data is not lost. If the
 method is not called, the

method shuts
down the connection either gracefully or by force. A graceful closure attempts
to transfer all pending data before the connection is terminated. Use
the socket option to specify a graceful closure for a
socket.
					
						 This implementation is based on the UNIX sockets implementation
 in the Berkeley Software Distribution (BSD, release 4.3)
 from the University of California at Berkeley.
					
				
				
					 The following examples provide a client/server
 application that demonstrates the
 use of asynchronous communication between sockets. Run the client and server on
 different consoles.
					 The following code is for the
 server application. Start this application before the client application.
					 using System;
using System.Threading;
using System.Text;
using System.Net;
using System.Net.Sockets;

public class Server
{
 // used to pass state information to delegate
 internal class StateObject
 {
 internal byte[] sBuffer;
 internal Socket sSocket;
 internal StateObject(int size, Socket sock) {
 sBuffer = new byte[size];
 sSocket = sock;
 }
 }
 static void Main()
 {
 IPAddress ipAddress =
 Dns.Resolve(Dns.GetHostName()).AddressList[0];

 IPEndPoint ipEndpoint =
 new IPEndPoint(ipAddress, 1800);

 Socket listenSocket =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 listenSocket.Bind(ipEndpoint);
 listenSocket.Listen(1);
 IAsyncResult asyncAccept = listenSocket.BeginAccept(
 new AsyncCallback(Server.acceptCallback),
 listenSocket);

 // could call listenSocket.EndAccept(asyncAccept) here
 // instead of in the callback method, but since
 // EndAccept blocks, the behavior would be similar to
 // calling the synchronous Accept method

 Console.Write("Connection in progress.");
 if(writeDot(asyncAccept) == true)
 {
 // allow time for callbacks to
 // finish before the program ends
 Thread.Sleep(3000);
 }
 }

 public static void
 acceptCallback(IAsyncResult asyncAccept) {
 Socket listenSocket = (Socket)asyncAccept.AsyncState;
 Socket serverSocket =
 listenSocket.EndAccept(asyncAccept);

 // arriving here means the operation completed
 // (asyncAccept.IsCompleted = true) but not
 // necessarily successfully
 if(serverSocket.Connected == false)
 {
 Console.WriteLine(".server is not connected.");
 return;
 }
 else Console.WriteLine(".server is connected.");

 listenSocket.Close();

 StateObject stateObject =
 new StateObject(16, serverSocket);

 // this call passes the StateObject because it
 // needs to pass the buffer as well as the socket
 IAsyncResult asyncReceive =
 serverSocket.BeginReceive(
 stateObject.sBuffer,
 0,
 stateObject.sBuffer.Length,
 SocketFlags.None,
 new AsyncCallback(receiveCallback),
 stateObject);

 Console.Write("Receiving data.");
 writeDot(asyncReceive);
 }

 public static void
 receiveCallback(IAsyncResult asyncReceive) {
 StateObject stateObject =
 (StateObject)asyncReceive.AsyncState;
 int bytesReceived =
 stateObject.sSocket.EndReceive(asyncReceive);

 Console.WriteLine(
 ".{0} bytes received: {1}",
 bytesReceived.ToString(),
 Encoding.ASCII.GetString(stateObject.sBuffer));

 byte[] sendBuffer =
 Encoding.ASCII.GetBytes("Goodbye");
 IAsyncResult asyncSend =
 stateObject.sSocket.BeginSend(
 sendBuffer,
 0,
 sendBuffer.Length,
 SocketFlags.None,
 new AsyncCallback(sendCallback),
 stateObject.sSocket);

 Console.Write("Sending response.");
 writeDot(asyncSend);
 }

 public static void sendCallback(IAsyncResult asyncSend) {
 Socket serverSocket = (Socket)asyncSend.AsyncState;
 int bytesSent = serverSocket.EndSend(asyncSend);
 Console.WriteLine(
 ".{0} bytes sent.{1}{1}Shutting down.",
 bytesSent.ToString(),
 Environment.NewLine);

 serverSocket.Shutdown(SocketShutdown.Both);
 serverSocket.Close();
 }

 // times out after 20 seconds but operation continues
 internal static bool writeDot(IAsyncResult ar)
 {
 int i = 0;
 while(ar.IsCompleted == false)
 {
 if(i++ > 40)
 {
 Console.WriteLine("Timed out.");
 return false;
 }
 Console.Write(".");
 Thread.Sleep(500);
 }
 return true;
 }
}

					 The following code is for the client application. When
 starting the application, supply the hostname of the console running the server
 application as an input parameter (for example, ProgramName
).
					 using System;
using System.Threading;
using System.Text;
using System.Net;
using System.Net.Sockets;

public class Client {

 // used to pass state information to delegate
 class StateObject
 {
 internal byte[] sBuffer;
 internal Socket sSocket;
 internal StateObject(int size, Socket sock) {
 sBuffer = new byte[size];
 sSocket = sock;
 }
 }

 static void Main(string[] argHostName)
 {
 IPAddress ipAddress =
 Dns.Resolve(argHostName[0]).AddressList[0];

 IPEndPoint ipEndpoint =
 new IPEndPoint(ipAddress, 1800);

 Socket clientSocket = new Socket(
 AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 IAsyncResult asyncConnect = clientSocket.BeginConnect(
 ipEndpoint,
 new AsyncCallback(connectCallback),
 clientSocket);

 Console.Write("Connection in progress.");
 if(writeDot(asyncConnect) == true)
 {
 // allow time for callbacks to
 // finish before the program ends
 Thread.Sleep(3000);
 }
 }

 public static void
 connectCallback(IAsyncResult asyncConnect) {
 Socket clientSocket =
 (Socket)asyncConnect.AsyncState;
 clientSocket.EndConnect(asyncConnect);
 // arriving here means the operation completed
 // (asyncConnect.IsCompleted = true) but not
 // necessarily successfully
 if(clientSocket.Connected == false)
 {
 Console.WriteLine(".client is not connected.");
 return;
 }
 else Console.WriteLine(".client is connected.");

 byte[] sendBuffer = Encoding.ASCII.GetBytes("Hello");
 IAsyncResult asyncSend = clientSocket.BeginSend(
 sendBuffer,
 0,
 sendBuffer.Length,
 SocketFlags.None,
 new AsyncCallback(sendCallback),
 clientSocket);

 Console.Write("Sending data.");
 writeDot(asyncSend);
 }

 public static void sendCallback(IAsyncResult asyncSend)
 {
 Socket clientSocket = (Socket)asyncSend.AsyncState;
 int bytesSent = clientSocket.EndSend(asyncSend);
 Console.WriteLine(
 ".{0} bytes sent.",
 bytesSent.ToString());

 StateObject stateObject =
 new StateObject(16, clientSocket);

 // this call passes the StateObject because it
 // needs to pass the buffer as well as the socket
 IAsyncResult asyncReceive =
 clientSocket.BeginReceive(
 stateObject.sBuffer,
 0,
 stateObject.sBuffer.Length,
 SocketFlags.None,
 new AsyncCallback(receiveCallback),
 stateObject);

 Console.Write("Receiving response.");
 writeDot(asyncReceive);
 }

 public static void
 receiveCallback(IAsyncResult asyncReceive) {
 StateObject stateObject =
 (StateObject)asyncReceive.AsyncState;

 int bytesReceived =
 stateObject.sSocket.EndReceive(asyncReceive);

 Console.WriteLine(
 ".{0} bytes received: {1}{2}{2}Shutting down.",
 bytesReceived.ToString(),
 Encoding.ASCII.GetString(stateObject.sBuffer),
 Environment.NewLine);

 stateObject.sSocket.Shutdown(SocketShutdown.Both);
 stateObject.sSocket.Close();
 }

 // times out after 2 seconds but operation continues
 internal static bool writeDot(IAsyncResult ar)
 {
 int i = 0;
 while(ar.IsCompleted == false)
 {
 if(i++ > 20)
 {
 Console.WriteLine("Timed out.");
 return false;
 }
 Console.Write(".");
 Thread.Sleep(100);
 }
 return true;
 }
}

					 The output of the server application is
					
						 Connection in progress...........server is connected.
						 Receiving data......5 bytes received: Hello
						 Sending response....7 bytes sent.
						 Shutting down.

					 The output of the client application is
					
						 Connection in progress......client is connected.
						 Sending data......5 bytes sent.
						 Receiving response......7 bytes received: Goodbye
						 Shutting down.
					
				
			
			
				 System.Object
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class.

						
						 One of the values defined in the enumeration.
						 One of the values defined in the enumeration.
						 One of the values defined in the enumeration.
						
							 The combination of , , and is invalid.
							 -or-
							 An error occurred while creating the socket.
							
								 For additional information on causes of the , see the class.
							
						
						
							 The parameter
 specifies the addressing scheme used by the current instance, the parameter specifies the socket type of the current instance, and the
 parameter
 specifies the protocol
 used by the current instance. The three parameters are not independent. Some
 address families restrict which protocols are used, and often the socket type is
 determined by the protocol. When the specified
 values are not a valid combination, a exception
 is thrown.
							 Using the member of either the
 or enumeration, results
in a
exception being thrown.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.Sockets.Socket
					
					
					
						
							 Creates and initializes a new instance and connects it to an incoming connection
 request.
						
						
							 A new connected
instance.
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							 An error occurred while accessing the listening socket or while creating the new socket.
							 -or-
							 The property is set to .
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method is used only on the server-side of connection-oriented protocols. It extracts the first
 connection request from the queue of pending requests, creates a new
 instance, and connects this instance to the socket associated with the request.
							 The property
 of the socket determines the behavior of this method when there are no pending
 connection requests. When , this method will throw a
 .
 When , this method blocks.
							 The following properties of the new instance returned by this method have values
identical to the corresponding properties of the current instance:
							
								
									
										
									
								
								
									
										
									
								
								
									
										
									
								
								
									
										
									
								
								
									
										
									
								
							
							 The property of the new instance is set to the local endpoint of the first request in
the input queue. The property is set to .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.Sockets.AddressFamily
					
					
					
						
							 Gets the address family of the current instance.

						
						
							 One of the values defined in
 the enumeration.
						
						
							 This property is read-only.
							 This property is set by the constructor for the current instance. The value of this property specifies the addressing scheme used by the current instance to resolve an address.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the amount
 of data available to be read in a single or
 call.

						
						
							 A containing the number of bytes of data that are
 available to be read.
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 When the current instance is stream-oriented (for example, the socket type), the available data
 is generally the total amount of data queued on the current instance.
							 When the current instance is message-oriented (for example, the socket type), the available data
is the first message in the input queue.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
					
					
						
							 Begins an asynchronous operation to accept an incoming connection request.
						
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						 An error occurred while accepting the connection.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 To retrieve the results of the operation and release
 resources allocated by the method, call
 the method, and specify the
 object returned by this
 method.
							
								 The method should be
 called exactly once for each call to the
 method.
							
							 If the parameter is not
 , the method referenced by is invoked
when the asynchronous operation completes. The object returned by this method is
passed as the argument to the method referenced by . The method
referenced by can retrieve the results of the operation by calling
the
method.
							 The parameter
can be any object that the caller wishes to have available for the duration of
the asynchronous operation. This object is available via the

property of the object returned by this
method.
							 To determine the connection status, check the property, or use either the
or
method.
							
								 For more information, see , the
 synchronous version of this method.
							
						
						
							 The following excerpt from the class overview
 example outlines an asynchronous accept operation.
							 public class Server
{
 static void Main()
 {
 .
 .
 .
 listenSocket.BeginAccept(
 new AsyncCallback(Server.acceptCallback),
 listenSocket);
 .
 .
 .
 // EndAccept can be called here
 .
 .
 .
 }

 public static void
 acceptCallback(IAsyncResult asyncAccept)
 {
 Socket listenSocket =
 (Socket)asyncAccept.AsyncState;

 Socket serverSocket =
 listenSocket.EndAccept(asyncAccept);

 serverSocket.BeginReceive(...);
 .
 .
 .
 }
}

						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
					
					
						
							 Begins an asynchronous operation to associate the current instance with a remote endpoint.
						
						
							 The associated with the socket to connect to.
						
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						
							
								 is .
						
						 An error occurred while making the connection.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						 A caller higher in the call stack does not have permission for the requested operation.
						
							 To release
 resources allocated by the method, call
 the method, and specify the
 object returned by this

 method.
							
								 The method should be
 called exactly once for each call to the
 method.
							
							 If the parameter is not
 , the method referenced by is invoked
when the asynchronous operation completes. The object returned by this method is
passed as the argument to the method referenced by . The method
referenced by can retrieve the results of the operation by calling
the
method.
							 The parameter
can be any object that the caller wishes to have available for the duration of
the asynchronous operation. This object is available via the

property of the object returned by this
method.
							 To determine the connection status, check the property, or use either the
or method.
							
								 For more information, see , the
 synchronous version of this method.
							
						
						
							 For an outline of an asynchronous
 operation, see the method.
 For the complete example, which uses the method, see the
 class overview.
						
						 Requires permission to make a connection to the endpoint defined by . See .
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
						
					
					
						
							 Begins an asynchronous operation to receive data from a socket.
						
						 A array to store data received from the socket.
						 A containing the zero-based position in to begin storing the received data.
						 A containing the number of bytes to receive.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 To retrieve the results of the operation and release
 resources allocated by the method, call
 the method, and specify the
 object returned by this

 method.
							
								 The method should be
 called exactly once for each call to the
 method.
							
							 If the parameter is not
 , the method referenced by is invoked
when the asynchronous operation completes. The object returned by this method is
passed as the argument to the method referenced by . The method
referenced by can retrieve the results of the operation by calling
the
method.
							 The parameter
can be any object that the caller wishes to have available for the duration of
the asynchronous operation. This object is available via the

property of the object returned by this
method.
							
								 For more information, see , the
 synchronous version of this method.
							
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For the complete example, which uses the method, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
						
						
					
					
						
							 Begins an asynchronous operation to receive data from a socket and,
 for connectionless protocols, store the endpoint associated with the socket that
 sent the data.
						
						 A array to store data received from the socket.
						 A containing the zero-based position in to begin storing the received data.
						 A containing the number of bytes to receive.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 An instance of a class derived from the class, which contains the endpoint associated with the socket that sent the data.
						
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						 A caller in the call stack does not have the required permissions.
						
							 To retrieve the results of the operation and release
 resources allocated by the method, call
 the method, and specify the
 object returned by this

 method.
							
								 The method should be
 called exactly once for each call to the
 method.
							
							 If the parameter is not
 , the method referenced by is invoked
when the asynchronous operation completes. The object returned by this method is
passed as the argument to the method referenced by . The method
referenced by can retrieve the results of the operation by calling
the
method.
							 The parameter
can be any object that the caller wishes to have available for the duration of
the asynchronous operation. This object is available via the

property of the object returned by this
method.
							
								 For more information, see , the
 synchronous version of this method.
							
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For the complete example, see .
						
						
							 Requires permission to accept a connection on the endpoint defined by the property of the current instance. See .
							 Requires permission to make a connection to the endpoint defined by . See .
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
						
					
					
						
							 Begins an asynchronous operation to send data to a connected socket.
						
						 A array storing data to send to the socket.
						 A containing the zero-based position in containing the starting location of the data to send.
						 A containing the number of bytes to send.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 To retrieve the results of the operation and release
 resources allocated by the method, call
 the method, and specify the
 object returned by
 this

 method.
							
								 The method should be
 called exactly once for each call to the
 method.
							
							 If the parameter is not
 , the method referenced by is invoked
when the asynchronous operation completes. The object returned by this method is
passed as the argument to the method referenced by . The method
referenced by can retrieve the results of the operation by calling
the
method.
							 The parameter
can be any object that the caller wishes to have available for the duration of
the asynchronous operation. This object is available via the

property of the object returned by this
method.
							
								 For more information, see , the
 synchronous version of this method.
							
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For the complete example, which uses the method, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
						
						
						
						
						
					
					
						
							 Begins an asynchronous operation to send data to the socket associated with the specified endpoint.
						
						 A array storing data to send to the socket.
						 A containing the zero-based position in to begin sending data.
						 A containing the number of bytes to send.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 The associated with the socket to receive the data.
						
						 A delegate, or .
						 An application-defined object, or .
						
							 A instance that contains information about the asynchronous operation.
						
						
							
								 is .
							 -or-
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						 A caller in the call stack does not have the required permissions.
						
							 To retrieve the results of the operation and release
 resources allocated by the method, call
 the method, and specify the
 object returned by this

 method.
							
								 The method should be
 called exactly once for each call to the
 method.
							
							 If the parameter is not
 , the method referenced by is invoked
when the asynchronous operation completes. The object returned by this method is
passed as the argument to the method referenced by . The method
referenced by can retrieve the results of the operation by calling
the
method.
							 The parameter
can be any object that the caller wishes to have available for the duration of
the asynchronous operation. This object is available via the

property of the object returned by this
method.
							
								 For more information, see , the
 synchronous version of this method.
							
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For
 the complete example, see the class overview.
						
						
							 Requires permission to make a connection to the endpoint defined by . See .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Associates the current instance with a local endpoint.
						
						
							 The local to be associated with the socket.
						
						
							 is .
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						 A caller in the call stack does not have the required permission.
						
							 This method sets the property of the current instance to
 .
							
								 For connection-oriented protocols, this method is
 generally used only on the server-side and is required to be called before the first
 call to the method.
 On the client-side, binding is usually performed implicitly by the method.
								 For connectionless protocols, the
									 , and methods bind the current instance to
the local endpoint if the current instance has not previously been bound.
							
						
						 Requires permission to accept connections on the endpoint defined by . See .
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value that indicates whether the socket is in blocking mode.

						
						
							
								 indicates that
 the current instance is in blocking mode;
 indicates that the current instance is in
 non-blocking mode.
						
						 The current instance has been disposed.
						
							 Blocking is when a method waits to complete an operation before returning. Sockets are created in blocking mode
 by default.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current instance and releases all managed and unmanaged resources allocated by the current instance.

						
						
							 This method calls the
 ()
 method with the argument set to , which frees both managed
 and unmanaged resources used by the current instance.
							 The socket attempts to perform a graceful closure when the socket option is enabled
 and set to a non-zero linger time. In all other cases, closure is forced and any
 pending data is lost.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Associates the current instance with a remote endpoint.
						
						
							 The associated with the socket to connect to.
						
						
							 is .
						
							 An asynchronous call is pending and a blocking method has been called.
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						 A caller in the call stack does not have the required permission.
						
							 This method sets the property of the current instance to
 .
							
								 For connection-oriented protocols, this method
 establishes a connection between the current instance and the
 socket associated with . This method is used only on
 the client-side. The method establishes the connection on the
 server-side. Once the connection has been made, data can
 be sent using the
 method, and received using the method.
								 For connectionless protocols, the
method can be used from both
client and server-sides, allowing the use of the method instead of the
method. The property is set to

and
the property is set to a value determined
by the protocol; however, a connection is not established. Subsequent data is
required to be received on the endpoint set in
the property.
							
						
						 Requires permission to make a connection to the endpoint defined by . See .
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance is connected.

						
						
							
								 indicates that
 the current instance was connected at
 the time of the
 last I/O operation;
 indicates that the
 current instance is not connected.
						
						
							 This property is read-only.

							 When this property returns , the current instance was
 connected at the time of the last I/O operation; it might not still be connected.
 When this property returns , the current instance was
 never connected or is not currently connected.
							 The current instance is considered connected when
 the
 property contains a valid endpoint.
							
								 The and methods,
and their asynchronous counterparts set this
property.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Closes the current instance, releases the unmanaged resources allocated by the current
 instance, and optionally releases the
 managed resources.
						
						 A . Specify to release both managed and unmanaged resources; to release only unmanaged resources.
						
							
								

 This method
 closes the current instance
 and releases all unmanaged resources allocated by the
 current instance. When is , this method also releases all resources held by any managed
 objects allocated by the current
 instance.

							
							
								

 This method
 closes the current instance but does not release any managed
 resources.

							
							
								

 The method can be called
 multiple times by other objects. When overriding this method, do not reference
 objects that have been previously disposed in an earlier call.

							
							
								

 Use this method to release
 resources allocated by
 the current
 instance.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.Sockets.Socket
					
					
						
					
					
						
							 Ends an asynchronous call to accept
 an incoming connection
 request.
						
						 A object that holds the state information for the asynchronous operation.
						
							 A new connected
instance.
						
						
							 is .
						
							 was not returned by the current instance from a call to the method.
						
							 was previously called for this operation.
						 An error occurred during the operation.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method blocks if the asynchronous operation has not completed.
							 The
method completes an asynchronous request that was started with a call to the
 method. The object specified for the
 parameter is required to be the same object as was returned
by the
method call that began the
request.
							 If the
method is invoked via the delegate specified to the method, the
 parameter is the
argument passed to the
delegate's method.
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For the complete example, which uses the method, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Ends an asynchronous call
 to associate the current instance with a remote endpoint.
						
						 A object that holds the state information for the asynchronous operation.
						
							 is .
						
							 was not returned by the current instance from a call to the method.
						
							 was previously called for this operation.
						 An error occurred during the operation.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method blocks if the asynchronous operation has not completed.
							 The
method completes an asynchronous request that was started with a call to the
 method. The object specified for the
 parameter is required to be the same object as was returned
by the
method call that began the
request.
							 If the
method is invoked via the delegate specified to the method, the
 parameter is the
argument passed to the
delegate's method.
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For the complete example, which uses the method, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Ends an asynchronous call to receive
 data from a
 socket.
						
						
							 A object that holds the state information for the asynchronous operation.
						
						
							 A containing the number of bytes received.
						
						
							 is .
						
							 was not returned by the current instance from a call to the method.
						
							 was previously called for this operation.
						 An error occurred during the operation.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method blocks if the asynchronous operation has not completed.
							 The
method completes an asynchronous request that was started with a call to the
 method. The object specified for the
 parameter is required to be the same object as was returned
by the
method call that began the
request.
							 If the
method is invoked via the delegate specified to the method, the
 parameter is the
argument passed to the
delegate's method.
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For the complete example, which uses the method, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Ends an asynchronous call to receive
 data from a socket and store the endpoint associated with the socket that
 sent the data.
						
						
							 A object that holds the state information for the asynchronous operation.
						
						 A reference to the associated with the socket that sent the data.
						
							 A containing the number of bytes received.
						
						
							 is .
						
							 was not returned by the current instance from a call to the method.
						
							 was previously called for this operation.
						 An error occurred during the operation.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method blocks if the asynchronous operation has not completed.
							 The
method completes an asynchronous request that was started with a call to the
 method. The object specified for the
 parameter is required to be the same object as was returned
by the
method call that began the
request.
							 If the
method is invoked via the delegate specified to the method, the
 parameter is the
argument passed to the
delegate's method.
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For
 the complete example, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Ends an asynchronous call to send data
 to a connected socket.
						
						
							 A object that holds the state information for the asynchronous operation.
						
						
							 A containing the number of bytes sent.
						
						
							 is .
						
							 was not returned by the current instance from a call to the method.
						
							 was previously called for this operation.
						 An error occurred during the operation.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method blocks if the asynchronous operation has not completed.
							 The
method completes an asynchronous request that was started with a call to the
 method. The object specified for the
 parameter is required to be the same object as was returned
by the
method call that began the
request.
							 If the
method is invoked via the delegate specified to the method, the
 parameter is the
argument passed to the
delegate's method.
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For the complete example, which uses the method, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Ends an asynchronous call to send data to a socket associated
 with a specified endpoint.
						
						
							 A object that holds the state information for the asynchronous operation.
						
						
							 A containing the number of bytes sent.
						
						
							 is .
						
							 was not returned by the current instance from a call to the method.
						
							 was previously called for this operation.
						 An error occurred during the operation.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method blocks if the asynchronous operation has not completed.
							 The
method completes an asynchronous request that was started with a call to the
 method. The object specified for the
 parameter is required to be the same object as was returned
by the
method call that began the
request.
							 If the
method is invoked via the delegate specified to the method, the
 parameter is the
argument passed to the
delegate's method.
						
						
							 For an outline of an asynchronous operation, see
 the method.
 For
 the complete example, see the class overview.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the current instance and releases unmanaged resources allocated by the current
 instance.
						
						
							
								 Application code does not call this method; it
 is automatically invoked during garbage collection unless finalization by the
 garbage collector has been disabled. For more information, see ,
 and .
								 This method calls () to free unmanaged
 resources used by the current instance.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							
 The algorithm used to generate the hash code is unspecified.

							
								

 This method overrides .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
					
					
						
							 Retrieves an object containing the value of the specified socket option.
						
						 One of the values defined in the enumeration.
						 One of the values defined in the enumeration.
						
							 The following table describes the values returned
 by this method.
							
								
									 optionName
									 Return value
								
								
									
										
									
									 An instance of the
 class.
								
								
									
										
											
										
										 -or-
										
											
										
									
									 An instance of
 the
 class.
								
								
									 All other values defined in the enumeration.
									 A containing the value
of the option.
								
							
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 Socket options determine the behavior of the
 current instance.
							
								 and are not
 independent. See the (,
 ,) method for a listing of the values of the enumeration grouped
 by .
						
						
							 The following example gets the state of the linger option and the size of the receive buffer, changes the values of both, then gets the new values.
							 using System;
using System.Net.Sockets;

class OptionTest{

 public static void Main() {

 // Get the current option values.
 Socket someSocket =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 LingerOption lingerOp =
 (LingerOption)someSocket.GetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.Linger);

 int receiveBuffer =
 (int)someSocket.GetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.ReceiveBuffer);

 Console.WriteLine(
 "Linger option is {0} and set to {1} seconds.",
 lingerOp.Enabled.ToString(),
 lingerOp.LingerTime.ToString());

 Console.WriteLine(
 "Size of the receive buffer is {0} bytes.",
 receiveBuffer.ToString());

 // Change the options.
 lingerOp = new LingerOption(true, 10);
 someSocket.SetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.Linger,
 lingerOp);

 someSocket.SetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.ReceiveBuffer,
 2048);

 Console.WriteLine(
 "The SetSocketOption method has been called.");

 // Get the new option values.
 lingerOp =
 (LingerOption)someSocket.GetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.Linger);

 receiveBuffer =
 (int)someSocket.GetSocketOption(
 SocketOptionLevel.Socket,
 SocketOptionName.ReceiveBuffer);

 Console.WriteLine(
 "Linger option is now {0} and set to {1} seconds.",
 lingerOp.Enabled.ToString(),
 lingerOp.LingerTime.ToString());

 Console.WriteLine(
 "Size of the receive buffer is now {0} bytes.",
 receiveBuffer.ToString());
 }
}

							 The output is
							
								 Linger option is False and set to 0 seconds.
								 Size of the receive buffer is 8192 bytes.
								 The SetSocketOption method has been called.
								 Linger option is now True and set to 10 seconds.
								 Size of the receive buffer is now 2048 bytes.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Retrieves the value of the specified socket option.
						
						 One of the values defined in the enumeration.
						 One of the values defined in the enumeration.
						 A array that receives the value of the specified socket option.
						
							
								 is too small to store the value of the specified socket option.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 Socket
 options determine the behavior of the current instance.
							 Upon successful completion, the array specified by the parameter contains the value of the
 specified socket option.
							 When the length of the array is smaller than the number of bytes required
to store the value of the specified socket option, a exception is thrown.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
						
					
					
						
							 Retrieves the value of the
 specified socket option.
						
						 One of the values defined in the enumeration.
						 One of the values defined in the enumeration.
						 A containing the maximum length, in bytes, of the value of the specified socket option.
						
							 A array containing the value of the specified socket option.
						
						
							
								 is smaller than the number of bytes required to store the value of the specified socket option.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 Socket options
 determine the behavior of the current instance.
							 The parameter
 is used to allocate an array to store the value of the specified option. When this value is smaller than the number of bytes required to store
 the value of the specified option, a exception is thrown. When this value is
 greater than or equal to the number of bytes required to store the value of the
 specified option, the array returned by this
 method is allocated to be exactly the required length.
						
					
					 0
				
				
					
					
					 Property
					
						 System.IntPtr
					
					
					
						
							 Gets the operating system handle for the current instance.

						
						
							 A containing the operating system handle for the current instance.
						
						
							 This property is read-only.
						
						 Requires permission to access unmanaged code. See .
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Provides low-level access to the socket, the
 transport protocol, or the communications subsystem.
						
						 A containing the control code of the operation to perform.
						 A array containing the input data required by the operation.
						 A array containing the output data supplied by the operation.
						
							 A containing the length of the
 array after the method returns.
						
						
							 An attempt was made to change the blocking mode.
							
								 Use the property to change the blocking mode.
							
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						 A caller in the call stack does not have the required permissions.
						
							 If an attempt is made to change the blocking mode of the current instance, an
 exception is thrown. Use the property to change the
 blocking mode.
							
 The control codes and their requirements
 are implementation defined. Do not use
 this method if platform
 independence is a requirement.

							
								

 Input data is not required for all control codes. Output data is not supplied
 by all control codes and, if not supplied, the return value is 0.

							
						
						
							 The following example gets the number of bytes of available
 data to be read and writes the result to the console on a Windows system.
 The remote endpoint (remoteEndpoint) to connect to might need to be changed to a value that is valid on the current system.
							 using System;
using System.Net;
using System.Net.Sockets;

class App {

 static void Main() {

 IPAddress remoteAddress =
 Dns.Resolve(Dns.GetHostName()).AddressList[0];

 IPEndPoint remoteEndpoint =
 new IPEndPoint(remoteAddress, 80);

 Socket someSocket =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 someSocket.Connect(remoteEndpoint);

 int fionRead = 0x4004667F;
 byte[]inValue = {0x00, 0x00, 0x00, 0x00};
 byte[]outValue = {0x00, 0x00, 0x00, 0x00};

 someSocket.IOControl(fionRead, inValue, outValue);

 uint bytesAvail = BitConverter.ToUInt32(outValue, 0);

 Console.WriteLine(
 "There are {0} bytes available to be read.",
 bytesAvail.ToString());
 }
}

							 The output is
							
								 There are 0 bytes available to be read.
							
						
						 Requires permission to access unmanaged code. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Places the current instance into the listening
 state where it waits for incoming connection requests.
						
						 A containing the maximum length of the queue of pending connections.
						 The property of the current instance is true. -or-
							 has not been called on the current instance. -or-An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 Once this method is called, incoming connection requests
 are placed in a queue. The maximum size of the queue is specified by the
 parameter. The size of the queue is limited to legal
 values by the underlying protocol. Illegal values of the
 parameter are replaced with a legal value, which is implementation defined.
							 If a connection request arrives and the queue is full, a is thrown on the client.
							 A socket in the listening state has no
 remote endpoint associated with it. Attempting to access the property throws a exception.
							 This method is ignored if called more than once on the
 current instance.
							
								 This method is used
 only on the server-side of connection-oriented protocols. Call the method before
 this method is called the first time. Call the method before the first call to the
 method.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.EndPoint
					
					
					
						
							 Gets the local endpoint associated with the current instance.

						
						
							 The local
associated with the current
instance.
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This property is read-only.
							 This property contains the network connection information for the
 current instance.
							
								 The and
 methods,
 and their
 asynchronous counterparts set this property. If not previously set,
 the and methods, and their asynchronous counterparts set this property.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines the read, write, or error status of the current instance.
						
						 A containing the time to wait for a response, in microseconds. Set the parameter to a negative value to wait indefinitely for a response.
						 One of the values defined in the enumeration.
						
							 A where indicates the current instance
 satisfies at least one of the conditions in the following table
 corresponding to the specified
 value; otherwise, . is returned if the status of the current instance cannot be determined within the time specified by .
							
								
									 SelectMode value
									 Condition
								
								
									 SelectRead
									
										 Data is available for reading (includes
 out-of-band data if the value defined in
 the
 enumeration
 is set).
										 -or-
										 The socket is in the listening state with a
 pending connection, and
 the method has been called and is guaranteed to succeed without
 blocking.
										 -or-
										 The connection has been closed, reset,
 or terminated.
									
								
								
									 SelectWrite
									
										 Data can be sent.
										 -or-
										 A non-blocking method is being processed and the connection has
 succeeded.
									
								
								
									 SelectError
									
										 The value defined in
 the enumeration is not set
 and out-of-band data is available.
										 -or-
										 A non-blocking
 method is being processed and the connection has
 failed.
									
								
							
						
						
							 is not one of the values defined in the enumeration.
						
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
					
					 0
				
				
					
					
					 Property
					
						 System.Net.Sockets.ProtocolType
					
					
					
						
							 Gets the protocol type of the current instance.

						
						
							 One of the values defined in
 the enumeration.
						
						
							 This property is read-only.
							 This property is set by the constructor for the current instance. The value of
 this property specifies the protocol used by the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Receives data from a socket.
						
						 A array to store data received from the socket.
						 A containing the number of bytes to receive.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 A containing the number of bytes received.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, ,
).
						
						 Requires permission to accept connections. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Receives data from a
 socket.
						
						 A array to store data received from the socket.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 A containing the number of bytes received.
						
						
							 is .
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							 For additional information on causes of the , see the class.
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, .Length,
).
						
						 Requires permission to accept connections. See .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Receives data from a socket.
						
						 A array to store data received from the socket.
						 A containing the zero-based position in to begin storing the received data.
						 A containing the number of bytes to receive.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 A
containing the number of bytes received.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 The property was not set.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 The property is required to be set before
 this method
 is called.
							 The property of the socket determines
the behavior of this method when no incoming data is available. When
 , the exception is thrown. When
 , this method blocks and
waits for data
to arrive.
							 For socket types, if the remote socket
was shut down gracefully, and all data was received, this method immediately returns zero,
regardless of the blocking state.
							 For message-oriented sockets, if the message is larger than the size of
 , the buffer is filled with the first part of the message, and the
 exception is thrown. For unreliable
 protocols, the excess data is lost; for reliable protocols, the data is retained
 by the service provider.
							 When the flag is
specified as part of the parameter and the socket is configured for in-line reception of
out-of-band (OOB) data (using the socket option) and OOB data is available,
only OOB data is returned.
							 When the flag is specified as part of the
 parameter, available data is copied into
 but is not removed from the system
buffer.
						
						
							 Requires permission to accept a connection on the endpoint defined by the property of the current instance. See .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Receives data from a socket.
						
						 A array to store data received from the socket.
						
							 A
containing the number of bytes received.
						
						
							 is .
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, .Length,
).
						
						 Requires permission to accept connections. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Receives data from a socket and, for connectionless protocols, stores the
 endpoint associated with the socket that sent the data.
						
						 A array to store data received from the socket.
						 A reference to the associated with the socket that sent the data.
						
							 A
containing the number of bytes received.
						
						
							
								 or is .
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, .Length,
 ,).
						
						 Requires permission to accept connections from the endpoint defined by . See .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Receives data from a socket and, for connectionless protocols, stores the
 endpoint associated with the socket that sent the data.
						
						 A array to store data received from the socket.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						 A reference to the associated with the socket that sent the data.
						
							 A
containing the number of bytes received.
						
						
							
								 or is .
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 specified an invalid value.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, .Length, ,).
						
						 Requires permission to accept connections from the endpoint defined by . See .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Receives data from a socket and, for connectionless protocols, stores the
 endpoint associated with the socket that sent the data.
						
						 A array to store data received from the socket.
						 A containing the number of bytes to receive.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						 A reference to the associated with the socket that sent the data.
						
							 A
containing the number of bytes received.
						
						
							
								 or is .
						
						
							
								 < 0.
							 -or-
							
								 > .Length.
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, , ,).
						
						 Requires permission to accept connections from the endpoint defined by . See .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Receives data from a socket and,
 for connectionless protocols, stores the endpoint associated with the socket that sent
 the data.
						
						 A array to store data received from the socket.
						 A containing the zero-based position in to begin storing the received data.
						 A containing the number of bytes to receive.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						 A reference to the associated with the socket that sent the data.
						
							 A
containing the number of bytes received.
						
						
							
								 or is .
						
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 The property was not set.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 For connectionless protocols, when this method successfully completes, contains the
 endpoint associated with the socket that sent the data.
							 For connection-oriented protocols, is left unchanged.
							 The property is required to be set before
this method is called or a
is thrown.
							 The property of the socket determines
the behavior of this method when no incoming data is available. When
 , the exception is thrown. When
 , this method blocks and
waits for data to arrive.
							 For socket types, if the
remote socket was shut down gracefully, and all data was received, this method
immediately returns zero, regardless of the blocking state.
							 For message-oriented sockets, if the message is larger than the size of
 , the buffer is filled with the first part of the message, and the

exception is thrown. For unreliable protocols, the excess data is lost; for
reliable protocols, the data is retained by the service provider.
							 When the flag is specified as part of the parameter and the socket is configured for
in-line reception of out-of-band (OOB) data (using the socket option) and OOB
data is available, only OOB data is returned.
							 When the flag is specified as part of the
 parameter, available data is copied into

but is not removed from the system
buffer.
						
						
							 Requires permission to accept a connection on the endpoint defined by the property of the current instance. See .
							 Requires permission to make a connection to the endpoint defined by . See .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.EndPoint
					
					
					
						
							 Gets the remote endpoint associated with the current instance.

						
						
							 The remote
associated with the current instance.
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This property
 is read-only.
							 This property contains the network
 connection information associated with the socket communicating with the current
 instance.
							 There is no remote endpoint
 associated with a socket in the listening state. An attempt to access the

 property causes a exception to be
 thrown.
							
								 The and methods, and their asynchronous
counterparts set this property.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Determines the read, write, or error status of a set
 of instances.
						
						 A object containing the instances to check for read status.
						 A object containing the instances to check for write status.
						 A object containing the instances to check for error status.
						 A that specifies the time to wait for a response, in microseconds. Specify a negative value to wait indefinitely for the status to be determined.
						 All of the following parameters are or empty: , , and .
						 An error occurred while accessing one of the sockets.
								 For additional information on causes of the , see the class.
							
						
						
							 Upon successful completion, this method removes all
 instances from
 the specified list that do not
 satisfy one of the conditions associated
 with that list. The following table describes the conditions for each list.
							
								
									 List
									 Condition to remain in list
								
								
									
										
									
									
										 Data is available for reading (includes
 out-of-band data if the
 value defined in the enumeration is set).
										 -or-
										 The socket is in the listening state with a pending connection, and the method has been called
 and is guaranteed to succeed without blocking.
										 -or-
										 The connection has been closed, reset, or terminated.
									
								
								
									
										
									
									
										 Data can be sent.
										 -or-
										 A non-blocking method is being processed and the
 connection has succeeded.
									
								
								
									
										
									
									
										 The
value defined in the enumeration is not set and
out-of-band data is available.
										 -or-
										 A non-blocking method is being processed and the
connection has failed.
									
								
							
							
								 To determine the status of a specific
 instance, check whether the instance
 remains in the list after the method returns.
							
							 When the method cannot determine the status of all the
 instances within the time specified in the
 parameter, the
 method removes all the
 instances from all the lists and returns.
							 At least one of , , or
 , is required to contain at least one instance. The
other parameters can be empty or .
						
						
							 The following example determines the status of the socket instance named
 socket3 and writes the result to the console.
							 using System;
using System.Collections;
using System.Net.Sockets;

class SelectTest {

 public static void Main() {

 Socket socket1 =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 Socket socket2 =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 Socket socket3 =
 new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);

 ArrayList readList = new ArrayList();
 ArrayList writeList = new ArrayList();
 ArrayList errorList = new ArrayList();

 readList.Add(socket1);
 readList.Add(socket2);
 readList.Add(socket3);
 errorList.Add(socket1);
 errorList.Add(socket3);

 // readList.Contains(Socket3) returns true
 // if Socket3 is in ReadList.
 Console.WriteLine(
 "socket3 is placed in readList and errorList.");
 Console.WriteLine(
 "socket3 is {0}in readList.",
 readList.Contains(socket3) ? "" : "not ");
 Console.WriteLine(
 "socket3 is {0}in writeList.",
 writeList.Contains(socket3) ? "" : "not ");
 Console.WriteLine(
 "socket3 is {0}in errorList.",
 errorList.Contains(socket3) ? "" : "not ");

 Socket.Select(readList, writeList, errorList, 10);
 Console.WriteLine("The Select method has been called.");
 Console.WriteLine(
 "socket3 is {0}in readList.",
 readList.Contains(socket3) ? "" : "not ");
 Console.WriteLine(
 "socket3 is {0}in writeList.",
 writeList.Contains(socket3) ? "" : "not ");
 Console.WriteLine(
 "socket3 is {0}in errorList.",
 errorList.Contains(socket3) ? "" : "not ");
 }
}

							 The output is
							
								 socket3 is placed in readList and errorList.
								 socket3 is in readList.
								 socket3 is not in writeList.
								 socket3 is in errorList.
								 The Select method has been called.
								 socket3 is not in readList.
								 socket3 is not in writeList.
								 socket3 is not in errorList.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Sends data to a connected socket.
						
						 A array containing data to send to the socket.
						 A that specifies the zero-based position in buffer that is the starting location of the data to send.
						 A containing the number of bytes to send.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 A
containing the number of bytes sent.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 For connection-oriented protocols, the property of the current instance is
 required to be set before calling this
 method.
							 For connectionless protocols, calling the methods sets the property and allows the
method to be used instead of the
method.
							 When the flag
is specified as part of the parameter,
the sent data is not routed.
							 When the flag is specified as part of the
 parameter, only out-of-band (OOB) data is sent.
							 When the property of the current instance is
set to and
buffer space is not available within the underlying protocol, this method
blocks.
							 For message-oriented sockets, when
 is greater than the maximum message size of the underlying
 protocol, no data is sent and the exception is thrown.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Sends data to a
 connected socket.
						
						 A array containing data to send to the socket.
						
							 A
containing the number of bytes sent.
						
						
							 is .
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0,
 .Length,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Sends data to a connected socket.
						
						 A array containing data to send to the socket.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 A
containing the number of bytes sent.
						
						
							 is .
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, .Length,
).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Sends data to a connected socket.
						
						 A array containing data to send to the socket.
						 A containing the number of bytes to send.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 A
containing the number of bytes sent.
						
						
							 is .
						
							
								 < 0.
							 -or-
							
								 > .Length.
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, ,
).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
					
					
						
							 Sends data to the socket associated with the specified
 endpoint.
						
						 A array containing data to send to the socket.
						
							 The associated with the socket to receive the data.
						
						
							 A
containing the number of bytes sent.
						
						
							
								 is .
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 This method is equivalent to (,
 0, .Length, ,).
						
						 Requires permission to make a connection to the endpoint defined by . See .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Sends data to the socket associated with the specified
 endpoint.
						
						 A array containing data to send to the socket.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 The associated with the socket to receive the data.
						
						
							 A
containing the number of bytes sent.
						
						
							
								 is .
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, .Length,
 ,).
						
						 Requires permission to make a connection to the endpoint defined by . See .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
					
					
						
							 Sends data to the socket associated with the specified
 endpoint.
						
						 A array containing data to send to the socket.
						 A containing the number of bytes to send.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 The associated with the socket to receive the data.
						
						
							 A
containing the number of bytes sent.
						
						
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 > .Length.
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 This method is equivalent to (, 0, ,
 ,).
						
						 Requires permission to make a connection to the endpoint defined by . See .
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
						
						
					
					
						
							 Sends data to the socket associated with the specified
 endpoint.
						
						 A array containing data to send to the socket.
						 A that specifies the zero-based position in buffer that is the starting location of the data to send.
						 A containing the number of bytes to send.
						 A bitwise combination of any of the following values defined in the enumeration: , , or .
						
							 The associated with the socket to receive the data.
						
						
							 A
containing the number of bytes sent.
						
						
							
								 is .
						
						
							
								 < 0.
							 -or-
							
								 > .Length.
							 -or-
							
								 < 0.
							 -or-
							
								 > .Length - .
						
						
							 An asynchronous call is pending and a blocking method has been called.
						
						
							
								 is not a valid combination of values.
							 -or-
							 An error occurred while accessing the socket.
							
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 For connected sockets using connectionless
 protocols, overrides the endpoint specified in the property.
							 For unconnected sockets using connectionless protocols, this method sets
 the
 property of the current instance to a value determined by the protocol.
 Subsequent data is required to be received on .
							 When the flag
 is specified as part of the parameter,
 the sent data is not routed.
							 When the flag is specified as part of the
 parameter, only out-of-band (OOB) data is sent.
							 When the property of the current instance is
set to and
buffer space is not available within the underlying protocol, this method
blocks.
							 For message-oriented sockets, when is greater than
the maximum message size of the underlying protocol, no data is sent and the
 exception is thrown.
							 For connection-oriented sockets, the parameter is
ignored.
						
						 Requires permission to make a connection to the endpoint defined by . See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sets the , , or
 socket options.
						
						 Either the or member of the enumeration.
						 Either the , , or member of the enumeration.
						 An instance of the or class.
						
							 , , or specified an invalid value.
						
							 is .
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 Socket options determine the behavior of the current
 instance. Multiple options can be set on the current instance by calling this method multiple times.
							 The following table summarizes the valid combinations of input parameters.
							
								
									 optionLevel/optionName
									 optionValue
								
								
									
										 /
									
									 An instance of the class.
								
								
									
										
											 /
										
										 - or -
										
											 /
										
									
									 An instance of the class.
								
							
							 When setting the option, a
exception is thrown if the property of
the instance is less than zero or greater
than
.
							
								 For more information on the option,
 see the class and the
 method.
								 For more information on the and options, see the class.
								 For socket options
 with values of type or , see the (, ,) version
 of this method.
							
						
						 The and options require permission to access unmanaged code. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sets socket options with values of type .
						
						 One of the values defined in the enumeration.
						 One of the values defined in the enumeration.
						 A array containing the value of the option.
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 Socket options determine the behavior of the current
 instance. Multiple options can be set on the current instance by calling this method
 multiple times.
							
								 For socket options
 with values of type or ,
 see the (, ,) version of this method.
							
							
								 For the , , or socket options, see the
 (, ,) version of this
 method.
							
						
						 Requires permission to access unmanaged code. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sets socket options with values of type and .
						
						 One of the values defined in the enumeration.
						 One of the values defined in the enumeration.
						
							 A containing the value of the option.
						
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 A caller in the call stack does not have the required permissions.
						 The current instance has been disposed.
						
							 Socket options determine the behavior of the current
 instance. Multiple options can be set on the current instance by calling
 this method multiple times.
							 For a socket option with a
data type, specify a non-zero
 to enable the option, and an equal to zero
to disable the option.
							 Socket options are grouped by level of protocol support.
 The following tables list the members of
 the enumeration
 supported by each member of the enumeration.
 Only members that have associated values of the and
 data types are listed.
The following table lists the
members of the enumeration supported by
the member of the enumeration.
Options that do not require permission to access unmanaged code are noted.

								
									 SocketOptionName
									 Description
								
								
									 Broadcast
									 A
 where indicates broadcast messages are allowed to be sent to the socket.
								
								
									 Debug
									 A
 where indicates to record debugging information.
								
								
									 DontLinger
									 A
where indicates to close the socket without
lingering. This option does not require permission to access unmanaged code.
								
								
									 DontRoute
									 A
where indicates not to route data.
								
								
									 Error
									 A
 that
 contains the error code associated with the last socket error. The error
 code is cleared by this option. This option is read-only.
								
								
									 KeepAlive
									 A
where (the default) indicates to enable
keep-alives, which allows a connection to remain open after a request has completed. This option does not require permission to access unmanaged code.
								
								
									 OutOfBandInline
									 A
where indicates to receive out-of-band data in the normal data stream.
								
								
									 ReceiveBuffer
									 A that specifies the
 total per-socket buffer space reserved for receives.
 This option does not require permission to access unmanaged code.
								
								
									 ReceiveTimeout
									 A
 that
 specifies the maximum time, in milliseconds, the and methods will block when attempting to
 receive data. If data is not received within this
 time, a exception
 is thrown. This option does not require permission to access unmanaged code.
								
								
									 ReuseAddress
									 A
where allows the socket to be bound to an address that is already in use.
								
								
									 SendBuffer
									 A that specifies the
 total per-socket buffer space reserved for sends. This option does not require permission to access unmanaged code.
								
								
									 SendTimeout
									 A
 that
 specifies the maximum time, in milliseconds, the and methods will block when attempting to
 send data. If data is not sent within this time, a exception
 is thrown. This option does not require permission to access unmanaged code.
								
								
									 Type
									
										 One of the values defined in the enumeration. This option is
 read-only.
									
								
							
							 The following table lists the members of the
enumeration supported by the member of the
enumeration. These options require permission to access unmanaged
code.
							
								
									
										 SocketOptionName
										 Description
									
									
										 HeaderIncluded
										 A
 where indicates
 the application is providing the IP header for outgoing
 datagrams.
									
									
										 IPOptions
										 A array
 that specifies IP options to be inserted into outgoing
 datagrams.
									
									
										 IpTimeToLive
										 A that specifies the
 time-to-live for datagrams. The time-to-live designates the number of
 networks on which the datagram is allowed to travel
 before being discarded by a
 router.
									
									
										 MulticastInterface
										 A

 array that specifies the interface for outgoing multicast
 packets.
									
									
										 MulticastLoopback
										 A
 where enables multicast
 loopback.
									
									
										 MulticastTimeToLive
										 A that specifies the
 time-to-live for multicast datagrams.
									
									
										 TypeOfService
										 A that specifies the
 type of service field in the IP header.
									
									
										 UseLoopback
										 A
 where indicates to send a copy of the
 data back to the
 sender.
									
								
							
							 The following table lists the members of the
enumeration supported by the member of the enumeration.
These options do not require permission to access unmanaged code.
							
								
									
										 SocketOptionName
										 Description
									
									
										 BsdUrgent
										 A
 where indicates to use urgent data
 as defined by IETF RFC 1222. Once enabled, this option cannot be disabled.
									
									
										 Expedited
										 A
 where indicates to use expedited data as defined by IETF RFC
 1222. Once enabled, this option cannot be disabled.
									
									
										 NoDelay
										 A
 where indicates to disable the Nagle algorithm for send
 coalescing.
									
								
							
							 The following table lists the members of the
enumeration supported by the member of the enumeration.
These options do not require permission to access unmanaged code.
							
								
									
										 SocketOptionName
										 Description
									
									
										 ChecksumCoverage
										 A
 that specifies UDP checksum coverage.
									
									
										 NoChecksum
										 A
 where indicates to send UDP datagrams with the checksum set to zero.
									
								
							
							
								 For the
 , , and
 members of the enumeration, see
 the (, ,) version of this method.
							
						
						 Some options require permission to access unmanaged code. All the options that do not require permission are noted in the tables in the Description section. All options not so noted require this permission. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Terminates the ability to send or receive data on a connected socket.
						
						 One of the values defined in the enumeration.
						 An error occurred while accessing the socket.
								 For additional information on causes of the , see the class.
							
						
						 The current instance has been disposed.
						
							 When is set to , the socket on the
 other end of the connection is notified that the current instance will not
 send any
 more data. If the method is
 subsequently called, a

 exception is thrown.
							 When is set to ,
the
socket on the other end of the
connection is notified that the current instance will not receive any more
data. After all the data currently queued on the current instance is
received, any subsequent calls to the method cause a exception to be thrown.
							 Setting to terminates both sends and
receives as described above. Once this occurs, the socket cannot
be used.
							
								 To free resources allocated by the current instance, call the
method.
								 Expected common usage is for the
method to be called before the method to
ensure that all pending data is sent or received.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.Sockets.SocketType
					
					
					
						
							 Gets the socket type of the current instance.

						
						
							 One of the values defined in
 the enumeration.
						
						
							 This property is read-only.
							 This property is set by the constructor for the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides a socket address stored in a array.

				
				
					 At a minimum, a socket address consists of a member of the enumeration
 stored in the first two bytes of the array.
				
			
			
				 System.Object
			
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 One of the values of the enumeration.
						
							 This method is equivalent to (, 32).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 One of the values of the enumeration.
						 A containing the number of bytes to allocate for the array storing the socket address.
						
							 is less than 2.
						
							 The minimum value for is 2 bytes.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the
 specified represent the same
 socket address.
						
						 The to compare to the current instance.
						
							 A where
indicates is an
instance of the class and contains the same data as the current
instance; otherwise .
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.Sockets.AddressFamily
					
					
					
						
							 Gets the address family which specifies the addressing scheme used to resolve an address.
						
						
							 One of the values defined in the enumeration.
						
						
							 This property is read-only.
							 This property is set by the constructors and is stored in
 the first two bytes of the socket address array.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							 The algorithm used to generate the hash code is
 unspecified.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Byte
					
					
						
					
					
						
							 Gets or sets the element at the specified index of
 the array storing the socket address.
						
						 A containing the zero-based index of the element to get or set.
						
							 A containing the element at the specified index.
						
						
							
								 is < 0.
							 -or-
							
								 >= .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the length of the socket address.
						
						
							 A containing the length of the
 array storing the socket
 address.
						
						
							 This property is read-only.
							 This property is set by the constructors.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of the current
 instance.
						
						
							 The returned string contains the string representation of the address family, the length of the array holding the socket
 address, and the contents of the array from the third to the maximum element, output in the
 following format:
							
								 : :{array[2], array[3], ...,
 element[-
 1]}
							
								 This method overrides .
							
						
						
							 The following example writes a socket address to the
 console.
							 using System;
using System.Net;
using System.Net.Sockets;

public class SocketAddressToString{
 public static void Main() {
 Console.WriteLine("This is a minimal SocketAddress.");
 SocketAddress socketAddress = new
 SocketAddress(AddressFamily.InterNetwork);
 Console.WriteLine("{0}", socketAddress.ToString());
 }
}

							 The output is
							
								 This is a minimal SocketAddress.
								 InterNetwork:32:{0,0}
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when a socket error occurs.
				
				
					 A is thrown by the and
 classes
 when a network error occurs.
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 The exact behavior of this constructor is implementation-defined.
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Controls the transfer behavior when sending and
 receiving data on a instance.
				
				
					 The following methods use this enumeration:
					
						
							
								
							
						
						
							
								
							
						
						
							
								
							
						
						
							
								
							
						
						
							
								
							
						
						
							
								
							
						
						
							
								
							
						
						
							
								
							
						
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Net.Sockets.SocketFlags
					
					
					 DontRoute
					
						
							 Specifies not to use routing tables to transmit the data. If there is a router
 between the local and destination addresses, the data will be lost.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketFlags
					
					
					 None
					
						
							 No flags are specified.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketFlags
					
					
					 OutOfBand
					
						
							 Specifies to send or receive out-of-band (OOB) data. OOB
 data is specially marked data that can be received independently of unmarked data.

							
								 Used only with a connection-oriented protocol.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketFlags
					
					
					 Partial
					
						
							 Specifies that a partial message has been received.

							
								 Used only with a message-oriented protocol.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketFlags
					
					
					 Peek
					
						
							 Specifies to peek at the incoming data. This copies data
 to the input buffer but does not remove it from the input queue.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the option level associated with
 the used in the and methods
 of the class.

				
				
					 Some socket options apply only to specific
 protocols while others apply to all types. Members of this enumeration specify which protocol applies to
 a specific socket option.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionLevel
					
					
					 IP
					
						
							 Specifies that members of the enumeration apply to
 Internet Protocol (IP).

							 The following table lists the members of the enumeration used
with this level.
							
								
									 SocketOptionName
									 Description of Socket Option Data
								
								
									 HeaderIncluded
									 A
 where indicates
 the application is providing the IP header for outgoing
 datagrams.
								
								
									 IPOptions
									 A
 array
 that specifies IP options to be inserted into outgoing
 datagrams.
								
								
									 IpTimeToLive
									 A that specifies the
 time-to-live for datagrams. The time-to-live designates the number of
 networks on which the datagram is allowed to travel
 before being discarded by a
 router.
								
								
									 MulticastInterface
									 A
array that specifies the interface for outgoing multicast
packets.
								
								
									 MulticastLoopback
									 A
 where enables multicast
 loopback.
								
								
									 MulticastTimeToLive
									 A that specifies the
 time-to-live for multicast datagrams.
								
								
									 TypeOfService
									 A that specifies the
 type of service field in the IP header.
								
								
									 UseLoopback
									 A
 where indicates Bypass hardware when
 possible.
								
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionLevel
					
					
					 Socket
					
						
							 Specifies that members of the enumeration are not specific to a particular protocol.
							 The following table lists the members of the enumeration used
with this level.
							
								
									 SocketOptionName
									 Description
								
								
									 Broadcast
									 A
 where indicates broadcast messages are allowed to be sent to the socket.
								
								
									 Debug
									 A
 where indicates to record debugging information.
								
								
									 DontLinger
									 A
where indicates to close the socket without lingering.
								
								
									 DontRoute
									 A
where indicates not to route
data; indicates to send data directly to interface addresses.
								
								
									 Error
									 A
 that
 contains the error code associated with the last socket error. The error
 code is cleared by this option. This option is read-only.
								
								
									 KeepAlive
									 A
where (the default) indicates to enable keep-alives, which allows a connection to remain open after a request.
								
								
									 OutOfBandInline
									 A
where indicates to receive out-of-band data in the normal data stream.
								
								
									 ReceiveBuffer
									 A that specifies the
 total per-socket buffer space reserved for receives. This is unrelated to
 the maximum message size or the size of a TCP window.
								
								
									 ReceiveTimeout
									 A
 that
 specifies the maximum time, in milliseconds, the and methods will block when attempting to
 receive data. If data is not received within this
 time, a exception is thrown.
								
								
									 ReuseAddress
									 A
where allows the socket to be bound to an address that is already in use.
								
								
									 SendBuffer
									 A that specifies the total per-socket buffer space reserved for sends. This is unrelated to the maximum message size or the size of a TCP window.
								
								
									 SendTimeout
									 A
 that
 specifies the maximum time, in milliseconds, the and methods will block when attempting to
 send data. If data is not sent within this time, a exception is thrown.
								
								
									 Type
									
										 One of the values defined in the enumeration. This option is
 read-only.
									
								
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionLevel
					
					
					 Tcp
					
						
							 Specifies that members of the enumeration apply to Transmission Control Protocol (TCP).
							 The following table lists the members of the enumeration used
with this level.
							
								
									 SocketOptionName
									 Description of Socket Option Data
								
								
									 BsdUrgent
									 A
 where indicates to use urgent data as defined
 by IETF RFC 1222. Once set, this option cannot be turned off.
								
								
									 Expedited
									 A
 where indicates to use expedited data as defined by IETF RFC 1222.
 Once set, this option cannot be turned off.
								
								
									 NoDelay
									 A
 where indicates to disable the Nagle algorithm for send
 coalescing.
								
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionLevel
					
					
					 Udp
					
						
							 Specifies that members of the enumeration apply to User Datagram Protocol
 (UDP).
							 The following table lists the members of the enumeration used
with this level.
							
								
									 SocketOptionName
									 Description of Socket Option Data
								
								
									 ChecksumCoverage
									 A

 that specifies UDP checksum coverage.
								
								
									 NoChecksum
									 A
 where indicates to send UDP datagrams with the checksum set to zero.
								
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies option names for use in the and
methods of the class.
				
				
					 Socket options determine the behavior of an instance of
 the class. Some socket options apply only to specific protocols while others apply to
 all types. Members of the enumeration specify
 which protocol applies to a specific socket option.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 HeaderIncluded
					
						
							
								 has been called on the socket.
							 The value associated with this option is a
data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 AddMembership
					
						
							 Add an IP group membership.

							 The value associated with this option is an instance of the class.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 AddSourceMembership
					
						
							 Join a source group.
							 The value associated with this option is an instance of the
class.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 BlockSource
					
						
							 Block data from a source.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 Broadcast
					
						
							 Permit sending broadcast messages on the socket.

							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 HeaderIncluded
					
						
							 Use urgent data as defined by IETF RFC 1222. This option can
 be set only once, and once set, cannot be turned off.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 ChecksumCoverage
					
						
							 Set or get UDP checksum coverage.
							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 Debug
					
						
							 Record debugging information when available.
							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 DontFragment
					
						
							 Do not fragment IP datagrams.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 DontLinger
					
						
							 Close socket gracefully without lingering.

							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 DropSourceMembership
					
						
							 Do not route; send directly to interface addresses.

							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 DropMembership
					
						
							 Drop an IP group membership.

							 The value associated with this option is an instance of the class.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 DropSourceMembership
					
						
							 Drop a source group.
							 The value associated with this option is an instance of the
class.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 Error
					
						
							 Get the error status code, then clear the code.

							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 ExclusiveAddressUse
					
						
							 Enable a socket to be bound for exclusive access.

							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 HeaderIncluded
					
						
							 Use expedited data as defined by IETF RFC 1222. This option
 can be set only once, and once set, cannot be turned off.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 HeaderIncluded
					
						
							 Application is providing the IP header for
 outgoing datagrams.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 Debug
					
						
							 Specifies IP options to be inserted into outgoing datagrams.
							 The value associated with this option is a
array.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 ReuseAddress
					
						
							 Set the IP header time-to-live field.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 KeepAlive
					
						
							 Send keep-alives.

							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 Linger
					
						
							 Linger on close if unsent data is present.

							 The value associated with this option is an instance of
 the class.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 MaxConnections
					
						
							 Maximum queue length that can be specified by .

							 The value associated with this option is a data type.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 MulticastInterface
					
						
							 Set the interface for outgoing multicast packets.
							 The value associated with this option is a
array.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 MulticastLoopback
					
						
							 IP multicast loopback.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 MulticastTimeToLive
					
						
							 IP multicast time to live.

							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 Debug
					
						
							 Send UDP datagrams with checksum set to zero.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 Debug
					
						
							 Disable the Nagle algorithm for send coalescing.

							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 OutOfBandInline
					
						
							 Receive out-of-band data in the normal data stream.

							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 PacketInformation
					
						
							 Return information about received packets.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 ReceiveBuffer
					
						
							 Specifies the total per-socket buffer space reserved for
 receives. This is unrelated to the maximum message size or the size of a TCP window.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 ReceiveLowWater
					
						
							 Receive low water mark.

							 The value associated with this option is a data type.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 ReceiveTimeout
					
						
							 Specifies the
 maximum time, in milliseconds, the and methods will block when attempting to
 receive data. If data is not received within this time, a exception is thrown.

							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 ReuseAddress
					
						
							 Allow the socket to be bound to an address that is already in use.

							 The value associated with this option is a data
 type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 SendBuffer
					
						
							 Specifies the total per-socket buffer space reserved for sends. This is
 unrelated to the maximum message size or the size of a TCP window.

							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 SendLowWater
					
						
							 Send low water mark.

							 The value associated with this option is a data type.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 SendTimeout
					
						
							 Specifies the
 maximum time, in milliseconds, the and methods will block when attempting to
 send data. If data is not sent within this time, a exception is thrown.

							 The value associated with this option is a data type.
							 The member of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 Type
					
						
							 Get the socket type, one of the members of
 the enumeration.

							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 TypeOfService
					
						
							 Change the IP header type of service field.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 UnblockSource
					
						
							 Unblock a previously blocked source.
							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketOptionName
					
					
					 UseLoopback
					
						
							 Bypass hardware when possible.

							 The value associated with this option is a data type.
							 The value of the enumeration applies to this option.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Secures socket connections.

				
				
					
						 instances control permission to accept connections
 or initiate socket connections. A socket permission can secure access based
 on host name or IP address, a port number, and a transport
 protocol.
					 The XML encoding of a instance is defined below in EBNF format,
 in particular the following conventions are used:
					
						
							
								 All non-literals in the grammar below are shown in normal type.
							
						
						
							
								 All literals are in bold font.
							
						
					
					 The following meta-language symbols are used:
					
						
							

 '*' represents a meta-language symbol suffixing an
 expression that can appear zero or more times.
						
						
							

 '?' represents a meta-language symbol suffixing an
 expression that can appear zero or one time.
						
						
							

 '+' represents a meta-language symbol suffixing an
 expression that can appear one or more times.
						
						
							

 '(',')' is used to group literals, non-literals or a
 mixture of literals and non-literals.
						
						
							

 '|' denotes an exclusive disjunction between two
 expressions.
						
						
							

 '::= ' denotes a production rule where a left hand
 non-literal is replaced by a right hand expression containing literals,
 non-literals or both.
						
					
					 BuildVersion refers to the build version of the shipping CLI. This is
 a dotted build number such as '2412.0'.
					 ECMAPubKeyToken ::=
					
					 HostName refers to a host name such as www.contoso.com .
					 Portnumber denotes a value indicating a port.
					 TransportProtocol ::= | | /*1= UDP , 2 = TCP, 3 = both */
					 SocketPermissionXML::=

					
						
							
						
					
					
						
							
						
					
					
						
							
						
					
					
						
							 BuildVersion
						
					
					
						
							
						
					
					
						
							 =ECMAPubKeyToken
						
					
					
						
							
						
					
					
						 (
					
					
						
							
						
					
					
)
					
					
						 |
					
					
						 >
					
					
						 (
						
					
					
						 (
						
							 HostName PortNumber TransportProtocol
						
)+
						
							
						
)
						 |
						
							
						
						 (
						
						 (
						
							 HostName PortNumber TransportProtocol
						
)+
						
							
						
						
							
						
)
						 |
						
							
						
						
							
						
					
				
			
			
				 System.Security.CodeAccessPermission
			
			
				
					 System.Security.IPermission
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 value.
						
						 A value.
						
							
								 This constructor creates either fully restricted ()
 or access to
 sockets.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A value indicating the type of access to secure.
						 A value indicating the transport type to secure. Specify to create a permission that secures all transport types.
						 A containing the host name for the transport address.
						 A containing the port number for the transport address. Specify create a permission that secures all ports.
						 The parameter is .
						
							 No exception is thrown if the specified or
 is
 invalid.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
						
							 Defines a constant value that represents all ports.

 This field is read-only. The value of this field is -1.

					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new object containing the same values as the
 current instance.

						
						
							 A new containing the same values as the current instance.
						
						
							
								 The
 object returned by this method represents the same level of access as the
 current instance.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reconstructs the state of a object using the specified XML encoding.
						
						 A instance containing the XML encoding used to reconstruct the state of a object.
						
							
								 is .
						
						
							
								 is not a permission element.
						
						
							 The state of the current instance is changed to the state
 encoded in .
							
								 For the XML schema for this class, see the
 class
 page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a object that is the intersection of the current
 instance and the specified object.
						
						 A instance to intersect with the current instance.
						
							 A new instance that represents the intersection of the
 current instance and . If target is
 , returns . If the intersection is
 empty, returns . If the
 current instance is unrestricted, returns a copy of . If
 is unrestricted, returns a copy of the current instance.
						
						
							 is not of type .
						
							
								 The intersection of two permissions is a permission that secures the
 resources and operations secured by both permissions. Specifically, it
 represents the minimum permission such that any demand that passes both
 permissions will also pass their intersection.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of the specified
 object.
						
						 A instance that is to be tested for the subset relationship.
						
							
								 if the current instance is a subset of ;
 otherwise, . If the current instance is unrestricted, and
 is not, returns . If is
 unrestricted, returns . If is

and the current instance does not secure any resources and is not unrestricted, returns .
						
						
							
								 is not and is not of type .
						
						
							 The subset relationship is if every resource secured by the current
 instance is secured by
 .
							
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.SecurityElement
					
					
					
						
							 Returns the XML encoding of the current instance.
						
						
							 A containing the XML encoding of the state of the current instance.
						
						
							
								 For the XML schema for this class, see the class
 page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a that is the union of the current instance and the
 specified object.
						
						 A instance to combine with the current instance.
						
							 A instance that represents the union of the current
 instance and . If the current instance or is
 unrestricted, returns a instance that is unrestricted.
						
						
							 is not of type .
						
							
								 The result of a call to is a permission
 that represents all of the access to socket connections represented by
 the current instance as well as the access represented by . Any
 demand that passes either the current instance or passes their
 union.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Used to declaratively specify security actions to control socket connections.
				
				
					 The properties of a are required to have non-null
 values. Once set, the values of the properties cannot be changed.
					
						 The details of a socket connection are specified using the properties of the
 current instance. For example, to secure a socket connection to port 80, set the
 property equal to
 "80".
						 The security information declared by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time.
 Security attributes are used for declarative security only. For imperative
 security, use the corresponding permission class,
 .
						 The allowable targets are
 determined by the passed to the constructor.
					
				
			
			
				 System.Security.Permissions.CodeAccessSecurityAttribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified value.
						
						 A value.
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the network access method specified by the
 current instance.
						
						
							 A containing a
 network access method allowed by the current instance. Valid values are
 "Accept" and "Connect".
						
						
							 is being set and is not .
						
							 This property is write-once. Once this property has been
 set to a non-null value, attempts to set this
 property to new value cause a .
 Valid values for this property correspond to enumeration values.

					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a
 that
 contains the security information of the current instance.
						
						
							 A
object with the security information of the current
instance.
						
						 One or more of the current instance's , , or properties is .
						
							
								 This method overrides .
								 Applications typically do not call this method; it is intended for use by the
 system.
								 The security information described by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time. The
 system uses the object returned by this method to convert the security
 information of the current instance into the form stored in metadata.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the DNS host name or IP address specified
 by the current instance.
						
						
							 A containing a DNS host name or
 IP address.
						
						
							 is being set and is not .
						
							 This property is write-once. Once this property has been
 set to a non-null value, attempts to set this property to new value cause a
 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the port specified by the current instance.
						
						
							 A containing a port number, or "All" or
 -1 to indicate all
 ports.
						
						
							 is being set and is not .
						
							 This property is write-once. Once this property has been
 set to a non-null value, attempts to set this property to new value cause a
 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the transport type specified by the current
 instance.
						
						
							 A containing the
 transport type associated with the current
 instance. Valid values are "All", "Connectionless", "ConnectionOriented", "Tcp", and
 "Udp".
						
						
							 is being set and is not .
						
							 This property is write-once. Once this property has been
 set to a non-null value, attempts to set this property to new value cause a
 .
							 Valid values for this property correspond to enumeration values.
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies whether the ability to send or receive data is terminated when the
method is called on a connected instance.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.Sockets.SocketShutdown
					
					
					 Both
					
						
							 Specifies to terminate the ability to send and receive data
 on a instance.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketShutdown
					
					
					 Receive
					
						
							 Specifies to terminate the ability to receive data on a

 instance.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketShutdown
					
					
					 Send
					
						
							 Specifies to terminate the ability to send data from a

 instance.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the type of socket an instance of the class represents.

				
				
					 A member
 is required
 when constructing instances of the
 class and specifies the functionality the instance supports.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.Sockets.SocketType
					
					
					 Dgram
					
						
							 Supports datagrams, which are connectionless, unreliable
 messages of a fixed (typically small) maximum length. Uses the User Datagram
 Protocol () protocol
 and the address family.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketType
					
					
					 Raw
					
						
							 Supports access to the underlying
 transport protocol. Can communicate through protocols other than and ,
 such as Internet Control Message Protocol () and Internet Group Management
 Protocol ().
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketType
					
					
					 Rdm
					
						
							 Supports message-oriented, reliably delivered messages, and preserves message
 boundaries in data.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketType
					
					
					 Seqpacket
					
						
							 Supports message-oriented, sequenced packets.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketType
					
					
					 Stream
					
						
							 Supports reliable, two-way, connection-based byte
 streams with an out-of-band (OOB) data transmission mechanism. Uses the Transmission
 Control Protocol () protocol and the address family.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.Sockets.SocketType
					
					
					 Unknown
					
						
							 Unknown socket type.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies transport types.

				
				
					
						 The enumeration defines transport types
 for the and classes.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.TransportType
					
					
					 All
					
						
							 Specifies any transport type.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.TransportType
					
					
					 Udp
					
						
							 Specifies any connectionless transport, such as User Datagram Protocol (UDP).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.TransportType
					
					
					 Tcp
					
						
							 Specifies any connection-oriented transport, such as Transmission Control Protocol (TCP).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.TransportType
					
					
					 Tcp
					
						
							 Specifies the Transmission Control Protocol (TCP) transport as defined by IETF RFC 793.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.TransportType
					
					
					 Udp
					
						
							 Specifies the User Datagram Protocol (UDP) transport as defined by IETF RFC 768.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides an object representation of a uniform resource identifier
 (URI) as defined by IETF RFC 2396.
				
				
					
						 A Uniform Resource Identifier (URI) is a compact
 string of
 characters used to identify a resource located on a computer. A resource can be anything that
 has identity. Examples of resources that might be accessed using a
 URI include an electronic document, an image, a web service, and a collection
 of other resources. A URI is represented as a sequence of characters.
 While the exact format of a URI is determined by the protocol
 used to access the resource, many URI consist of four major
 components:
						 < >://< >< >?< >
						
							 - Indicates a protocol used to access the
 resource.
						
							 - Indicates the
naming authority (server or registry) that governs the namespace defined by the
remainder of the URI. The authority component is composed of ,
 and subcomponents in the form
< >@< >:< >. Only
the subcomponent is required to be present in the
 component. Authority information is stored in the
property.
						
							 - Identifies the
resource within the scope of the scheme and, if present, the authority. This
information is stored in the , , and
properties.
						
							 - Parameter
information that is passed to the executable script identified
by the URI. The query, if present, is the last element in a URI and begins
with a "?". This information is stored in the
property.
						
							 [Subcomponent of] Consists of a user name and, optionally,
scheme-specific authorization information used to access
. The ,
if present, is separated from the component by the "@" character.
Note that for some URI schemes, the format of the subcomponent
is "username:password". Passing authorization information in this manner is
strongly discouraged due to security issues. The
 information is stored in the
property.
						
							 - [Subcomponent of
] The Domain Name system (DNS) name or IP4 address of a machine that provides
access to the resource. This information is stored in the property.
						
							 - [Subcomponent of
] The network port number used to connect
to the host. If no port number is specified in the URI, most schemes designate
protocols that have a default port number. This information is stored
in the
property.
						
							 - The fragment is
not part of the URI, but is used in conjunction with the URI and is included here for completeness. This component contains resource-specific information that
is used after a resource is retrieved. The
, if present, is separated from the
URI by the "#" character. This information is stored in the
property.
						 URIs include components consisting of or delimited by
 certain special (reserved) characters that have a special meaning in a URI
 component. If the reserved meaning is not intended, then the character is
 required to be escaped in the URI. An escaped character is encoded as a
 character triplet consisting of the percent character "%" followed by the
 US-ASCII character code specified as two hexadecimal digits. For example, "%20"
 is the escaped encoding for the US-ASCII space character. The URI represented by
 a

 instance is always
 in "escaped" form. The following characters are reserved:
						
							
								
									 Semi-colon (";")
								
							
							
								
									 Forward slash ("/")
								
							
							
								
									 Question mark ("?")
								
							
							
								
									 Colon (":")
								
							
							
								
									 At-sign ("@")
								
							
							
								
									 Ampersand ("&")
								
							
							
								
									 Equal sign ("=")
								
							
							
								
									 Plus sign ("+")
								
							
							
								
									 US Dollar sign ("$")
								
							
							
								
									 Comma (",")
								
							
						
						 To transform the URI contained in a instance from an
 escape encoded URI to a human-readable URI, use the method.
					
					
					 URIs are stored as canonical URIs in escaped encoding,
 with all characters with ASCII values greater than 127 replaced with their
 hexadecimal equivalents. The constructors do not escape URI strings
 if the string is a well-formed URI, including a scheme identifier, that
 contains escape sequences. To put the URI in canonical form, the

 constructors perform
 the following steps.
					
						
							

 Converts the URI scheme to lowercase.
						
						
							

 Converts the host name to lowercase.
						
						
							

 Removes default and empty port numbers.
						
						
							

 Simplifies the URI by removing superfluous segments such as "/" and
 "/test" segments.
						
					
					 The
 class stores only absolute URIs (for example, "http://www.contoso.com/index.htm"). Relative URIs (for example, "/new/index.htm") are
 expanded to absolute form using a specified base URI. The
 method converts absolute URIs to relative URIs.
					 The class properties
 are read-only; to modify a instance use the class.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class
 by parsing the specified
 URI.
						
						 A containing a URI.
						
							
								 is .
						
						
							
								 is a zero length string or contains only spaces.
							 -or-
							
								 is in an invalid form and cannot be parsed.
						
						
							 This constructor is equivalent to calling the (,) constructor, and specifying
 and as the arguments.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class by parsing the specified
 URI.
						
						 A containing a URI.
						
							 if the URI in is already escaped; otherwise, .
						
							
								 is .
						
						
							
								 is a zero length string or contains only spaces.
							 -or-
							 The parsing routine detected a scheme in an invalid form.
							 -or-
							 The parser detected more than two consecutive slashes in a URI that does not use the "file" scheme.
							 -or-
							
								 is in an invalid form and cannot be parsed.
						
						
							 This constructor parses the URI, places
 its components into the appropriate properties, and puts the URI in
 canonical form. If the specified URI does not contain a scheme component, the URI
 is parsed using "file" as the scheme.
						
						
							 The following example creates a instance for the URI
 "http://www.contoso.com/Hello%20World.htm". Because the URI contains escaped
 characters, the third parameter, , is set to
 .
							 using System;

public class UriTest {
 public static void Main() {

 Uri myUri = new Uri("http://www.contoso.com/Hello%20World.htm", true);

 Console.WriteLine(myUri.ToString());
 }
}

							 The output is
							
								 http://www.contoso.com/Hello World.htm
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class by
 combining the specified
 base and relative URIs.
						
						 A containing a base URI.
						 A containing a relative URI.
						
							
								 is in an invalid form.
						
						
							 is .
						
							 This constructor is equivalent to calling the (, ,) constructor, and specifying and as the arguments.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class by combining the specified
 base and relative URIs.
						
						 A containing the base URI. This parameter can, but is not required to contain a terminating slash ("/") character.
						 A containing the relative URI to add to the base URI. This parameter can, but is not required to contain a leading slash ("/") character.
						
							 if and are already escaped; otherwise, .
						
							
								 is in an invalid form.
						
						
							 is .
						
							 This constructor compensates for the presence or absence
 of a terminating slash in and/or a leading slash in

 to produce a well-formed URI.
							
 If the relative URI contains a that is the same as the
 scheme of the base URI and the is not present, or the
 relative URI does not contain a scheme, the new instance is composed of the
 relative URI (without its scheme component, if any) qualified by the scheme and
 authority information from the base URI.
							 If the relative URI contains a followed by the ,
it is treated as an absolute URI and the base URI is ignored. If the relative
URI contains a scheme that differs from the scheme of the base URI, the
base URI is ignored. If the is not present in the relative URI,
it is assumed, and the new instance is constructed as though the relative URI
were an absolute URI.
							
								 When the base URI is ignored, only the
 components of the relative URI are used to construct the new
 instance.
							
						
						
							 The following example creates new instances of the
 class by
 combining a instance representing the
 base URI and a string containing a relative URI.

							 using System;

public class UriTest {
 public static void Main() {

 // Typical base and relative URI constructor usage.

 Uri baseUri = new Uri("http://www.contoso.com", true);
 Uri myUri = new Uri(baseUri, "index.htm",true);
 Console.WriteLine("Typical usage: {0}",myUri.ToString());

 // Base and relative URI contain slashes.
 Uri baseUri2 = new Uri("http://www.contoso.com/", true);
 Uri myUri2 = new Uri(baseUri2, "/index.htm",true);
 Console.WriteLine("Slash example: {0}",myUri2.ToString());

 // Relative URI contains a different scheme than the base URI.
 Uri baseUri3 = new Uri("http://www.contoso.com/", true);
 Uri myUri3 = new Uri(baseUri3, "ftp://www.contoso2.com/index.htm",true);
 Console.WriteLine("Different schemes: {0}", myUri3.ToString());

 // Relative URI contains the same scheme as the base URI.
 // The scheme delimiter is not present in the relative URI.
 Uri baseUri4 = new Uri("http://www.contoso.com/", true);
 Uri myUri4 = new Uri(baseUri4, "http:www.contoso2.com/index.htm",true);
 Console.WriteLine("Same schemes - relative treated as relative: {0}",myUri4.ToString());

 // Relative URI contains the same scheme as the base URI.
 // The scheme delimiter is present in the relative URI.
 Uri baseUri5 = new Uri("http://www.contoso.com/", true);
 Uri myUri5 = new Uri(baseUri5, "http://www.contoso2/index.htm",true);
 Console.WriteLine("Same schemes - relative treated as absolute: {0}",myUri5.ToString());

 }
}

							 The output is
							
								 Typical usage: http://www.contoso.com/index.htm

								 Slash example: http://www.contoso.com/index.htm
								 Different schemes: ftp://www.contoso2.com/index.htm
								 Same schemes - relative treated as relative: http://www.contoso.com/www.contoso2 .com/index.htm
								 Same schemes - relative treated as absolute: http://www.contoso2/index.htm
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the absolute path of the resource identified by the
 current instance.
						
						
							 A containing the
 absolute path to the resource.
						
						
							 This property is read-only.
							 The
property contains the path to
the resource identified by the current instance. The
property always returns at least a slash
('/').
							 If, when the current instance was constructed, the URI was already escaped or
 the constructor's parameter was set to ,
 the value returned by this property is escaped.
							
								 The path information
 does not include the scheme, host name,
 query, or fragment components of the URI.
							
						
						
							 The following example outputs the absolute
 path of a URI.
							 using System;

public class UriTest {
 public static void Main() {
 Uri myUri = new Uri ("http://www.contoso.com/URI/Hello%20World.htm?date=today", true);
 Console.WriteLine(myUri.AbsolutePath);
 }
}

							 The output is
							
								 /URI/Hello%20World.htm
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the absolute URI of the resource identified by the current instance in canonical form.
						
						
							 A containing the URI
 used to construct the current instance, in canonical format.
						
						
							 This property is read-only.
							 The property includes the entire URI stored in the current instance, including any
 fragment or query information. If, when the current instance was constructed,
 the URI was already escaped or the constructor's parameter was
 set to , the value returned
 by this property is escaped.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the authority component of the URI used to construct the current instance.
						
						
							 A containing the
 authority component of the current instance. The value returned by this property
 is composed of the values returned by the and properties.
						
						
							 This property is read-only.
							 The property returns the and information
 specified in the URI used to construct the current instance. The value of this
 property includes the port information only if the URI specified a port that is
 not the default for the current scheme. When port information is included
 in the value returned by this property, the host and port are separated by a
 colon (":").
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Converts the components of the URI represented by
 the current instance to canonical form.
						
						
							
								 This method converts the URI to a format suitable for machine interpretation
 according to the scheme of the current instance. The conversions
 are required to preserve all information that could, if removed or
 altered, change the URI represented by the current instance.
							
							
								 This method performs the following conversions:
								
									
										

 Converts file references to the format of the current
 platform, for example on a Windows system, file://c|/AFile.txt is converted to
 "file:///c:/AFile.txt".
									
									
										

 Converts any backslash characters ('\') to forward
 slashes ('/').
									
									
										

 Compresses multiple consecutive forward slashes ('/')
 in the path component to a single forward slash.
									
									
										

 Compresses any path meta sequences ("/." and "/..").
									
								
							
							
								 Override this
 method to canonicalize the type derived from
 .
							
							
								 Applications
 do not call this method; it is called by constructors after
 parsing the URI and escaping the components.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.UriHostNameType
					
					
						
					
					
						
							 Returns a value that describes the format of a host name
 string.
						
						 A containing the host name to validate.
						
							 A that indicates the type of the host name. If the type of
 the host name cannot be determined, or the host name is or
 a zero-length string, returns .

						
						
							 The following example demonstrates using the method.

							 using System;

public class UriTest {
 public static void Main() {

 Console.WriteLine(Uri.CheckHostName("www.contoso.com"));
 }
}

							 The output is
							
								 Dns
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value indicating whether the specified scheme name is valid.

						
						 A containing the scheme name to validate.
						
							
								 if the scheme name is valid; otherwise,
 . If
 is or is a zero-length string, returns
 .

						
						
							
								 The scheme name is
 required to begin with a letter, and contain only letters, digits,
 and the characters '.', '+' or '-'.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Checks the current instance for character sequences that can result in unauthorized access to resources,
 and removes them.
						
						
							
								 This method checks for invalid
 or dangerous character sequences in the components of the current instance, and
 removes them. The semantics that determine whether a character sequence presents
 a security risk are determined by the scheme of the current
 instance.
							
							
								 The default implementation does
 nothing.
							
							
								 Override this method to provide
 security checks for types derived from .
							
							
								 Invoke this method on instances of
 types derived from to remove any URI content that allows unauthorized
 access to resources.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Compares the current instance and the specified
 object for equality.
						
						 The instance to compare with the current instance. This argument can be a or a .
						
							
								 if
 represents the same URI (ignoring any fragment or query information) as
 the current instance; otherwise, . If is
 , a zero-length string, or is not an instance of or
, returns false.
						
						
							 If is a , it is converted
 to a by
 calling ().
							 The , and unescaped version of the of the
current instance and are compared for equality.
							 If the scheme of
 the current instance is the scheme, the absolute paths are compared
 in accordance with the case sensitivity of the current
 platform.
							
								
 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Converts any unsafe or reserved characters in the component to equivalent escaped hexadecimal
 sequences.
						
						
							
								 Converts any unsafe or reserved characters in the component to a character
 sequence
 consisting of a "%" followed by the hexadecimal value of the character
 as described by IETF 2396.
								 If the path component of the current instance is , the
 escaped path is .
							
							
								 As described
 above.
							
							
								 Override this
 method to customize the escaping behavior provided by the
 type.
							
							
								 Applications
 typically do not call this method; it is intended for use by the
 constructors.
							
							
								 For additional
 information on escaping URI, see section 2 of RFC 2396.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a string to its escaped representation.
						
						 A to convert to its escaped representation.
						
							 A containing the escaped representation of
 .
						
						
							
 The string is escaped in accordance with RFC 2396.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the fragment component of the URI used to construct the current instance.
						
						
							 A containing any
 fragment information contained in the URI used to construct the current instance.
						
						
							 This property is read-only.
							 The property gets
 any text following a fragment marker ('#') in the URI, including the fragment
 marker itself. If, when the current instance was constructed, the URI
 was already escaped or the constructor's parameter was set to

, the value
returned by this property is escaped.
							
								 The property is not considered in a comparison.
							
						
						
							 The following example demonstrates the use of the

 property.
							 using System;

public class UriTest {
 public static void Main() {

 Uri baseUri = new Uri("http://www.contoso.com/");
 Uri myUri = new Uri(baseUri, "index.htm#main");

 Console.WriteLine(myUri.Fragment);
 }
}

							 The output is
							
								 #main
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Returns the decimal value of a hexadecimal digit.

						
						 The hexadecimal digit (0-9, a-f, A-F) to convert.
						
							 A containing an integer from 0 - 15 that corresponds to the specified hexadecimal
 digit.

						
						
							 is not a valid hexadecimal digit (0-9, a-f, A-F).
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for this instance.
						
						
							 The hash code is generated without the fragment component.
 For example, the URIs "http://www.contoso.com/index.htm#search"
 and "http://www.contoso.com/index.htm"
 produce the same hash code.
							 The algorithm used to generate the hash code is unspecified.
							
								
 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the specified portion of the URI represented by
 the current instance.
						
						 A value that specifies the component to return.
						
							 A containing all
 components up to the specified portion of the URI, or if
 the current instance does not contain the component identified by
 .
						
						 The parameter is not a valid value.
						
							 The method returns a string containing the URI
 components starting with the left-most component of
 the URI and ending with the component specified by
 . The returned string does not include fragment or
 query information.
							
								 includes delimiters as follows:
							
								
									
										 has
 the scheme delimiter added.
								
								
									
										 does
 not have the path delimiter added.
								
								
									
										
 includes any delimiters in the original URI up to the query or
 fragment delimiter.
								
							
						
						
							 The following example demonstrates the method.
							 using System;

public class UriTest {
 public static void Main() {
 string[] myUri = {
 "http://www.contoso.com/index.htm",
 "http:www.contoso.com/index.htm#mark",
 "mailto:user@contoso.com?subject=uri",
 "nntp://news.contoso.com/123456@contoso.com"
 };
 foreach (string s in myUri) {
 Uri aUri = new Uri(s);
 Console.WriteLine("URI: {0}", aUri.ToString());
 Console.WriteLine("Scheme: {0}",aUri.GetLeftPart(UriPartial.Scheme));
 Console.WriteLine("Authority: {0}",aUri.GetLeftPart(UriPartial.Authority));
 Console.WriteLine("Path: {0}",aUri.GetLeftPart(UriPartial.Path));
 }
 }
}

							 The output is
							
								 URI: http://www.contoso.com/index.htm
								 Scheme: http://
								 Authority: http://www.contoso.com
								 Path: http://www.contoso.com/index.htm
								 URI: http://www.contoso.com/index.htm#mark
								 Scheme: http://
								 Authority: http://www.contoso.com
								 Path: http://www.contoso.com/index.htm
								 URI: mailto:user@contoso.com?subject=uri
								 Scheme: mailto:
								 Authority:
								 Path: mailto:user@contoso.com
								 URI: nntp://news.contoso.com/123456@contoso.com
								 Scheme: nntp://
								 Authority: nntp://news.contoso.com
								 Path: nntp://news.contoso.com/123456@contoso.com
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a specified ASCII character into its escaped hexadecimal equivalent.

						
						 A containing the character to convert to escaped hexadecimal representation.
						
							 A containing the escaped hexadecimal representation of the specified character.

						
						 The numerical value of is greater than 255.
						
							 The returned string is in the
 form "%XX", where X represents a hexadecimal digit (0-9, A-F).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
						
					
					
						
							 Converts a specified escaped hexadecimal representation of a character to the character.

						
						 A containing the hexadecimal representation of a character.
						 A containing the location in where the hexadecimal representation of a character begins.
						
							 A containing a character. If the character pointed to
 by is a "%" and there are at least two characters following the
 "%", and the two characters are valid hexadecimal digits, the hexadecimal
 digits are converted to . Otherwise, the character at is returned. Valid hexadecimal digits are:
 0-9,
 a-f, A-F.

							 On return, the value of
contains the index of the character following the one returned.
						
						
							 0, or >= the number of characters in pattern.
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the host component of the URI used to construct the current instance.
						
						
							 A containing the DNS host
 name or IP address of the host server. If the host information was not
 specified to the constructor, the value of this property is .
						
						
							 This property is read-only.
							 If the host information is an IP6 address, the information is enclosed in square brackets ("[" and "]").
						
						
							 The following example demonstrates using the
property.
							 using System;

public class UriTest {
 public static void Main() {

 Uri baseUri = new Uri("http://www.contoso.com:8080/");
 Uri myUri = new Uri(baseUri, "shownew.htm?date=today");

 Console.WriteLine(myUri.Host);
 }
}

							 The output is
							
								 www.contoso.com
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.UriHostNameType
					
					
					
						
							 Gets the format of the host address in the URI used to construct the current instance.

						
						
							 A that indicates the format of the host address
 information in the current instance.
						
						
							 This property is read-only.
							 If is , the value of this property is
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value that indicates whether the specified character would be an invalid character
 if used in a file system name.
						
						 A containing the character to check.
						
							
								 if the specified character is not acceptable for use in a file
 system name; otherwise, .
							 The value returned by this
 method is implementation-specific.
						
						
							
								 This method
 returns if the specified character cannot be used in a
 URI that identifies a file, as defined by the current file system on the current
 platform.
							
							
								 As described
 above.
							
							
								 Override this
 method to provide a check for invalid characters as defined by the current file system on the current
 platform.
							
							
								 Use this method to determine if a character can be used in a file
 name.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the value of the current instance is the default port for the scheme of the current instance.
						
						
							
								 if the value in the property is the default
 port for the
 ; otherwise, .
						
						
							 This property is read-only.
							
								 For a list of default
 port values, see the property.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value that indicates whether the specified
 character is excluded from use or is unwise in URIs, as defined by IETF
 RFC 2396.
						
						 A containing the character to check.
						
							
								 if the
 specified character is required to
 be escaped; otherwise, .
						
						
							 This method returns for the following characters:

							
								
									 Character(s)
									 Description
								
								
									
										 < 0x0020
									 Any character with the ASCII value less than
 hexadecimal 0x20 (32).
								
								
									
										 < 0x007f
									 Any character with the ASCII value greater than
 hexadecimal 0x7f (127).
								
								
									 <
									 Less than sign.
								
								
									 >
									 Greater than sign.
								
								
									 #
									 Number sign (crosshatch, pound sign).
								
								
									 %
									 Percent.
								
								
									 "
									
										 Quotation mark.
									
								
								
									 {
									 Left curly brace.
								
								
									 }
									 Right curly brace.
								
								
									 |
									 Pipe sign (vertical bar).
								
								
									 \
									 Backward slash.
								
								
									 ^
									 Circumflex (caret).
								
								
									 [
									 Left square bracket.
								
								
]
									 Right square bracket.
								
								
									 `
									 Grave accent.
								
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance identifies a file.
						
						
							
								 if the
 resource identified by the current is a file; otherwise,
 .
						
						
							 This property is read-only.
							 The property is when the property
 equals .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value that indicates whether the specified character is a valid hexadecimal digit.

						
						 A containing the character to validate.
						
							
								 if the
 character is a valid hexadecimal digit (0-9, A-F, a-f);
 otherwise .

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Returns a value that indicates whether
 a substring of the specified string is in escaped hexadecimal encoding format ("%" followed by two hexadecimal
 characters).

						
						 The to check.
						 A containing the location in to check for hex encoding.
						
							
								 if the
 specified location in contains a
 substring in escaped hexadecimal encoding
 format; otherwise, .

						
						
							 The
method checks for hexadecimal digits case-insensitively.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating
 whether the host information of the current instance is the current computer.
						
						
							
								 if the host of
 the current instance is the reserved hostname "localhost" or the
 loop-back IP address (127.0.0.1); otherwise,
 .
						
						
							 This property is read-only.
						
						
							 The following example demonstrates the property.
							 using System;

public class UriTest {
 public static void Main() {
 Uri myUri = new Uri("http://127.0.0.1/index.htm", true);
 Console.WriteLine("{0} is loopback? {1}", myUri.ToString(), myUri.IsLoopback);

 myUri = new Uri("http://localhost/index.htm", true);
 Console.WriteLine("{0} is loopback? {1}", myUri.ToString(), myUri.IsLoopback);

 }
}

							 The output is
							
 http://127.0.0.1/index.htm is loopback?
 True
							 http://localhost/index.htm is loopback? True
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value that indicates whether a character is part of the URI reserved set.
						
						
							
								 if is a URI reserved character as defined by IETF RFC
 2396; otherwise, .
						
						
							 The following characters are reserved for the use in URI:
							
								
									 Character
									 Description
								
								
									 ;
									 Semi-colon.
								
								
									 /
									 Forward slash.
								
								
									 :
									 Colon.
								
								
									 @
									 At sign (commercial at).
								
								
									 &
									 Ampersand.
								
								
									 =
									 Equals sign.
								
								
									 +
									 Plus sign.
								
								
									 $
									 US
 Dollar sign.
								
								
									 ,
									 Comma.
								
							
							
								 As described above.

							
							
								 Override this
 method to customize the escaping behavior provided by the
 type.
							
							
								 Use this method to determine if a character is reserved.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the local operating-system representation of the resource identified by the
 current instance.
						
						
							 A containing the
 local representation of the resource identified by the current
 instance.
						
						
							 This property is read-only.
							 If the of the current instance is not equal to , this
 property returns the same value as .
							 If the scheme is equal to
 , this
 property returns an unescaped platform-dependent local representation of the file name.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the specified as a relative URI.
						
						 The URI to compare to the current URI.
						
							 A with
 the difference between the current instance and if the two
 URIs are the same except for the path information. If the two
 URIs differ in more than the , this method returns the
 representation of .
						
						
							 The following example demonstrates the
method.
							 using System;
public class UriTest {
 public static void Main() {
 Uri myUri = new Uri("http://www.contoso.com/Hello%20World.htm", true);
 Console.WriteLine(myUri.ToString());
 Console.WriteLine(myUri.MakeRelative(new Uri ("http://www.contoso.com/index.htm")));
 }
}

							 The output is
							
								 http://www.contoso.com/Hello World.htm
								 index.htm
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Parses the URI into its constituent components.
						
						
							 The scheme of the URI is in an invalid format.
							 -or-
							 The URI is in an invalid form and cannot be parsed.
						
						
							
								 This method parses the
property, separates it into various URI components, and stores the
components in the appropriate
properties.

							
							
								 This method parses path components as defined in IETF RFC 2396.

							
							
								
 Override this method to provide parsing for URIs in
 formats that are not defined in IETF RFC 2396.

							
							
								 Applications typically do not call this
 method; it is intended for use by the constructors.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the and components of the URI used to
 construct the current instance.
						
						
							 A that contains the
 values of the and properties.
						
						
							 This property is read-only.
						
						
							 The following example uses the property to extract the path and query information
 from a
 instance.
							 using System;

public class UriTest {
 public static void Main() {

 Uri baseUri = new Uri("http://www.contoso.com/");
 Uri myUri = new Uri(baseUri, "catalog/shownew.htm?date=today");

 Console.WriteLine(myUri.PathAndQuery);
 }
}

							 The output is
							
								 /catalog/shownew.htm?date=today
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the port number used to connect to the referenced by the current instance.
						
						
							 A containing the port number, or -1 if no port is used by
 the URI . If no port was specified as part of the URI used
 to construct the current instance, the property returns the default port for the URI scheme.
						
						
							 This property is read-only.
							
								 The following table lists the default port number
 for each supported scheme.
								
									
										 Scheme
										 Port
									
									
										 file
										 -1
									
									
										 ftp
										 21
									
									
										 gopher
										 70
									
									
										 http
										 80
									
									
										 https
										 43
									
									
										 mailto
										 25
									
									
										 news
										 119
									
									
										 nntp
										 119
									
								
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the query component of the URI used to construct the current instance.
						
						
							 A containing the
 query information included in the specified URI, or .
						
						
							 This property is read-only.
							 If, when the current instance was constructed, the URI was already escaped or
 the constructor's parameter was set to ,
 the value returned by this property is escaped.
							
								 Query information is separated from the
 path information by a question mark ('?') and is located at the end of a
 URI. The query information includes the
 leading question mark.
							
						
						
							 The following example uses the
property to extract the
query from a URI.
							 using System;

public class UriTest {
 public static void Main() {

 Uri baseUri = new Uri("http://www.contoso.com/");
 Uri myUri = new Uri(baseUri, "catalog/shownew.htm?date=today");

 Console.WriteLine(myUri.Query);
 }
}

							 The output is
							
								 ?date=today
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the scheme component of the URI used to construct the current instance.
						
						
							 A containing the URI scheme.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					
						
							 A containing the
 characters that separate the scheme
 component from the remainder of a URI.
						
						
							 This field is read-only. The value of this field is "://".
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns the unescaped, canonical form of the URI
 information used to construct the current instance.

						
						
							 A containing the unescaped, canonical form of the URI
 represented by the current instance.

						
						
							 The string returned by this method includes the and
components.
							
								
 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts escape sequences in the specified into their
 unescaped equivalents.
						
						 The to unescape.
						
							 A containing with its escaped characters
 converted to their unescaped equivalents. If path is or a
 zero-length string, returns .
						
						
							
								 Escape sequences can be hex-encoded reserved characters (for example
 "%40") or hex-encoded UTF-8 sequences (for example "%C4%D2").
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 file
					
						
							 A containing the
 characters that indicate that
 a URI identifies a file.
						
						
							 This field is read-only. The value of this field is "file".
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 ftp
					
						
							 A containing the
 characters that indicate that a URI is accessed through the File Transfer Protocol
 (FTP).
						
						
							 This field is read-only. The value of this field is "ftp".
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 gopher
					
						
							 A containing the
 characters that indicate that a URI is accessed through
 the Gopher protocol.
						
						
							 This field is read-only. The value of this field is "gopher".
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 http
					
						
							 A containing the
 characters that indicate that a URI is accessed through
 the Hypertext Transfer Protocol (HTTP).
						
						
							 This field is read-only. The value of this field is "http".
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 https
					
						
							 A
containing the characters that indicate that a URI is accessed through the Secure Hypertext Transfer
Protocol (HTTPS).
						
						
							 This field is read-only. The value of this field is "https".
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 mailto
					
						
							 A containing the
 characters that indicate that a URI is an email address and is accessed through the
 Simple Network Mail Protocol (SNMP).
						
						
							 This field is read-only. The value of this field is "mailto".
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 news
					
						
							 A containing the
 characters that indicate that a URI is an Internet news group and is accessed through
 the Network News Transport Protocol (NNTP).
						
						
							 This field is read-only. The value of this field is "news".
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					 nntp
					
						
							 A containing the characters that indicate that a URI is an Internet news group and
 is accessed through the Network News Transport Protocol (NNTP).
						
						
							 This field is read-only. The value of this field is "nntp".
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the URI information used to
 construct the current instance was escaped before the current instance was created.
						
						
							
								 if
 the parameter of the constructor for
 the current instance was set to
 ; otherwise,
 .
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the userinfo component of the URI
 used to construct the current instance.
						
						
							 A containing any
 user information included in the URI used to construct the current instance, or
 if no user
 information was included.
						
						
							 This property is read-only.
							
								 For details on the
 userinfo component of a URI, see IETF RFC 2396, 3.2.2.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides a mutable version of the class.
				
				
					 The and classes both
 represent a Uniform Resource
 Identifier (URI). Instances of the type are immutable: once the underlying URI is
 specified, neither it nor its components, or
 constituent parts, can be changed. The type permits modifications to
 the components of the URI it represents. The property provides the current contents of a
 as a
 instance.
					
						 For more information on URI, see IETF
 RFC 2396.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified scheme, host, port number, path, and
 query string or fragment identifier.
						
						 A containing the name of an Internet access protocol.
						 A containing a DNS host name or IP address.
						 A containing an IP port number.
						 A containing the path for the resource.
						 A containing a query or fragment component.
						
							 is less than zero.
						
							 is not or , and does not have as its first character a number sign ('#') indicating a fragment, or a question mark ('?') indicating a query.
						
							 This constructor creates a new instance of the class with
 its properties initialized as follows:
							
								
									 Property
									 Initial value
								
								
									 Fragment
									 If
 begins with a "#", ; otherwise
 .
								
								
									 Host
									
										
									
								
								
									 Password
									
										
									
								
								
									 Path
									
										
									
								
								
									 Port
									
										
									
								
								
									 Query
									 If
 begins with a "?", ; otherwise
 .
								
								
									 Scheme
									
										
									
								
								
									 UserName
									
										
									
								
							
							 Before setting the property, this constructor converts any
backward slashes in to forward slashes, and calls ().
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor creates a new instance of the
 class with its
 properties initialized as follows:
							
								
									 Property
									 Initial value
								
								
									 Fragment
									
										
									
								
								
									 Host
									 "loopback"
								
								
									 Password
									
										
									
								
								
									 Path
									 "/"
								
								
									 Port
									 80
								
								
									 Query
									
										
									
								
								
									 Scheme
									
										
									
								
								
									 UserName
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class using
 the specified URI.
						
						 A containing a URI.
						
							
								 is .
						
						
							
								 is a zero length string or contains only spaces.
							 -or-
							 The parsing routine detected a scheme in an invalid form.
							 -or-
							 The parser detected more than two consecutive slashes in a URI that does not use the "file" scheme.
							 -or-
							
								 is in an invalid form and cannot be parsed.
						
						
							 This constructor checks for the presence of a scheme in
 . If no scheme is found, + are prepended to
 . The () constructor is passed , and the components
 of the new instance are used to initialize the properties of the

 instance being constructed.
							 If . is not equal to , .
is copied to the property of the current instance,
otherwise . is copied to the property of the current instance.
							 The , and
 properties of the instance are used to initialize the
corresponding properties in the current instance. The
 property of the instance is used to initialize the
 property of the current instance.
							 The property of
the instance
is used to initialize the and
 properties of the current instance.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified instance.
						
						 An instance of the class.
						
							
								 is .
						
						
							 The components of the specified instance are used to initialize the properties of the

instance being constructed.
							 If . is not equal to , .
is copied to the property of the current instance,
otherwise . is copied to the property of the current instance.
							 The , and
properties of the instance are used to initialize the corresponding
properties in the current instance. The property
of the
instance is used to initialize the property of the current
instance.
							 The property of the instance is used to initialize the
 and properties of the
current instance.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with
 the specified scheme and host.
						
						 A containing the name of an Internet access protocol.
						 A containing a DNS host name or IP address.
						
							 This constructor creates a new instance of the class with
 its properties initialized as follows:
							
								
									 Property
									 Initial value
								
								
									 Fragment
									
										
									
								
								
									 Host
									
										
									
								
								
									 Password
									
										
									
								
								
									 Path
									 "/"
								
								
									 Port
									 -1
								
								
									 Query
									
										
									
								
								
									 Scheme
									
										
									
								
								
									 UserName
									
										
									
								
							
							
							
							
							
							
								 is initialized to the value -1 to indicate
the default port for the scheme should be used.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the
 specified scheme, host, and port.
						
						 A containing the name of an Internet access protocol.
						 A containing a DNS host name or IP address.
						 A containing an IP port number.
						
							 is less than zero.
						
							 This constructor creates a new instance of the class with
 its properties initialized as follows:
							
								
									 Property
									 Initial value
								
								
									 Fragment
									
										
									
								
								
									 Host
									
										
									
								
								
									 Password
									
										
									
								
								
									 Path
									 "/"
								
								
									 Port
									
										
									
								
								
									 Query
									
										
									
								
								
									 Scheme
									
										
									
								
								
									 UserName
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified scheme,
 host, port number, and path.
						
						 A containing the name of an Internet access protocol.
						 A containing a DNS host name or IP address.
						 A containing an IP port number.
						 A containing the path for the resource.
						
							 is less than zero.
						
							 This constructor creates a new instance of the class with
 its properties initialized as follows:
							
								
									 Property
									 Initial value
								
								
									 Fragment
									
										
									
								
								
									 Host
									
										
									
								
								
									 Password
									
										
									
								
								
									 Path
									
										
									
								
								
									 Port
									
										
									
								
								
									 Query
									
										
									
								
								
									 Scheme
									
										
									
								
								
									 UserName
									
										
									
								
							
							 Before setting the property, this constructor converts any backward slashes
in to forward slashes, and calls ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Compares the current instance
 and the specified object for equality.
						
						 The object to compare with the current instance. The string representation of this argument is used to construct a for comparison.
						
							
								 if

								
represents the same URI as the current instance. If is

, returns .
						
						
							 This method invokes (.ToString()) on
 the
 instance returned by the property of the current instance.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the fragment component of the current instance.
						
						
							 A containing the fragment component of the URI represented by the
 current instance.
						
						
							 The
property contains any text following a fragment
marker ('#') in the URI, including the marker itself. When setting the property, the property value does not include
the fragment marker as it is added to the property value by the set
operation. Specifying for the property value sets the property to
 . If
 or are specified in a set
operation, the fragment marker is not added to the property value.
The set operation does not escape the fragment value.
Setting the
property to any value, including , sets the property to .

					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for this instance.
						
						
							 The hash code is generated without the fragment component.
 For example, the URIs "http://www.contoso.com/index.htm#search"
 and "http://www.contoso.com/index.htm"
 produce the same hash code.
							 The algorithm used to
 generate the hash code is unspecified.
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the Domain Name System (DNS) host name or
 IP address of a machine that provides access to the resource
 identified by the current instance.
						
						
							 A containing the DNS host name or IP address of the host machine.
						
						
							 Specifying for
 a set
 operation sets this property to

 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the password information used to access the
 resource represented by the current instance.
						
						
							 A containing the
 password used to access the resource represented by the current instance.
						
						
							 Specifying for
 a set operation sets this property to .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the path to the resource represented by the current instance.
						
						
							 A containing the
 path to the resource represented by the current instance.
						
						
							 This property returns the escaped form of the
 path information in the current instance. Values specified for set
 operations are escaped, and any backslashes are converted to forward
 slashes.
							 Specifying or for a set operation sets
 this property to "/" .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the port number used to connect to
 the referenced by the
 current instance.
						
						
							 A containing a non-negative port number or -1.
						
						 The value specified for a set operation was less than zero.
						
							 If
 no port was specified, the
 property returns the default port as determined by
 the scheme of the current instance. A port value of -1 indicates that
 the current scheme does not use a port, as is the case when the scheme of
 the current instance is the
 scheme.
							
								 For the list of
 default ports used with each scheme, see
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the query component of the current instance.
						
						
							 A containing the query component of the URI represented by the current instance.
						
						
							 The
property contains any text following a query
marker ('?') in the URI, including the marker itself. When setting the property, the property value does not include
the query marker as it is added to the property value by the set
operation. Specifying for the property value sets the property to
 . If
 or are specified in a set
operation, the query marker is not added to the property value.
The set operation does not escape the query value.
Setting
the
property to any value, including , sets the property to .

					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the scheme component of the current
 instance.
						
						
							 A containing the
 scheme component of the current instance.
						
						
							 Specifying for a set operation sets this property to
 .
 If the value specified for a set operation contains a colon (":"), the scheme is
 set using the substring that includes all characters from the start of the value
 up to, but not including the colon. The characters in the value are converted to
 lower case.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns the escaped form of the URI represented by the current instance.
						
						
							 A containing the escaped URI contained in the current instance.

						
						
							 The string returned by this method (shown here as uriString) is constructed as
 follows:
							
								 uriString = scheme + scheme delimiter + host.
								 If port != -1 and host != "", then uriString = uriString + ":" + port.
								 If host != "" and path != "" and path != "/", then uriString = uriString + "/".
								 uriString = uriString + path.
								 If fragment != "", then uriString = uriString + fragment, else uriString = uriString + query.
							
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Uri
					
					
					
						
							 Gets a instance
 constructed using the current instance.
						
						
							 A containing the URI
 components of the current instance.
						
						 The URI constructed using the string representation of the current instance is in an invalid form.
						
							 This property returns the same instance until
 modifications are made to the current instance, at which time a new instance is constructed
 by passing the string representation of the current instance to the
 () constructor.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the user name information used to access the resource identified by the current instance.
						
						
							 A containing the
 user name used to access
 the resource identified by the current instance.
						
						
							 Specifying for a set operation sets this property to

.
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when a Uniform Resource
 Identifier (URI) is not correctly formatted.
				
				
					
						 The format
 for a
 valid
 URI is defined in IETF RFC 2396.
					
				
			
			
				 System.FormatException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the
 new instance to a system-supplied message that describes the error, such as "The
 specified URI is incorrectly formatted." This message takes into account the
 current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 message.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of
 the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property is initialized to
 .
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the format of host names.
				
				
					
						 The enumeration defines the values returned by the
method.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.UriHostNameType
					
					
					 Dns
					
						
							 Specifies that the host name is a domain name system (DNS) style host address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.UriHostNameType
					
					
					 IPv4
					
						
							 Specifies that the host name is an Internet Protocol (IP) version 4 host address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.UriHostNameType
					
					
					 IPv6
					
						
							 Specifies that the host name is an Internet Protocol (IP)
 version 6 host address.
						
					
					 0
				
				
					
					
					 Field
					
						 System.UriHostNameType
					
					
					 Unknown
					
						
							 Specifies the format of a host name is not known or no host information is present.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
 Specifies URI components.

				
					
						 The enumeration defines the values that are passed to the
 method.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.UriPartial
					
					
					 Authority
					
						
 Specifies the authority component of a URI.

					
					 0
				
				
					
					
					 Field
					
						 System.UriPartial
					
					
					 Path
					
						
 Specifies the path component of a URI.

					
					 0
				
				
					
					
					 Field
					
						 System.UriPartial
					
					
					 Scheme
					
						
							 Specifies the scheme component of a URI.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides common methods for sending data to
 and receiving data from a resource identified by a URI.
				
				
					
						 The
 class provides common methods for
 sending data to or receiving data from any local, Intranet, or Internet resource identified by
 a URI.
						 The class uses the class to provide access to Internet
resources. instances can
access data with any class derived from that is
registered with the
method.
						 By default, the CLI supports URIs
 with the "http:", "https:", and "file:"
 schemes.
						 The class provides the following methods for uploading data to
a resource.
						
							
								
									 sends a to the server hosting a
 resource.
							
							
								
									 sends a byte array to the server hosting
 a resource and returns a byte array containing the response from the server,
 if any.
							
							
								
									 sends a local file to the server
 hosting a resource and returns a byte array containing the response from the
 server, if any.
							
							
								
									 sends a
 collection to the server hosting a resource and returns a byte array containing the response from the server,
 if any.
							
						
						 The class also provides the following methods for
downloading data from a resource.
						
							
								
									 downloads data from a resource and
 returns a byte array.
							
							
								
									 downloads data from a resource to a
 local file.
							
							
								
									 returns the data from the resource as a
 .
							
						
					
				
			
			
				 System.MarshalByRefObject
			
			
				
					 System.IDisposable
					 0
				
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.
						
						
							 This constructor creates a new instance of the

 class with properties set to .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the base URI for requests made by a .
						
						
							 A containing the base URI for requests made by a
 or, , if no value
 was set or was specified for a set operation.
						
						 The value specified for a set operation is not or , and is not a URI in a format recognized by the class.
						
							
								 The property
 contains a base URI that is combined with the relative address specified when
 calling an upload or download method.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.ICredentials
					
					
					
						
							 Gets or sets the network credentials used
 to authenticate the client making the current request.
						
						
							 A containing the authentication credentials for the
 request. The default is
 .
						
						
							 The property contains the
 authentication credentials required to access the Internet resource.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
					
					
						
							 Downloads data from the resource identified by the
 specified URI.
						
						 A that specifies the URI from which data will be downloaded.
						
							 A array containing the data downloaded from the resource
 specified by .
						
						
							 The absolute URI is not valid.
							 -or-
							 An error occurred while downloading data.
						
						
							 If the property of the current instance is not
 , is combined
 with to form the absolute URI of the requested
 data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
 the
 property of the current instance is not , it is
 appended to .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Downloads data from the resource identified by
 the specified URI, and writes the data to the specified file .
						
						 A that specifies the URI from which data will be downloaded.
						 A that specifies the name of the local file to which data will be written.
						
							 The absolute URI is not valid.
							 -or-
							
								 is or or contains invalid characters, or the specified path to the file does not exist.
							 -or-
							 An error occurred while downloading data.
						
						 The caller does not have permission to write to local files.
						
							 If the property of the current instance is not
 , is combined
 with to form the absolute URI of the requested
 data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
 the
 property of the current instance is not , it is
 appended to .
							 This method downloads data from the absolute URI
 to local file, . If already exists,
 the existing file is overwritten.
						
						 Requires permission to write to files. See .
					
					 0
				
				
					
					
					 Property
					
						 System.Net.WebHeaderCollection
					
					
					
						
							 Gets or sets a collection of header name/value pairs
 associated with the request.
						
						
							 A containing header
 name/value pairs associated with the request or, if this property has not been
 set or was set to , a new instance of the
 class.
						
						
							
								 This property
 stores the header information that the current instance sends with a
 request. This is an unrestricted collection of headers; setting headers that are
 protected in descendants like is allowed.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
						
					
					
						
							 Opens a readable containing the data downloaded from the resource identified
 by the specified URI.
						
						 A that specifies the URI from which data will be downloaded.
						
							 A used to read data from
 a resource.
						
						
							 The absolute URI is not valid.
							 -or-
							 An error occurred while downloading data.
						
						
							 If the property of the current instance is not
 , is combined
 with to form the absolute URI of the requested
 data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
 the
 property of the current instance is not , it is
 appended to .
							
								 This method creates a instance used to access the data specified by the absolute URI
 The caller of this method is responsible for calling to
release the resources allocated for the stream.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
						
					
					
						
							 Opens a for writing data to the resource identified by the specified URI.
						
						 A that specifies the URI to receive the data.
						
							 A used to write data to the resource.
						
						
							 The absolute URI is not valid.
							 -or-
							 An error occurred while opening the stream.
						
						
							 This method is equivalent to (, "POST").
							 If the property of the current instance is not
 , is combined
with to form the absolute URI of the requested
data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
the
property of the current instance is not , it is
appended to .
							
								 The underlying request is
 made with the POST method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
						
						
					
					
						
							 Opens a for writing data to the resource identified by the specified URI using the
 specified protocol method.
						
						 A that specifies the URI of the resource to receive the data.
						 A that specifies the protocol method used to send the data to the resource identified by .
						
							 A used to write data to the resource.
						
						
							 The absolute URI is not valid.
							 -or-
							 An error occurred while opening the stream.
						
						
							 If the property of the current instance is not
 , is combined
 with to form the absolute URI of the requested
 data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
 the
 property of the current instance is not , it is
 appended to .
							
								 This method returns a writable stream
 that is used to send data to a resource. The underlying request is made
 with the protocol method specified by . For more information
 about protocol methods, see .
								 If the parameter specifies a method that is not recognized by
 the server, the underlying protocol classes determine what occurs. Typically, a

is thrown with the property set to indicate the error.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.Specialized.NameValueCollection
					
					
					
						
							 Gets or sets a collection of query name/value pairs
 associated with the request.
						
						
							 A that contains query name/value
 pairs associated with the request or, if this property has not been
 set or was set to , a new instance of the
 class.
						
						
							 The property contains a
instance containing name/value pairs that are appended to
the URI as a query string. The contents of the property are preceded by a question mark
(?), and each name/value pair is separated by an ampersand (&).
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.WebHeaderCollection
					
					
					
						
							 Gets a collection of header name/value pairs
 associated with the response.
						
						
							 A containing header name/value
 pairs associated with the response.
						
						
							 This property is read-only.
							 The property contains a
instance containing header information the receives from the Internet
resource.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
						
					
					
						
							 Uploads the specified data to the resource identified by the specified
 URI using the specified protocol method.
						
						 A that specifies the URI of the resource to receive the data.
						
							 A that specifies the protocol method used to send the data to the resource identified by .
						
						 A array containing data to send to the resource.
						
							 A array containing the body of
 the response, if any, from the server hosting the
 resource.
						
						
							 The absolute URI is not valid.
							 -or-
							
								 is .
							 -or-
							 An error occurred while opening the stream or uploading the data.
							 -or-
							 There was no response from the server hosting the resource.
						
						
							 If the property of the current instance is not
 , is combined
 with to form the absolute URI of the requested
 data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
 the
 property of the current instance is not , it is
 appended to .
							
								 For more information about protocol
 methods, see
 .
								 This method does not encode the contents of before uploading
 it to the resource.
								 If specifies a method that is not recognized by
the server, the underlying protocol classes determine what occurs. Typically, a

is thrown with the property set to indicate the error.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
					
					
						
							 Uploads the specified data to the resource
 identified by the specified
 URI.
						
						 A that specifies the URI of the resource to receive the data.
						 A array containing data to send to the resource.
						
							 A array containing
 the body of the response, if any, from the server hosting the
 resource.
						
						
							 The absolute URI is not valid.
							 -or-
							
								 is .
							 -or-
							 An error occurred while opening the stream or uploading the data.
							 -or-
							 There was no response from the server hosting the resource.
						
						
							 This method is equivalent to
(, "POST",).
							 If the property of the current instance is not
 , is combined
with to form the absolute URI of the requested
data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
the
property of the current instance is not , it is
appended to .
							
								 This method sends a data buffer to a
 resource. The underlying request is
 made using the POST method.
								 This method does not encode the contents of before uploading
 it to the resource.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
						
					
					
						
							 Uploads the specified local file using the specified protocol
 method to the resource identified by the specified URI .
						
						 A that specifies the URI of the resource to receive the file.
						
							 A that specifies the protocol method used to send the data to the resource identified by .
						
						 A that specifies the file to send to the resource.
						
							 A array containing the body of
 the response, if any, from the server hosting the resource.
						
						
							 The absolute URI is not valid.
							 -or-
							
								 is or or contains invalid characters, or the specified path to the file does not exist.
							 -or-
							 An error occurred while opening the stream or uploading the file.
							 -or-
							 There was no response from the server hosting the resource.
							 -or-
							 The Content-Type header begins with "multipart".
						
						 The caller does not have the required permissions.
						
							 If the property of the current instance is not
 , is combined
 with to form the absolute URI of the requested
 data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
 the
 property of the current instance is not , it is
 appended to .
							
								 For more information about protocol
 methods, see
 .
								 If specifies a protocol method that is not recognized by
 the server, the underlying protocol classes determine what occurs. Typically, a

is thrown with the property set to indicate the error.
							
						
						 Requires permission to access path information and read files. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
					
					
						
							 Uploads the specified local file to the resource
 identified by the specified
 URI.
						
						 A that specifies the URI of the resource to receive the file.
						 A that specifies the file to send to the resource.
						
							 A array containing the body of the response, if any, from the server hosting the
 resource.
						
						
							 The absolute URI is not valid.
							 -or-
							
								 is or or contains invalid characters, or the specified path to the file does not exist.
							 -or-
							 An error occurred while opening the stream or uploading the file.
							 -or-
							 There was no response from the server hosting the resource.
							 -or-
							 The Content-Type header begins with "multipart".
						
						 Local file access has not been granted.
						
							 This method is equivalent to (, "POST",
).
							 If the property of the current instance is not
 , is combined
with to form the absolute URI of the requested
data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
the
property of the current instance is not , it is
appended to .
							
								 This method sends a local file to a
 resource. The underlying request is
 made using the POST method.
							
						
						 Requires permission to access path information and read files. See and .
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
						
					
					
						
							 Uploads the specified name/value collection
 to the specified resource using the specified method.
						
						 A that specifies the URI of the resource to receive the collection .
						 A that specifies the protocol method used to send to the resource.
						 The to send to the resource identified by .
						
							 A array containing the body of the response, if any, from the server hosting the
 resource.
						
						
							 The absolute URI is not valid.
							 -or-
							
								 is .
							 -or-
							 An error occurred while opening the stream or uploading the data.
							 -or-
							 There was no response from the server hosting the resource.
							 -or-
							 The Content-Type header is not , and is not "application/x-www-form-urlencoded".
						
						
							 If the Content-Type header is , this method sets it to "application/x-www-form-urlencoded".
							 If the property of the current instance is not
 , is combined
with to form the absolute URI of the requested
data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
the
property of the current instance is not , it is
appended to .
							
								 If specifies a protocol
method that is not recognized by the server, the underlying protocol classes
determine what occurs. Typically, a is thrown with the
property set to indicate the error.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte[]
					
					
						
						
					
					
						
							 Uploads the specified name/value collection
 to the specified resource.
						
						 A that specifies the URI of the resource to receive the collection .
						 The to send to the resource identified by .
						
							 A array containing the body of the response, if any, from the server hosting the
 resource.
						
						
							 The absolute URI is not valid.
							 -or-
							
								 is .
							 -or-
							 An error occurred while opening the stream or uploading the data.
							 -or-
							 There was no response from the server hosting the resource.
							 -or-
							 The Content-Type header is not , and is not "application/x-www-form-urlencoded".
						
						
							 This method is equivalent to (, "POST",
).
							 If the Content-Type header is , this method sets it to
"application/x-www-form-urlencoded".
							 If the property of the current instance is not
 , is combined
with to form the absolute URI of the requested
data. If the property of the current instance is
 ,
 is required to be the absolute URI of the requested data. If
the
property of the current instance is not , it is
appended to .
							
								 The underlying
 request is made using the POST method.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an error that occurs
 while accessing the Internet through a pluggable protocol.
				
				
					
						
							 is thrown by classes
 derived from and that implement pluggable
 protocols when an error occurs in
 while accessing the Internet.
						 When is thrown by a method in a class derived from ,
 the property provides the Internet response to the
 application.
					
				
			
			
				 System.InvalidOperationException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new
 instance to a system-supplied message that describes the error. This message takes
 into account the current system culture. The and properties of the new instance are initialized to . The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							 The and properties of the new instance are
initialized to . The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the
property of the new instance using and the property using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no arguments.
							 The
 property of the new instance are initialized to . The property is initialized to .
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A value that describes the status of the network connection after the exception is thrown.
						
							 This constructor initializes the property of the new instance using and using . If is ,
 the property is initialized to the system-supplied
 message provided by the constructor that takes no arguments.
							 The and properties of the new
instance are initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified error
 message, nested exception, status, and response.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						 A value that describes the status of the network connection after the exception is thrown.
						 A instance containing the response from the host.
						
							 This constructor initializes the property of the new instance using
 the
property using , the property using ,
and the property
using . If is ,
the property is initialized to the system-supplied
message provided by the constructor that takes no arguments.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.WebResponse
					
					
					
						
							 Gets the that the host returned.
						
						
							 A instance containing the
 error response if one is available; otherwise,
 .
						
						
							 This property is read-only.
							
								 Some Internet protocols, such as HTTP, return otherwise
 valid responses indicating that an error has occurred at the protocol level.
 When the response to an Internet request indicates an error,
 sets the
 property to and
 provides
 the containing the error message in the
 property of the
 that was
 thrown. The can be examined to
 determine the actual error.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.WebExceptionStatus
					
					
					
						
							 Gets a value that indicates the status of the response.

						
						
							 A value that indicates the status of the
 response.
						
						
							 This property is read-only.
							 The property indicates the reason for the current
 exception.
							 The default value for this property is .
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines status codes for the class.

				
				
					 This enumeration defines the status
 codes assigned to the
 property.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 ConnectFailure
					
						
							 The remote service point could not be contacted at the transport level.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 ConnectionClosed
					
						
							
 The connection was prematurely closed.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 KeepAliveFailure
					
						
							 The connection for a request that specifies the Keep-alive
 header was closed unexpectedly.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 NameResolutionFailure
					
						
							
 The name resolver service could not resolve the host name.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 Pending
					
						
							 An internal asynchronous request is pending.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 PipelineFailure
					
						
							 The request was submitted as a pipeline request, but the
 connection was dropped before the respective response was received.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 ProtocolError
					
						
							
 The response received from the server was complete
 but indicated a protocol-level error.

							
								 For example, an HTTP protocol error such
 as 401 Access Denied would use this status.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 ProxyNameResolutionFailure
					
						
							 The name resolver service could not resolve the proxy host name.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 ReceiveFailure
					
						
							
 A complete response was not received from the remote server.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 RequestCanceled
					
						
							 The request was canceled or the method was called.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 SecureChannelFailure
					
						
							
 An error occurred in a secure channel link.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 SendFailure
					
						
							
 A complete request could not be sent to the remote server.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 ServerProtocolViolation
					
						
							 The server response was not a valid HTTP response.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 Success
					
						
							 No error was encountered.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 Timeout
					
						
							 No response was received during the timeout period for a request.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 TrustFailure
					
						
							
 A server certificate could not be validated.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Net.WebExceptionStatus
					
					
					 TrustFailure
					
						
							 An exception of unknown type has occurred.
							
								 This is the default value for
 .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Contains protocol headers associated with a or
 instance.
				
				
					 This class is generally accessed through or
.
					
 Certain protocol headers are protected and cannot be set directly in a instance. These headers
 can only be set through provided property accessors or by the system. The
 protected headers are:
					
						
							

 Accept
						
						
							

 Connection
						
						
							

 Content-Length
						
						
							

 Content-Type
						
						
							

 Date
						
						
							

 Expect
						
						
							

 Host
						
						
							

 If-Modified-Since
						
						
							

 Range
						
						
							

 Referer
						
						
							

 Transfer-Encoding
						
						
							

 UserAgent
						
					
				
			
			
				 System.Collections.Specialized.NameValueCollection
			
			
				
					 System.Collections.ICollection
					 0
				
				
					 System.Collections.IEnumerable
					 0
				
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Inserts a new header with the specified name and value into the collection.
						
						 A that contains the name of the header to add to the collection.
						 A that contains the content of the header.
						
							
								 is or , or contains invalid characters.
							 -or-
							
								 is a protected header that can only be set with a property accessor or by the system.
							 -or-
							
								 contains invalid characters.
						
						
							 This method inserts
 a new header into
 the list of header name/value pairs.
							 If the header specified in is already present, is concatenated with the existing
 value.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Inserts the specified header into the collection.
						
						 A containing the header to add, with the name and value separated by a colon.
						
							 is or .
						
							
								 does not contain a colon (:) character.
							 -or-
							
								 name is , or contains invalid characters.
							 -or-
							
								 is a protected header that can only be set with a property accessor or by the system.
							 -or-
							
								 value contains invalid characters.
						
						
							 This method inserts a new header into the list of header
 name/value pairs.
 is required to be specified in the format name:value.
							 If the header specified in name is already present in the
 collection, value is concatenated with the existing
value.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Inserts a header into the current instance without checking whether the header
 is on the restricted header list.
						
						 A that contains the name of the header to add to the collection.
						 A that contains the content of the header.
						
							
								 is or , or contains invalid characters.
							 -or-
							
								 contains invalid characters.
						
						
							 This method adds a header to the
 collection without checking whether the header is on the restricted header list.
							
								 When subclassing ,
 use the
 method
 to

 add headers that are normally exposed through
 property accessors.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String[]
					
					
						
					
					
						
							 Returns the values stored in the specified protocol
 header.

						
						 A containing the protocol header name whose values are returned.
						
							 An array of objects that contain the values of the protocol
 header named
 in the current instance. If is not found in the current
 instance, returns .

						
						
							
								 This method overrides .
							
						
						
							 This example demonstrates the method.
							
using System;
using System.Net;

class GetValuesExample
{
 public static void Main()
 {
 Uri contosoUri = new Uri("http://www.contoso.com");
 HttpWebRequest httpContoso =
 (HttpWebRequest)WebRequest.Create(contosoUri);

 httpContoso.SendChunked=true;
 httpContoso.TransferEncoding="compress";
 httpContoso.TransferEncoding="gzip";

 WebHeaderCollection webColl = httpContoso.Headers;
 String[] sAry = webColl.GetValues("Transfer-Encoding");

 Console.WriteLine("Transfer-Encoding:");
 foreach(string s in sAry)
 Console.WriteLine("{0}", s);
 }
}

							 The output is
							
Transfer-Encoding:
							 compress
							 gzip

						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Returns a value that indicates whether the specified HTTP header can be set.
						
						 A containing the header to test.
						
							
								 if
 the header is protected; otherwise .
						
						
							 is or .
						
							
								 contains invalid characters.
						
						
							 This method returns to indicate that a header is
 protected. Protected headers can only be set through provided property accessors or by the
 system. They cannot be set directly in the current instance.
							 The protected headers are:
							
								
									

 Accept
								
								
									

 Connection
								
								
									

 Content-Length
								
								
									

 Content-Type
								
								
									

 Date
								
								
									

 Expect
								
								
									

 Host
								
								
									

 If-Modified-Since
								
								
									

 Range
								
								
									

 Referer
								
								
									

 Transfer-Encoding
								
								
									

 UserAgent
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Removes the specified header from the current instance.
						
						 A that contains the name of the header to remove from the current instance.
						
							 is or .
						
							
								 contains invalid characters.
							 -or-
							
								 is a protected header that can only be set with a property accessor or by the system.
						
						
							 This method deletes the specified header from the current instance. If
 multiple values were added to the same header using , a single call to deletes all of the values.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Sets the specified header to the specified value.

						
						 A that contains the name of the header to set.
						 A that contains the content of the header to set.
						
							 is or .
						
							
								 contains invalid characters.
							 -or-
							
								 is a protected header that can only be set with a property accessor or by the system.
							 -or-
							
								 contains invalid characters.
						
						
							 The method inserts a new header into
 the list of header name/value pairs.
							 If the header specified in is already
present, replaces the existing
value.
							
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Controls access to Internet resources.
				
				
					 The XML encoding of a instance
 is defined below in EBNF format. The following conventions are used:
					
						
							
								 All non-literals in the grammar below are shown in normal type.
							
						
						
							
								 All literals are in bold font.
							
						
					
					 The following meta-language symbols are used:
					
						
							

 '*' represents a meta-language symbol suffixing an
 expression that can appear zero or more times.
						
						
							

 '?' represents a meta-language symbol suffixing an
 expression that can appear zero or one time.
						
						
							

 '+' represents a meta-language symbol suffixing an
 expression that can appear one or more times.
						
						
							

 '(',')' is used to group literals, non-literals or a
 mixture of literals and non-literals.
						
						
							

 '|' denotes an exclusive disjunction between two
 expressions.
						
						
							

 '::= ' denotes a production rule where a left hand
 non-literal is replaced by a right hand expression containing literals,
 non-literals or both.
						
					
					 BuildVersion refers to the build version of the shipping CLI. This is
 a dotted build number such as '2412.0'.
					 ECMAPubKeyToken ::=
					
					 HostName refers to a host name such as www.contoso.com .
					 Portnumber denotes a value indicating a port.
					 TransportProtocol ::= |
 | /*1= UDP , 2 = TCP, 3 = both */
					
						 WebPermissionXML ::=
						
							
						
						
							
						
						
							
						
						
							
						
						
							 BuildVersion
						
						
							
						
						
							 ECMAPubKeyToken
						
						
							
						
						 (
						
							
						
)
						 |
						 >
						 (
						
						 (
						
							 HostName PortNumber TransportProtocol
						
)+
						
							
						
						
							
						
)
						 |
						 >
						 (
						
						 (
						
							 HostName PortNumber TransportProtocol
						
)+
						
						
							
						
						
							
						
)
						 |
						
							
						
					
				
			
			
				 System.Security.CodeAccessPermission
			
			
				
					 System.Security.IPermission
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
value.
						
						
							 A value.
						
						
							
								 This constructor creates either fully restricted ()
 or access to Internet
 resources.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class that secures
 access to the specified
 URI.
						
						 A value indicating the type of access to secure.
						 A that represents the URI to grant access rights to. For more information on the format of this string, see .
						
						
							 is .
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new object containing the same values as the current
 instance.
						
						
							 A new instance
 containing the same values as the current instance.

						
						
							
								 The object returned by this method represents the same access to resources as
 the current instance.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reconstructs the state of a object using the specified XML
 encoding.
						
						
							 A instance containing the XML encoding to use to reconstruct the state of a object.
						
						
							
								 is .
						
						
							
								 does not contain the encoding for a instance.
						
						
							 The state of the current instance is changed to the state encoded in
 .
							
								 For the XML encoding for this class, see the class
 page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a new object that is the intersection of the current
 instance and the specified object.
						
						 A instance to intersect with the current instance.
						
							 A new instance that represents the intersection of the
 current instance and . If the intersection is
 empty, returns . If the
 current instance is unrestricted, returns a copy of . If
 is unrestricted, returns a copy of the current instance.
						
						
							 is .
						
							 is not and is not of type .
						
							
								 The intersection of two permissions is a permission that secures the
 resources and operations secured by both permissions. Specifically, it
 represents the minimum permission such that any demand that passes both
 permissions will also pass their intersection.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of the specified
 object.
						
						 A instance that is to be tested for the subset relationship.
						
							
								 if the current instance is a subset of ;
 otherwise, . If target is null, return
 . If the current instance is unrestricted, and
 is not, returns . If is
 unrestricted, returns .
						
						
							
								 is not of type .
						
						
							
								 The current instance is a subset of if the current instance
 specifies a set of accesses to resources that is wholly contained by
 . For example, a permission that represents read access to a file
 is a subset of a permission that represents read and write access to the file.
								 If this method returns , the
 current instance describes access to internet resources that is also
 described by
 .
								 This method overrides and is implemented to
support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.SecurityElement
					
					
					
						
							 Returns the XML encoding of the current instance.
						
						
							 A containing the XML encoding of the state of the
 current instance.
						
						
							
								 For the XML encoding for this class, see the class page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a new object that is the union of the current instance and
 the specified object.
						
						 The instance to combine with the current instance.
						
							 A new instance that represents the union of the current
 instance and . If the current instance
 or is unrestricted, returns a instance that is unrestricted.
						
						
							 is not and is not of type .
						
							
								 The result of a call to is a permission that represents all of
 the access to permissions represented by the current instance as well as the
 permissions represented by . Any demand that passes either the
 current instance or passes their union.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Used to declaratively specify permission to access Internet resources.
				
				
					
						 The security information declared by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time.
 Security attributes are used for declarative security only. For imperative
 security, use the corresponding permission class, .
						 The allowable targets are determined by the passed to the constructor.
					
				
			
			
				 System.Security.Permissions.CodeAccessSecurityAttribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the class with the specified
value.
						
						
							 A value.
						
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the URI accepted by the current instance.
						
						
							 A that represents the URI accepted by the
 current instance.
						
						
							 is being set and is not .
						
							 This property is write-once. Once this property has been
 set to a non-null value, attempts to set this property to new value cause a
 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the URI connection controlled by the current instance.
						
						
							 A that represents the connection controlled by the
 current instance.
						
						
							 is being set and is not .
						
							 This property is write-once. Once this property has been
 set to a non-null value, attempts to set this property to new value cause a
 .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a instance that contains the security information of
 the current instance.
						
						
							 A object with the security information of the current
 instance.
						
						
							
								 Applications typically do not call this method; it is intended for use by the
 system.
								 The security information described by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time. The
 system uses the object returned by this method to convert the security
 information of the current instance into the form stored in metadata.
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Contains HTTP proxy settings for the class.
				
				
					
						 instances
 use instances to override the proxy settings in
 .
					
						 Local requests are
 identified by the lack of a period (.) in the authority of the URI, as in "http://webserver/"
 versus "http://www.contoso.com/
 ".
					
				
				
					 The following example sets a for a
 . The instance uses the proxy to
 connect to external Internet resources.
					 using System;
using System.Net;

public class WebProxyExample {

 public static void Main() {

 WebProxy proxyObject =
 new WebProxy("http://proxyserver:80/",true);
 WebRequest req =
 WebRequest.Create("http://www.contoso.com");
 req.Proxy = proxyObject;
 }
}

				
			
			
				 System.Object
			
			
				
					 System.Net.IWebProxy
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified URI, bypass setting, list of URIs to bypass, and credentials.
						
						 A that represents the URI of the proxy server.
						
							 A that indicates whether or not to bypass the proxy for local connections. Specify to bypass the proxy for local connections; otherwise, .
						
						 A array of regular expressions that describe the URIs that will not be accessed using the current instance. For more information on the format of these regular expressions, see IETF RFC 2396, Appendix B.
						
						 A object to submit to the proxy server for client authentication.
						
							
								 is not in a valid URI format.
						
						
							 This constructor initializes the properties of the new instance
 as follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									 A new
 constructed from or, if does not contain "://", constructed from "http:// ". If is ,
 this property is set to .
								
								
									
										
											
										
									
									
 A new
 constructed from or, if is
 , a new
 empty .
								
								
									
										
											
										
									
									
										 or, if is
 , a new empty array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the properties of the new instance as
 follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									 A new empty
 .
								
								
									
										
											
										
									
									
 A
 new empty
 array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class using the specified
.
						
						 A containing the address of the proxy server.
						
							 This constructor initializes the properties of the new instance as
 follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									 A new empty
 .
								
								
									
										
											
										
									
									
 A
 new empty
 array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class using the specified and specified bypass setting.
						
						 A containing the address of the proxy server.
						 A that indicates whether or not to bypass the proxy for local connections. Specify to bypass the proxy for local connections; otherwise, .
						
							 The properties of the new instance are initialized as detailed in the
 following table.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									 A new empty
 .
								
								
									
										
											
										
									
									
 A
 new empty
 array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs a new instance of the class with the specified , bypass setting,
 and list of URIs to bypass.
						
						 A containing the address of the proxy server.
						
							 A that indicates whether or not to bypass the proxy for local connections. Specify to bypass the proxy for local connections; otherwise, .
						
						 A array of regular expressions that describe the URIs that will not be accessed using the current instance. For more information on the format of these regular expressions, see IETF RFC 2396, Appendix B.
						
						
							 This constructor initializes the properties of the new instance
 as follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
 A new
 constructed from or, if is
 , a new
 empty .
								
								
									
										
											
										
									
									
										 or, if is
 , a new empty array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified , bypass setting, list of URIs to bypass, and credentials.
						
						 A containing the address of the proxy server.
						
							 A that indicates whether or not to bypass the proxy for local connections. Specify to bypass the proxy for local connections; otherwise, .
						
						 A array of regular expressions that describe the URIs that will not be accessed using the current instance. For more information on the format of these regular expressions, see IETF RFC 2396, Appendix B.
						
						 A object to submit to the proxy server for client authentication.
						
							 This constructor initializes the properties of the new instance
 as follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
 A new
 constructed from or, if is
 , a new
 empty .
								
								
									
										
											
										
									
									
										 or, if is
 , a new empty array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with
 the specified host and port number.
						
						 A containing the name of the proxy server.
						 A that contains the port number to use when accessing .
						 The URI formed by combining and is not in a valid URI format.
						
							 This constructor initializes the properties of the new instance
 as follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									 A new
 constructed from "http:// : ".
								
								
									
										
											
										
									
									 A new empty
 .
								
								
									
										
											
										
									
									
 A
 new empty
 array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified URI.
						
						 A containing the URI of the proxy server.
						
							 is not and not in a valid URI format.
						
							 This constructor initializes the properties of the new instance
 as follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									 A new
 constructed from or, if does not contain "://", constructed from "http:// ". If is ,
 this property is set to .
								
								
									
										
											
										
									
									 A new empty
 .
								
								
									
										
											
										
									
									
 A
 new empty
 array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified URI and bypass setting.
						
						 A that represents the URI of the proxy server.
						
							 A that indicates whether or not to bypass the proxy for local connections. Specify to bypass the proxy for local connections; otherwise, .
						
						
							
								 is not in a valid URI format.
						
						
							 This constructor initializes the properties of the new instance
 as follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									 A new
 constructed from or, if does not contain "://", constructed from "http:// ".
 If is ,
 this property is set to .
								
								
									
										
											
										
									
									 A new empty
 .
								
								
									
										
											
										
									
									
 A
 new empty
 array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified URI, bypass setting, and list of URIs to bypass.
						
						 A that represents the URI of the proxy server.
						
							 A that indicates whether or not to bypass the proxy for local connections. Specify to bypass the proxy for local connections; otherwise, .
						
						 A array of regular expressions that describe the URIs that will not be accessed using the current instance. For more information on the format of these regular expressions, see IETF RFC 2396, Appendix B.
						
						
							
								 is not in a valid URI format.
						
						
							 This constructor initializes the properties of the new instance
 as follows.
							
								
									 Property
									 Value
								
								
									
										
											
										
									
									 A new
 constructed from or, if does not contain "://", constructed from "http:// ". If is ,
 this property is set to .
								
								
									
										
											
										
									
									
 A new
 constructed from or, if is
 , a new
 empty .
								
								
									
										
											
										
									
									
										 or, if is
 , a new empty array.
								
								
									
										
											
										
									
									
										
									
								
								
									
										
											
										
									
									
										
									
								
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Uri
					
					
					
						
							 Gets or sets the address of the proxy server represented by the current instance.
						
						
							 A containing the
 address of the proxy server represented by the current instance.
						
						
							
								
 When is , all requests that reference the current
 instance bypass the proxy and connect directly to the destination host.
								 For additional information, see .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Collections.ArrayList
					
					
					
						
							 Gets a list of the URIs that do not use the proxy server.
						
						
							 A of
 instances. The elements of
 the list represent the URIs that a
 instance accesses directly instead of through the proxy server.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String[]
					
					
					
						
							 Gets or sets an array of the URIs that do not use the proxy server.
						
						
							 A of instances. The elements of the array represent URIs that
 a
 instance accesses directly instead of through the
 proxy server.
						
						
							 This property is equivalent to . (()).
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether requests
 for local resources bypass the proxy server.
						
						
							
								 to bypass the proxy server for local resources;
 otherwise, . The default value is
 .
						
						
							 The setting of this property
 determines whether instances use the
 proxy server when accessing local resources. If is , requests
 to local resources do not use the proxy server. Local resources are
 identified by the lack of a period (.) in the URI, as in "http://webserver/". When is
 , all
 requests for resources are made through the proxy server.
							
								 If a request for a
 resource residing on a local machine is made using a URI that contains a period,
 the proxy is used to send the request. Create an entity in
 the to access local resources directly.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.ICredentials
					
					
					
						
							 Gets or sets the credentials to submit to the proxy server
 for authentication.
						
						
							 A object
 containing the credentials to submit to the proxy server
 for authentication.
						
						
							 This property contains the authentication
 credentials to send to the proxy server in response to an HTTP 407 (proxy authorization)
 status code.
							
								 For more information regarding HTTP
 status code 407, see .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.WebProxy
					
					
					
						
							 Returns a new instance that contains the default proxy settings of the system.
						
						
							 A new
instance that contains the default proxy settings of the
system.
						
						
							 The default proxy settings of the system are implementation-defined.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Uri
					
					
						
					
					
						
							 Returns the URI of the server that is contacted for the specified resource.
						
						 The of the requested resource.
						
							 If is on the bypass list of the
 current instance, returns ; otherwise, returns the of
 the current instance.
						
						
							 This
 method returns the URI that the uses to access the resource. compares with the contents
 of using the method.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Indicates whether a request will bypass the proxy server
 when accessing the resource represented by the specified URI.
						
						 A containing the URI of the server to check.
						
							 Returns under any of the following conditions:
							
								
									

 The property of the current instance is
 and is a local URI.
								
								
									
										 matches a regular expression in .
								
								
									

 The of the current instance is
 .
								
							
							 All other conditions return .
						
						 The of the current instance contains an invalid regular expression.
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Makes a request to a Uniform Resource Identifier
 (URI).
				
				
					
						 is an abstract
 class that models
 the request side of transactions used for accessing data from the
 Internet.
					 Classes that derive from are required to override the following members
of the class in a
protocol-specific manner:
					
						
							
								
 -- Gets or sets the protocol method to use in the current instance.
						
						
							
								 --
 Gets the of the resource associated with the current instance.
						
						
							
								
 -- Gets or sets the collection of header name/value pairs associated with the
 request.
						
						
							
								 -- Gets or sets the content length of
 the request data being sent.
						
						
							
								 -- Gets or sets the content type of the
 request data being sent.
						
						
							
								 -- Gets or sets the credentials used
 for authenticating the client using the current instance.
						
						
							
								 -- Gets or
 sets a value that indicates whether to send authentication information with a
 request for resources.
						
						
							
								 -- Returns a for writing data to a
 resource.
						
						
							
								 -- Begins
 an asynchronous request for a stream in which to write data to be sent in the
 current request.
						
						
							
								 -- Returns
 a for writing data to the
 resource accessed by the current instance.
						
						
							
								 -- Returns a response to a request.
						
						
							
								 -- Begins
 an asynchronous request for a resource.
						
						
							
								 -- Returns a that
 contains a response to a specified pending request.
						
					
					 In addition, derived classes are required to
 support the interface.
					
						 An application
 that uses the request/response model can request data be
 sent from the Internet in a protocol-agnostic manner, in which the application works with
 instances of the class while classes that derive from and

 implement
 specific protocols perform the details of
 the request.
						 Requests are sent from an application to a particular Uniform Resource Identifier (URI), such as
 a Web page on a server. Using the URI, the method creates an instance of a type
 derived from to handle the request. The type is selected from the
 set of registered types. Types can be registered to handle a specific
 protocol, such as HTTP or FTP, or to handle a request to a specific server or
 path on a server. For information on registering types, see .
						
						 The class throws a exception when an error occurs
 while accessing a resource.
						 Use the method to initialize a new instance of a
class that derives from
. Do not use the
constructor.
					
				
				
					 The following example demonstrates using to create an instance of

.
					 using System;
using System.Net;

public class WebRequestExample {

 public static void Main() {

 // Initialize the WebRequest.
 WebRequest myRequest =
 WebRequest.Create("http://www.contoso.com");

 // Print the type of the request.
 Console.WriteLine(myRequest);
 }
}

					 The output is
					 System.Net.HttpWebRequest
				
			
			
				 System.MarshalByRefObject
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
						
							 This constructor is called only by classes that derive from
 .
							
								 Use the method to initialize a new instance of a class that derives from . Do not use
 this constructor.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Attempts to cancel an asynchronous request made by the current instance to access a resource.
						
						 This method is not overridden in the derived class.
						
							
								 As described above.
							
							
								 The class is
 abstract and does not provide an implementation for this method. This method
 throws .
							
							
								 This
 method must be overridden by classes that inherit from to provide this
 functionality.
							
							
								 Use this method to cancel an asynchronous operation started with the
 method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
					
					
						
							 Begins an asynchronous request for a stream in which to write data to be sent
 in the current request.
						
						 A delegate to be called when the stream is available. Can be .
						 A containing state information for the asynchronous request.
						
							 A object that contains information about the asynchronous operation.
						
						 This method is not overridden in the derived class.
						
							 The parameter can be any object that the
 caller wishes to have available for the duration of the asynchronous operation.
 This object is available via the property of the object returned by this
 method.
							
								 This method starts an asynchronous operation to obtain a stream
 used to write data to be sent in the current request. To get the request
 stream, call the method and specify the object
 returned by this method.
								 If the parameter is not
 , the
 method referenced by is invoked when the asynchronous
 operation completes. The object returned by this method is passed as the argument
 to the method referenced by .
							
							
								 The class is
abstract and does not provide an implementation for this method. This method
throws .
							
							
								 This method must be overridden by classes that inherit from
 to provide this
 functionality.
							
							
								 Use this method to
 start an asynchronous request for a stream used to send data to a resource. The
 delegate
 can call
 the method to
 obtain the request stream.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IAsyncResult
					
					
						
						
					
					
						
							 Begins sending the current request asynchronously.
						
						 A delegate to be called when the response from the server is available.
						 A containing state information for the asynchronous request.
						
							 A object that contains information about the asynchronous operation.
						
						 This method is not overridden in the derived class.
						
							 The parameter can be any object that the caller wishes to have
 available for the duration of the asynchronous operation. This object is
 available via the property of the object returned by this
 method.
							
								 This method starts an asynchronous operation to send the current request and
 receive the response from the server that processed the
 request. To get the response, call the method and specify the object
 returned by this method.
								 If the parameter is not , the method
 referenced by is invoked when the asynchronous operation
 completes. The object returned by this method is passed as the argument
 to the method referenced by .
							
							
								 The class is abstract and does not
provide an implementation for this method. This method throws .
							
							
								 This method must be overridden by
 classes that inherit from to provide this functionality.

							
							 The method starts an asynchronous request for
a response. The callback delegate
can call the method to return the received from the resource.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the name of the connection group for the current instance.
						
						
							 A that contains the name of the connection group for the current instance.
						
						 This property is not implemented in the derived class.
						
							 This property associates specific requests within an
 application with a
 .
							
								 As described above.
							
							
								 This property throws .
							
							
								 This property is required to be
 overridden by classes that inherit from . The property
 typically associates a group of requests that share a set of credentials with a
 connection to an Internet resource to avoid potential security failures.

							
							
								 Use this property to get or set the name of the connection group for the current instance.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets or
 sets the
 content
 length of the request data being sent.
						
						
							 A containing the number of bytes of request data being sent.
						
						 This property is not implemented in the derived class.
						 Data has already been written to the request stream.
						 This property is being set to a value less than zero.
						
							
								 This property
 is required to throw a exception if data has already been
 written to the request stream, and a exception if the property is being set to a value less than zero.
							
							
								 This property throws .
							
							
								 This property is required to be
 overridden by classes that inherit from .
							
							
								 Use this property to get the number of bytes sent to the resource.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets
 or
 sets
 the content type of the request data being sent.
						
						
							 A that represents the content type of the request data.
						
						 This property is not implemented in the derived class.
						
							 The
property contains the media type of the request.
							
								 This
 is typically the MIME encoding of the content.
							
							
								 As described above.
							
							
								 This property throws .
							
							
								 This property is required to be
 overridden by classes that inherit from .
							
							
								 Use
 this property to get the media type of request.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.WebRequest
					
					
						
					
					
						
							 Constructs a new instance of a class derived from . The new instance is of the
 type registered for the scheme
 of the specified URI.
						
						 A that contains a URI.
						
							 A new instance of a class that derived from and is registered to handle the
 scheme of .
						
						
							 is .
						 The request scheme specified in is not registered.
						 The URI specified in is not a valid URI.
						 The caller does not have permission to connect to the requested URI or a URI that the request is redirected to.
						
							
								 This method
 returns a new instance of a class that derived from
 . The of this new instance
 is determined at run time by the scheme of the URI in
 . For example,
 when a URI beginning with http:// is passed in
 , a instance is returned.
								 Classes that derive from that are
 created to handle other requests are registered
 with the
 method.
							
						
						 Requires permission to connect to the requested URI. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Net.WebRequest
					
					
						
					
					
						
 Constructs a new instance of a class derived from .

						 A containing the URI of the requested resource.
						
							 A new instance of a class derived from that is registered to handle the closest registered
 match for .
						
						
							 is .
						 The request scheme specified in is not registered.
						 The caller does not have permission to connect to the requested URI or a URI that the request is redirected to.
						
							 To
 determine the closest match, this method checks the registered URIs for the
 longest URI prefix that matches .
							
								 For an example that demonstrates this method, see .
							
						
						 Requires permission to connect to the requested URI. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Net.WebRequest
					
					
						
					
					
						
							 Constructs a new instance of a class derived from . The new instance is of
 the type registered for the scheme of the specified URI.
						
						 A containing the URI of the requested resource.
						
							 A new instance of the type derived from that is registered for the scheme of the specified .
						
						
							 is .
						 The request scheme specified in is not registered.
						 The caller does not have permission to connect to the requested URI or a URI that the request is redirected to.
						
							
								 When this method is
 invoked, only the scheme portion of is checked against the
 list of URIs registered for the current instance. Conversely, when
 is invoked, the entire URI is checked against the
 list of registered URIs.

							
						
						
							 This example demonstrates the use of the and methods.
							 using System;
using System.Net;

public class ContosoTextRequest : WebRequest, IWebRequestCreate
{
 public new WebRequest Create(Uri uri)
 {
 return new ContosoTextRequest();
 }
}

public class CreateDefaultExample
{
 public static void Main()
 {
 ContosoTextRequest contoso = new ContosoTextRequest();
 Uri contosoUri = new Uri("http://www.contoso.com/text");
 WebRequest.RegisterPrefix("http://www.contoso.com/text", contoso);

 WebRequest httpContoso = WebRequest.CreateDefault(contosoUri);
 Console.WriteLine("CreateDefault --> {0}", httpContoso);

 WebRequest textContoso = WebRequest.Create(contosoUri);
 Console.WriteLine("Create --> {0}", textContoso);
 }
}

							 The output is
							
								 CreateDefault --> System.Net.HttpWebRequest
								 Create -->
 ContosoTextRequest
							
						
						 Requires permission to connect to the requested URI. See .
					
					 0
				
				
					
					
					 Property
					
						 System.Net.ICredentials
					
					
					
						
							 Gets or sets the credentials used for
 authenticating the client using the current instance.
						
						
							 A object containing the authentication credentials
 associated with the request. The default is .
						
						 This property is not implemented in the derived class.
						
							
								 As described above.
							
							
								 This
 property throws .
							
							
								 This
 property is required to be overridden by classes that inherit from
 .
							
							
								 Use this property
 to store or access the user, password, and domain information of the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
						
					
					
						
							 Returns a for writing data to the resource identified by the
 property of the current instance.
						
						 A object that references a request for a started with .
						
							 A to write data
 to.
						
						 This method is not overridden in the derived class.
						
							 was not returned by a call to .
						
							 is a null reference.
						
							 This method was called previously using
							
							 -or-
							 No stream is available.
						
						 An error occurred while processing the request.
						
							 This method completes an asynchronous
 request for a stream that was started by the method.
							
								 As described above.

							
							
								 The class is
 abstract and does not provide an implementation for this method. This method
 throws .
							
							
								 This
 method must be overridden by classes that inherit from to provide this
 functionality.
							
							
								 Use this method to complete an asynchronous request for a stream that was started with the method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.WebResponse
					
					
						
					
					
						
							 Returns a that contains a response to a specified
 pending request.
						
						 A object that references a pending request that was started with .
						
							 A that contains a response to the request
 referenced by .
						
						 This method is not overridden in the derived class.
						
							 was not returned by a call to .
						
							 is a null reference.
						
							 The property of the current instance is greater than zero but no data has been written to the request stream.
							 -or-
							 This method was called previously using
							
						
						 An error occurred while processing the request.
						
							
								 As described
 above.
							
							
								 The class is
 abstract and does not provide an implementation for this method. This method
 throws .
							
							
								 This
 method must be overridden by classes that inherit from to provide this
 functionality.
							
							
								 Use this method to complete an asynchronous request
 for an Internet resource that was started with the method.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
					
						
							 Returns a for writing data to a
 resource.
						
						
							 A for writing data to
 a resource.
						
						 This method is not overridden in the derived class.
						
							
								 As described above.
							
							
								 The class is abstract and does not
 provide an implementation for this method. This method throws .
							
							
								 This method is required to be
 overridden by classes that inherit from .
							
							
								 Use this method to initiate a request to send
 data to a resource and obtain a instance for sending data to
 that resource.
								 The method provides synchronous access to the . For
 asynchronous access, use the and methods.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Net.WebResponse
					
					
					
						
							 Returns a
 response to a request.
						
						
							 A containing the response to the request.
						
						 This method is not overridden in the derived class.
						
							 The request timed out.
							 -or-
							 An error occurred while processing the request.
						
						
							
								 This method returns an instance of a type
 derived from that is registered for the property of the current instance. This new
 instance is required to contain a response from the resource to the current request.
								 If the timeout period for the request expires, or an
 error occurs while processing the request, this method is required to throw a
 exception.
							
							
								 The class is
 abstract and does not provide an implementation for this method. This method
 throws .
							
							
								 This
 method must be overridden by classes that inherit from to provide this
 functionality.
							
							
								 Use this method for synchronous access to a resource.
 For asynchronous access, use the and methods.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.WebHeaderCollection
					
					
					
						
							 Gets
 or
 sets the collection of header name/value pairs associated with the
 request.
						
						
							 A containing the header name/value pairs associated
 with the current instance.
						
						 This property is not implemented in the derived class.
						
							 This property contains a instance containing
 the header information to send to resources.
							
								 As described above.
							
							
								 This property
 throws a
 exception.
							
							
								 This property must be overridden by classes that inherit from
 .
							
							
								 Use this property
 to determine the header information of a request.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets
 or sets the protocol method to use in the current
 instance.
						
						
							 A containing the protocol method to use in the current instance.
						
						 This property is not implemented in the derived class.
						
							
								 The default value of this property is required to
 be a protocol method that does not require protocol-specific properties
 to be set. For the HTTP protocol, this
 value is GET.
							
							
								 This property throws .
							
							
								 This property must be overridden by
 classes that inherit from to provide this functionality.
							
							
								 Use this property
 to set the protocol-specific method that will be used to make a request.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value that determines whether to send authentication information with the current request instead of waiting
 for an authentication challenge
 from the requested resource.
						
						
							
								 if
 authentication information will be
 sent with the current request without waiting for an authentication challenge
 from
 the requested resource;
 otherwise, .
						
						 This property is not implemented in the derived class.
						
							
								 If is , the current instance sends authentication
 credentials without waiting to be challenged by the server specified by the

property of the current instance. When
this property is , the
current instance waits for
a challenge from the server before sending credentials.
							
							
								 This
 property throws .
							
							
								 This property must be overridden by
 classes that inherit from to provide this functionality.
							
							
								 Use this
 property to ensure that authentication information is sent with every
 request. Setting this property to allows clients to improve
 server efficiency by avoiding extra round trips caused by authentication challenges.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.IWebProxy
					
					
					
						
							 Gets or sets the
 network proxy to use to access resources.
						
						
							 A to use to access resources.
						
						 This property is not implemented in the derived class.
						
							 The property identifies the network proxy
 that the request uses to access resources. The request is made through the
 proxy server rather than directly to the server hosting the resource.
							
								 If the
property of the current instance has not been set, the value of this property is
required to be
.
								 If the property is being set to , it is required to
throw a exception.
							
							
								 This
 property throws .
							
							
								 This property must be overridden by
 classes that inherit from to provide this functionality.
							
							
								 Use this method to
 obtain a instance that represents the proxy server used by the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Registers a type derived from , and associates the
 type with the specified URI.
						
						 A containing the URI that the derived type services. Can specify a scheme or a complete URI.
						 An instance of a type that implements the interface.
						
							
								 if registration is successful;
 , if

is already registered.
						
						
							
								 is or
				 is .
						
						
							
								 is registered
 to service requests for HTTP and HTTPS schemes. Attempts to register a different
 type for these schemes will
 fail.
							
								 This method registers types that derive from
to service requests. These derived types are
typically registered to handle a specific protocol, such HTTP or FTP, but can be
registered to handle a request to a specific server or path on a server.
Therefore,
can be either a scheme or a complete
URI.
								 The class calls the
method to create additional instances of the same type as
 .
							
						
						
							 The following example demonstrates how to register a new
 scheme.
							 using System;
using System.Net;

public class ftpWebRequest : WebRequest {
 //implement ftp-specific protocol methods and properties
}

public class ftpCreator : IWebRequestCreate
{
 public WebRequest Create(Uri uri)
 {
 return new ftpWebRequest();
 }
}

public class RegisterPrefixExample
{

 public static void Main()
 {

 ftpCreator creator = new ftpCreator();
 WebRequest.RegisterPrefix("ftp://", creator);
 WebRequest wr = WebRequest.Create("ftp://testFile");
 Console.WriteLine(wr);
 }
}

							 The output is
							 ftpWebRequest
						
					
					 0
				
				
					
					
					 Property
					
						 System.Uri
					
					
					
						
							 Gets the
of the resource associated with the
current instance.
						
						
							 A containing the URI
 of
 the resource associated with the current instance
						
						 This property is not implemented in the derived class.
						
							 This property is read-only.
							
								
									 is required to
 contain the URI passed to
 the
 methods. If the protocol implemented
 by a derived class supports redirection, the derived class is required
 to provide a property to contain the URI that actually services the request.
							
							
								 This property
 throws a
 exception.
							
							
								 This property
 must be overridden by classes that inherit from to
 provide this functionality.]
							
								 Use this property
 to determine the URI that the request was addressed to. For information about
 the URI that actually serviced the request, see
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets the length of time before requests for resources time out.
						
						
							 A containing the length of time, in milliseconds, before the current request
 will time out, or to indicate that the request does not time out.
						
						 This property is not implemented in the derived class.
						
							
								 Classes that
 derive from are required to indicate a timeout by throwing a with
 the field set to if a request times out.
							
							
								 This
 property throws a
 exception.
							
							
								 This property
 must be overridden by classes that inherit from to
 provide this functionality.
							
							
								 Use this property to set the timeout period for requests for resources.
								 The property affects only synchronous
 requests made with the method. To time out asynchronous
 requests, use the method.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Networking
			
				 System
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a response received from a Uniform Resource Identifier
 (URI).
				
				
					
						 is the base
 class from which protocol-specific response classes, such as
 , are derived.
					 Classes that derive from are required to
override the following members in the class:
					
						
							
								 : Gets or sets the content length of
 the data being received.
						
						
							
								 : Gets or sets the media type of the
 data being received.
						
						
							
								 : Returns a
 that contains data from
 the current host.
						
						
							
								 : Gets a containing the URI of the resource associated with the
 current instance.
						
						
							
								 :
 Gets or sets the collection of header name/value pairs associated with the
 current instance.
						
					
					
						 Applications can participate in request/response transactions in a
 protocol-agnostic manner using instances of the class while
 protocol-specific classes derived from

 carry
 out the details of the
 request.
						 Applications do not create
objects directly; they are created by calling
.
					
				
				
					 The following example creates a
instance from a
.
					 using System;
using System.Net;

public class WebResponseExample {

 public static void Main() {

 // Initialize the WebRequest.
 WebRequest myRequest =
 WebRequest.Create("http://www.contoso.com");

 // Return the response.
 WebResponse myResponse = myRequest.GetResponse();

 // Code to use the WebResponse goes here.

 // Close the response to free resources.
 myResponse.Close();
 }
}

				
			
			
				 System.MarshalByRefObject
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new
 instance of the
 class.
						
						
							 This constructor is called only by classes that derive from .
							
								 To obtain a instance, use the method; do not use this
constructor.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the response stream.
						
						 This method is not implemented in the derived class.
						
							
								 This method is
 required to free the connection used by the returned by a call to .
							
							
								 The class is
 abstract and does not provide an implementation for this method. This method
 throws .
							
							
								 This method is
 required to be overridden in derived classes to close the response stream and
 free resources allocated by the current instance.
							
							
								 Use this method or
 to
 clean up the resources used by a .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int64
					
					
					
						
							 Gets or sets the content length of the data received from the server.
						
						
							 A
containing the number of bytes returned from the resource.
						
						 This property is not implemented in the derived class.
						
							
								 This
 property contains the number of bytes of data in the response to the
 request associated with the current instance. For request methods that contain
 header information, the does not include
 the length of the header information. The value of this property is
 set by the Content-Length header received in the
 response.
							
							
								 The class
 is abstract and does not provide an implementation for this property. This property throws .
							
							
								 This
 property is required to be overridden by classes that inherit from
 to set the content length as appropriate for the
 derived class.
							
							
								 Use this property to determine the number of bytes in the response.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the media type of the data received.
						
						
							 A that
 contains the media type of the response data.
						
						 This property is not implemented in the derived class.
						
							
								 The media type is typically the MIME encoding of
 the content.
							
							
								 As described above.
							
							
								 The class is abstract and
 does not provide an implementation for this property. This property throws
 .
							
							
								 This property is required to be overridden by classes that inherit from
 .
							
							
								 Use this
 property to get the media type of the response.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.Stream
					
					
					
						
							 Returns a that contains data from the current host.
						
						
							 A for reading data from the
 current
 host.
						
						 This method is not implemented in the derived class.
						
							
								 This method is
 required to return a from the host specified by the property of the current instance.
							
							
								 This method throws .
							
							
								 This
 method is required to be overridden by classes that inherit from
 .
							
							
								 Use this method to open a connection to the current host. To close the stream when it
 is no longer needed, in order to prevent the exhaustion of system resources, invoke
 either the or
 methods.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Net.WebHeaderCollection
					
					
					
						
							 Gets the collection of header name/value pairs associated with the current
 instance.
						
						
							 A containing the header name/value pairs associated
 with the current instance.
						
						 This property is not implemented in the derived class.
						
							 This property contains a instance containing the
 header information returned in the response from the resource.
							
								 This property is read-only.
							
							
								 The class is
abstract and does not provide an implementation for this property. This property
throws .
							
							
								 This property
 is required to be overridden by classes that inherit from .
							
							
								 Use this property
 to retrieve the header information received with the response.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Uri
					
					
					
						
							 Gets the URI
 of the resource associated with the current instance.
						
						
							 A containing the URI
 of the resource associated with the current response.
						
						 This property is not implemented in the derived class.
						
							
								 This property is read-only.
								 This property returns the URI that provided the response
 information in the current instance. If the
 method protocol used in the associated permits redirection, the value of this property
 might differ from the property of the request.
								
							
							
								 The class is
 abstract and does not provide an implementation for this property. This property
 throws
 .
							
							
								 This property
 is required to be overridden by classes that inherit from .
							
							
								 Use this property
 to determine the URI that originated the response.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						 Implemented to support the interface. [Note: For more information, see .]
					
					 0
				
			
			 0
		
	
	
		
			
			
			 Parallel
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides the current settings for, and information about, the parallel-loop execution environment.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Property
					
						 System.Int32
					
					
					 0
					
						
							 Default upper bound on the number of threads employed by a parallel loop.
						
						
							
							A that limits the number of worker threads employed by parallel loop constructs that do not explicitly specify an upper bound on the number of threads.
							The bound includes the thread that calls , and hence MaxThreads must be positive.
							
						
						
							
							Setting to 1 causes deterministic sequential execution of all parallel loop constructs that do not
							explicitly specify an upper bound on the number of threads. This is useful for debugging of code.
							Ordinarily, should not be set in production code because it affects parallel loops everywhere in a program.
							
							The initial value is .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					 0
					
						
							 Recommended value for
							
						
						
							
							A that is the initial value for .
							
						
						
							
							Values between 1x and 2x the number of physical threads on the platform are recommended.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Parallel
			
				 System.Threading.Parallel
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 A parallel loop over consecutive integers, starting at 0
				
				
					
						 ParallelFor provides basic parallelism over an index space known in advance. The index space is 0..(N-1) for some value of N. This is the common case in -for- loops, and one can easily derive more complex arithmetic sequences via linear transformation of the index variable.
					
				
			
			
				 System.Threading.Parallel.ParallelLoop<int>
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a
that will iterate over the integers 0..count-1.
						
						 number of loop iterations
						
							 The loop starts executing when method is called.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs a
that will iterate over the integers 0..count-1.
						
						 number of loop iterations
						 maximum number of threads to use
						 The value for numThreads is negative
						
							 The loop starts executing when method is called.
							 If numThreads is 0, then up to threads are used instead. The value of numThreads includes the thread that created the , hence using numThreads=1 forces sequential execution.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Begin executing iterations.
						
						 The that processes each work item.
						
							 is .
						
							 This method is not thread safe. It should be called only once for a given instance of a .
							
								 Implementations, particularly on single-threaded hardware, are free to employ the calling thread to execute all loop iterations.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Cancel any iterations that have not yet started
						
						
							 This method is safe to call concurrently on the same instance.
						
					
					 0
				
			
			 0
		
		
			
			
			 Parallel
			
				 System.Threading.Parallel
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 A parallel loop over a collection containing types of T.
				
				
					
 A iterates over an enumerable collection.
 Method activates processing of the iterations, using a callback provided.
 The collection shall not change while the is active, otherwise the behavior is undefined.
 Inherited method blocks until all iterations are finished.
 Inherited method is shorthand for and .

					
						
							 is generally none-scalable in terms of parallelism, because the enumerator is inherently sequential.
 If the collection allows random access, consider using class instead.

					
				
			
			
				 System.Threading.Parallel.ParallelLoop<T>
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a
for iterating over a collection.
						
						 collection of values over which to iterate
						
							 The loop does not start executing until at least method is called and possibly not until method is called.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs a
for iterating over a collection.
						
						 collection of values over which to iterate
						 maximum number of threads to use
						 The value for numThreads is negative
						
							 The loop does not start executing until at least method is called and possibly not until method is called.
							 If numThreads is 0, then up to threads are used instead. The value includes the thread that created the , hence using numThreads=1 causes sequential execution.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Begin executing iterations.
						
						 The that processes each work item.
						
							 is .
						
							 This method is not thread safe. It should be called only once for a given instance of a .
							
								 Implementations, particularly on single-threaded hardware, are free to employ the calling thread to execute all loop iterations.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Cancel any iterations that have not yet started
						
						
							 This method is safe to call concurrently on the same instance.
							 Does not cancel any future iterations that might be added.
						
					
					 0
				
			
			 0
		
		
			
			
			 Parallel
			
				 System.Threading.Parallel
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members, unless specifically stated, are guaranteed to be thread safe.
			
				
					 A parallel loop over iteration values of type T.
				
				
					
 Abstract generic class abstracts common behavior of the loop classes that iterate over values of type T.
 Its derived classes differ in how the iteration space is defined.

					
 Iteration commences once method is called.
 The callback is applied to each iteration value.
 A conforming implementation can use the thread calling to execute all iterations,
 regardless of the value of .
 The thread that calls shall call
 method to block until all iterations complete or are cancelled.
 When is called, the calling thread can be employed as a worker thread.

					
 Calling method is equivalent to calling
 followed by calling “ .

					
 A parallel loop can be cancelled at any time (even before it starts running) by calling method .
 Cancellation is asynchronous in the sense that method can return while portions of the loop are still running.
 Any number of threads can call on the same object.
 Cancellation affects only iterations that have not yet been issued to worker threads.
 Outstanding iterations are completed normally.

					
 If one or more invocations of a callback throws an unhandled exception, the rest of the loop is cancelled.
 One of the exceptions is saved inside the until the loop has stopped running,
 and then the saved exception is rethrown when method is invoked.
 In the case of multiple exceptions, the implementation can choose any one of the exceptions to save and rethrow.

				
			
			
				 System.Object
			
			
				
					 System.IDisposable
					 0
				
			
			
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Begin executing iterations, applying the action delegate to each iteration value.
						
						 The to apply to each iteration value.
						
							 is .
						
							 This method is not thread safe. It should be called only once for a given instance of a .
							
 If one or more invocations of a callback throws an unhandled exception, the rest of the loop is cancelled. One of the exceptions is saved inside the until the loop has stopped running, and then the saved exception is rethrown when method EndRun is invoked. In the case of multiple exceptions, the implementation can choose any one of the exceptions to save and rethrow.

							
								 Implementations, particularly on single-threaded hardware, are free to employ the calling thread to execute all loop iterations.
							
							
								 The return value is void, not , and there is no callBack or stateObject arguments. This departure from the usual asynchronous call pattern (e.g. FileStreamBeginRead) is deliberate, because in typical scenarios the extra complexity would just add pointless burden on the implementation.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Eventually cancel issuance of any further iterations
						
						
							 A can be cancelled at any time (even before it starts running) by calling method Cancel. Cancellation is asynchronous in the sense that method Cancel can return while portions of the loop are still running. Any number of threads can concurrently call Cancel on the same object. Cancellation affects only iterations that have not yet been issued to worker threads. Outstanding iterations are completed normally.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Wait until all iterations are finished (or cancelled).
						
						
							
 This method is not thread safe.
 It should be called exactly once by the thread that called .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Start processing of loop iterations and wait until done.
						
						 The applied to each iteration value
						
							 is .
						
 This method is equivalent to calling followed by calling .

					
					 0
				
			
			 0
		
		
			
			
			 Parallel
			
				 System.Threading.Parallel
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members, unless specifically stated, are guaranteed to be thread safe.
			
				
					 A parallel while loop over iteration values of type T.
				
				
					
 Class provides a simple way to establish a pool of work to be distributed among multiple threads,
 and to wait for the work to complete before proceeding.

					
 A freshly constructed has an empty pool of work items.
 Method adds a work item to the pool.
 Method activates processing of the pool.
 Inherited method waits until all work in the pool completes.
 Inherited method is a shorthand that combines and . New work can be added to the pool while it is active, hence the class corresponds roughly to a parallel while loop that continually chops away at a (possibly growing) collection until the collection becomes empty. Once the loop is running, implementations are free to make method Add process the work item instead of putting it in the pool, for sake of limiting the size of the work pool. (The pool is typically a small multiple of the number of threads.)
 Once the pool is activated, one or more worker threads pull work items from the pool and apply the callback to each.
 The implementation is free to process work items in any order.
					Inherited method blocks until the pool is empty and all pending invocations of the callback have returned.
					An iteration should not cause method to be called after the iteration finishes (e.g. by use of yet another thread),
					otherwise a race condition ensues in which might return prematurely even though there is more work to be done.
				
					
				 A conforming implementation is allowed to execute serially, by using the thread that calls to process all pending work items that are added before BeginRun returns,
				 and using the thread that calls to process all pending work items that are added after returned and before returns.

				
			
			
				 System.Threading.Parallel.ParallelLoop<T>
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a with an initially empty collection of work items.
						
						
							 The loop does not start executing until at least method is called and possibly not until method is called.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a with an initially empty collection of work items.
						
						 maximum number of threads to use
						
							 The loop does not start executing until at least method is called and possibly not until method is called.
							 If numThreads is 0, then up to threads are used instead. The value includes the thread that created the , hence using numThreads=1 causes sequential execution.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Add a work item.
						
						 value for an iteration.
						
							 This method can be called before or after method is called.
							 This method is always thread safe.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Begin processing work items.
						
						 The that processes each work item.
						
							 is .
						
							 This method is not thread safe. It should be called only once for a given instance of a .
							
								 Implementations, particularly on single-threaded hardware, are free to employ the calling thread to execute all loop iterations.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Cancel any iterations that have not yet started
						
						
							 This method is safe to call concurrently on the same instance.
							 It does not cancel any future iterations that can be added.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Waits until all iterations are finished (or cancelled). If any of the iterations threw an exception, then one of these exceptions is rethrown.
						
						
							 This method is not thread safe. It should be called exactly once by the thread that called
							
						
					
					 0
				
			
			 0
		
	
	
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when binding to a method or retrieving custom attributes results
 in more than one item matching the specified criteria.
				
				
					
						 is thrown when a search that
 is intended to return no more than one match, detects multiple matching items.
 For example, this exception is thrown when the methods (which return a single custom attribute),
 find multiple occurrences of the attribute.
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new
 instance to a system-supplied message that describes the error, such as "Ambiguous match found."
 This message takes into account the current system culture.
							 The property is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is ,
 the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							
								 For information on inner exceptions,
 see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Performs custom overload resolution and argument coercion to bind a member when reflection is used to
 invoke a member of a .
				
				
					 Late binding is controlled by a customized binding interface
 through reflection. The class is designed to provide this
 functionality. objects are used in overload resolution and
 argument coercion for dynamic invocation of members at runtime.
					 Access to information obtained from reflection is controlled at two levels:
 untrusted code and code with .
					 Untrusted code is code
 with no special level of trust (such as code downloaded from
 the Internet). Such code is allowed to invoke anything that it would have been
 able to invoke in an early bound way.
					
						
controls access to metadata through
reflection. If this permission is granted to code, that code has access
to all the types in its application domain, assembly, and module. It
can access information about public, family, and private members of all types it
has access to. Two primary capabilities are granted:
					
						
							

 The ability to read the metadata for family and
 private members of any type.
						
						
							

 The ability to access peer classes in the module and peer modules in the
 assembly.
						
					
					
						 The term "reflection" refers to the ability to obtain
 information about a during runtime. The primary means through
 which this information is accessed is via the
 of the object. Reflection allows the programmatic discovery of a type's
 metadata. The information included in the metadata includes details about
 the assembly or module in which the type is defined as well as
 members of the type. Reflection uses this information to provide the following
 primary services:
						
							
								

 Access to type information at runtime.
							
							
								

 The ability to use this type information to create instances,
 invoke methods, and access data members of the type.
							
						
						 The primary users of these services are script engines, object viewers,
 compilers, and object
 persistence formatters.
						 Through reflection, methods can be bound and invoked at
 runtime. If more than one member exists for a given member name, overload
 resolution determines which implementation of that method is invoked
 by the system. Coercion can occur when a parameter specified for a method
 call does not match the type specified for the parameter
 in the method signature. When possible, the binder converts the parameter
 (coerces it) to the type specified by the method signature. Coercion might not be
 possible depending on the types involved.
						 To bind to a method, field, or property, typically a list of probable
 candidates is obtained from the of a . That list is the passed to the appropriate method
 of a instance. Based on the other parameters
 passed to that method, typically (although not necessarily) one of the members
 of the list is chosen, and an object that reflects that member is returned.
						 The system supplies a default binder that provides
 default binding rules. Because binding rules vary among programming languages,
 it is recommended that each programming language provide a custom implementation
 of
 .
					
				
			
			
				 System.Object
			
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo
					
					
						
						
						
						
					
					
						
							 Selects a field from
 the specified set of fields, based on the specified criteria.

						
						 A bitwise combination of values that control the binding process. For requirements, see the Behaviors section.
						
							 An array of objects whose elements represent the set of fields that reflection has determined to be a possible match, typically because the fields have the correct member name.
						
						 An object of a type that is assignment-compatible with the type of the field being searched for. For example, if is an instance of a class, the type of that instance can be assigned to the type of the field returned by this method. Fields in that cannot be assigned to this value are eliminated from the search.
						
						
							 The only defined value for this parameter is .
						
						
							 A
instance that reflects the field that matches the specified criteria. It is not
required that this instance be contained in . If a suitable field is not found,
returns .
						
						
							
								 For the
 parameter, the caller is required to
 specify either or , and either or . If at least
 one value from each pair is not specified, this method is required to return
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodBase
					
					
						
						
						
						
						
						
						
					
					
						
							 Selects a method based on the specified
 criteria.
						
						 A bitwise combination of values that control the binding process. For requirements, see the Behaviors section.
						 An array of objects that represent the set of methods that Reflection has determined to be a possible match, typically because they have the correct member name.
						 An array of objects that represent the parameters passed in the method invocation. The types, values, and order of the elements of this array might be changed by this method to match the signature of the selected method.
						
							 The only defined value for this parameter is .
						
						
							 The only defined value for this parameter is .
						
						 A array containing the names of methods to be searched.
						
							 A binder-provided that keeps track of parameter reordering. The object is totally defined by the implementer of the class. This object is if the binder does not reorder the argument array of the bound method.
						
						
							 A
instance that reflects the method that matches to the specified
criteria. It is not required that this instance be contained in
 . If a suitable method is not found,
returns
.
						
						
							 If is not , the system invokes after this method returns. This allows a caller to map the argument array of a method back to the original form if the order has been altered by . This is useful if arguments are in the
 argument array, because the caller can retrieve those arguments in their
 original order on return from this method. When arguments are passed by name
 (i.e., using named arguments), the binder reorders the argument array and that
 is what the caller sees. This method insures that the original order of the
 arguments is restored.
							
							
								 For the parameter, the caller is
 required to specify either or , and either or . If at least
 one value from each pair is not specified, this method is required to return
 .
								 The method is permitted to change the order of the argument array of a method call only if the binder returns, via the parameter, a non-null opaque object that records the original order of the argument array. If, on return from , is not , the system calls
.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
					
					
						
							 Converts the type of the specified object to the
 specified type.
						
						 The object to be converted to a new .
						 The to which is converted.
						
							 The only defined value for this parameter is .
						
						
							 A new object of the type specified by . The contents of
 this object are equal to those of
 .
						
						
							
								 As described
 above.
							
							
								 Implement this method
 to change the type of a member of a parameter array. Typically,
 it is recommended that implementations of this method perform only widening
 conversions.
							
							
								 This method is used
 to change the type of a element in a parameter array to match
 the type required by the signature of a bound method.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Restores the specified set of parameters
 to their original order after a call to
 .
						
						 An array of objects whose elements represent the parameters passed to the bound method in their original order.
						
							 A binder-provided opaque object that keeps track of parameter reordering. This object is the same object that was passed as the parameter in the invocation of that caused to be called.
						
						
							
								 When a method call is bound to a method
 through reflection using , the order, value, and type of the
 parameters in the original method call can be changed to match the signature of
 the bound method. The binder creates as an opaque object that
 records the original order of the argument array. If, on return from , is not
 , the system calls . This allows a caller to map the
 argument array of a method back to the original form if the order had been
 altered by . This is useful if
 arguments are in the argument array, because the caller
 can retrieve those arguments in their original order on return from this method.
 When arguments are passed by name (i.e., using named arguments), the binder
 reorders the argument array and that is what the caller sees. This method
 insures that the original order of the arguments is restored.
							
							
								
									 is required to be a non-null that tracks the
 original ordering of if is reordered
 by a call to
 . This method is required to
 restore the elements of to their original order, value, and
								
							
							
								 Implement this method to insure that the
 parameters contained in
 are returned to their original order, and value, after being used by a bound
 method.
							
							
								 Use this method to
 insure that the parameters contained in are returned
 to their original order, and value, after being used by a bound method.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodBase
					
					
						
						
						
						
					
					
						
							 Selects a method from
 the specified set of methods, based on the argument type.
						
						 A bitwise combination of values that control the binding process. For requirements, see the Behaviors section.
						 An array of objects that represent the set of methods that Reflection has determined to be a possible match, typically because they have the correct member name.
						 An array of objects that represent the values used to locate a matching method.
						
							 The only defined value for this parameter is .
						
						
							 A
instance that reflects the method that
is matched to the specified criteria. It is not required that this instance
be contained in . If a suitable method is
not found, returns
.
						
						
							
								 For the
 parameter, the caller is required to
 specify either or , and either or . If at least
 one value from each pair is not specified, this method is required to return
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.PropertyInfo
					
					
						
						
						
						
						
					
					
						
							 Selects a property
 from the specified set of properties, based on the specified criteria.

						
						 A bitwise combination of values that control the binding process. For requirements, see the Behaviors section.
						 An array of objects that represent the set of properties that Reflection has determined to be a possible match, typically because they have the correct member name.
						 The of the property being searched for.
						 An array of objects that represent the index types of the property being searched for. Use this parameter for index properties such as the indexer for a class.
						
						
							 The only defined value for this parameter is .
						
						
							 A instance that reflects the property that
 matches the specified criteria. It is not required that this instance be
 contained in . If a
 suitable property is not found, returns
 .
						
						
							
								 For the
 parameter, the caller is required to specify either or , and either or . If at least
 one value from each pair is not specified, this method is required to return
 .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies flags
 that control the binding and the invocation processes conducted by reflection.
				
				
					 This enumeration is used by reflection classes such as ,
 , and . values are used to control binding in methods in
 classes that find
 and invoke, create, get, and set
 members and
 types.
					 To specify multiple values, use the bitwise 'OR' operator.
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 CreateInstance
					
						
							 Specifies that
 an instance of a type will be created.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 DeclaredOnly
					
						
							 Specifies that only the members declared on a type will be searched when binding. When this
 field is specified, inherited members will not be searched.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 ExactBinding
					
						
							 Specifies that, when binding to a method, the types of
 the arguments passed to the binder are required to be the same
 as the types of

 the corresponding parameters in the method
 signature.
							
								 Custom binders are allowed to ignore this
 flag. This flag is provided as a hint for custom binders.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 GetField
					
						
							 Specifies that the value of a field will be returned.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 GetProperty
					
						
							 Specifies that the value of a property will be returned
 by invoking the accessor of a
 instance that reflects that property.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 IgnoreCase
					
						
							 Specifies that a member name will be handled in a case-insensitive
 manner when binding.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 Instance
					
						
							 Specifies that instance members will be included in the binding search.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 InvokeMethod
					
						
							 Specifies that a method will be invoked.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 NonPublic
					
						
							 Specifies that non-public (i.e. family and private) members will be
 included in the binding search if the search has the permission required to bind non-public members.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 OptionalParamBinding
					
						
							 Specifies that the set of members whose parameter count
 matches the number of arguments supplied to the binding method are to be returned
 by the binding method. This flag is used in conjunction with methods that have parameters with default values
 and with methods that have variable arguments.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 Public
					
						
							 Specifies that public members will be included in the binding search.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 SetField
					
						
							 Specifies that the value of a field will be set.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 SetProperty
					
						
							 Specifies that the value of a property will be set by invoking the
 accessor of a instance that reflects that
 property.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 Static
					
						
							 Specifies that static members will be included in the binding search.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.BindingFlags
					
					
					 SuppressChangeType
					
						
							 Specifies that the system will not change the types of
 parameters when binding with the default binder.
							 Custom binders are allowed to ignore this flag. This flag is provided
 as a hint for custom binders.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Provides access to constructor metadata.
				
				 Requires permission to reflect non-public members of a type in loaded assemblies. See .
			
			
				 System.Reflection.MethodBase
			
			
			
			
				
					
					
					 Field
					
						 System.String
					
					
					
						
							 A string containing the name of a type initializer as it is stored in
 metadata.
						
						
							 This field is read-only.
							 This field is a that contains the value ".cctor".
							
								 A type initializer can be applied to all types. It
 allows the type to perform any initialization required before any members
 declared within the type are accessed. Type initializers accept no parameters
 and always have a return type of void. A type constructor only has access to a
 type's static fields and its usual purpose is to initialize those fields. A
 type's constructor is guaranteed to run before any instance of the type is
 created and before any static field or method of the type is referenced.
								 Many languages (including C#) automatically generate type constructors for
 all implementer-defined types. However, some languages require that type
 constructors be explicitly implemented.
								 For more information on type initializers, see Partition II of the CLI
 Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
						
					
					
						
							 Invokes the constructor reflected by the current
 instance using the specified arguments, under the constraints of the specified
 .
						
						 A value that controls the binding process.
						 A that defines a set of properties and enables the binding, coercion of argument types, and invocation of members using reflection. If is , then the default binder is used.
						 An array of objects that match the number, order and type of the parameters for the constructor reflected by the current instance. If the constructor reflected by the current instance takes no parameters, specify either an array with zero elements or . Any object in this array that is not explicitly initialized with a value will contain the default value for that object type. For reference-type elements, this value is . For value-type elements, this value is 0, 0.0, or , depending on the specific element type.
						
						
							 The only defined value for this parameter is .
						
						
							 An instance of the class that declared the constructor reflected by the current instance.
						
						 The types of the elements of do not match the types of the parameters accepted by the constructor reflected by the current instance, under the constraints of .
						 The caller does not have the required permissions.
						 The constructor reflected by the current instance threw an exception.
						
							 .Length does not equal the number of parameters required by the contract of the constructor reflected by the current instance.
						
							
								 Before calling
 the constructor, this method ensures that the caller has access permission and
 that the parameters are of the correct number, order and type.
							
						
						 Requires permission to invoke non-public members of loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
					
						 System.Object
					
					
						
					
					
						
							 Invokes the constructor reflected by the current instance using the specified
 parameters.
						
						 An array of objects that match the number, order and type of the parameters for the constructor reflected by the current instance. If the constructor reflected by the current instance takes no parameters, specify either an array with zero elements or . Any object in this array that is not explicitly initialized with a value will contain the default value for that object type. For reference-type elements, this value is . For value-type elements, this value is 0, 0.0, or , depending on the specific element type.
						
						
							 An
 instance of the class that declared the constructor reflected by the
 current instance.
						
						
							 The types of the elements of do not match the types of the parameters accepted by the constructor reflected by the current instance, under the constraints of the default binder.
						
						 The caller does not have the required permissions.
						 The constructor reflected by the current instance threw an exception.
						
							 .Length does not equal the number of parameters required by the contract of the constructor reflected by the current instance.
						 Requires permission to invoke non-public members of loaded assemblies. See .
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					
						
							 A string containing the name of an object constructor
 as it is stored in metadata.
						
						
							 This field is read-only.
							 This field is a that contains the value ".ctor". An object
 constructor will be named with this field if and only if it is not a type initializer.
							
								 For more information on type
 initializers, see .
								 For more information on object constructors, see Partition II of the CLI
 Specification.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Reserved for future use.
				
				
					
						 This class is
 provided in order to implement the abstract methods that require it in the
 reflection library.

					
				
			
			
				 System.Object
			
			
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the attributes
 of an event.

				
				
					
						 This enumeration is used by
 the
 property.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Reflection.EventAttributes
					
					
					 None
					
						
							
 Specifies that the event has
 no attributes.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.EventAttributes
					
					
					 SpecialName
					
						
							 Specifies that the event is treated in a special way by some tools.

							
								
 There are currently
 no event names that are required to be marked as special names. This functionality is provided for extensions,
 future standardization, and to increase consistency between the declaration of fields
 and methods.
								 For more information on special names, see Partition I of the CLI
 Specification.
								 For more information on , see Partition II of the
 CLI Specification.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Provides access to event metadata.
				
				
					 Events are handled by delegates. An event listener supplies an event-handler
 delegate that is invoked whenever the event is raised by an event source. In order
 to connect to the event source, the event listener adds this delegate to the
 invocation list of the source. When the event is raised, the event-handler delegate
 invokes the methods in its invocation list. The ,

 , , and methods,
 and the
 delegate type of the event-handler associated
 with an event, are required to be marked in the metadata.
					
						 For information on
 delegates, see the

 class
 overview.
					
					
						 For
 information on events, see Partitions I and II of the CLI
 specification.
					
				
			
			
				 System.Reflection.MemberInfo
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Void
					
					
						
						
					
					
						
							 Adds the specified event handler delegate to the specified event source.

						
						 An object that represents an event source.
						
							 A instance to be added to that references methods to be invoked when the event reflected by the current instance is raised by .
						
						
							
								 is not the same as the event handler delegate declared for the event reflected by the current instance.
						
						 The event reflected by the current instance is non-static, and is or is of a type that does not implement the event reflected by the current instance.
						
							 Each time the event reflected by the current instance is raised by , the methods
 in the invocation list of are invoked.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Reflection.EventAttributes
					
					
					
						
							 Gets the attributes of the event reflected by the current instance.
						
						
							 A value that specifies the attributes in the metadata of the
 event reflected by the current
 instance.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the of the
 event-handler
 associated with the event reflected by the current instance.
						
						
							 A that represents
 the type of the
 event-handler associated with the event reflected by the current
 instance. Returns if the method used to add a delegate to
 the event is not public and is in a loaded assembly, and the caller does not have the required permission.
						
						
							 This property is read-only.
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
					
					
						
							 Returns the method used to add an event handler delegate to an event source for the event reflected by the current
 instance, specifying whether or not to return non-public methods.
						
						 A value that specifies whether non-public methods can be returned by this method. Specify to return non-public methods; otherwise, specify .
						
							 A
instance that
reflects the method used to add an event handler delegate to an event source
for the event reflected by the current instance, if found; otherwise, returns

.
						
						
							 is , the method used to add an event handler delegate is non-public, and the caller does not have permission to reflect on non-public methods.
						
							
								 The returned method is used to add an event-handler
 delegate to the invocation list of an event source. Typically, the method has
 the following signature format:
								
									 add_<EventName>(<EventHandlerType> handler)
								
							
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
					
						
							 Returns the public method used to add an event
 handler delegate to an event source for the event reflected by the current
 instance.
						
						
							 A
instance that reflects
the public method used to add an event handler delegate to an event
source for the event reflected by the current instance, if found; otherwise,
returns
.
						
						
							 This method is equivalent to ().
							
								 The returned method is used to add an event-handler delegate to the
 invocation list of an event source. Typically, the method has the following
 signature format:
								
									 add_<EventName>(<EventHandlerType> handler)
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
					
					
						
							 Returns the method that is called when the event reflected by the current instance is raised, specifying whether the method to
 be returned is public or non-public.
						
						 A value that specifies whether non-public methods can be returned by this method. Specify to return non-public methods; otherwise, specify .
						
							 A instance that reflects the method that is
 called when the event reflected by the current instance is raised, if found;
 otherwise, returns

 .
						
						
							 is , the method used to raise the event is non-public, and the caller does not have permission to reflect on non-public methods.
						
							
								 As described
 above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
					
						
							 Returns the public method that is called when the event reflected by the
 current instance is raised.
						
						
							 A instance that reflects the public method that
 is called when the event reflected by the current instance is raised, if
 found; otherwise, returns .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
					
					
						
							 Returns the method used to remove an event-handler delegate from the event
 reflected by the current
 instance, specifying whether or not to return non-public methods.
						
						 A value that specifies whether non-public methods can be returned by this method. Specify to return non-public methods; otherwise, specify .
						
							 A
instance that reflects the method used to remove an event handler delegate from
the event reflected by the current instance, if found; otherwise, returns

.
						
						
							 is , the method used to remove an event handler delegate is non-public, and the caller does not have permission to reflect on non-public methods.
						
							
								 Typically, the method has the
 following signature format:
								
									 remove_<EventName>(<EventHandlerType> handler)
								
							
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
					
						
							 Returns the public method used to remove an event-handler delegate from the event reflected by the
 current instance.
						
						
							 A
instance that reflects the public method used to remove an event handler
delegate from the event reflected by the current instance, if found; otherwise,
returns
.
						
						
							 This method is equivalent to ().
							
								 Typically, the method has the following signature
 format:
								
									 remove_<EventName>(<EventHandlerType>
 handler)
								
							
						
					
					 0
				
				
					
					
					 Method
					
					
						 System.Void
					
					
						
						
					
					
						
							 Removes the specified event handler delegate from the specified event source.
						
						 An object that represents an event source.
						
							 A instance to be disassociated from the events reflected by the current instance that are raised by .
						
						
							
								 is not the same type as the event handler delegate declared for the event reflected by the current instance.
						
						
							 After this method is invoked, subsequent events
 reflected by the current instance that are raised by will
 no longer cause to

 invoke its methods.
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies flags that describe the attributes of a field.
				
				
					 This enumeration is used by the property.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 Assembly
					
						
							
 Specifies that the field is accessible throughout the assembly.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 FamANDAssem
					
						
 Specifies that the field is accessible only to the
 members of the type that defines the field and its subclasses in the assembly.

					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 Family
					
						
							 Specifies that the field is accessible only to the type that defines the field and its subclasses.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 FamORAssem
					
						
							 Specifies
 that the field is accessible only to the members of the type that defines the field and its subclasses as well as
 throughout the assembly.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 FieldAccessMask
					
						
							 Specifies a bit-mask that, when combined with the
 of
 a field using the logical AND operator, yields
 the bits that specify the accessibility of a field.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 InitOnly
					
						
							
 Specifies that the field is initialized only, and cannot be written after
 initialization.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 Literal
					
						
 Specifies that the field's value is a compile-time
 (static or early bound) constant.

					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 PinvokeImpl
					
						
							
								 Specifies
 that the implementation of a field is forwarded through Platform Invocation
 Services (PInvoke).
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 Private
					
						
							 Specifies that the field is accessible only to members in the type in which it is defined.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 PrivateScope
					
						
							
 Specifies that the field cannot be referenced.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 Public
					
						
							 Specifies that the field is accessible to
 any member.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 SpecialName
					
						
							 Specifies that the field is treated in a special way by some tools.

							
								 For more
 information on special names, see Partition I of the CLI
 Specification.
								 For more information on in metadata, see Partition II of the CLI
 Specification.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.FieldAttributes
					
					
					 Static
					
						
							 Specifies that the field associated with the defining
 type and is shared by all instances of the type in which it is
 defined.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides access
 to field metadata.
				
				
			
			
				 System.Reflection.MemberInfo
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Reflection.FieldAttributes
					
					
					
						
							 Gets the attributes of the field reflected by
 the current instance.
						
						
							 A value that indicates the attributes of
 the field reflected by the current instance.
						
						
							
								 This property
 is read-only.
							
							
								 Use this property to determine the accessibility
 of the field reflected by the current instance. Also use this
 property to determine if the field reflected by the current instance can be set
 after it is initialized, is implemented in native code, is a literal, or has a
 special name.
							
						
						
							 The following example
 demonstrates obtaining the attributes of two fields.
							 using System;
using System.Reflection;

class MyClass
{

 public int MyPublicInstanceField;
 private const int MyPrivateConstField = 10;

}

class FieldAttributesExample
{

 public static void Main()
 {

 Type t = (typeof(MyClass));
 string str;
 FieldInfo[] fiAry = t.GetFields(BindingFlags.Static |
 BindingFlags.Instance | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.DeclaredOnly);
 foreach (FieldInfo fi in fiAry)
 {
 Console.WriteLine("Field {0} is: ", fi.Name);
 str = ((fi.Attributes & FieldAttributes.Static) != 0) ?
 "Static" : "Instance";
 Console.Write(str + " ");
 str = ((fi.Attributes & FieldAttributes.Public) != 0) ?
 "Public" : "Not-Public";
 Console.Write(str + " ");
 str = ((fi.Attributes & FieldAttributes.Literal) != 0) ?
 "Literal" : String.Empty;
 Console.WriteLine(str);

 }

 }

}

							 The output is
							
								 Field MyPublicInstanceField is:
								 Instance Public
								 Field MyPrivateConstField is:
								 Static Not-Public Literal
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the type of the field reflected by
 the current instance.
						
						
							 The of the field
 reflected by the current instance.

						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Obtains the value of the field that is reflected by the current instance and contained in the specified object.

						
						 An object that contains the field value to be returned. If the field reflected by the current instance is static, is ignored. For non-static fields, is required to be an instance of a class that inherits or declares the field.
						
							 A that contains the
 value of the field reflected by the current instance.
						
						 A field is marked literal, but the field does not have one of the accepted literal types. For information regarding the accepted literal types, see Partition II of the CLI Specification.
						
						 The field reflected by the current instance is non-public, and the caller does not have permission to access non-public members.
						 The field reflected by the current instance is declared neither directly in nor in any class from which derives.
						 The field reflected by the current instance is non-static, and is .
						
							
								 Before
 returning the value, the system checks to see if the user has access permission.
							
						
						 Requires permission to access non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
						
					
					
						
							 Assigns the specified value to the field that is reflected by the current
 instance and contained in the specified object.
						
						 The object whose field value will be set. If the field is static, is ignored. For non-static fields, is required to be an instance of a class that inherits or declares the field.
						 An object that contains the value to assign to the field contained by .
						 A value that controls the binding process.
						 A instance that enables the binding, coercion of argument types, and invocation of members through reflection. If is , the default binder of the current implementation is used.
						
							 The only defined value for this parameter is .
						
						
							 The field reflected by the current instance is declared neither directly in nor in any class from which derives.
							
								 is not assignment-compatible with the type of the field reflected by the current instance.
						
						 The field reflected by the current instance is non-public, and the caller does not have permission to access non-public members.
						 The field reflected by the current instance is non-static, and is .
						
							
								 Before setting
 the value, the system verifies that the user has access permission.
							
						
						 Requires permission to access non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
					
						 System.Void
					
					
						
						
					
					
						
							 Assigns the specified value to the field that is reflected by the current instance and contained in the specified object.

						
						 The object whose field value will be set. If the field is static, is ignored. For non-static fields, is required to be an instance of a class that inherits or declares the field.
						 A that contains the value to assign to the field contained by .
						
							 The field reflected by the current instance is declared neither directly in nor in any class from which derives.
							
								 is not assignment-compatible with the type of the field reflected by the current instance.
						
						 The field reflected by the current instance is non-public, and the caller does not have permission to access non-public members.
						 The field reflected by the current instance is non-static, and is .
						
							 Before setting the value, the system
 verifies that the user has access permission. If the user does not have access
 permission, a is
 thrown.
						
						 Requires permission to access non-public members of a type in loaded assemblies. See .
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Enumerates the attributes on a generic parameter.
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Reflection.GenericParameterAttributes
					
					
					 Contravariant
					
						
							 Specifies that the generic parameter is contravariant.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.GenericParameterAttributes
					
					
					 Covariant
					
						
							 Specifies that the generic parameter is covariant.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.GenericParameterAttributes
					
					
					 DefaultConstructorConstraint
					
						
							 Specifies that the generic parameter has the " " special constraint.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.GenericParameterAttributes
					
					
					 None
					
						
							 Specifies that the generic parameter is nonvariant and has no special constraints.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.GenericParameterAttributes
					
					
					 NotNullableValueTypeConstraint
					
						
							 Specifies that the generic parameter has the " " special constraint.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.GenericParameterAttributes
					
					
					 ReferenceTypeConstraint
					
						
							 Specifies that the generic parameter has the " " special constraint.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.GenericParameterAttributes
					
					
					 SpecialConstraintMask
					
						
							 Specifies a bit-mask that when combined with a generic parameter's flags value yields the special constraints bits.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.GenericParameterAttributes
					
					
					 VarianceMask
					
						
							 Specifies a bit-mask that when combined with a generic parameter's flags value yields the variance bits.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Provides access
 to member metadata.
				
				
					
						
							 is used
 to represent all members of a type: nested types, fields, events, properties,
 methods, and constructors. The Base Class Library includes the following derived
 types:
						
							
								
									
								
							
							
								
									
								
							
							
								
									
								
							
							
								
									
								
							
						
					
				
			
			
				 System.Object
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the type that declares the member reflected by the current instance.
						
						
							 The
								 object of the class that declares the member
reflected by the current instance; or, if the
member reflected by the current instance is a global member.
						
						
							
								 A member of a class (or interface) is either declared on
 that type or inherited from a base class (or interface). The property value cannot be the same
 as the
 object used to obtain the current instance. These values will differ if
 either of the following conditions
 is true.
								
									
										
											 If the object from which the current instance was obtained
 did not declare the member reflected by the current instance, the will represent the base type that
 is closest to that object in its hierarchy chain and declares the member reflected by the current instance.
										
									
									
										
											 If the current instance reflects a global member, (that is,
 it was obtained from , which returns global methods on a
 module), then the property
 value is
 .
										
									
								
							
							
								 This property is read-only.
								 This property is required to return the
 object for the type that
 declares the member reflected by the current instance. This property value is
 required to be equal to the property value of
 the current instance if and only if the reflected
 type also contains a declaration for the member reflected by the current instance.
							
							
								 Override this
 property to get the
 of the class that declared the member that is reflected by
 the current instance.
							
							
								 Use this property
 to determine the
 of the class that declared the member that is reflected by the
 current instance.
							
						
						
							 The following example demonstrates the difference
 between the
								 and
 of a member.
							 using System;
using System.Reflection;

public class BaseClass {
 public void ReflectedMethod() {}
}

public class DerivedClass: BaseClass {}

public class DeclaringTypeExample {
 public static void Main() {
 Type t = typeof(DerivedClass);
 MemberInfo [] memInfo = t.GetMember("ReflectedMethod");
 Console.WriteLine("Reflected type is {0}.", memInfo[0].ReflectedType);
 Console.WriteLine("Declaring type is {0}.", memInfo[0].DeclaringType);
 }
}

							 The output is
							
								 Reflected type is DerivedClass.
								 Declaring type is BaseClass.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the member reflected by the current instance.
						
						
							 A containing the
 name of the
 member reflected by the current instance.
						
						
							
								 This property is read-only.
								 Only the
 simple name, not the fully qualified name, of
 the member reflected by the current instance is returned.
								
									 For example, if the current instance reflects the member Print
 in System.MyClass, the
 property would be "Print".
								
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the type of the class through which the current instance was
 obtained.
						
						
							 The
								 object for the class through which the current instance was
obtained.
						
						
							
								 This property is read-only.
								
									 is required to get the type of
 the object that was used to obtain the current instance. This property
 value is required to be equal to the property value of the current instance if and
 only if the reflected type also contains a declaration for the member reflected by the current
 instance.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies flags for method attributes.
				
				
					 This enumeration is used by the property.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 Abstract
					
						
							 Specifies that the type that declares the method does not provide
 an implementation.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 Assembly
					
						
							 Specifies that the method is accessible throughout the
 assembly.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 FamANDAssem
					
						
							 Specifies that the method is accessible only to members of the type that defines the method and its subclasses in the assembly that
 contains the defining type.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 Family
					
						
							 Specifies that the method is accessible only to the members of the type
 that defines it and its subclasses.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 FamORAssem
					
						
 Specifies that the method is accessible to members of
 the type that defines the method and its subclasses, and throughout the
 assembly.

					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 Final
					
						
							 Specifies that the method cannot be overridden.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 HideBySig
					
						
							 Specifies that the method is hidden
 by name and signature.

							
								 A method that is not hidden by name
 and signature is hidden by name only.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 MemberAccessMask
					
						
							 Specifies a bit-mask that, when combined with
 the attributes of a method using the logical AND operator, yields
 the bits that specify the accessibility of a method.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 VtableLayoutMask
					
						
							 Specifies that the method always gets a new slot in the
 v-table.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 PinvokeImpl
					
						
							 Specifies that the method implementation is forwarded
 through PInvoke (Platform Invocation
 Services).

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 Private
					
						
							 Specifies that the method is accessible only to
 members in the defining type.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 ReuseSlot
					
						
							 Specifies that the member cannot be referenced.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 Public
					
						
 Specifies that the method is accessible to members of any
 type.

					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 ReuseSlot
					
						
							 Specifies that the method will
 reuse an existing slot
 in the v-table.

							
								 This is the default behavior.

							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 SpecialName
					
						
							 Specifies that the method is treated in a special way by some tools.
							
								 For more information on special names, see Partition I of the CLI
 Specification.
								 For more information on in metadata, see
 Partition II of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 Static
					
						
							 Specifies that the method is invoked on the defining type.
							
								 For method
 invocation, the target of a static method is a
 object that represents the type where the method is defined.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 Virtual
					
						
							 Specifies that the method is virtual.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.MethodAttributes
					
					
					 VtableLayoutMask
					
						
							 Specifies a bit-mask that, when combined with
 the attributes of a method using the logical AND operator,
 yields the v-table attributes of a
 method.

						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides information about methods and constructors.
				
				
					
						
							 is used
 to represent method types.
						 The Base Class Library includes the following derived
 types:
						
							
								
									
								
							
							
								
									
								
							
						
					
				
			
			
				 System.Reflection.MemberInfo
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Reflection.MethodAttributes
					
					
					
						
							 Gets the attributes of the method reflected by the
 current instance.
						
						
							 A value that signifies the attributes of
 the method reflected by the current instance.
						
						
							
								 This property is read-only.
								 This property
 gets a value that
 indicates the attributes set in the metadata of the method reflected by the
 current instance.
							
							
								 Use this property
 to determine the accessibility, layout, and semantics of the constructor
 or method reflected by the current instance. Also use this property to
 determine if the member reflected by the current instance is implemented in
 native code or has a special name.
							
						
						
							 The following example demonstrates using this property to
 obtain the attributes of three methods.
							 using System;
using System.Reflection;

abstract class MyBaseClass
{

 abstract public void MyPublicInstanceMethod();

}

class MyDerivedClass : MyBaseClass
{

 public override void MyPublicInstanceMethod() {}
 private static void MyPrivateStaticMethod() {}

}

class MethodAttributesExample
{

 static void PrintMethodAttributes(Type t)
 {

 string str;
 MethodInfo[] miAry = t.GetMethods(BindingFlags.Static |
 BindingFlags.Instance | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.DeclaredOnly);
 foreach (MethodInfo mi in miAry)
 {

 Console.WriteLine("Method {0} is: ", mi.Name);
 str = ((mi.Attributes & MethodAttributes.Static) != 0) ?
 "Static" : "Instance";
 Console.Write(str + " ");
 str = ((mi.Attributes & MethodAttributes.Public) != 0) ?
 "Public" : "Not-Public";
 Console.Write(str + " ");
 str = ((mi.Attributes & MethodAttributes.HideBySig) != 0) ?
 "HideBySig" : "Hide-by-name";
 Console.Write(str + " ");
 str = ((mi.Attributes & MethodAttributes.Abstract) != 0) ?
 "Abstract" : String.Empty;
 Console.WriteLine(str);

 }

 }

 public static void Main()
 {

 PrintMethodAttributes(typeof(MyBaseClass));
 PrintMethodAttributes(typeof(MyDerivedClass));

 }

}

							 The output is
							
								 Method MyPublicInstanceMethod is:
								 Instance Public HideBySig Abstract
								 Method MyPublicInstanceMethod is:
								 Instance Public HideBySig
								 Method MyPrivateStaticMethod is:
								 Static Not-Public HideBySig
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether a generic method contains unassigned generic type parameters.
						
						
							
								 if the current method contains unassigned generic type parameters; otherwise .
						
						
							 The default behavior, when not overridden in a derived class, is to return . In other words, by default, derived classes do not support generics.
							 In order to invoke a generic method, there must be no generic type definitions or open constructed types in the type arguments of the method itself, or in any enclosing types. If the property returns , the method cannot be invoked.
							 The property searches recursively for type parameters. For example, it returns for any method in an open type , even though the method itself is not generic. Contrast this with the behavior of the property, which returns for such a method.
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
							
								 This property is read-only.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Type[]
					
					
					
						
							 Returns an array of objects that represent the type arguments of a generic method or the type parameters of a generic method definition.
						
						
							 An array of objects that represent the type arguments of a generic method or the type parameters of a generic method definition. Returns an empty array if the current method is not a generic method.
						
						
							 Default behavior when not overridden in a derived class.
						
						
							 The default behavior, when not overridden in a derived class, is to throw . In other words, derived classes do not support generics by default.
							 The elements of the returned array are in the order in which they appear in the list of type parameters for the generic method.
							
								
									
										 If the current method is a closed constructed method (that is, the property returns), the array returned by the method contains the types that have been assigned to the generic type parameters of the generic method definition.
									
								
								
									
										 If the current method is a generic method definition, the array contains the type parameters.
									
								
								
									
										 If the current method is an open constructed method (that is, the property returns) in which specific types have been assigned to some type parameters and type parameters of enclosing generic types have been assigned to other type parameters, the array contains both types and type parameters. Use the property to tell them apart.
									
								
							
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodBase
					
					
						
					
					
						
							 Gets method information by using the method's internal
 metadata representation (handle).
						
						 The method's handle.
						
							 A object containing information about the method.
						
						
							 The handles are valid only in the application domain in which they were obtained.
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Method
					
						 System.Reflection.ParameterInfo[]
					
					
					
						
							 Returns the parameters of the method or
 constructor reflected by the current instance.
						
						
							 An array of objects that
 contain information that matches the signature of the method or constructor
 reflected by the current
 instance.
						
						
							
								 As described above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
						
						
					
					
						
							 Invokes the method or constructor reflected by the current instance as
 determined by the specified arguments.
						
						 An instance of the type that contains the method reflected by the current instance. If the method is static, is ignored. For non-static methods, is an instance of a class that inherits or declares the method.
						 A value that controls the binding process.
						 An object that enables the binding, coercion of argument types, invocation of members, and retrieval of objects via reflection. If is , the default binder is used.
						
							 An array of objects that match the number, order and type of the parameters for the constructor or method reflected by the current instance. If the member reflected by the current instance takes no parameters, specify either an array with zero elements or . Any object in this array that is not explicitly initialized with a value will contain the default value for that object type. For reference-type elements, this value is . For value-type elements, this value is 0, 0.0, or , depending on the specific element type. If the method or constructor reflected by the current instance is , this parameter is ignored.
							
						
						
							 The only defined value for this parameter is .
						
						
							 A that
 contains the return value of the invoked method, or a re-initialized object if a
 constructor was invoked.
						
						 The types of the elements of do not match the types of the parameters accepted by the constructor or method reflected by the current instance, under the constraints of the default binder.
						 The constructor or method reflected by the current instance is non-static, and is or is of a type that does not implement the member reflected by the current instance.
						 The method reflected by the current instance threw an exception.
						
							 .Length does not equal the number of parameters required by the contract of the constructor or method reflected by the current instance.
						 The caller does not have permission to execute the method or constructor.
						 The type that declares the method is an open generic type. That is, returns for the declaring type.
						
							 Optional parameters can not be omitted in calls to

 .
						
						 Requires permission to invoke non-public members of loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
					
						 System.Object
					
					
						
						
					
					
						
							 Invokes the method or constructor reflected by the current instance
 on the specified object and using the specified arguments.
						
						 An instance of a type that contains the constructor or method reflected by the current instance. If the member is static, is ignored. For non-static methods, is an instance of a class that inherits or declares the method.
						
							 An array objects that match the number, order and type of the parameters for the constructor or method reflected by the current instance. If the member reflected by the current instance takes no parameters, specify either an array with zero elements or . Any object in this array that is not explicitly initialized with a value will contain the default value for that object type. For reference-type elements, this value is . For value-type elements, this value is 0, 0.0, or , depending on the specific element type. If the method or constructor reflected by the current instance is , this parameter is ignored.
							
						
						
							 A that contains the return
 value of the invoked method, or a re-initialized object if a constructor was invoked.
						
						 The types of the elements of do not match the types of the parameters accepted by the constructor or method reflected by the current instance, under the constraints of the default binder.
						 The constructor or method reflected by the current instance is non-static and is , or is of a type that does not implement the member reflected by the current instance.
						 The constructor or method reflected by the current instance threw an exception.
						
							 .Length does not equal the number of parameters required by the contract of the member reflected by the current instance.
						 The caller does not have permission to execute the method or constructor.
						 The type that declares the method is an open generic type. That is, returns for the declaring type.
						
							 This version of is equivalent to (,
 ()0, , ,
).
							 Optional parameters cannot be omitted in calls to .
						
						 Requires permission to invoke non-public members of loaded assemblies. See .
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current object is a generic method.
						
						
							 if the current object is a generic method; otherwise .
						
							 The default behavior, when not overridden in a derived class, is to return . In other words, by default, derived classes do not support generics.
							 Use this property to determine whether the current object represents a generic method. Use the property to determine whether the current object represents an open constructed method or a closed constructed method.
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
							
								 This property is read-only.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current represents a definition of a generic method.
						
						
							 if the current object represents the definition of a generic method; otherwise .
						
							 The default behavior, when not overridden in a derived class, is to return . In other words, by default, derived classes do not support generics.
							 If the current represents a generic method definition, then:
							
								
									
										
											 returns .
									
								
								
									
										 For each object in the array returned by the method: The property returns ; the returns the current instance; and the property is the same as the position of the object in the array.
									
								
							
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
							
								 This property is read-only.
							
						
					
					 1
					 Reflection
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Discovers the attributes of a method and provides access to method metadata.
				
				
					 Instances of are obtained by calling the or method of a object or of an object that derives from , or by calling the
						 method of a that represents a generic method definition.
					 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
					
						 When operating on the given kinds of methods, the following properties return the result as shown:
						
							
								 Property
								 Non-Generic
								 Open Generic
								 Closed Generic
							
							
								
									
								
								 False
								 True
								 False
							
							
								
									
								
								 False
								 True
								 False
							
							
								
									
								
								 False
								 True
								 True
							
						
					
				
				 Requires permission to reflect non-public members of a type in loaded assemblies. See .
			
			
				 System.Reflection.MethodBase
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether a generic method contains unassigned generic type parameters.
						
						
							
								 if the contains unassigned generic type parameters; otherwise .
						
						
							 In order to invoke a generic method, there must be no generic type definitions or open constructed types in the type arguments of the method itself, or in any enclosing types. If the property returns , the method cannot be invoked.
							 The property searches recursively for type parameters. For example, it returns true for any method in an open type , even though the method itself is not generic. Contrast this with the behavior of the property, which returns false for such a method.
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
							
								 This property is read-only.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
					
						
							 Returns a new instance that reflects the first definition
 of the method reflected by the current instance in
 the inheritance hierarchy of that method.
						
						
							 A new instance that reflects the first definition
 of the method reflected by the
 current instance in the inheritance hierarchy of that method.
						
						
							
								
									 proceeds along the inheritance
 hierarchy of the method reflected by the current instance, returning a
 instance that reflects the first definition in the hierarchy of that
 method.
								 The method declaration to be reflected by the
 new
 instance
 is determined as follows:
								
									
										

 If the method reflected by the current instance
 overrides a virtual definition in the base class, the virtual definition is
 reflected.
									
									
										

 If the method reflected

 by the current instance is specified with the keyword, the
 current instance is returned.
									
									
										

 If the method reflected by the current instance is
 not defined in the type of the object on which is called, the method definition of the furthest ancestor in
 the class hierarchy is reflected.
									
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Type[]
					
					
					
						
							 Returns an array of objects that represent the type arguments of a generic method or the type parameters of a generic method definition.
						
						
							 An array of objects that represent the type arguments of a generic method or the type parameters of a generic method definition. Returns an empty array if the current method is not a generic method.
						
						
							 The elements of the returned array are in the order in which they appear in the list of type parameters for the generic method.
							 If the current method is a closed constructed method (that is, the property returns), the array returned by the method contains the types that have been assigned to the generic type parameters of the generic method definition.
							 If the current method is a generic method definition, the array contains the type parameters.
							 If the current method is an open constructed method (that is, the property returns) in which specific types have been assigned to some type parameters and type parameters of enclosing generic types have been assigned to other type parameters, the array contains both types and type parameters. Use the property to tell them apart.
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
						
						
							 The following code shows how to get the type arguments of a generic method and display them. (It is part of a larger example for the method .)
							 // If this is a generic method, display its type arguments.
//
if (mi.IsGenericMethod)
{
 Type[] typeArguments = mi.GetGenericArguments();

 Console.WriteLine("\tList type arguments ({0}):",
 typeArguments.Length);

 foreach (Type tParam in typeArguments)
 {
 // IsGenericParameter is true only for generic type
 // parameters.
 //
 if (tParam.IsGenericParameter)
 {
 Console.WriteLine("\t\t{0} (unbound - parameter position {1})",
 tParam,
 tParam.GenericParameterPosition);
 }
 else
 {
 Console.WriteLine("\t\t{0}", tParam);
 }
 }
 }
 else
 {
 Console.WriteLine("\tThis is not a generic method.");
 }
}
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
					
						
							 Returns a object that represents a generic method definition from which the current method can be constructed.
						
						
							 A object representing a generic method definition from which the current method can be constructed.
						
						 The current method is not a generic method. That is, returns .
						
							 If you call on a that already represents a generic method definition, it returns the current .
							 If a generic method definition includes generic parameters of the declaring type, there will be a generic method definition specific to each constructed type.
							 A generic method definition is a template from which methods can be constructed. For example, from the generic method definition you can construct and invoke the method . Given a object representing this constructed method, the method returns the generic method definition.
							 If two constructed methods are created from the same generic method definition, the method returns the same object for both methods.
							 If you call on a that already represents a generic method definition, it returns the current .
							 If a generic method definition includes generic parameters of the declaring type, there will be a generic method definition specific to each constructed type. For example, consider the following C# code:
							
								
							
							
								
							
							 In the constructed type , the generic method returns . In the open type , returns . In both cases, the property returns true for the that represents , so
								 can be called on both objects. In the case of the constructed type, the result of calling
								 is a that can be invoked. In the case of the open type, the returned by
								 cannot be invoked.
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
						
						
							 The following code shows a class with a generic method and the code required to obtain a for the method, bind the method to type arguments, and get the original generic type definition back from the bound method. (It is part of a larger example for the method .)
							 // Define a class with a generic method.
public class Example
{
 public static void Generic<T>(T toDisplay)
 {
 Console.WriteLine("\nHere it is: {0}", toDisplay);
 }
}

// ...
// Create a Type object representing class Example, and
// get a MethodInfo representing the generic method.
//
Type ex = Type.GetType("Example");
MethodInfo mi = ex.GetMethod("Generic");

DisplayGenericMethodInfo(mi);

// Bind the type parameter of the Example method to
// type int.
//
Type[] arguments = {typeof(int)};
MethodInfo miBound = mi.MakeGenericMethod(arguments);

DisplayGenericMethodInfo(miBound);

// ...
// Get the generic type definition from the closed method,
// and show it's the same as the original definition.
//
MethodInfo miDef = miBound.GetGenericMethodDefinition();
Console.WriteLine("\nThe definition is the same: {0}",
 miDef == mi);

						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Returns a value that indicates whether the current method is a generic method.
						
						
							 if the current method is a generic method; otherwise .
						
							 Use the property to determine whether a System.Reflection.MethodInfo object represents a generic method. Use the property to determine whether a object represents an open constructed method or a closed constructed method.
							 The following table summarizes the invariant conditions for terms specific to generic methods. For other terms used in generic reflection, such as generic type parameter and generic type, see the property.
							
								
									
										 Term
										 Invariant
									
									
										 generic method definition
										
											 The property is .
											 Defines a generic method. A constructed method is created by calling the
												 method on a object that represents a generic method definition, and specifying an array of type arguments.
											
												
												 can be called only on generic method definitions.
											 Any generic method definition is a generic method, but the converse is not true.
										
									
									
										 generic method
										
											 The property is .
											 Can be a generic method definition, an open constructed method, or a closed constructed method.
										
									
									
										 open constructed method
										
											 The property is .
											 It is not possible to invoke an open constructed method.
										
									
									
										 closed constructed method
										
											 The property is .
											 When examined recursively, the method has no unassigned generic parameters. The containing type has no generic type parameters, and none of the type arguments have generic type parameters.
										
									
								
							
							
								 This property is read-only.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value that indicates whether the current represents the definition of a generic method.
						
						
							 if the object represents the definition of a generic method; otherwise .
						
							 If the current represents a generic method definition, then:
							
								
									
										 returns .
								
								
									 For each object in the array returned by the method: The property returns ; the returns the current ; the property is the same as the position of the object in the array.
								
							
							 Use the property to determine whether type arguments have been assigned to the type parameters of a generic method. If type arguments have been assigned, the property returns even if some of the type arguments are objects that represent type parameters of enclosing types. For example, consider the following C# code:
							 class C
{
 T N<T,U>(T t, U u) {...}
 public V M<V>(V v)
 {
 return N<V,int>(v, 42);
 }
}
							 The method body of contains a call to method , specifying the type parameter of and the type . The property returns for method .
							
								 Although the open constructed method is not encountered when reflecting over class , it must be generated using
									 .
							
							 If a generic method definition includes generic parameters of the declaring type, there will be a generic method definition specific to each constructed type. For example, consider the following C# code:
							 class B<U,V> {}
class C<T> { B<T,S> M<S>() {}}
							 In the constructed type , the generic method returns . In the open type , returns . In both cases, the property returns for the that represents .
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
							
								 See the type for an example of the use of this property.
							
							
								 This property is read-only.
							
						
					
					 1
					 Reflection
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
					
					
						
							 Substitutes the elements of an array of types for the type parameters of the current generic method definition, and returns a object representing the resulting constructed method.
						
						 An array of types to be substituted for the type parameters of the current generic method.
						
							 A object that represents the constructed method formed by substituting the elements of for the type parameters of the current generic method definition.
						
						
							 The number of elements in is not the same as the number of type parameters of the current generic method definition.
							 -or-
							 An element of does not satisfy the constraints specified for the corresponding type parameter of the current generic method definition.
						
						
							
								 is .
							 -or-
							 Any element of is .
						
						
							 The current does not represent the definition of a generic method. (That is, returns).
						
						
							 The
								 method allows you to write code that assigns specific types to the type parameters of a generic method definition, thus creating a object that represents a particular constructed method. If the property of this object returns , you can use it to invoke the method or to create a delegate to invoke the method.
							 Methods constructed with the
								 method can be open; that is, some of their type arguments can be type parameters of enclosing generic types. You might use such open constructed methods when you generate dynamic assemblies. For example, consider the following C# code:
							 class C
{
 T N<T,U>(T t, U u) {...}
 public V M<V>(V v)
 {
 return N<V,int>(v, 42);
 }
}
							
							 The method body of M contains a call to method , specifying the type parameter of and the type . The property returns for method . The property returns , so method cannot be invoked.
							 For a list of the invariant conditions for terms specific to generic methods, see the property. For a list of the invariant conditions for other terms used in generic reflection, see the property.
						
						
							 The following code demonstrates the properties and methods of System.Reflection.MethodInfo that support the examination of generic methods. The example does the following:
							
								
									 Defines a class that has a generic method.
								
								
									 Creates a that represents the generic method.
								
								
									 Displays properties of the generic method definition.
								
								
									 Binds the to a type, and invokes it.
								
								
									 Displays properties of the bound generic method.
								
								
									 Retrieves the generic method definition from the bound method.
								
							
							 using System;
using System.Reflection;

// Define a class with a generic method.
public class Example
{
 public static void Generic<T>(T toDisplay)
 {
 Console.WriteLine("\nHere it is: {0}", toDisplay);
 }
}

public class Test
{
 public static void Main()
 {
 Console.WriteLine("\n--- Examine a generic method.");

 // Create a Type object representing class Example, and
 // get a MethodInfo representing the generic method.
 //
 Type ex = Type.GetType("Example");
 MethodInfo mi = ex.GetMethod("Generic");

 DisplayGenericMethodInfo(mi);

 // Bind the type parameter of the Example method to
 // type int.
 //
 Type[] arguments = {typeof(int)};
 MethodInfo miBound = mi.MakeGenericMethod(arguments);

 DisplayGenericMethodInfo(miBound);

 // Invoke the method.
 object[] args = {42};
 miBound.Invoke(null, args);

 // Invoke the method normally.
 Example.Generic<int>(42);

 // Get the generic type definition from the closed method,
 // and show it's the same as the original definition.
 //
 MethodInfo miDef = miBound.GetGenericMethodDefinition();
 Console.WriteLine("\nThe definition is the same: {0}",
 miDef == mi);
 }

 private static void DisplayGenericMethodInfo(MethodInfo mi)
 {
 Console.WriteLine("\n{0}", mi);

 Console.WriteLine("\tIs this a generic method definition? {0}",
 mi.IsGenericMethodDefinition);

 Console.WriteLine("\tDoes it have generic arguments? {0}",
 mi.IsGenericMethod);

 Console.WriteLine("\tDoes it have unbound generic parameters? {0}",
 mi.ContainsGenericParameters);

 // If this is a generic method, display its type arguments.
 //
 if (mi.IsGenericMethod)
 {
 Type[] typeArguments = mi.GetGenericArguments();

 Console.WriteLine("\tList type arguments ({0}):",
 typeArguments.Length);

 foreach (Type tParam in typeArguments)
 {
 // IsGenericParameter is true only for generic type
 // parameters.
 //
 if (tParam.IsGenericParameter)
 {
 Console.WriteLine("\t\t{0} (unbound - parameter position {1})",
 tParam,
 tParam.GenericParameterPosition);
 }
 else
 {
 Console.WriteLine("\t\t{0}", tParam);
 }
 }
 }
 else
 {
 Console.WriteLine("\tThis is not a generic method.");
 }
 }
}

/* This example produces the following output:

--- Examine a generic method.

Void GenericT
 Is this a generic method definition? True
 Does it have generic arguments? True
 Does it have unbound generic parameters? True
 List type arguments (1):
 T (unbound - parameter position 0)

Void GenericInt32
 Is this a generic method definition? False
 Does it have generic arguments? True
 Does it have unbound generic parameters? False
 List type arguments (1):
 System.Int32

Here it is: 42

Here it is: 42

The definition is the same: True

 */

						
					
					 1
					 Reflection
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the type of the return value of the method reflected by the current
 instance.
						
						
							 The of the return
 value of the method reflected by the current instance. This property is equal to
 the
 object representing
 if the
 return value of the method is
 .
						
						
							
								 This property is
 read-only.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides
 access to module metadata.
				
				
					 A
 module is a single portable executable (PE)
 file.
					
						 One or more modules deployed as a unit composes an assembly.
						 For more information on modules, see Partition II of the CLI
 Specification.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Property
					
						 System.Reflection.Assembly
					
					
					
						
							 Gets the appropriate assembly for the module reflected by the current instance.
						
						
							 A instance that reflects the
 assembly that contains the module reflected by the current instance.
						
						
							 This property is read-only.
						
					
					 1
					 RuntimeInfrastructure
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets a string that represents the full path of the module reflected by the current instance.
						
						
							 A that represents
 the full path of the module reflected by the current instance. If the assembly
 that contains the module reflected by the current instance was loaded from
 a

 array, the value of this string is "<Unknown>".
						
						
							 This property is read-only.
							
								 The
 case-sensitivity of the module name is implementation-specific.

							
							
								 Override this property to customize the content of the returned by this property in types derived from
.
							
							
								 To obtain the name
 of the module without path information, use the

 property.
							
						
						
							 Requires permission to access path information. See and .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo
					
					
						
					
					
						
							 Returns a instance that reflects the global public
 field that has the specified name, and is a member of the module
 reflected by the current instance.
						
						 A that specifies the name of the field to be returned.
						
							 Returns a instance that reflects the global public field that
 has the name , and is a member of the module
 reflected by the current instance, if found; otherwise, returns

.
						
						
							 is .
						
							
								 A global public field is a static field
 with a module-level scope.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo
					
					
						
						
					
					
						
							 Returns a instance that reflects the global field that has
 the specified name and has the specified binding attributes, and is a member of the module reflected by the current
 instance.
						
						 A that specifies the name of the field to be returned.
						
							 A bitwise combination of value that control the binding process. Specify or , or ; otherwise, this method will return .
							
						
						
							 Returns a instance that reflects the global field that has the name
 and characteristics specified by , and is a member of the module reflected by
 the current instance, if found; otherwise, returns
 .
						
						
							 is .
						
							
								 A global field is a field with a
 module-level scope.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo[]
					
					
						
					
					
						
							 Returns an array whose elements reflect the global fields that have the specified binding attributes, and are members of the module reflected by the current instance.
						
						
							 A bitwise combination of values that control the binding process. Specify or , and ; otherwise, this method will return .
							
						
						
							 An array objects that reflect the global fields that have the specified binding attributes, and are members of the module reflected by the current instance. If no global fields are contained in the module reflected by the current instance, returns an array with zero elements.
						
						
							
								 A global public field is a static field with a module-level scope.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.FieldInfo[]
					
					
					
						
							 Returns an array whose elements reflect the global public fields that are members of the module reflected by the current instance.
						
						
							 An array of objects that reflect the global public fields that are
 members of the module reflected by the current instance. If no global public fields are contained in the module reflected by the current instance, returns an array with
 zero elements.
						
						
							
								 A global public field is a static field
 with a module-level scope.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
						
					
					
						
							 Returns a instance that reflects the global public method that has
 the specified name and parameter types, and is a member of the module
 reflected by the current instance.
						
						 A that specifies the name of the method to be returned.
						 An array of objects that contain the parameter types to search for.
						
							 A
instance that reflects the global public method that
has the name and parameter types , and is a member of the module reflected by the
current instance, if found; otherwise, returns
.
						
						
							
								 is .
							 -or-
							
								 is .
							 -or-
							 At least one element of is .
						
						
							
								 A global public method
 is a static method with a module-level scope.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
					
					
						
							 Returns a instance that reflects the global public method that has
 the specified name, and is a member of the module reflected by the current
 instance.
						
						 A that specifies the name of the method to be returned.
						
							 A
instance that reflects the global public method that
has the name , and is a member of the module reflected by the
current instance, if found; otherwise, returns
.
						
						
							 is .
						
							
								 A global public method
 is a static method with a module-level scope.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo[]
					
					
						
					
					
						
							 Returns an array whose elements reflect the global methods that have the specified binding attributes, and are members of the module reflected by the current instance.
						
						
							 A bitwise combination of values that control the binding process. Specify or , and ; otherwise, this method will return .
							
						
						
							 An array of objects that reflect the global methods that have characteristics specified by bindingAttr, and are members of the module reflected by the current instance, if found; otherwise, returns null.
						
						
							
								 A global method is a method with a module-level scope.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo[]
					
					
					
						
							 Returns an array whose elements reflect the global public methods that are members of the module reflected by the current instance.
						
						
							 An array of objects that reflect the global public methods that are members of the module
 reflected by the current instance.
						
						
							
								 A global public method
 is a static method with a module-level scope.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets a string containing the name of the module reflected by the current instance, with the path component removed.
						
						
							 A containing the
 name of the module reflected by the current instance, with the path component
 removed. If the assembly that contains the module reflected by the current
 instance was loaded from a

 array, the value of this string is "<Unknown>".
						
						
							 This property is read-only.
							
								 The value of this property is equivalent
 to the value of the string returned by the method.
								 Use to get the
 name and path of
 the module reflected by the current instance.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a string representation of the name of the module reflected by the current instance.
						
						
							 A representation of
 the name of the module reflected by the current instance.
						
						
							
								 This method
 overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the attributes for a parameter.
				
				
					
						 This
 enumeration is used by the property.
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Reflection.ParameterAttributes
					
					
					 HasDefault
					
						
							 Specifies that the parameter has a default value.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.ParameterAttributes
					
					
					 HasFieldMarshal
					
						
							 Specifies that the parameter has field marshaling information.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Provides access to parameter
 metadata.
				
				 Requires permission to reflect non-public members of a type in loaded assemblies. See .
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
						
							 This constructor is called only by classes that derive from
 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Reflection.ParameterAttributes
					
					
					
						
							 Gets the attributes of the parameter
 reflected by the current instance.
						
						
							 A value representing the
 attributes for the
 parameter reflected by the current instance.
						
						
							
								 This property is
 read-only.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the parameter
 reflected by the current instance.
						
						
							 A
that contains the name of
the parameter reflected by the current
instance.
						
						
							 This property returns the name of the parameter reflected by the
 current instance as that name is declared in the signature of the method that
 contains the parameter. For example, if a method signature is
 void MyMethod(object MyParm),
 the property value would
 be "MyParm".
							
							
								 This property is
 read-only.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the type of the parameter reflected by the current instance.
						
						
							 The of the parameter
 reflected
 by
 the current instance.
						
						
							 This property returns the type declared for the property. For example, if a method signature is
 void MyMethod(object MyParm), the property value would be a
 object
 representing the
 type.
							
							
								 This property is
 read-only.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Reserved for future use.
				
				
					
						 This class is provided in order to
 implement the abstract methods that require it in the reflection library. When
 invoking a method with a parameter that is an array of
 objects, specify
 .
					
				
			
			
				 System.ValueType
			
			
			
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
 Defines the attributes that can be associated with a
 property.

				
					 This enumeration is used by the property.
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Reflection.PropertyAttributes
					
					
					 HasDefault
					
						
							 Specifies that the property has a default value.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.PropertyAttributes
					
					
					 None
					
						
							 Specifies that no attributes are associated with a property.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.PropertyAttributes
					
					
					 SpecialName
					
						
							 Specifies that the property is treated in a special way by some tools.
							
								 For more information on special names, see Partition I of the CLI
 Specification.
								 For more information on in metadata, see
 Partition II of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Provides access to property
 metadata.
				
				
					 A property
 is a named aspect of an object's state whose value is typically accessible
 through and accessors. Properties can be read-only, in which case the accessor is not available.
					
					 Several methods in this class assume that the
and
accessors of a property have certain formats. The signatures of the
accessors are required to match the following conventions:
					
						
							

 The return type of the accessor and the last
 argument of the accessor are required to be identical to the
 type of the property reflected by the current instance.
						
						
							

 The and accessors are required to have the same number, type, and order of
 indices.
						
					
					 If this format is not followed, the behavior of
 the and
 methods is undefined.
				
			
			
				 System.Reflection.MemberInfo
			
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the class.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Reflection.PropertyAttributes
					
					
					
						
							 Gets the attributes of the property reflected by the
 current instance.
						
						
							 A value that specifies the attributes of
 the property reflected by the current instance.
						
						
							
								 This property is read-only.
								 This property
 gets a value that
 indicates the attributes set in the metadata of the property reflected by
 the current instance.
							
							
								 Use this property
 to determine if the property reflected by the current instance has
 a special name or a default value.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the property
 reflected by the current instance has a accessor.
						
						
							
								 if the
 property reflected by the current instance has a
 accessor;
 otherwise,
 .
						
						
							
								 This property is read-only.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the property
 reflected by the current instance has a accessor.
						
						
							
								 if the
 property reflected by the current instance has a
 accessor;
 otherwise,
 .
						
						
							
								 This property is read-only.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo[]
					
					
						
					
					
						
							 Returns an array whose elements reflect the public and,
 if specified, non-public , , and other
 accessors of the property reflected by the
 current instance.
						
						 A value that indicates whether non-public accessors will be included in the return value. Specify to include the non-public accessors; otherwise, specify .
						
							 An array of objects whose elements reflect the
 , , and other accessors of the property
 reflected by the current instance. If is
 , this array contains public and non-public
 accessors. If
 is , this array contains only public accessors.
 If no
 accessors with the specified visibility are found, returns
 an array with zero elements.
						
						
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo[]
					
					
					
						
							 Returns an array whose elements reflect the public
 , , and other
 accessors of the property reflected by the current
 instance.
						
						
							 An array of objects that reflect the public
 , , and other
 accessors of
 the property reflected by the current instance, if found; otherwise, returns
 an array with zero elements.
						
						
							 This method is equivalent to ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
					
					
						
							 Returns the public possibly or, if specified, the non-public accessor for the property reflected by the current instance.
						
						
							 A value that indicates whether a non-public accessor will be returned. Specify to allow a non-public accessor; otherwise, specify .
						
						
							 If is , returns
 a instance that reflects the

accessor for the property reflected by the current instance if that accessor
exists. If
 is and the accessor is non-public, or
is but no accessor exists for the property reflected by
the current instance, returns
.
						
						
							 is , the accessor for the property reflected by the current instance is non-public, and the caller does not have to reflect on non-public methods.
						
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
					
						
							 Returns the public accessor for the property reflected
 by the current instance.
						
						
							 A instance that reflects the public
 accessor for the property reflected by the current
 instance. Returns if no public
 accessor exists.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.ParameterInfo[]
					
					
					
						
							 Returns an array of the indexers of the property reflected by the current instance.
						
						
							 An array
 of objects that reflect the indexers
 of the property reflected by the current instance. If no indexers exist for
 the property reflected by the current instance,
 returns an array with zero elements.
						
						 The property reflected by the current instance is visible, but its and accessors are not, and the caller does not have .
						
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
						
					
					
						
							 Returns the public possibly or, if specified, the non-public accessor
 for the property reflected by the current instance.
						
						
							 A value that indicates whether a non-public accessor will be returned. Specify to allow a non-public accessor; otherwise, specify .
						
						
							 If is , returns a
instance that reflects the accessor
for the property reflected by the current instance if that accessor exists. If
 is and the accessor is non-public, or
is
but no accessor exists for the property
reflected by the current instance, returns .
						
						
							 is , the accessor for the property reflected by the current instance is non-public, and the caller does not have to reflect on non-public methods.
						
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.MethodInfo
					
					
					
						
							 Returns the public accessor for the property reflected
 by the current instance.
						
						
							 A instance that reflects the public
 accessor for the property reflected by the current
 instance. Returns if no public
 accessor exists.
						
						
							 This method is equivalent to ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
						
						
					
					
						
							 Returns the value of the property that is reflected by the current instance in the specified object
 and corresponds to the specified criteria.
						
						 The object whose property value is returned. Specify to invoke a static accessor on the property reflected by the current instance.
						 A value that controls the binding process. Specify or , and or ; or this method will not invoke any accessors of the property reflected by the current instance.
						
						 A that enables the binding, coercion of argument types, invocation of members, and retrieval of objects via reflection. If is , the default binder is used.
						 An array of objects that is an index or values for indexed properties. This value is required to be for non-indexed properties.
						
							 The only defined value for this parameter is .
						
						
							 A that
 contains the property value for .
						
						
							
								 does not contain the exact type of arguments needed.
							 -or-
							 The accessor of the property reflected by the current instance was not found.
						
						 The accessor of the property reflected by the current instance is non-public and the caller does not have to reflect on non-public methods.
						 The property reflected by the current instance is non-static, and is or is of a type that does not implement the property reflected by the current instance.
						 The current instance reflects an indexer and .Length does not equal the rank of the indexer.
						
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
					
						 System.Object
					
					
						
						
					
					
						
							 Returns the value of the property reflected by the current instance in the
 specified object, using the specified index values.
						
						 The object whose property value will be returned. Specify to invoke a static accessor of a property.
						 An array of objects that is an index of values for indexed properties. This value is required to be for non-indexed properties.
						
							 A that contains the property value for .
						
						
							
								 does not contain the exact type of arguments needed.
							 -or-
							 The accessor of the property reflected by the current instance is not found.
						
						 The accessor of the property reflected by the current instance is non-public and the caller does not have to reflect on non-public methods.
						 The property reflected by the current instance is non-static, and is or is of a type that does not implement the property reflected by the current instance.
						 The current instance reflects an indexer and .Length does not equal the rank of the indexer.
						
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Property
					
						 System.Type
					
					
					
						
							 Gets the type of the property reflected by the current instance.
						
						
							 A that represents the
 type of the
 property reflected by the current instance.
						
						
							
								 This property is read-only.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
						
						
					
					
						
							 Sets the value of the property that is reflected by the current instance on the specified objects and
 corresponds to the specified properties.
						
						 The object whose property value is returned. Specify to invoke a static accessor on the property reflected by the current instance.
						 A object that contains the new value for the property.
						 A value that controls the binding process. Specify or , and or ; otherwise, this method will not invoke any accessors of the property reflected by the current instance.
						
						 A that enables the binding, coercion of argument types, invocation of members, and retrieval of objects via reflection. If is , the default binder is used.
						 An array of objects that is an index or values for indexed properties. This value is required to be for non-indexed properties.
						
							 The only defined value for this parameter is .
						
						 The array does not contain the exact type of arguments needed. The accessor of the property reflected by the current instance is not found.
						
						 The property reflected by the current instance is non-static, and is or is of a type that does not implement the property reflected by the current instance.
						 The accessor of the property reflected by the current instance is non-public and the caller does not have to reflect on non-public methods.
						 The current instance reflects an indexer and .Length does not equal the rank of the indexer.
						
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
				
					
					
					 Method
					
					
						 System.Void
					
					
						
						
						
					
					
						
							 Sets the value of the property reflected by the current instance on the
 specified object, using the specified index values.
						
						 The object whose property value is returned. Specify to invoke a static accessor on the property reflected by the current instance.
						 A object that contains the new value for the property.
						 An array of objects that is an index or values for indexed properties. This value is required to be for non-indexed properties.
						
							
								 does not contain the exact type of arguments needed.
							 -or-
							 The accessor of the property reflected by the current instance was not found.
						
						 The accessor of the property reflected by the current instance is non-public and the caller does not have to reflect on non-public methods.
						 The property reflected by the current instance is non-static, and is or is of a type that does not implement the property reflected by the current instance.
						 The current instance reflects an indexer and .Length does not equal the rank of the indexer.
						
							
								 As described above.
							
						
						 Requires permission to reflect non-public members of a type in loaded assemblies. See .
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Secures access to the metadata of non-public types and members through reflection.
				
				
					 Code with the appropriate has
 access to non-public members of a type .
 Without ,
 code can access only the public members of assemblies.
					
						 Without ,
 untrusted code can perform the following operations on members of loaded
 assemblies:
						
							
								
 Obtain type information from metadata for public
 types and members.
							
							
								
 Invoke public members.
							
							
								
 Invoke members defined with family access in the
 calling code's base classes.
							
							
								
 Invoke members defined with assembly access in the
 calling code's assembly.
							
							
								
 Invoke members defined with or
 access in the calling code's
 base classes and/or assembly.
							
							
								
 Enumerate assemblies.
							
							
								
 Enumerate public types.
							
							
								
 Enumerate types in the calling

 code's assembly.
							
						
					
					
						 instances
can allow untrusted code to obtain type and member
information, invoke members, and enumerate types that would otherwise be inaccessible. Because can
provide access to members
and
information that were not intended for public
access, it is recommended that be
granted only to trusted code.
					
					 The XML encoding of a instance is defined below
 in EBNF format. The following conventions are used:
					
						
							
								 All non-literals in the grammar below are shown in normal type.
							
						
						
							
								 All literals are in bold font.
							
						
					
					 The following meta-language symbols are used:
					
						
							
 '*' represents a meta-language symbol suffixing an
 expression that can appear zero or more times.
						
						
							
 '?' represents a meta-language symbol suffixing an
 expression that can appear zero or one time.
						
						
							
 '+' represents a meta-language symbol suffixing an
 expression that can appear one or more times.
						
						
							
 '(',')' is used to group literals, non-literals or a
 mixture of literals and non-literals.
						
						
							
 '|' denotes an exclusive disjunction between two
 expressions.
						
						
							
 '::= ' denotes a production rule where a left hand
 non-literal is replaced by a right hand expression containing literals,
 non-literals or both.
						
					
					 BuildVersion refers to the build version of the shipping CLI. This is
 specified as a dotted build number such as '2412.0' .
					 ECMAPubKeyToken ::=
					
					 ReflectionPermissionFlag =
|
					
					 Each ReflectionPermissionFlag can appear in the XML no more than once. For example, Flags=MemberAccess,MemberAccess is illegal.
					 The XML encoding of a
instance is as follows:
					 ReflectionPermissionXML ::=
					
						
							
						
						
							
						
						
							
						
						
							 BuildVersion
						
						
							
						
						
							 ECMAPubKeyToken
						
						
							
						
						 (
						
							
						
)
						 |
						 (
						
							 |
(ReflectionPermissionFlag (ReflectionPermissionFlag)*
						
)
						
							
						
					
				
			
			
				 System.Security.CodeAccessPermission
			
			
				
					 System.Security.IPermission
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 access.
						
						 One or more values.
						 The parameter contains a value that is not a combination of values.
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new object containing the same values as the current
 instance.
						
						
							 A new instance that contains the same values as the current instance.
						
						
							
								 The object returned by this method represents the same access to resources as
 the current instance.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reconstructs the state of a
 object using the specified XML
 encoding.
						
						 A instance containing the XML encoding to use to reconstruct the state of a object.
						 The parameter is .
						
							 The parameter is not a element.
							 -or-
							 The parameter's version number is not valid.
						
						
							 The state of the current instance is changed to the state encoded in
 .
							
								 For the XML encoding for this class, see the
 class
 page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a new object that is the intersection
 of the current instance and the specified object.
						
						 A instance to intersect with the current instance.
						
							 A new instance that represents the intersection of the
 current instance and . If the intersection is empty, returns
 . If is
 , returns
.
						
						 The parameter is not and is not an instance of .
						
							
								 The intersection of two permissions is a permission that secures the
 resources and operations secured by both permissions. Specifically, it
 represents the minimum permission such that any demand that passes both
 permissions will also pass their intersection.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance is a subset of
 the specified object.
						
						 A instance that is to be tested for the subset relationship.
						
							
								 if the current instance is a subset of ;
 otherwise, . If the current instance is unrestricted, and
 is not, returns . If is
 unrestricted, returns . If target is
 and the access level of the current instance is , returns . If
 target is and the access level of the current
 instance is any value other than , returns
 .
						
						 The parameter is not and is not an instance of .
						
							
								 The current instance is a subset of if the current instance
 specifies a set of accesses to resources that is wholly contained by
 . For example, a permission that represents access to type
 information is a subset of a permission that represents access to type information and members.
								 This method overrides and is implemented to
 support the interface.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.SecurityElement
					
					
					
						
							 Returns the XML encoding of the current instance.
						
						
							 A containing the XML encoding of the state of the current
 instance.
						
						
							
								 For the XML encoding for this class, see the class page.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
						
					
					
						
							 Returns a new object that is the union of the
 current instance and the specified object.
						
						 A instance to be combined with the current instance.
						
							 A new
instance that represents the union of the current instance and . If
the current instance or is unrestricted, returns a
 instance that is
unrestricted. If is , returns a copy of the
current instance.
						
						 The parameter is not and is not an instance of .
						
							
								 The result of a call to
 is a permission that represents all of the access
 to resources represented by both the current instance and . Any
 demand that passes either the current instance or passes their
 union.
								 This method overrides and is implemented to
support the interface.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Used to declaratively specify security actions to
 control access to
 non-public types using reflection.
				
				
					
						 The level of access to non-public types and members is specified using
 the property and the enumeration.
						 The security information declared by a security attribute is stored in the
 metadata of the attribute target, and is accessed by the system at run-time.
 Security attributes are used for declarative security only. For imperative
 security, use the corresponding permission class, .
						 The allowable targets are
 determined by the passed to the
 constructor.
					
				
				
					 The following example shows a declarative request for access to non-public
 members of loaded assemblies. The
 security action indicates that this is the minimum permission required for the
 target assembly to be able to execute.
					
						 [assembly:ReflectionPermissionAttribute(SecurityAction.RequestMinimum,
 MemberAccess=true)]

					
					 The following example shows how to demand that the calling code has
 unrestricted access to non-public types. Demands are typically made to protect
 methods or classes from malicious code.
					
						 [ReflectionPermissionAttribute(SecurityAction.Demand, Unrestricted=true)]

					
				
			
			
				 System.Security.Permissions.CodeAccessSecurityAttribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=true, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified value.
						
						 A value.
						
							 is not a valid value.
					
					 0
				
				
					
					
					 Method
					
						 System.Security.IPermission
					
					
					
						
							 Returns a new that contains the
 security information of the current instance.
						
						
							 A new object with the
 security information of the current
 instance.
						
						
							
								 Applications typically do not call this method; it is
 intended for use by the system.
								 The security information described by a security
 attribute is stored in the metadata of the attribute target, and is accessed by
 the system at run-time. The system uses the object returned by this method to
 convert the security information of the current instance into the form stored in
 metadata.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Security.Permissions.ReflectionPermissionFlag
					
					
					
						
							 Gets or sets levels of access to non-public types using reflection.
						
						
							 One or more of the values.
						
						
							
								 To specify multiple
 values for a set operation,
 use the bitwise OR operator.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents levels of access to the metadata for non-public
 types and members accessed using reflection.
				
				
					
						 This enumeration is used by
.
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Security.Permissions.ReflectionPermissionFlag
					
					
					 MemberAccess
					
						
							 Specifies access
 to members of non-public types using reflection. Access includes the ability to perform operations on the members.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.ReflectionPermissionFlag
					
					
					 NoFlags
					
						
							 Specifies no access to non-public types or information about non-public
 types using reflection.
							
								 When this access level is granted via a , only
 those elements in metadata that can be accessed using early binding are
 accessible.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Security.Permissions.ReflectionPermissionFlag
					
					
					 TypeInformation
					
						
							 Specifies access to information about non-public types using
 reflection.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an attempt is made to invoke a member
 on an invalid target.

				
				
					
						 A is
 thrown when an attempt is made to invoke a non-static method using a

object. This exception can also be thrown if the
target does not implement the member.
					
				
			
			
				 System.ApplicationException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a system-supplied message that describes the
 error, such as "Instance method cannot be invoked on a null target."
 This message takes into account the current system culture.
							 The property of the new instance is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance using . If is
 , the property is initialized to
 the system-supplied message provided by the constructor that takes no
 arguments.
							 The property is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is ,
 the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							
								 For information on inner exceptions,
 see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when a method invoked via reflection throws
 an exception.
				
				
					 The
 constructors are passed
 a reference to the exception thrown by the invoked method. The property inherited
 from
 holds the exception.
					
				
			
			
				 System.ApplicationException
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
 Constructs and initializes a new instance of the class.

						 The that is the cause of the current exception. If the parameter is not , the current exception was raised as a result of the inner exception being thrown by a method invoked via reflection.
						
							 This constructor initializes the property of
 the new instance to a system-supplied message that describes the error, such as
 "Exception has been thrown by the target of an invocation." This message takes
 into account the current system culture.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 The that is the cause of the current exception. If is not , the current exception was raised as a result of being thrown by a method invoked via reflection.
						
							 This constructor initializes the property of the new instance using , and
 the property using . If is ,
 the property is
 initialized to a system-supplied message that describes the error, such as
 "Exception has been thrown by the target of an invocation." This message takes into
 account the current system culture.
							
								 For information on inner exceptions,
 see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when the number of
 parameters passed in the invocation of a member does not match the number of parameters required by the contract
 of that member.
				
				
					 This exception is thrown by types in the Reflection
 Library, when attempting to dynamically invoke members.
				
			
			
				 System.ApplicationException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the

 class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message
that describes the error, such as "Parameter count mismatch." This message takes into
account the current system culture.
							 The property of the
new instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the
 new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current Exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of
 the new instance using , and the property using
 . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							
								 For information on inner exceptions,
 see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies attributes of a type.
				
				
					
						
 This enumeration is used by the class.
					
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type is not implemented in the declaring type.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					 Class
					
						
							 Specifies that LPSTR is interpreted as ANSI.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that LPSTR is interpreted automatically.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					 Class
					
						
 Specifies that fields of the type are automatically laid
 out by the system.

					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
 Specifies that calling static methods of the type does not force the system to
 initialize the type.

					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					 Class
					
						
							 Specifies that the type is a class.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies a bitmask used to determine whether a type is a class or interface.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that LPSTR is interpreted by some implementation-specific means, which includes the possibility of throwing a .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 .This mask is used to retrieve non-standard encoding information for . The meaning of the values of these two bits is unspecified.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
 Specifies that the layout of fields in the type is
 provided explicitly.

					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type is an interface.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies a bitmask used to obtain layout information.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type is nested and is accessible
 only to members within its assembly.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type
 is nested and is accessible only to members of its family in its assembly.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type
 is nested and is accessible only to members of its family.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							
 Specifies that the type
 is nested and is accessible only to members of its family and throughout its assembly.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type is nested with private visibility.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies
 that the type is nested with public visibility.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					 Class
					
						
							 Specifies that the type is not public.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type has public visibility.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type cannot be used
 to derive new types.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							
 Specifies that fields in the type are laid out sequentially.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that the type is treated in a special way by some tools.
							
								 For more information on special names, see Partition I of the CLI
 Specification.
								 For more information on in metadata, see
 Partition II of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies a bitmask used to obtain string format information.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies that LPSTR is interpreted as Unicode.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.Reflection.TypeAttributes
					
					
					
						
							 Specifies a bitmask used to obtain visibility information.
						
					
					 0
				
			
			 0
		
		
			
			
			 Reflection
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates a method that does not return a value; that is,
 the method has a return type of
 .
				
				
					 This class is used by types in the Reflection Library.
				
			
			
				 System.ValueType
			
			
			
			 0
		
	
	
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents an application domain, which is an isolated
 environment where applications execute.
				
				
					 Application domains, which are represented by objects, provide isolation,
 unloading, and security boundaries for executing managed
 code.
					 Multiple application domains can run in a single
 process; however, there is not a one-to-one correlation between application
 domains and threads. Several threads can belong to a single application domain,
 and while a given thread is not confined to a single application domain, at any
 given time, a thread executes in a single application
 domain.
					 Application domains are created using
 the method.

instances are used to load and execute assemblies ().
When a is no longer in use, it can
be unloaded.
					 The class implements a set of
events to enable applications to respond to the following conditions:
					
						
							 Condition
							 Event
						
						
							
								 An assembly was loaded.
							
							
								
							
						
						
							 An
 application
 domain will be unloaded.
							
								
							
						
						
							 An unhandled exception was thrown.
							
								
							
						
					
				
			
			
				 System.MarshalByRefObject
			
			
			
			
				
					
					
					 Event
					
					
					
						
							 Raised when an assembly is loaded.
						
						
							
								 This event is handled by a delegate. Information about the event
 is passed to the delegate in a instance.
								 For additional information about events, see Partitions I and II of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.AppDomain
					
					
						
					
					
						
							 Creates and returns a new application domain with the specified name.

						
						 A containing the friendly name of the domain.
						
							 A representing the newly created application domain.

						
						
							 is .
						
							
								 The parameter is intended to identify the domain
 in a manner that is meaningful to humans. This string should be suitable for
 display in user interfaces.
							
						
					
					 0
				
				
					
					
					 Event
					
					
					
						
							 Raised when a is about to be unloaded.
						
						
							
								 This event is handled by a delegate. Information about the event is passed to the
 delegate in a instance. The delegate for
 this event can perform any termination activities before the application domain
 is unloaded.
								 For additional information about events, see Partitions I and II of
 the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the friendly name of the current instance.
						
						
							 A containing the friendly name of the current application domain.
						
						
							 This property is read-only.
							 The friendly name of a instance created by an application is
 specified to the constructor. The friendly name of the default
 is the name
 of the assembly file loaded in the application domain. The friendly name is
 formed by stripping the directory information from the assembly's file
 name. For example, if the loaded assembly has the name "\MyAppDirectory\MyAssembly.exe" , the friendly name
of the default application domain is "MyAssembly.exe" .
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the current instance.

						
						
							 A containing
 information about the current
 instance.
						
						
							 The string returned by this method includes the friendly name of the
 application domain.

							
								 This method
 overrides
 .
							
						
					
					 0
				
				
					
					
					 Event
					
					
					
						
							 Raised when an exception is
 not caught by the default application domain.
						
						
							
								
 This event is handled by a delegate. Information about the event is passed to the
 delegate in a instance. The delegate
 provides default handling for uncaught exceptions. When this event is not
 handled, the system default handler reports the exception to the user and
 might terminate the application. For additional information, see
 .

							
							 This event is raised only for the application domain that is created by the
 system when an application is started. If an application creates additional
 application domains, specifying a delegate for this event in those applications
 domains has no effect.
							
								 For additional
 information about events, see Partitions I and II of the CLI
 Specification.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Unloads the specified application domain.

						
						 A representing the application domain to be unloaded.
						
							 is .
						
							 could not be unloaded.
						
							 If the thread that invoked
is running in , another thread is started to perform the unload
operation. If cannot be unloaded, a is thrown in that thread, not the original thread that invoked
 . However, if the thread that invoked is
running outside , that is the thread that receives the exception.
							 The threads in
are terminated using
the method, which throws the thread an instance of
 . Although
the thread should terminate promptly, it can continue executing for an
unbounded amount of time in its clause.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 Defines a
, which is a reusable, versionable, and
self-describing building block of an application.
				
				
					 An assembly is a
 reusable, versionable, self-describing deployment unit for types and resources. Assemblies are
 the fundamental units of deployment, and consist of collections of types and resources that are
 built to work together and form logical units of
 functionality.
					 An assembly consists of the following two logical
 elements:
					
						
							

 The sets of types and resources that form some
 logical unit of functionality.
						
						
							

 A manifest, which is the metadata that describes how the types and
 resources of an assembly relate and what they depend on to work
 properly.
						
					
					 The following information is captured in an assembly
 manifest:
					
						
							
								 An
 assembly's identity includes its simple name (also called its weak name), a
 version number, an optional culture if the assembly contains localized
 resources, and an optional public key used to guarantee name uniqueness and to
 "protect" the name from unwanted reuse.
						
						
							
								
 Assemblies contain types and resources. The manifest lists the names of all
 the types and resources that are visible outside the assembly, along with
 information about where they can be found within the assembly.
						
						
							
								 Each assembly explicitly describes other assemblies that it is
 dependent upon. Included in this dependency information is the version of each
 dependency that was present when the manifest was built and tested. In this
 way the "known good" configuration is recorded and can be reverted to in case
 of failures due to version mismatches.
						
						
							
								
 As an assembly is being built, the
 assembly records the set of permissions that the assembly requires to run.
						
					
					
						 For additional information about assemblies, see Partition II of the CLI
 Specification.
					
				
			
			
				 System.Object
			
			
			
			
				
					
					
					 Method
					
						 System.Object
					
					
						
					
					
						
							 Locates the specified type from this assembly and creates an instance of it using case-sensitive search.
						
						 The name of the type to locate.
						
							 An instance of representing the type, or if is not found.
						
						
							 is the empty string ("") or "\0anything".
						
							 is .
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the full name of the assembly.
						
						
							 A containing the full name of the assembly.
						
						
							 This property is read-only.
							
								 As described
 above.
							
							
								 The full name is returned in the following
 format:
								
									
										
									
								
								
									 The section of the string contains
 the textual name of the assembly, and is equivalent to the name of
 the file into which the assembly manifest is compiled. This name does not change
 even if the file with the assembly manifest is later renamed. For additional information about
 assembly manifests, see Partition II of the CLI Specification.
									 For information on the information in the
 full name of a , see .
									 The is a containing the value of the public key token in
hexadecimal format. A
										
indicates that the current assembly is private. For additional information about
public keys and public key tokens, see Partition II of the CLI
Specification.
								
							
							
								 This property is
 used by the method.
							
						
						
							 The following example demonstrates using
 the property to get the full name of an assembly compiled into a file named
 "HelloWorld".
							 using System;
using System.Reflection;

public class AssemblyExample {
 public static void Main() {

 Assembly a = Assembly.Load("helloworld");
 Console.WriteLine(a.FullName);
 }
}

							 The output is
							
								 HelloWorld, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Type
					
					
						
					
					
						
							 Returns the object with the specified name defined in the
 current assembly.
						
						 A containing the name of the type defined in the current assembly.
						
							 A
 object that
 represents the specified type, or if the specified

 was not found.
						
						
							 is equal to or starts with the null character ('\0').
						
							 is .
						
							
								 As described
 above.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Type[]
					
					
					
						
							 Returns the
 types defined in the current assembly.
						
						
							 An array of type
 containing
 all of the types defined in the current assembly.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Reflection.Assembly
					
					
						
					
					
						
							 Loads the specified assembly.
						
						 A containing the name of the assembly.
						
							 The loaded
.
						
						
							 is .
						
							 is equal to or starts with the null character ('\0').
						 The identified by was not found.
						 The identified by is not a valid assembly.
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current instance.
						
						
							 A representation of
 the current instance. The string takes into account the
 current system culture.
						
						
							 This method returns the of the
 current assembly.
							
								 This method
 overrides
 .
							
						
						
							 The following example demonstrates the use of the method in an assembly compiled into
 a file named "HelloWorld".
							 using System;
using System.Reflection;

public class AssemblyExample {
 public static void Main() {

 Assembly a = Assembly.Load("helloworld");
 Console.WriteLine(a.ToString());
 }
}

							 The output is
							
								 HelloWorld, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides access to the that was loaded causing a event.
				
				
					
						 This class provides the loaded assembly via the
property.
					
				
			
			
				 System.EventArgs
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A representing the loaded assembly.
						
							 The property is initialized using
 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Reflection.Assembly
					
					
					
						
							 Gets a instance that represents the assembly for
 which an event was raised.
						
						
							 A
representing the assembly that has been loaded.
						
						
							 This property is read-only.
							
								 The value of this
 property is set by the system when it raises a event.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					
						 Defines
 the methods that are called in response to
						 events.
				
				 The that is the source of the event.
				
					 A that contains the event data.
				
				
					
						 A instance is used to specify the methods that are invoked
 in response to a event. To associate an instance of
 with an event, add the instance to the event.
 The methods referenced by the instance are
 invoked whenever an assembly is loaded, until the instance is removed from the event.
						 For additional information about events, see Partitions I and II of the CLI Specification.
					
				
				
					 For an example that demonstrates creating a , see .
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an attempt is made
 to load a
 from a file with an invalid file image.
				
				
					 This exception is thrown when the file image of an
 executable program is invalid. For example, this exception is thrown when
 unmanaged code is passed to
 for loading.
				
				
					 The following example demonstrates an attempt to load an unmanaged executable, which causes
 the system to throw a exception. The name of the unmanaged executable
 is "calc".
					
					 using System;
using System.Reflection;

public class BadImageExample {
 public static void Main() {
 try {
 Assembly a = Assembly.Load("calc");
 }
 catch (BadImageFormatException e) {
 Console.WriteLine("Caught: {0}", e.Message);
 }
 }
}

					 The output is
					
						 Caught: The format of the file 'calc' is invalid.
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of
 the new instance to a system-supplied message that describes the error, such
 as "Format of the executable or library is invalid." This message takes into
 account the current system culture.
							 The and the properties of the new instance are
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance
 using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The and the properties of the new instance are initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of
 the new instance using and the property using
 . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property of the new instance is initialized to .
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A containing the name of the file with the invalid image.
						
							 This constructor initializes the property of the new instance
 using and the property using
 . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property of the
new instance is initialized to
.
							 If the parameter is , the property is set
to , the property does not contain the name of the file, and the
method does not return the name of the file with the invalid
image.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 A containing the name of the file with the invalid image.
						 An instance of that is the cause of the current exception. If is non-null, then the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of
 the new instance using , the property
 using , and the property using . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 If the parameter is , the property is set to
 , the property does not contain the
 name of the file, and the method does not return the name
 of the file with the invalid image.
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the file with the invalid image.
						
						
							 A containing the
 name of the file with the invalid image, or if no file
 name was passed to the constructor for the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets a that describes the error that caused the current exception.
						
						
							 A containing the
 error description.
						
						
							 If no message was supplied to the constructor for the
 current exception, this property returns a system-supplied error message.
 If the property is not ,
 the message includes the file name.
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current exception.
						
						
							 A
representation of the current exception.
						
						
							 The string representation returned by this method
 includes the name of the exception, the value of the
 property, the result of calling on the inner exception, the value of the

 property, and the result of calling .
 If any of these members is , its value is not included in
 the returned string.

							
								 This method overrides
.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Indicates the calling convention used by a method located in an unmanaged shared library.
				
				
					 The values of this enumeration are used to specify the calling conventions required
 to call unmanaged methods implemented in shared libraries.
					
						 Implementers
 should map the semantics of specified calling conventions onto the calling conventions
 of the host OS.
					
					
						 For additional information on shared
 libraries and an example of the use of the enumeration, see the class overview.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CallingConvention
					
					
					 Cdecl
					
						
							 Indicates that the
calling convention is appropriate for a method call.
							 For example, on a Windows platform the convention produces the
following behavior:
							
								
									 Element
									 Behavior
								
								
									 Argument-passing order
									 Right to left.
								
								
									 Stack-maintenance responsibility
									 Calling function pops the arguments from the
 stack.
								
							
							
								 This is the default calling
 convention for functions compiled with 32-bit C and C++ language compilers.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CallingConvention
					
					
					 FastCall
					
						
							 Indicates that the
calling convention is appropriate for a method
call.
							
								 On a Windows platform this convention
 indicates that arguments to functions are to be passed in registers whenever
 possible.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CallingConvention
					
					
					 StdCall
					
						
							 Indicates that the
calling convention is appropriate for a
method.
							 For example, on a Windows platform the convention produces the
following behavior:
							
								
									 Element
									 Behavior
								
								
									 Argument-passing order
									 Right to left.
								
								
									 Stack-maintenance responsibility
									 Called function pops its own arguments from the
 stack.
								
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CallingConvention
					
					
					 ThisCall
					
						
							 Indicates that the calling convention is appropriate for a
 method. This convention is similar to the calling convention,
 except that the last element that the caller pushes the stack is the

pointer.
							 For example, on a Windows platform the convention
produces the following behavior:
							
								
									 Element
									 Behavior
								
								
									 Argument-passing order
									 Right to left.
								
								
									 Stack-maintenance responsibility
									 Calling function pops the arguments from the
 stack.
								
								
									
										 pointer
									 Pushed last onto the stack.
								
							
							
								 The calling convention is the default
calling convention used by C++ member functions that are not called with
a variable number of arguments.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an attempt to unload
 an application domain fails.
				
				
					
						
is thrown when there is an attempt to unload:
					
						
							
 The default application domain, which must remain
 loaded during the lifetime of the application.
						
						
							
 An application domain with a running thread that
 cannot immediately stop execution.
						
						
							
 An application domain that has already been unloaded.
						
					
				
				
					 The following example demonstrates an error that causes the exception to be thrown.
					 using System;
using System.Threading;

public class CannotUnloadAppDomainExceptionTest {
 public static void Main() {
 AppDomain ad = Thread.GetDomain();
 AppDomain.Unload(ad);
 }
}

					 The output is
					
Unhandled Exception: System.CannotUnloadAppDomainException: The default domain cannot be unloaded.
 at System.AppDomain.Unload(AppDomain domain)
 at CannotUnloadAppDomainExceptionTest.Main()

				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new
 instance to a system-supplied message that describes the error, such as "Attempt
 to unload the AppDomain failed." This message takes into account the current
 system culture.
							 The property of the
new instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new
 instance using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property of the
new instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, the current exception was raised in a catch block handling .
						
							 This constructor initializes the property
 of the new instance using and the property using
 . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								
 For more information on inner
 exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies which character set marshaled strings are required to use.
				
				
					 This enumeration is used by the to indicate the
 required modifications to the arguments of an imported function.
					
						 See the class overview for an
example that uses the enumeration.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CharSet
					
					
					 Ansi
					
						
							 Specifies that strings will be marshaled in the ANSI character
 set.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CharSet
					
					
					 Auto
					
						
							 Specifies that strings will be automatically marshaled in the character set appropriate
 for the target system (either Unicode or ANSI).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CharSet
					
					
					 Unicode
					
						
							 Specifies that strings will be marshaled in the Unicode character set.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Indicates whether instruction checking is strictly ordered or relaxed, and whether strings are interned. The flags come in complementary pairs. Setting neither flag of a pair indicates that the corresponding characteristic should be left unchanged. Setting both bits is an error that is detected by the constructor for .
				
			
			
				 System.Enum
			
			
			
				
					 FlagsAttribute
					 0
				
			
			
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that literal strings are not interned; currently only noticed when set for Assemblies.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that instruction checking for , , and is not strictly ordered (that is, it is relaxed).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that instruction checking for is not strictly ordered (that is, it is relaxed).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that instruction checking for and access violations is not strictly ordered (that is, it is relaxed).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that instruction checking for and is not strictly ordered (that is, it is relaxed).
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that instruction checking for , , and is strictly ordered.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that instruction checking for is strictly ordered.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that instruction checking for and access violations is strictly ordered.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that instruction checking for and is strictly ordered.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.CompilationRelaxations
					
					
					 Field
					
						
							 Indicates that literal strings are interned.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 This attribute allows the user to specify whether the ordering of instruction checking is strict or relaxed. It also allows the user to specify whether or not strings are interned.
				
				
					 Optimizers are granted additional latitude for relaxed exceptions. A method is relaxed for certain kinds of exceptions if the innermost custom attribute pertaining to that kind of exception is present and specifies to relax those kinds of exceptions. (Here, "innermost" means inspecting the method, its class, and its assembly, in that order.)
					
						 For background and implementation information for relaxed exception handling, plus examples, see Annex F of Partition VI.
					
					
						 See the enumeration for a description of the kinds of exceptions that can be relaxed or made strict.
					
					 The runtime can create one string object for each unique string literal, rather than making multiple copies. This is called string interning, which internally requires building auxiliary tables that consume memory resources. String interning can be enabled or disabled at the assembly level via this attribute.
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified value.
						
						 A a bitwise OR combination of enumeration values from that specifies the desired ordering of instruction checking and string interning.
						 For some xxx, has both Strictxxx and Relaxedxx set, or has both StringInterning and NoStringInterning set.
						
							 The flags describe whether to change exception strictness, or string interning. For exceptions of kind xxx, setting Strictxxx makes those exceptions have strict ordering, and setting Relaxedxxx makes those exceptions have relaxed ordering. Setting neither flag for xxx causes no change for exceptions of kind xxx; i.e., the strictness/relaxation for xxx defaults to what it would be if the attribute were not present. See for a list of the xxx choices.)
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified value.
						
						 A bitwise OR combination of enumeration values from that specifies the desired ordering of instruction checking and string interning.
						 For some xxx, has both Strictxxx and Relaxedxx set, or has both StringInterning and NoStringInterning set.
						
							 The flags describe whether to change exception strictness, or string interning. For exceptions of kind xxx, setting Strictxxx makes those exceptions have strict ordering, and setting Relaxedxxx makes those exceptions have relaxed ordering. Setting neither flag for xxx causes no change for exceptions of kind xxx; i.e., the strictness/relaxation for xxx defaults to what it would be if the attribute were not present. See for a list of the xxx choices.)
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the set of values sent to the constructor that specifies the desired ordering of instruction checking and string interning.
						
						
							 The current set of values that specifies the desired ordering of instruction checking and string interning.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Stores the value of a constant in metadata.
				
				
					
						 This attribute can be applied to fields
 and parameters.
						 For more information on storing constants in metadata, see Partition II of
 the CLI Specification.
						 The types in
 are intended primarily for use by
 compilers, not application programmers. They allow compilers to easily
 implement certain language features that are not directly visible to
 programmers.
					
				
			
			
				 System.Attribute
			
			
			
				
					 CLSCompliantAttribute(false)
					 0
				
				
					 AttributeUsageAttribute(AttributeTargets.Field | AttributeTargets.Parameter, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
						
					
					
						
							 Constructs a new instance of the
class with the specified value.
						
						 A that specifies the number of digits to the right of the decimal point in the value of the new instance. Valid values are 0 through 28 inclusive.
						 A that specifies the sign of the value of the new instance. Zero indicates a positive value; any non-zero value indicates a negative value.
						 A that specifies the high-order 32 bits of the value of the new instance.
						 A that specifies the middle 32 bits of the value of the new instance.
						 A that specifies the low-order 32 bits of the value of the new instance.
						
							 > 28.
						
							
								 For representations of whose values can have scales exceeding 255, the constructor
									 must be used instead.
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new instance of the
class with the specified value.
						
						 A containing the value to convert.
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number greater than or less than .
						
							 The format of is specified by the grammar shown below, in which where the characters in the strings accepted for infinity and nan are not case-sensitive, trailing zero digits in decimal-part are significant, and he purpose of the sign of, and optional digits following, 'NaN' (quiet NaN) and 'sNaN' (signaling NaN) is unspecified. An implementation is free to ignore such signs and digits.
							
								 shall not contain any white space characters.
							 If an implementation's representation of supports NaNs and infinities, that implementation shall correctly handle strings designating those values; otherwise, support for such strings is optional.
							 Results are rounded to the nearest representable value, and, when a result is equally close to two representable values, to the value that has an even number in the least significant digit position (banker's rounding).
							 numeric-string:: = [sign] numeric-value | [sign] nan
numeric-value:: = decimal-part [exponent-part] | infinity
decimal-part:: = digits '.' [digits] | ['.'] digits
exponent-part:: = indicator [sign] digits
sign:: = '+' | '-'
digits:: = digit [digit]+
digit:: = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
indicator:: = 'e' | 'E'
infinity:: = 'Infinity' | 'Inf'
nan:: = 'NaN' [digits] | 'sNaN' [digits]'

						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Defines the member that is invoked when no member name
 is specified for the type targeted by
 .

				
				
					
						 This attribute is used by the methods.
						 This attribute can
 be applied to classes, structs, and interfaces.
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Class | AttributeTargets.Struct | AttributeTargets.Interface, AllowMultiple=false, Inherited=true)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes new instance of the
class.
						
						
							 A containing the name of the member to invoke. Can be a constructor, method, property, or field.
						
						
							 This constructor initializes the property using
.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the member name contained by the current instance.

						
						
							 A representing the member name contained by the current instance.

						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates that the target method of this attribute is an export from an unmanaged shared library.
				
				
					 This attribute provides the information needed to call
 a method exported from an unmanaged shared library. This attribute provides the name of the
 shared library file, the name of the method within that library, the calling convention, and character set of the
 unmanaged function.
					
						 A shared library refers
 to Dynamically Linked Libraries on Windows systems, and Shared Libraries on
 Unix systems.
					
					 Compilers are required to not preserve this type
 in metadata as a custom attribute. Instead, compilers are required to emit it
 directly in the file format, as described in Partition II of the CLI
 Specification. Metadata consumers, such as the Reflection API, are required to
 retrieve this data from the file format and return it as if it were a custom
 attribute.
				
				
					 The following example demonstrates the use of the .
					
						 The non-standard
 API used in this example indicates the current local system time.
					
					 using System;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
public class SystemTime {
 public ushort year;
 public ushort month;
 public ushort dayOfWeek;
 public ushort day;
 public ushort hour;
 public ushort minute;
 public ushort second;
 public ushort milliseconds;
}

public class LibWrap {
 [DllImportAttribute("Kernel32", CharSet=CharSet.Auto, CallingConvention=CallingConvention.StdCall, EntryPoint="GetLocalTime")]
 public static extern void GetLocalTime(SystemTime st);
}

public class DllImportAttributeTest {
 public static void Main() {

 SystemTime st = new SystemTime();

 LibWrap.GetLocalTime(st);
 Console.Write("The Date and Time is: ");
 Console.Write("{0:00}/{1:00}/{2} at ", st.month, st.day, st.year);
 Console.WriteLine("{0:00}:{1:00}:{2:00}", st.hour, st.minute, st.second);
 }
}

					 When run at the given time on the given date, the output produced was
					
						 The Date and Time is: 05/16/2001 at 11:39:17
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Method, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that specifies the name of the shared library containing the unmanaged method to import.
						
							 If the shared library specified in is not found, an error
 occurs at runtime.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CallingConvention
					
					
					
						
							 A
value that specifies the calling convention used when passing arguments to
the unmanaged implementation of a method in a
shared library.
						
						
							 The default
 value
 is .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CharSet
					
					
					
						
							 A value that controls function name modification and indicates how the arguments to the method will be
 marshaled.
						
						
							 This field is set to one of the values to indicate the
 required modifications to the name of the imported function and to the arguments of the
 function. The default value for is .
							 If is set to , all string arguments
are converted to Unicode characters before being passed to the unmanaged
implementation. If the
field is set to the string characters
are converted to ANSI characters. If is set to , the and function name
conversion is platform dependent.
							 The field might
also be used to determine which version of a function is imported from the
specified shared library by modifying the provided name of the function.
The name modification is platform specific, and includes
 additional characters to indicate the character set.
							 The default value of this field is
 .
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					
						
							 A that specifies the name of the shared library
 entry
 point.
						
						
					
					 0
				
				
					
					
					 Field
					
						 System.Boolean
					
					
					
						
							 A
value indicating whether the name of the
entry point in the unmanaged library is modified to correspond to the value specified in
the field.
						
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the name of the shared library file with the entry point.
						
						
							 A containing the name of the shared library file from which a function implementation
 is imported.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when an attempt to load
 a fails due to
 the absence of an entry point.
				
				
					
						 In C#, an entry point is defined through
 the Main() method. For additional information about entry points, see Partition
 II of the CLI Specification.
					
				
			
			
				 System.TypeLoadException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message that describes the
error, such as "Entry point was not found." This message takes into account the
current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class with a specified error message.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new
 instance using . If is
 , the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, the current exception was raised in a catch block handling .
						
							 This constructor initializes the property
 of the new instance using and the property using
 . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 For more information on inner
 exceptions, see .
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when there is an attempt to access a field outside
 the scope in which access is permitted.
				
				
					
						 This exception is typically thrown when the access
 level of a field in a class library is changed, and
 one or more assemblies referencing the library have not been recompiled.
					
				
				
					 The following example demonstrates a scenario under
 which
 is thrown.
					 The following code contains a class with a public field (myField). This class
 is compiled into a class library.
					 using System;
namespace TestNameSpace
{
 public class Class1
 {
 public Class1()
 {
 Console.WriteLine ("Constructing with public field");
 }
 public int myField = -1;
 }
}

					 The following code references the class library above, and accesses
 TestNameSpace.Class1.myField. This code is compiled into an application.
					 using System;
using TestNameSpace;
class AppTest
{
 public static void Main()
 {
 Class1 test = new Class1();
 Console.WriteLine("Accessing member {0}.", test.myField);
 }
}

					 The output of the application is
					
						 Constructing with public field
						 Accessing member -1.
					
					 The code for the class library is changed and recompiled so that TestNameSpace.Class1.myField is no longer public. The following code changes
 myField from public to private.
					 using System;
namespace TestNameSpace
{
 public class Class1
 {
 public Class1()
 {
 Console.WriteLine ("Constructing with private field");
 }
 private int myField = -1;
 }
}

					 When the application is executed again without being recompiled, the output
 is
					
						 Unhandled Exception: System.FieldAccessException:
 TestNameSpace.Class1.myField
						 at
 AppTest.Main()
					
				
			
			
				 System.MemberAccessException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the

 class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message that describes the
error, such as "Attempted to access a private or protected field inside a type."
This message takes into account the current system culture.
							 The property of the new instance
is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the

 class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the
property of the new instance using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no
arguments.
							 The property of
the new instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
 class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance
 using and the property using
 . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 For more information on inner
 exceptions, see .
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates the physical position of a field within the unmanaged representation of a class or structure.
				
				
					 The target objects for this attribute are non-static
 fields of classes and structures qualified with the set to .
 All non-static fields within an object with an explicit layout are required to
 have this attribute. No static or constant fields within an object with explicit
 layout are allowed
 to have this attribute.
					 The physical layout of the data members of a class
 or structure is automatically arranged in managed memory. When a managed
 object is passed as an argument to unmanaged code, the system
 creates its unmanaged representation.
 provides explicit control over this unmanaged representation.
 indicates the offset of a target data member within the
 unmanaged representation of
 a class
 or structure.
					 If
instances on target fields of an exported
object are set to overlap each other, one field is overwritten by another
field. For example, if an integer field has the
set to 4, and another integer
field has the
set to 6, the last two bytes of the unmanaged representation of
the first integer overlap the first two bytes of the second integer. In such a situation writing
to one of the fields might corrupt the data in the other.
					
						 See the class overview for
an example that uses .
					
					 Compilers are required to not preserve this type
 in metadata as a custom attribute. Instead, compilers are required to emit it
 directly in the file format, as described in Partition II of the CLI
 Specification. Metadata consumers, such as the Reflection API, are required to
 retrieve this data from the file format and return it as if it were a custom
 attribute.
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Field, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class with the specified field offset in the class or structure.
						
						 A that specifies the offset in bytes from the beginning of the structure to the beginning of the field.
						
							 If is
 negative, its value is interpreted as an unsigned value, and
 the system behavior is implementation-defined.
							
 The property of
 the new instance is initialized to
 .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the offset from the beginning of the exported data object to the beginning of the
 target field.
						
						
							 A containing the offset from the beginning of the exported data
 object to the beginning of the target field.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides a means for referencing a managed object from
 unmanaged memory.
				
				
					 Use a when an
 object reference is required to be accessible from unmanaged
 memory.
					 The enumeration describes the
possible
types.
					
						 If the type of the is
 , then it is an opaque
handle, and the address of the object it references cannot be resolved through
it.
					
				
			
			
				 System.ValueType
			
			
			
				
					
					
					 Method
					
						 System.IntPtr
					
					
					
						
							 Returns the address of an object being referred to by a handle.
						
						
							 A containing the address of the of the object as a
 .
						
						 The handle type is not .
						
							 Requires permission to call unmanaged code. See .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Runtime.InteropServices.GCHandle
					
					
						
					
					
						
							 Allocates a
handle for the specified object.
						
						 The object for which the is created. Can be .
						
							 A new instance that protects the
 object from garbage collection.
						
						
							 A handle ensures the
 object will not be collected by the garbage collector.
							 If the
parameter is , this method
returns a valid . The target of the handle can be changed via the
 property.
							
						
						
							 Requires permission to call unmanaged code. See .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Runtime.InteropServices.GCHandle
					
					
						
						
					
					
						
							 Allocates a handle of the specified type for the specified object.
						
						 The object for which the is created. Can be .
						 A value that specifies the type of to create.
						
							 A new instance
 that protects the object.
						
						
							 If the parameter is
 , this method returns a valid . The target of
 the handle can be changed via the
 property.
							
						
						
							 Requires permission to call unmanaged code. See .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Frees a .
						
						 The handle has already been freed or was never initialized.
						
							 The caller is required to provide synchronization to
 prevent multiple threads from executing this method simultaneously for a given
 handle.
						
						
							 Requires permission to call unmanaged code. See .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current instance is allocated.
						
						
							
								 if the handle
 is allocated; otherwise, .
						
						
							 This property is read-only.
							 Use this method to determine whether
 the

 is still available.
							
								 When the garbage collector collects the
 object, the handle could still be resurrected in the finalizer.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Runtime.InteropServices.GCHandle
					
					
						
					
					
						
							 Convert a to a
instance.
						
						 The to be converted.
						
							 A .
						
						
							
								
instances are stored using an internal integer
representation. This method allows you to retrieve a
from its integer representation.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IntPtr
					
					
						
					
					
						
							 Converts a instance to
 a .
						
						 The to be converted.
						
							 A representation of the specified .
						
						
							
								 instances are stored using
 an internal integer representation. This method allows you to retrieve that
 representation.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets or sets a reference to the object the current instance represents.
						
						
							 The object this handle represents.
						
						
							 The current instance has already been freed or was never initialized.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Represents the types of handles the
 class can allocate.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Runtime.InteropServices.GCHandleType
					
					
					 Normal
					
						
							 A is an opaque
 handle, and the address of the object it references cannot be resolved through
 it. The also prevents the
 collection of the referenced object by the GC.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.GCHandleType
					
					
					 Pinned
					
						
							 Similar to , but allows the
 address of the object, which the current

 represents to be taken.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates that a parameter will be marshaled from the caller to
 the callee.
				
				
					
						 The
 and
 are not
 required. In the absence of explicit settings, the system assumes that all
 arguments passed by reference are passed
 / and that all non-reference
 parameters are . The only exception is the
 class, which is always assumed to be
 / . The and are
 particularly useful when applied to formatted types that cannot be block-copied.
 Since these types require copying during marshaling, you can use
 and to eliminate the generation of unnecessary
 copies.
					
					 Compilers are required to not preserve this type
 in metadata as a custom attribute. Instead, compilers are required to emit it
 directly in the file format, as described in Partition II of the CLI
 Specification. Metadata consumers, such as the Reflection API, are required to
 retrieve this data from the file format and return it as if it were a custom
 attribute.
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Parameter, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 This attribute is used to indicate the name by which an indexer is known in programming languages that do not support indexers directly.
				
				
					
						 This attribute is directly processed by the compiler, and cannot be accessed after compilation through Reflection.
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Property, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified indexer name value.
						
						 A value that specifies the name by which this indexer is known in programming languages that do not support indexers directly.
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 An implementation-specific type that is used to represent
 a pointer or a handle.
				
				
					 The type is designed
 to be an implementation-sized pointer. An instance of this type is expected to be
 the size of a for the current implementation.
					 For more information on the type, see Partition II of
 the CLI Specification.
					
						 The type provides CLS-compliant
 pointer functionality.
						
							 instances can also be used
to hold handles.
						 The type is
CLS-compliant while the
type is not. The type is provided mostly to
maintain architectural symmetry with the
type.
					
				
			
			
				 System.ValueType
			
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new structure using the specified containing a pointer
 or a handle.
						
						 A containing a pointer or a handle.
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new structure using the specified containing a pointer
 or a handle.
						
						 A containing a pointer or a handle.
						 The current platform is a 32-bit platform and the value of the current instance is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified
 represent the same type and
 value.
						
						 The to compare to the current instance.
						
							
								 if is a instance and has the same value as the current
 instance. If is a null reference or is not an instance of
 , returns .
						
						
							
								 The method overrides
 .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A containing the hash code for the current instance.
						
						
							
								 The algorithm
 used to generate the hash code is unspecified.
							
							
								 This method
 overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the two specified instances of represent the same value.
						
						
						 The first to compare for equality.
						 The second to compare for equality.
						
							
								 if
 represents the same value as ; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the two specified instances of represent different values.
						
						
						 The first to compare for inequality.
						 The second to compare for inequality.
						
							
								 if
 represents a different value than ; otherwise, .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					 4
					
						
							 Gets the size in bytes of a pointer or a handle for the current implementation.
						
						
							 A containing the
 number of bytes of a pointer or handle for the current implementation. The value
 of this property is equal to the number of bytes contained by the type
 in
 the current implementation.
						
						
							 This property is read-only.
							 For more information on the
 type, see
 Partition II of the CLI Specification.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Converts the value of the current instance to a
 .
						
						
							 A containing
 the same value as the current instance.
						
						 The current platform is not a 32-bit platform and the value of the current instance is greater than or less than .
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
					
						
							 Converts the value of the current instance to a
 .
						
						
							 A containing the
 same value as the current instance.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void*
					
					
					
						
							 Converts the value of the current instance to a pointer
 to .
						
						
							 A pointer to .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 .
							
								 A pointer to points to memory
 containing data of an unspecified type.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a
representation of the value of the current instance.
						
						
							 A representation of the current instance.
						
						
							
								 If for the current instance is
 4,
 is equivalent to ();
 otherwise, this method is equivalent to ().
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.IntPtr
					
					
					 0
					
						
							 Represents a pointer or handle that has been initialized as zero.
						
						
							
								 The value of this field is not ,
 but is instead a pointer which has been assigned the value zero. Use this
 field to efficiently determine whether an instance of has been set to a value
 other than zero. For example, if
 is a instance, using is more
 efficient than to test if
 has been set to a value other than zero.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Marks a location in the memory store as volatile.
				
				
					
						 is a class used only in custom modifiers of method signatures to indicate that a location in the memory store (see "The Memory Store" in Partition I) is "volatile".
					 When used as a required modifier, any compiler that successfully imports metadata that describes a memory location as "volatile" is required to use
prefixed instructions to access such locations. Examples of such locations are volatile fields, volatile targets of pointers, and volatile elements of arrays.
					
						 For most languages, it is recommended that the notion of "volatile" be attached to locations using language syntax instead of custom modifiers.
						 The types in
 are intended primarily for use by
 compilers, not application programmers. They allow compilers to easily
 implement certain language features that are not directly visible to
 programmers.
					
					 For more information on custom modifiers, see
 Partition II of the CLI Specification.
				
			
			
				 System.Object
			
			
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Indicates the physical memory layout of objects exported
 to unmanaged code.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Runtime.InteropServices.LayoutKind
					
					
					 Auto
					
						
							 Indicates that the appropriate layout of members of an
 object is automatically chosen. The layout in this case is implementation defined.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.LayoutKind
					
					
					 Explicit
					
						
							 Indicates that the precise position of each member of
 an object is explicitly controlled in unmanaged memory. Each member of the
 exported class or structure is required
 to use to indicate the position of that
 field within the type.
							
								 For
 an example that uses , see
 the class overview.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.LayoutKind
					
					
					 Sequential
					
						
							 Indicates that object members are laid out sequentially, in the
 order in which they appear in the object's type definition.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Specifies how data is to be marshaled between managed and unmanaged code.
				
				
					 This attribute can be applied to parameters, fields, or return values.
					 Each data type has a default marshaling behavior that is used
 if this attribute is not present. This attribute is only required when a type
 can be marshaled as more than one possible types. The enumeration specifies possible
 data types.
					
					 Compilers are required to not preserve this type
 in metadata as a custom attribute. Instead, compilers are required to emit it
 directly in the file format, as described in Partition II of the CLI
 Specification. Metadata consumers, such as the Reflection API, are required to
 retrieve this data from the file format and return it as if it were a custom
 attribute.
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Field | AttributeTargets.Parameter | AttributeTargets.ReturnValue, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the
 specified
 value.
						
						 A value indicating how the data is to be marshaled.
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 value.
						
						 A containing a value indicating how the data is to be marshaled.
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					
						
							 A enumeration value that
 specifies the type of elements in an array.
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					
						
							 A that is used with
 to hold a cookie that is passed
 to the custom marshaler. The value of the cookie is defined by the custom
 marshaler implementation.
						
						
							 This field is used
 only with
 and is optional.
						
					
					 0
				
				
					
					
					 Field
					
						 System.String
					
					
					
						
							 A
that identifies the of a custom
marshaler.
						
						
							 This field is used only with and is
 required.
							 A custom marshaler is a type that is capable of marshaling calls from a
 specific managed type to a specific unmanaged type and vice versa.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Type
					
					
					
						
							 Specifies the managed of the argument being marshaled.
						
						
							 This field is used only with
and is required.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
						
							 A that specifies the size, in bytes, of the constant size array being
 marshaled.
						
						
							 This field is
 used only with the
 or enumeration
 value. When using either of these unmanaged types, either this field or is required.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int16
					
					
					
						
							 A that identifies the
 position (starting with zero) of the method argument that identifies the size of
 the array being marshaled.
						
						
							 This field is used only with the
or enumeration value.
When using either of these unmanaged types, either this field or is required.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					
						
							 Gets the value the data
 is to be marshaled as.
						
						
							 The value indicating how the data is to
 be marshaled.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					
						 is the base class for
 exceptions that occurs when an attempt to locate or access a type
 member fails.
				
				
					
						
							 exceptions are typically thrown by the system
 when members in a class library have been changed or removed, and an assembly that references the class library has not been recompiled.

						 The Base Class Library includes the following derived types:

						
							
								
									
								
							
							
								
									
								
							
							
								
									
								
							
						
						 When appropriate, use these types instead of .
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message that describes the
error, such as "Cannot access member." This message takes into account the
current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the
property of the new instance using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no
arguments.
							 The property of the
new instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, then the current was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance
 using and the property using
 . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when there is an
 attempt to access a method outside the scope in which access is permitted.
				
				
					
						 This exception is
 thrown when the access level of a method in a class library is changed, and one
 or more assemblies referencing the library have not been recompiled. This exception is also thrown when an attempt to invoke a
 method via reflection fails because the caller does not have the required
 permissions.
					
				
				
					 The following example demonstrates a scenario under
 which
 is thrown.
					 The following code contains a class with a public method (MyMethod). This
 class is compiled into a class library.
					 using System;
namespace TestNameSpace
{
 public class Class1
 {
 public Class1()
 {
 Console.WriteLine ("Constructing with public method.");
 }
 public void MyMethod ()
 {
 Console.WriteLine ("Calling MyMethod.");
 }
 }
}

					 The following code references the class library above, and accesses
 TestNameSpace.Class1.MyMethod. This code is compiled into an application.
					 using System;
using TestNameSpace;
class AppTest
{
 public static void Main()
 {
 Class1 test = new Class1();
 test.MyMethod();
 }
}

					 The output of the application is
					
						 Constructing with public method.
						 Calling MyMethod.
					
					 The code for the class library is changed and recompiled so that TestNameSpace.Class1.MyMethod is no longer public. The following code changes
 MyMethod from public to private.
					 using System;
namespace TestNameSpace
{
 public class Class1
 {
 public Class1()
 {
 Console.WriteLine ("Constructing with private method.");
 }
 private void MyMethod ()
 {
 Console.WriteLine ("Calling MyMethod.");
 }
 }
}

					 When the application is executed again without being recompiled, the output
 is
					
						 Unhandled Exception: System.MethodAccessException:
 TestNameSpace.Class1.MyMethod()
						 at AppTest.Main()
					
				
			
			
				 System.MemberAccessException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the

 class.
						
						
							 This constructor initializes the
property of the new instance to a system-supplied message that describes the
error, such as "Attempt to access the method failed." This message takes into
account the current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with
 a specified error message.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the
property of the new instance using . If is
 , the property is initialized to the
system-supplied message provided by the constructor that takes no
arguments.
							 The property of the
new instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with a specified error
 message and a reference to the inner exception that is the cause of the current
 exception.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the new instance
 using and the property using
 . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 For more information on inner
 exceptions, see .
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Specifies the details of how a method is implemented.
				
				
					 Compilers are required to not preserve this type in metadata as a custom
 attribute. Instead, compilers are required to emit it directly in the file
 format, as described in Partition II of the CLI Specification. Metadata
 consumers, such as the Reflection API, are required to retrieve this data from
 the file format and return it as if it were a custom attribute.
					
						 This class uses the
 enumeration to describe the
 implementation details of methods. For most languages, it is recommended
 that the notions of "forward" and "synchronized" be attached to methods using
 language syntax instead of custom attributes.
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Constructor | AttributeTargets.Method, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class using the
 specified
 value.
						
						 A value that specifies a property of the method attributed by the current instance.
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 value
 interpreted as a value.
						
						
							 A that is interpreted as a bit-field that represents the desired value, which specifies a property of the method attributed by the current instance.
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
 class.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Runtime.CompilerServices.MethodImplOptions
					
					
					
						
							 Gets the value
 describing the method attributed by the
 current instance.
						
						
							 The value
 describing the method attributed
 by the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the details of how a method is implemented.
				
				
					 This enumeration is used by .

				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.MethodImplOptions
					
					
					 ForwardRef
					
						
							 Specifies that the method is declared, but its implementation is
 provided elsewhere.
							
								 For most languages, it is recommended
 that the notion of "forward" be attached to methods using language syntax
 instead of custom attributes.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.MethodImplOptions
					
					
					 InternalCall
					
						
							 Specifies an internal call.
							
								 An internal call
 is a call to a method implemented within the system itself, providing
 additional functionality that regular managed code cannot provide.
 is an example of an internally called method.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.MethodImplOptions
					
					
					 NoInlining
					
						
							 Specifies that the method is not permitted to be inlined.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.MethodImplOptions
					
					
					 Synchronized
					
						
							 Specifies the method can be executed by only one thread at a time.
							 This option specifies that before a thread can execute the target method, the
 thread is required to acquire a lock on either the current
 instance or the
 object for the method's class. If the target method is an instance method, the
 lock is on the current instance. If the target is a static method, the lock is
 on the object. Specifying this option causes the target method to behave as though its
 statements are enclosed by and
 statements locking the previous described object. This option and the methods are functionally equivalent, and both
 are functionally equivalent to enclosing the target method's code in a C# lock
 (this)
 statement.
							
								 Because this option holds the lock for
 the duration of the target method, it should be used only when the entire method
 must be single threaded. Use the methods (or the C#
 lock statement) if the object lock can be taken after the method begins, or
 released before the method ends. Any mechanism that uses locks can cause an
 application to experience deadlocks and performance degradation; for these
 reasons, use this option with care.
								 For most languages, it is recommended that the notion of
 "synchronized" be attached to methods using language syntax instead of custom
 attributes.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.CompilerServices.MethodImplOptions
					
					
					 Unmanaged
					
						
							 Specifies that the method is implemented in unmanaged code.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when there is an attempt to dynamically access a
 field that does not exist.
				
				
					 Normally a compilation error is generated if code attempts to access a
 nonexistent member of a class. is designed to handle cases where an attempt is
 made to dynamically access a renamed or deleted field of an
 assembly that is not referenced by its strong name. The is thrown when code in a
 dependent assembly attempts to access a missing field in an assembly that was
 modified.
					
						 The following CIL instructions throw :
						
							
								
 ldfld
							
							
								
 ldflda
							
							
								
 ldsflda
							
							
								
 stfld
							
							
								
 stsfld
							
						
					
				
			
			
				 System.MissingMemberException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes new instance of the
class.
						
						
							 This constructor initializes the property of the new
 instance to a system-supplied message that describes the error, such as
 "Attempted to access a nonexistent field." This message takes into account the
 current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new
 instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property of the
new instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the
 new instance using and the property using
 . If is , the
 property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 For more information on inner
 exceptions, see .
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when there is an attempt to dynamically access a class member that
 does not exist.
				
				
					 Normally a compilation error is generated if code
 attempts to access a nonexistent member of a class.
 is
 designed to handle cases where an attempt is made to dynamically access a
 renamed or deleted member of an assembly that is not referenced by its strong
 name. The
 is thrown when code in a dependent assembly attempts to access a missing member in
 an assembly that was modified.
					
						 The Base Class Library includes the following derived types:

								
									
										
									
								
								
									
										
									
								
							
						
						 When appropriate, use these types instead of .
					
				
			
			
				 System.MemberAccessException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a
 system-supplied message that describes the error, such as "Attempted to access a
 missing member." This message takes into account the current system culture.
							 The property of the new
instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance
 using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property of the new
instance is initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the
 new instance using and the property using
 . If is , the
 property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 For more information on inner
 exceptions, see .
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when there is an attempt to dynamically access a
 method that does not exist.
				
				
					 Normally a compilation error is generated if code
 attempts to access a nonexistent method of a class.
 is designed to handle
 cases where an attempt is made to dynamically access a renamed or deleted method
 of an assembly that is not referenced by its strong name. The

 is thrown when code in a dependent assembly attempts to access a missing method in an assembly that
 was modified.
					
						 The following CIL instructions throw :
						
							
								 callvirt
							
							
								 newobj
							
						
					
				
			
			
				 System.MissingMemberException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the new instance to a
 system-supplied message that describes the error, such as "Attempted to access a
 missing method." This message takes into account the current system culture.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class with a specified error message.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the new instance
 using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property of the new instance is
initialized to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
 Constructs and initializes a new instance of the class.

						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, the current exception was raised in a catch block handling .
						
							 This constructor initializes the property of the
 new instance using and the property using
 . If is , the
 property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 For more information on inner
 exceptions, see .
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates that a parameter will be marshaled from
 the callee back to the caller.
				
				
					
						 The and are not required. In
 the absence of explicit settings, the system assumes that all arguments
 passed by reference are passed / and that
 all non-reference parameters are . The only exception is the
 class, which is always assumed to be
 / . The and are
 particularly useful when applied to formatted types that cannot be block-copied.
 Since these types require copying during marshaling, you can use
 and to eliminate the generation of unnecessary
 copies.
					
					 Compilers are required to not preserve this type
 in metadata as a custom attribute. Instead, compilers are required to emit it
 directly in the file format, as described in Partition II of the CLI
 Specification. Metadata consumers, such as the Reflection API, are required to
 retrieve this data from the file format and return it as if it were a custom
 attribute.
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Parameter, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Indicates that a method allows a variable number of arguments in its invocation.
				
				
					 This attribute can be applied to parameters. A parameter array allows the specification
 of an unknown number of arguments. The array is required to be a single-dimensional array that is
 the last parameter in a formal parameter list. It permits arguments to a
 method to be specified in two ways:
					
						
							

 A single expression of a type that is implicitly convertible to
 the parameter array type. The array functions as a value
 parameter.
						
					
					
						
							

 Zero or more arguments where each argument is an expression of a type
 that is implicitly convertible to the type of the parameter-array
 element.
						
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Parameter, AllowMultiple=false, Inherited=true)
					 0
				
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of the
class.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Serves as a metadata token for a field.
				
				
					
						 objects are created through the use of the CIL instruction .
					
						 For more
 information on , see Partition III of the CLI
 Specification.
					
				
			
			
				 System.ValueType
			
			
			
				
					
					
					 Property
					
						 System.IntPtr
					
					
					
						
							 Gets a that contains the
 value of the current .

						
						
							 A that contains the
 value of the current .

						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Implements static methods and properties that provide special support for
 compilers.
				
				
					
						 The types in

 are intended primarily for use by compilers, not application
 programmers. They allow compilers to easily implement certain language
 features that are not directly visible to programmers.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Provides a fast way to initialize a from data
 stored in a module.
						
						 The to be initialized.
						 A specifying the location of the data used to initialize .
						
							 This method is for compiler use only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					 12
					
						
							 Gets the number of bytes between the start of a and the first
in the string.
						
						
							 A containing the number of bytes between the start of a and the first
in the string.
						
						
							 This property is read-only.
							
								 This property is deprecated; its design is considered unnecessarily inflexible. It is expected that an improved design can be incorporated into the next revision of this Standard.

								 Compilers use this property for unsafe, but efficient, pointer operations on
 the characters in a managed string. Compilers should pin the string against
 movement by the garbage collector prior to use. Note that strings are immutable:
 their contents can be read but not changed.
								 The contents of these offset bytes are implementation-defined.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Runs a specified class constructor method.
						
						 A specifying the class constructor method to run.
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 The
allows the user to control the physical layout
of the data members of a class or structure.
				
				
					 The target objects for this attribute are classes and structures. By default, the physical layout of the data members of a target object is automatically arranged.
 When managed objects are passed as arguments to unmanaged code,
 the system creates their unmanaged representations. These unmanaged representations can
 be controlled with the .
 Such control is necessary if the unmanaged code expects a specific layout, packing
 size, or character set.
					
						 See the
enumeration for a description of the possible layout schemes, and the for further information on the layout of exported objects.
					
					 Compilers are required to not preserve this type
 in metadata as a custom attribute. Instead, compilers are required to emit it
 directly in the file format, as described in Partition II of the CLI
 Specification. Metadata consumers, such as the Reflection API, are required to
 retrieve this data from the file format and return it as if it were a custom
 attribute.
				
				
					 The following example demonstrates the use of the , and the .
					
						 The non-standard

function used in this example indicates whether the specified point is
located inside the specified rectangle. In this example, the layout setting on the

structure can be
set to
with no bearing on the end
result.
					
					 using System;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
public struct Point {
 public int x;
 public int y;
}

[StructLayout(LayoutKind.Explicit)]
public struct Rect {
 [FieldOffset(0)] public int left;
 [FieldOffset(4)] public int top;
 [FieldOffset(8)] public int right;
 [FieldOffset(12)] public int bottom;
}

class NativeCodeAPI {
 [DllImport("User32.dll")]
 public static extern bool PtInRect(ref Rect r, Point p);
}

public class StructLayoutTest {
 public static void Main() {
 Rect r;
 Point p1, p2;

 r.left = 0;
 r.right = 100;
 r.top = 0;
 r.bottom = 100;

 p1.x = 20;
 p1.y = 30;

 p2.x = 110;
 p2.y = 5;

 bool isInside1 = NativeCodeAPI.PtInRect(ref r, p1);
 bool isInside2 = NativeCodeAPI.PtInRect(ref r, p2);

 if(isInside1)
 Console.WriteLine("The first point is inside the rectangle.");
 else
 Console.WriteLine("The first point is outside the rectangle.");

 if(isInside2)
 Console.WriteLine("The second point is inside the rectangle.");
 else
 Console.WriteLine("The second point is outside the rectangle.");

 }
}

					 The output is
					
						 The first point is inside the rectangle.
						 The second point is outside the rectangle.
					
				
			
			
				 System.Attribute
			
			
			
				
					 AttributeUsageAttribute(AttributeTargets.Class | AttributeTargets.Struct, AllowMultiple=false, Inherited=false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified value.
						
						 A value that specifies how the class or structure is arranged in memory.
						
							 If contains an invalid
 value,
 a runtime error occurs.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
 class
 with the specified value.
						
						 A set to a value that specifies how the class or structure is arranged in memory.
						
							 If the
parameter does not represent a valid
value, a
runtime error occurs.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.CharSet
					
					
					
						
							 A value that indicates the character set in which strings of an object are
 marshaled.
						
						
							
								 See the
enumeration for a description of different character sets.
							
							 The default value of this field is
 .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
						
							 A that indicates the packing alignment used with the
 layout.
						
						
							 The field determines memory
 alignment of data fields of a target object.
							 Data fields of a target object exported to unmanaged
 memory are
 aligned on
 a byte boundary that is a multiple of bytes, or at
 some natural alignment for that field type, whichever is smaller.
							 The value of is
required to be 0, 1, 2, 4, 8, 16, 32, 64, or 128. A value of zero indicates that
the packing alignment is set to the default for the current platform.
The default value is implementation-defined.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
						
							 A that indicates the size of the memory block to be allocated
 for an instance of the type qualified by the current .
						
						
							
								 is required to
 be zero, or greater than or equal to the calculated size of the target object,
 based on the field indicating the packing
 alignment. A of zero
 indicates that the size is calculated from the field types, their specified offsets, the packing size (default or
 specified) and natural alignment on the target, runtime platform.
							
								 For additional
 information on the
 field, see Partition II of the CLI Specification.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Runtime.InteropServices.LayoutKind
					
					
					
						
							 Gets the value that specifies how
 the target object is arranged.
						
						
							 A value that specifies how
 the target object is arranged.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 The is a handle to the internal metadata representation of a method.

				
				
					
						 objects are created through the use of the CIL instruction .
					
						 For more information on , see Partition III of the CLI
 Specification.
					
				
			
			
				 System.ValueType
			
			
			
				
					
					
					 Property
					
						 System.IntPtr
					
					
					
						
							 Gets the value of the current instance.

						
						
							 A containing the value of the handle.

						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides a handle to the internal metadata representation of a type.
				
				
					
						 objects are created through the use of the CIL instruction .
					
						 For more information on , see Partition III of the CLI
 Specification.
					
				
			
			
				 System.ValueType
			
			
			
				
					
					
					 Property
					
						 System.IntPtr
					
					
					
						
							 Gets the value of the current instance.

						
						
							 A containing the value of the handle.

						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when the system cannot
 load a .
				
				
					
						 is thrown when the system cannot load a , or
 cannot locate the assembly that contains the

 .
					
						 The following CIL instructions throw and set the TypeName property via some unspecified mechanism:
						
							
								 box
							
							
								 castclass
							
							
								 cpobj
							
							
								 isinst
							
							
								 ldobj
							
							
								 mkrefany
							
							
								 refanyval
							
							
								 stobj
							
							
								 unbox
							
						
					
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the class.
						
						
							 This constructor initializes the property of the new instance to a
 system-supplied message that describes the error, such as "A failure has
 occurred while loading a type." This message takes into
 account the
 current system culture.
							 The property is initialized to , and the
 property
is initialized to
.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property
 of the new instance using . If is ,
 the property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property is initialized to , and the
 property is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property
 of the new instance using and the property using
 . If is , the
 property is initialized to the system-supplied message
 provided by the constructor that takes no arguments.
							 The property is initialized to .
							 For more information on inner
 exceptions, see .
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the error message for this exception.
						
						
							 A containing a message that describes the error.
						
						
							 This property is read-only.
							
								 This property
 overrides .
							
							 If no message was supplied to the constructor for
 the current instance, the system supplies a default message that is formatted
 using the current system culture. The system-supplied message includes the fully
 qualified name of the type that failed to load, and the string obtained by
 invoking on the assembly that referenced the type. For
 a type named , referenced by an assembly with the
 simple name ,
 the message might
 read as follows:
							
								 Could not load type
 MyTypes.MyClass from assembly MyAssembly, Version=0.0.0.0, Culture=neutral,
 PublicKeyToken=null.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the fully qualified name of the that failed to load.
						
						
							 A containing the fully qualified type name.
						
						
							 This property is read-only.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when there is
 an attempt to access a that has been unloaded.
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						
							 This constructor initializes the property of the
 new instance to a system-supplied message that describes the error, such as
 "Type has been unloaded." This message takes into account the current system
 culture.
							 The property of the new instance is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						
							 This constructor initializes the property of the
 new instance using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no
 arguments.
							 The property of the new
instance is initialized to
 .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is non-null, then the current Exception was raised in a catch block handling .
						
							 This constructor initializes the property of
 the new instance using and the property using . If is
 , the property is initialized to the
 system-supplied message provided by the constructor that takes no arguments.
							
								 For more
 information on inner exceptions, see .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This type is safe for multithreaded operations.
			
				
					 An implementation-specific type that is used to represent a pointer or a
 handle.
				
				
					 The type is designed
 to be an implementation-sized pointer. An instance of this type is expected to be
 the size of a for the current
 implementation.
					
 For more information on the type, see Partition II of
 the CLI Specification.

					
						
							 instances
 can also
 be used to hold handles.
						 The type is
CLS-compliant while the
type is not. The type is provided mostly to
maintain architectural symmetry with the
type.
					
				
			
			
				 System.ValueType
			
			
			
				
					 CLSCompliantAttribute(false)
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new structure using the
 specified containing a pointer
 or a handle.
						
						 A containing a pointer or handle.
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs a new structure using the
 specified containing a pointer
 or a handle.
						
						 A containing a pointer or a handle.
						 The current platform is a 32-bit platform and the value of the current instance is greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the current instance and the specified represent the
 same type and value.
						
						 The to compare to the current instance.
						
							
								 if is a instance and has the same value as the
 current instance. If is a null reference or is not an instance of
 ,
 returns .
							
						
						
							
								 The method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
					
						
							 Generates a hash code for the current instance.
						
						
							 A
containing the hash code for the current instance.
						
						
							
								 The algorithm used to generate the
 hash code is unspecified.
							
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether the two specified instances of represent the same value.
						
						
						 The first to compare for equality.
						 The second to compare for equality.
						
							
								 if represents the same value as
 ; otherwise, .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines whether two specified instances of represent different values.
						
						
						 The first to compare for inequality.
						 The second to compare for inequality.
						
							
								 if represents a different value than
 ; otherwise, .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					 4
					
						
							 Gets the size in bytes of a pointer or a handle for the current
 implementation.
						
						
							 A containing the
 number of bytes of a pointer or handle for the current implementation. The value
 of this property is equal to the number of bytes contained by the type in the current implementation.
						
						
							 This property is read-only.
							 For more information on the
 type, see Partition II of the CLI
 Specification.
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.Void*
					
					
					
						
							 Converts the value of the current instance to a pointer to
 .
						
						
							 A pointer to .
						
						
							
								 A pointer to
points to memory containing data of an unspecified type.
							
							 This method is not CLS-compliant. For a CLS-compliant
 alternative use .
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Returns a representation of the value of the current
 instance.
						
						
							 A
representation of the current instance.
						
						
							
								 If for the
 current instance is 4, is
 equivalent to ();
 otherwise, this method is equivalent to ().
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.UInt32
					
					
					
						
							 Converts the value of the current instance to a .
						
						
							 A containing the
 same value as the current instance.
						
						 The current platform is not a 32-bit platform and the value of the current instance is greater than .
					
					 0
				
				
					
					
					 Method
					
						 System.UInt64
					
					
					
						
							 Converts the value of the current instance to a .
						
						
							 A containing the
 same value as the current instance.
						
					
					 0
				
				
					
					
					 Field
					
						 System.UIntPtr
					
					
					 0
					
						
							 Represents a pointer or handle that has been initialized as zero.
						
						
							
								 The value of this field is not , but is instead a
 pointer which has been assigned the value zero. Use this field to efficiently
 determine whether an instance of has been set to a value other than zero. For example, if
 is a instance, using is more
 efficient than to test if has been set
 to a value other than zero.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides data for the event that is raised when an exception is not caught by the program code executing in an application
 domain.
				
				
					
						 provides access to the
 uncaught and a property indicating whether the system will terminate the current
 process.
				
			
			
				 System.EventArgs
			
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 The exception that was not caught.
						
							 if the system will terminate the current process; otherwise, .
						
							 This constructor initializes the property using , and the property using .
						
					
					 0
				
				
					
					
					 Property
					
						 System.Object
					
					
					
						
							 Gets the uncaught exception.
						
						
							 A , typically a , that is the cause of the current event.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the system is terminating the current process.
						
						
							
								 if the
 system will end the current process as a result
 of the
 current unhandled exception; otherwise, .
						
						
							 This property is read-only.
							 This property returns

 when an exception is received in, but not handled by, an application's
 main thread. This property also returns
 if an unmanaged thread is executing managed code and receives an unhandled
 exception.
 returns for managed threads created
 by an application, and for unhandled exceptions thrown
 during object finalization.
						
					
					 0
				
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Defines the shape of methods that handle the event that
 is raised by the system for uncaught exceptions.
				
				 The application domain that handled the event.
				 A that contains the event data.
				
					 A instance can only be specified for the default application
 domain that is created by the system to execute an application. Specifying a
 for a created by an application has no effect.
					
						 A instance is used to specify methods that are invoked
in response to exceptions that are not caught. To associate an
instance of with an application domain,
add the to the event. The methods referenced by the
 instance are
invoked whenever an object, typically a
 , is thrown and is not caught.
					
					
						 For additional information about events, see Partitions I and II of the CLI Specification.
					
				
			
			
				 System.Delegate
			
			
				
					 System.ICloneable
					 0
				
			
			
			 0
		
		
			
			
			 RuntimeInfrastructure
			
				 mscorlib
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Identifies how parameters or fields are to be marshaled to unmanaged
 code.

				
				
					 This type provides a set of values that identify the native types that are supported by the CLI. Each native type is encoded by a different value. All encoding values in the range 0-63, inclusive, are reserved for backward compatibility with existing implementations of the CLI. Values in the range 64-127 are reserved for future use in this and related Standards.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 Bool
					
						
							 Specifies a 4-byte Boolean value where
 is denoted by all non-zero values and
 is denoted by
 zero.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 CustomMarshaler
					
						
 Specifies the custom marshaler class when used
 with or .

					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 FunctionPtr
					
						
							 Specifies a function pointer.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 I1
					
						
							 Specifies a 1-byte signed integer.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 I2
					
						
							 Specifies a 2-byte signed integer.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 I4
					
						
							 Specifies a 4-byte signed integer.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 I8
					
						
							 Specifies an 8-byte signed integer.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 LPArray
					
						
							 Specifies a C-style array. When marshaling from
 managed to unmanaged, the length of the array is determined by the length of the
 managed array. When marshaling from unmanaged to managed, the length of the
 array is determined from the and
 fields.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 LPStr
					
						
							 Specifies a pointer to an ANSI character string.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 LPWStr
					
						
							 Specifies a pointer to a Unicode character string.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 R4
					
						
							 Specifies a 4-byte floating-point number.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 R8
					
						
							 Specifies an 8-byte floating-point number.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 SysInt
					
						
 Specifies an implementation-specific sized signed integer.

					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 SysUInt
					
						
							 Specifies an implementation-specific sized unsigned integer.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 U1
					
						
							 Specifies a 1-byte unsigned integer.

							
								
									 can be used to marshal
 a parameter
 as an ANSI character.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 U2
					
						
							 Specifies a 2-byte unsigned integer.

							
								
									
can be used to marshal a parameter as a Unicode character.
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 U4
					
						
							 Specifies a 4-byte unsigned integer.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Runtime.InteropServices.UnmanagedType
					
					
					 U8
					
						
							 Specifies an 8-byte unsigned integer.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
	
	

 Vararg

 mscorlib
 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
 2.0.x.x
 none

 CLSCompliantAttribute(true)
 0

 All public static members of this type are safe for
 multithreaded operations. No instance members are guaranteed to be thread safe.

 Represents an iterator for a variable-length argument list.

 This class is used to enumerate the optional arguments in an argument
 list.
 The functionality in the structure is
 typically hidden in the syntax of a specific programming language. For
 example, in the C++ programming language you declare a variable-length
 argument list by specifying an ellipsis ("...") at the end of the argument
 list.

 System.ValueType

 Constructor

 Constructs and initializes a new instance of .

 An argument list consisting of mandatory and optional
 arguments.

 The new object enumerates the
 argument list starting from the first optional argument.

 0

 Method

 System.Void

 Concludes processing of the variable-length argument list
 represented by this instance.

 This method corresponds, for example, to the va_end method in the
 C standard library.

 0

 Method

 System.Boolean

 This method is not supported, and always throws .

 The to compare to the
 current instance.

 This comparison is not supported. No value is returned.

 This method overrides .

 0

 Method

 CLSCompliantAttribute(false)
 0

 System.TypedReference

 Returns the next argument in a variable-length argument
 list.

 The next argument as a
 object.

 An attempt was made to read beyond the end of the list.

 The iterator is automatically advanced to the next
 argument.

 0

 Method

 System.RuntimeTypeHandle

 Returns the type of the next argument.

 The next argument as a
 object.

 This method does not advance the iterator to the next argument.
 Returns the type of the argument as specified in the call. For
 example, if an argument has type , but
 the call specifies the argument as type , then this function returns .

 0

 Method

 System.Int32

 Returns the number of arguments remaining in the argument
 list.

 The number of remaining arguments as a .

 0

 0

 Vararg

 mscorlib
 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
 2.0.x.x
 none

 CLSCompliantAttribute(true)
 0

 All public static members of this type are safe for
 multithreaded operations. No instance members are guaranteed to be thread safe.

 A handle that represents a variable-length argument list.

 This class has no members. It exists solely to support methods that take a
 variable number of arguments (such as can be written in C/C++).
 For more information about how this structure is used, see the structure.

 System.ValueType

 0

 Vararg

 mscorlib
 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
 2.0.x.x
 none

 CLSCompliantAttribute(false)
 0

 All public static members of this type are safe for
 multithreaded operations. No instance members are guaranteed to be thread safe.

 Describes an object that contains both a managed pointer to a location and
 a runtime representation of the type that can be stored at that
 location.

 A is a type/value combination used
 to support variable argument lists (as used by C++, for example), among
 other things. is a built-in value type
 that can be used for parameters and local variables.
 Arrays of cannot be created.
 A cannot be boxed as it contains
 ByRefs, so it cannot reside on the heap.

 System.ValueType

 Method

 System.Boolean

 Determines whether the current instance and the specified represent the same type and
 value.

 The to compare to the
 current instance.

 if represents the same
 type and value as the current instance; otherwise, .

 This method overrides .

 0

 Method

 System.Int32

 Generates a hash code for the current instance.

 A containing the hash code for the
 current instance.

 The algorithm used to generate the hash code is unspecified.

 This method overrides .

 0

 Method

 System.Type

 Returns the type of the target of the specified .

 The value whose target's type is to be returned.

 The of the target of the specified
 .

 0

 Method

 System.TypedReference

 Makes a for a field
 identified by a specified object and list of field
 descriptions.

 An object that contains the field described by the
 first element of .
 A list of field descriptions where each element describes
 a field that contains the field described by the succeeding element.
 Each described field must be a value type.

 A for the field described by
 the last element of .

 The array has no elements.
 -or-
 An element of is not a .

 or is .
 -or-
 An element of is .

 Parameter does not contain the field
 described by the first element of , or an
 element of describes a field that is not
 contained in the field described by the succeeding element of
 .
 -or-
 The field described by an element of is
 not a value type.

 This method returns a to the
 terminal field, where the target parameter contains the field
 described by the first element of , the field
 described by the first element of contains
 the field described by the second element of , and so on, until the terminal field is reached.

 0

 Method

 System.Void

 Converts the specified value to a .

 The target of the conversion.
 The value to be converted.

 is .

 The requested conversion is not possible.

 This method converts to .

 0

 Method

 System.RuntimeTypeHandle

 Returns the internal metadata type handle for the specified .

 The for which the
 type handle is requested.

 The internal metadata type handle for the specified .

 0

 Method

 System.Object

 Converts the specified to a
 System.Object.

 The to be
 converted.

 The that results from the conversion
 of the specified .

 This might involve a boxing
 operation.

 0

 0

	
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies formatting options for the class.

				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Xml.Formatting
					
					
					 Indented
					
						
							 Causes child elements to be indented
 according to the and
 settings.
 This option

 indents element content only; mixed content is not affected.
							
								 For the XML 1.0 definitions of these terms, see the W3C documentation
 (http://www.w3.org/TR/1998/REC-xml-19980210#sec-element-content and http://www.w3.org/TR/1998/REC-xml-19980210#sec-mixed-content).
							
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.Formatting
					
					
					 None
					
						
							 No special formatting is applied. This is the default.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 This class is multi-read threadsafe but not threadsafe for read/write.
			
				
					 Creates a table that stores unique instances of objects.
				
				
					 Only a single instance of any given string is stored even if the string is
 added multiple times to the table.
					 Using this class provides an efficient means for an XML parser to use the
 same
 object for all repeated element and attribute names in an XML document. If the
 same object is used for all repeated names, the efficiency of name
 comparisons is increased by allowing the names to be compared using
 object comparisons rather than string comparisons.
					
						 This class implements a single-threaded .
						 This class is used internally by the ,
 , and classes to store element and attribute names.
					
				
				
					 The following example demonstrates the difference between
 equal string values and equal objects using
 the
 class.

					 using System;
using System.Text;
using System.Xml;

class Ntable {

 public static void Main() {

 NameTable nameTable = new NameTable();

 string str1 = "sunny";
 StringBuilder strBuilder = new StringBuilder();
 string str2 =
 strBuilder.Append("sun").Append("ny").ToString();
 Console.WriteLine("{0} : {1}",
 str1, str2);
 Console.WriteLine("{0} : {1}",
 str1 == str2,
 (Object)str1==(Object)str2);

 string str3 = nameTable.Add(str1);
 string str4 = nameTable.Add(str2);
 Console.WriteLine("{0} : {1}",
 str3, str4);
 Console.WriteLine("{0} : {1}",
 str3 == str4,
 (Object)str3==(Object)str4);
 }
}

					 The output is
					 sunny : sunny
					 True : False
					 sunny : sunny
					 True : True
				
			
			
				 System.Xml.XmlNameTable
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of
 the class.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Adds the specified to the table if a
instance with the same value does not already exist in the table.
						
						 The to add.
						
							
								 , if it did not exist in the
 table at the time of the call, or the instance previously stored in the table with a value equal to
 .
						
						
							 is .
						
							 Only a single instance of any given is stored in the table. If the value of is
 already stored in the table, the instance with that value is
 returned.
							
								 This method overrides ().
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Adds the equivalent of a specified subset of a
 array to the table if the string equivalent does not already exist in the
table.
						
						 A array containing the string to add.
						 A specifying the zero-based index into the array of the first character of the string.
						 A containing the number of characters in the string.
						
							 The equivalent of the
 specified subset of the array that is stored in the
 table, or
 if is
 zero.
						
						
							
								 < 0.
							 - or -
							
								 >= .Length.
							 - or -
							
								 > .Length - .
							 The above conditions do not cause an exception to be thrown if = 0.
						
						 len < 0.
						
							 Only a single instance of any given is stored in the table. Calling this method with the
 same subset (containing the same characters) of any array, returns
 the same instance of the equivalent.
							
								 This method overrides ([], ,).
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Looks up the value of the specified in the table.
						
						 The to look up.
						
							 The instance previously stored in the table with a value
 equal to , or
 if
 it does not exist.
						
						
							 is .
						
							 Only a single instance of any given is stored in the table. If the value of
 is already stored in the table, the instance with that value is returned.
							
								 This method overrides ().
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Looks up the equivalent to a specified subset of a
 array in the table.
						
						 A array containing the string to look up.
						 A specifying the zero-based index into the array of the first character of the string.
						 A containing the number of characters in the string.
						
							 The equivalent of the specified subset of the array that is
 stored in the table, or if the
 equivalent is not
 in the table.
						
						
							
								
							
							 < 0.
							 - or -
							
								 >= .Length.
							 - or -
							
								 > .Length - .
							 The above conditions do not cause an exception to be thrown if = 0.
						
						 len < 0.
						
							 Only a single instance of any given is stored in the table. Calling this method with the same subset (containing the same characters) of
 any
 array, returns the same instance of the equivalent, if it
 exists.
							
								 This method overrides ([], ,).
							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the read state of an instance of a class derived
 from the class.
				
				
					 When a reader is instantiated, the read state is set to
 . When the method is called, the read state is
 changed to . If an error occurs during a read
 operation, the read state is changed to . When the end of the
 XML data is reached, the read state is set to . When the
 method
 is called, the read state is set to .
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Xml.ReadState
					
					
					 Closed
					
						
							 The method has been called.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.ReadState
					
					
					 EndOfFile
					
						
							 The end of the XML data has been
 reached.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.ReadState
					
					
					 Error
					
						
 An error occurred that prevents the
 read operation from continuing.

					
					 0
				
				
					
					
					 Field
					
						 System.Xml.ReadState
					
					
					 Initial
					
						
							 The method has not been called.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.ReadState
					
					
					 Interactive
					
						
							 The method
 has
 been called. Additional methods can now be called on the reader.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the type of white space returned by instances of
 the class.

				
				
					 Significant white space is white space between markup in
 a mixed content model, or white space within an element that has the xml:space="preserve" attribute. Insignificant
 white space is any other white space between markup.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Xml.WhitespaceHandling
					
					
					 All
					
						
							 Return both significant and insignificant white space. This is the default.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.WhitespaceHandling
					
					
					 None
					
						
							 Return neither significant nor insignificant white
 space.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.WhitespaceHandling
					
					
					 Significant
					
						
							 Return significant white space only.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the write state of an instance of a class derived from the class.

				
				
					 When a writer is instantiated, the write state is set to . While content is written, the write
 state is set to reflect the type of
 content being written. When the
 method is called, the write state is set to
 . The method resets the write state back to
 , allowing
 the writer to write a new XML document.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Xml.WriteState
					
					
					 Attribute
					
						
							 An attribute value is being written.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.WriteState
					
					
					 Closed
					
						
							 The method has been called.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.WriteState
					
					
					 Content
					
						
							 Element content is being written.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.WriteState
					
					
					 Element
					
						
							 An element start tag is being written.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.WriteState
					
					
					 Prolog
					
						
							 The XML declaration is being written.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.WriteState
					
					
					 Start
					
						
							 None of the writing
 methods have been called.

							 The method resets the write state to this
 value.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Encodes and decodes XML names and provides methods for converting
 between common language infrastructure (CLI) types and XML Schema Definition
 language (XSD) types. When converting data types, the values returned are locale independent.
				
				
					 Element and attribute names or ID values are limited to a
 range of XML characters according to the Extensible Markup Language (XML) 1.0
 (Second Edition) recommendation, located at
 www.w3.org/TR/2000/REC-xml-20001006.html. When names contain invalid characters, they need to be translated into valid XML
 names.
					 Many languages
 and applications allow Unicode characters in their names, which are not valid in XML names.
 For example, if 'Order Detail' were a column heading in a database, the database
 allows the space between the words Order and Detail. However, in XML, the space
 between Order and Detail is considered an invalid XML character. Thus, the
 space, the invalid character, needs to be converted into an escaped hexadecimal
 encoding and can be decoded later.
					
 The and methods are
 used to translate invalid
 XML names into valid XML names and vice versa.
					
						
provides methods that enable the conversion of a
to a
CLI data type and vice-versa. Locale settings
are not taken into account during data conversion.
					
						 also provides
methods that convert between XML Schema Definition (XSD) data types (see http://www.w3.org/TR/xmlschema-2/#built-in-datatypes) and their
corresponding common language infrastructure (CLI) data
types. The following table shows the XSD
data types and their corresponding CLI data types.
					
						
							 XSD
 data type
							 CLI
 data type
						
						
							 hexBinary
							 A
 array
						
						
							 base64Binary
							 A

 array
						
						
							 Boolean
							
								
							
						
						
							 Byte
							
								
							
						
						
							 normalizedString
							
								
							
						
						
							 Date
							
								
							
						
						
							 duration
							
								
							
						
						
							 dateTime
							
								
							
						
						
							 decimal
							
								
							
						
						
							 Double
							
								
							
						
						
							 ENTITIES
							 A array
						
						
							 ENTITY
							
								
							
						
						
							 Float
							
								
							
						
						
							 gMonthDay
							
								
							
						
						
							 gDay
							
								
							
						
						
							 gYear
							
								
							
						
						
							 gYearMonth
							
								
							
						
						
							 ID
							
								
							
						
						
							 IDREF
							
								
							
						
						
							 IDREFS
							 A
 array
						
						
							 int
							
								
							
						
						
							 integer
							
								
							
						
						
							 language
							
								
							
						
						
							 long
							
								
							
						
						
							 month
							
								
							
						
						
							 Name
							
								
							
						
						
							 NCName
							
								
							
						
						
							 negativeInteger
							
								
							
						
						
							 NMTOKEN
							
								
							
						
						
							 NMTOKENS
							 A
 array
						
						
							 nonNegativeInteger
							
								
							
						
						
							 nonPositiveInteger
							
								
							
						
						
							 NOTATION
							
								
							
						
						
							 positiveInteger
							
								
							
						
						
							 short
							
								
							
						
						
							 string
							
								
							
						
						
							 time
							
								
							
						
						
							 timePeriod
							
								
							
						
						
							 token
							
								
							
						
						
							 unsignedByte
							
								
							
						
						
							 unsignedInt
							
								
							
						
						
							 unsignedLong
							
								
							
						
						
							 unsignedShort
							
								
							
						
						
							 anyURI
							
								
							
						
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Decodes a name.
						
						 A specifying the name to be decoded.
						
							 A containing the decoded name.
						
						
							 Names are decoded using the following rules:
							
								
									

 Names are decoded from left to right.
								
								
									

 Any sequence _xHHHH_ (where HHHH stands for a valid, four
 digit hexadecimal UCS-2 code) that has not been previously decoded is
 transformed into the corresponding Unicode 2.1 (Unicode 3.0 if supported by
 the application) character.
								
								
									

 No

 short forms are recognized. They are passed on without translation. For
 example, "_x70_" or "__" are not decoded.
								
							
							
								 This method does the reverse of the , , and methods.
							
						
						
							 The following example demonstrates the valid and invalid
 character formats for decoding.
							 using System;
using System.Xml;

public class App {

 public static void Main() {

 Console.WriteLine("{0} : {1} : {2}",
 // _x0069_ decodes to i
 XmlConvert.DecodeName("Order #1_x0069_"),

 // missing beginning _
 XmlConvert.DecodeName("Order #1x0069_"),

 // short form
 XmlConvert.DecodeName("Order #1_x69_"));
 }
}

							 The output is
							 Order #1i : Order #1x0069_ : Order #1_x69_
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a name to a valid XML local name.
						
						 A specifying the name to be encoded.
						
							 A containing the XML local name. If is or , is returned.
						
						
							 This method is similar to the method except that it encodes the colon (:) character, which
 guarantees that the name can be used as the local name part of a namespace
 qualified name.
						
						
							 The following example compares the , , and methods when the name to be encoded is "7:+".
							 using System;
using System.Xml;

public class App {

 public static void Main() {

 Console.WriteLine("LocalName {0}",
 XmlConvert.EncodeLocalName("7:+"));
 Console.WriteLine("Name {0}",
 XmlConvert.EncodeName("7:+"));
 Console.WriteLine("NmToken {0}",
 XmlConvert.EncodeNmToken("7:+"));
 }
}

							 The output is
							 LocalName _x0037__x003A__x002B_
							 Name _x0037_:_x002B_
							 NmToken 7:_x002B_
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a
 name to a valid XML name.
						
						 A specifying the name to be encoded.
						
							 A containing the XML name. If is or , is returned.
						
						
							 This method translates invalid characters, such as spaces or half-width
 Katakana, that need to be mapped to XML names without the support or presence of
 schemas. The invalid characters are translated into escaped numeric entity
 encodings.
							 The escape character is '_'. Any XML name character that does not conform to
 the W3C Extensible Markup Language (XML) 1.0 specification is escaped as
 xHHHH. The HHHH string stands for the four-digit hexadecimal UCS-2 code for the
 character in most significant bit first order. For example, the name "Order
 Details" is encoded as "Order _x0020_Details".
							 The underscore character does not need to be escaped
 unless it is followed by a character sequence that together with the underscore can be misinterpreted as an escape sequence
 when decoding the name. No short forms are encoded. For example, the
 forms "_x20_" and "__" are not encoded.
							 This method guarantees the name is valid according to the XML specification.
 It allows colons in any position, which means the name might still be invalid according
 to the W3C Namespace Specification (www.w3.org/TR/REC-xml-names). To guarantee it is a valid namespace qualified
 name use the
 method for the prefix and local name
 parts and join the result with a colon.
						
						
							 See the method for an example comparing the , , and methods.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts
 a name to a valid XML name token.
						
						 A specifying the name to be encoded.
						
							 A containing the XML name token. If is or , is
 returned.
						
						
							 See the method for an example comparing the
 , , and methods.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of
 .
						
						
							 is a null reference.
						
							 does not represent a value.
						
							 This method removes leading and trailing white space. After this trimming, valid strings are "1" and "true", which return
 , and "0" and "false", which return .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Byte
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of
 .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This method calls (, | ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Char
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The string containing a single character to convert.
						
							 The equivalent of
 .
						
						
							 is a null reference.
						
							 contains more than one character.
						
							 This method calls ().
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						 A array specifying formats used to validate .
						
							 The equivalent of .
						
						
							 is a null reference.
						
							
								 or an element of is .
							 -or-
							
								 does not contain a date and time that corresponds to any of the elements of .
						
						
							 This method calls (, , , |).
							 This method allows to
be validated against multiple formats.
							 Valid formats include "yyyy-MM-ddTHH:mm:sszzzzzz" and its subsets.
						
						
							 The following example converts a to a and writes the
 result to the console.
							 using System;
using System.Xml;

public class App {

 public static void Main() {

 String someDate = "1966-09-19T03:45:11Z";
 String[] datetimeFormats = new String[]
 {"HH:mm:ss", "yyyy-MM-ddTHH:mm:ssZ"};
 DateTime dateTime =
 XmlConvert.ToDateTime(someDate, datetimeFormats);
 Console.WriteLine("{0}", dateTime.ToString());
 }
}

							 The output is
							 9/18/1966 8:45:11 PM
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						 A specifying the format used to validate .
						
							 The equivalent of .
						
						
							 is a null reference.
						
							
								 or is .
							 -or-
							
								 does not contain a date and time that corresponds to .
						
						
							 This method calls (, , , |).
							 Valid formats include "yyyy-MM-ddTHH:mm:sszzzzzz" and its subsets.
						
					
					 0
				
				
					
					
					 Method
					
						 System.DateTime
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of .
						
						
							 is a null reference.
						
							
								 is or is not in the correct format.
						
						
							
								 is required to be in one of the following string formats or
 a is thrown.
							 "yyyy-MM-ddTHH:mm:ss"
							 "yyyy-MM-ddTHH:mm:ss.f"
							 "yyyy-MM-ddTHH:mm:ss.ff"
							 "yyyy-MM-ddTHH:mm:ss.fff"
							 "yyyy-MM-ddTHH:mm:ss.ffff"
							 "yyyy-MM-ddTHH:mm:ss.fffff"
							 "yyyy-MM-ddTHH:mm:ss.ffffff"
							 "yyyy-MM-ddTHH:mm:ss.fffffff"
							 "yyyy-MM-ddTHH:mm:ssZ"
							 "yyyy-MM-ddTHH:mm:ss.fZ"
							 "yyyy-MM-ddTHH:mm:ss.ffZ"
							 "yyyy-MM-ddTHH:mm:ss.fffZ"
							 "yyyy-MM-ddTHH:mm:ss.ffffZ"
							 "yyyy-MM-ddTHH:mm:ss.fffffZ"
							 "yyyy-MM-ddTHH:mm:ss.ffffffZ"
							 "yyyy-MM-ddTHH:mm:ss.fffffffZ"
							 "yyyy-MM-ddTHH:mm:sszzzzzz"
							 "yyyy-MM-ddTHH:mm:ss.fzzzzzz"
							 "yyyy-MM-ddTHH:mm:ss.ffzzzzzz"
							 "yyyy-MM-ddTHH:mm:ss.fffzzzzzz"
							 "yyyy-MM-ddTHH:mm:ss.ffffzzzzzz"
							 "yyyy-MM-ddTHH:mm:ss.fffffzzzzzz"
							 "yyyy-MM-ddTHH:mm:ss.ffffffzzzzzz"
							 "yyyy-MM-ddTHH:mm:ss.fffffffzzzzzz"
							 "HH:mm:ss"
							 "HH:mm:ss.f"
							 "HH:mm:ss.ff"
							 "HH:mm:ss.fff"
							 "HH:mm:ss.ffff"
							 "HH:mm:ss.fffff"
							 "HH:mm:ss.ffffff"
							 "HH:mm:ss.fffffff"
							 "HH:mm:ssZ"
							 "HH:mm:ss.fZ"
							 "HH:mm:ss.ffZ"
							 "HH:mm:ss.fffZ"
							 "HH:mm:ss.ffffZ"
							 "HH:mm:ss.fffffZ"
							 "HH:mm:ss.ffffffZ"
							 "HH:mm:ss.fffffffZ"
							 "HH:mm:sszzzzzz"
							 "HH:mm:ss.fzzzzzz"
							 "HH:mm:ss.ffzzzzzz"
							 "HH:mm:ss.fffzzzzzz"
							 "HH:mm:ss.ffffzzzzzz"
							 "HH:mm:ss.fffffzzzzzz"
							 "HH:mm:ss.ffffffzzzzzz"
							 "HH:mm:ss.fffffffzzzzzz"
							 "yyyy-MM-dd"
							 "yyyy-MM-ddZ"
							 "yyyy-MM-ddzzzzzz"
							 "yyyy-MM"
							 "yyyy-MMZ"
							 "yyyy-MMzzzzzz"
							 "yyyy"
							 "yyyyZ"
							 "yyyyzzzzzz"
							 "--MM-dd"
							 "--MM-ddZ"
							 "--MM-ddzzzzzz"
							 "---dd"
							 "---ddZ"
							 "---ddzzzzzz"
							 "--MM--"
							 "--MM--Z"
							 "--MM--zzzzzz"
						
					
					 0
				
				
					
					
					 Method
					
						 System.Decimal
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The
equivalent of .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This method calls (, | | | ,).
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Double
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The
equivalent of .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 If is "-INF", this method returns .
							 If is "INF", this method returns .
							 Otherwise, this method calls (, | | | | ,).
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.Int16
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The
equivalent of .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This method calls (, | | ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The
equivalent of .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This method calls (, | | ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int64
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The
equivalent of .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This method calls (, | | ,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.SByte
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of
 .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method calls (, | | ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Single
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of
 .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 If is "-INF", this method returns .
							 If is "INF", this method returns .
							 Otherwise, this method calls (, | | | | ,).
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This member is not CLS-compliant. For a CLS-compliant
 alternative, use ().
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 If is , this method returns "-INF".
							 If is , this method returns "INF".
							 Otherwise, this method calls .ToString("R",).
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 If is , this method returns "-INF".
							 If is , this method returns "INF".
							 Otherwise, this method calls .ToString("R",).
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 The following example converts a to a and writes the result
 to the console.
							 using System;
using System.Xml;

public class App {

 public static void Main() {

 TimeSpan timeSpan = new TimeSpan(3, 11, 59, 6, 128);
 Console.WriteLine("{0}",
 XmlConvert.ToString(timeSpan));
 }
}

							 The output is
							 P3DT11H59M6.128S
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This method calls (,
 "yyyy-MM-ddTHH:mm:ss.fffffffzzzzzz").
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						 A specifying the format to apply to . Valid formats include "yyyy-MM-ddTHH:mm:sszzzzzz" and its subsets.
						
							 The representation of in the specified format..
						
						
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method calls .ToString(,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This method calls .ToString(,).
						
					
					 1
					 ExtendedNumerics
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The representation of .
						
						
							 This method calls .ToString().
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Converts a to a .
						
						 The to convert.
						
							 The "true" or the
"false".
						
					
					 0
				
				
					
					
					 Method
					
						 System.TimeSpan
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of
 .
						
						
							 is not in the correct format to represent a value.
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt16
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of
 .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method calls (, | | ,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt32
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of
 .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method calls (, | | ,).
						
					
					 0
				
				
					
					
					 Method
					
						
							 CLSCompliantAttribute(false)
							 0
						
					
					
						 System.UInt64
					
					
						
					
					
						
							 Converts a to a equivalent.
						
						 The to convert.
						
							 The equivalent of
 .
						
						
							 is a null reference.
						
							 is not in the correct format.
						
							 represents a number less than or greater than .
						
							 This member is not CLS-compliant. For a CLS-compliant alternative, use
 ().
							 This method calls (, | | ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Verifies that the name is a valid name as defined in
 the W3C Extended Markup Language recommendation (REC-xml-names-19990114).
						
						 A specifying the name to verify.
						
							 The
								 , if it is a valid XML name.
						
						
							 is or .
						
							 is not a valid XML name.
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Verifies that the name is a valid qualified name as defined in the
 W3C Extended Markup Language recommendation (REC-xml-names-19990114).
						
						 A specifying the name to verify.
						
							 The
								 , if it is a valid XML qualified name.
						
						
							 is or .
						
							 is not a valid XML qualified name.
						
							 If contains a colon, is
 thrown.
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents the error that occurs when
 an XML document or fragment cannot be parsed.
				
			
			
				 System.SystemException
			
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class.
						
						 A that describes the error. The content of is intended to be understood by humans. The caller of this constructor is required to ensure that this string has been localized for the current system culture.
						 An instance of that is the cause of the current exception. If is not a reference, the current exception was raised in a catch block handling .
						
							 This constructor initializes the property
 of the new instance using and the property using
 . If the parameter is
 , the property is set to the system-supplied
 message provided by the constructor that takes no arguments.
							 The and properties are initialized to zero.
							
								 For more information on inner
 exceptions, see .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the line number where the
 error occurred.
						
						
							 A containing the line number where the
 error occurred.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the character position where the
 error occurred.
						
						
							 A containing the character position where
 the error occurred.
						
						
							 This property is read-only.
							 The first character in the line is in position 1. Note that white space
 characters at the start of the line are not skipped.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the error message that describes the current exception.
						
						
							 A containing the error message that describes the current exception.
						
						
							 This property is read-only.
							 If the property is not equal to zero, the
 string returned by this property includes the values of the and properties.
							
								 This property overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Resolves, adds, and removes namespaces in a collection and
 provides scope management for these namespaces. This class is used by
 the
 and classes.
				
				
					 This class stores prefixes and namespaces
 as unique
 objects.
					
						 assumes all prefixes and
 namespaces are
 valid.
					 If the prefix
 and namespace already exist within the current scope, they will replace the existing prefix/namespace combination. The
 same prefix and namespace combination can exist across different scopes.
					 The following prefix/namespace pairs are added by default
 to the . They can be determined at any
 scope.
					
						
							 Prefix
							 Namespace
						
						
							 xmlns
							 http://www.w3.org/2000/xmlns/
 (the xmlns prefix namespace)
						
						
							 xml
							 http://www.w3.org/XML/1998/namespace (The XML namespace)
						
						
							
								
							
							
								 . The empty namespace can be reassigned a
 different prefix. For example, xmlns="" defines the default namespace to
be the empty namespace.
						
					
				
			
			
				 System.Object
			
			
				
					 System.Collections.IEnumerable
					 0
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of
 the class.
						
						 The to use.
						
							 is .
						
							
								
									
 is used to look up prefixes and namespaces.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Adds the given namespace to the collection of namespaces
 maintained by the current instance in .
						
						 A specifying the prefix to associate with the namespace being added. Use to add a default namespace.
						 A specifying the namespace to add.
						
							 is "xml" or "xmlns".
						
							
								 is , or is .
						
						
							
								 The same prefix and namespace combination can exist
 across different scopes.
							
							
								

 As described above.
							
							
								 This
 method assumes all prefixes and namespaces are valid but does not check
 and for
 conformance to the W3C specification.
								 If the specified prefix/namespace
 combination already exists within the current scope,
 their instances will be replaced
 in with the
 new
 instances of and .
							
							
								 Override this
 method to check and for conformance to the W3C specification.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the namespace URI for the default
 namespace.
						
						
							 A containing the
 namespace URI for the default namespace, or
 if there is no default namespace.
						
						
							 This property is read-only.
							
								 As described
 above.
							
							
								 This method is
 equivalent to calling
 ().
							
							
								 Override this
 property to customize the behavior of this property in types derived from
 the
 class.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Collections.IEnumerator
					
					
					
						
							 Provides support for iteration over
 the collection of namespaces maintained by the current instance.
						
						
							 A .
						
						
							
								 As described above.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to iterate through the collection of
 namespaces in .

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Gets a value indicating whether the supplied prefix has
 a namespace defined for the current pushed scope.
						
						 A containing the prefix of the namespace to find.
						
							 A where indicates there is a
 namespace defined; otherwise, . If is , returns .
						
						
							
								 As described above.
							
							
								 When
 is set to , this method returns
 to indicate a default empty namespace is defined in the current scope.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Gets the namespace URI associated with the specified
 prefix.
						
						 A containing the prefix whose namespace URI to resolve. To match the default namespace, pass .
						
							 A containing the namespace URI for , or
if there is
no mapped namespace.
						
						
							
								 As described above.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Gets the prefix associated with the given
 namespace URI.
						
						 A containing the namespace to resolve for the prefix.
						
							 A containing the
 matching prefix. If there is no mapped prefix, this method returns
 . If a
value is supplied, then
 is returned.
						
						
							
								 As described above.

							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlNameTable
					
					
					
						
							 Gets the name table used by the current instance to look up prefixes and namespace URIs.
						
						
							 The used by the current instance.
						
						
							 This property is read-only.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Pops a namespace scope off the stack.
						
						
							 A where indicates a namespace
 scope was popped off the stack; indicates there were no namespaces
 scopes to pop.
						
						
							
								 As described above.
							
							
								 This method
 removes all the namespaces that were added to the collection (by calling
)
 since the last call to the

 method.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Pushes a namespace scope onto the stack.
						
						
							
								 As described above.
							
							
								 This method associates the pushed namespace scope
 with all the namespaces added to the collection (by calling
) since the last call to the

 method.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Removes the specified namespace associated with the
 specified prefix from the namespace collection maintained by the current
 instance.
						
						 A specifying the prefix.
						 A specifying the namespace to remove.
						
							 is , or is .
						
							
								 As described above.
							
							
								 The namespace
 removed is from the current namespace scope. Namespaces outside the current
 scope are ignored. If or does not exist
 in the collection, this method simply returns.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Creates a table that stores unique instances of objects.
				
				
					 Only a single instance of any given string is stored even if the string is
 added multiple times to the table.
					 Using this class provides an efficient means for an XML parser to use the
 same
 object for all repeated element and attribute names in an XML document. If the
 same object is used for all repeated names, the efficiency of name comparisons
 is increased by allowing the names to be compared using object comparisons
 rather than string comparisons.
					
						 This class is
 and is implemented in the class.
					
				
				
					 See the class for an example using this
 class.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Adds the specified to the table if a instance with the same value does not
 already exist in the table.
						
						 The to add.
						
							
								 , if it did not exist in the table at the time of the call, or
 the
 instance previously stored in the table with a value equal to .
						
						
							 is .
						
							
								 Only a single
 instance of any given is stored in the table. If the value
 of is already stored in the table, the instance with that
 value is returned.
							
							
								 This method must be overridden in order to
 provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Adds the equivalent of a specified subset of a array to the
 table if the string equivalent does not already exist in the
 table.
						
						 A array containing the string to add.
						 A specifying the zero-based index into the array of the first character of the string.
						 A containing the number of characters in the string.
						
							 The
equivalent of the specified subset of the array that is stored in the table, or
 if
 is zero.
						
						
							
								 < 0.
							 - or -
							
								 >= .Length.
							 - or -
							
								 > .Length - .
							 The above conditions do not cause an exception to be thrown if = 0.
						
						
							 < 0.
						
							
								 Only a single
 instance of any given is stored in the table. Calling this method with the
 same subset (containing the same characters) of any array, returns
 the same instance of the
 equivalent.
							
							
								 This method must be overridden in order to
 provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Looks up the value of the specified in the table.
						
						 The to look up.
						
							 The
instance previously stored in the table with a value equal to , or if it does not exist.
						
						
							 is .
						
							
								 Only a single
 instance of any given is stored in the table. If the value
 of is already stored in the table, the instance with that value is returned.
							
							
								 This method must be overridden in order to
 provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
						
					
					
						
							 Looks up the equivalent of a specified subset of a array in the
 table.
						
						 A array containing the string to look up.
						 A specifying the zero-based index into the array of the first character of the string.
						 A containing the number of characters in the string.
						
							 The
equivalent of the specified subset of the array that is stored in the table, or
 if the equivalent is not in the table.
						
						
							 < 0. - or -
							
								 >= .Length.
							 - or -
							
								 > .Length - .
							 The above conditions do not cause an exception to be thrown if = 0.
						
						
							 < 0.
						
							
								 Only a single
 instance of any given is stored in the table. Calling this method with the
 same subset (containing the same characters) of any array, returns
 the same instance of the equivalent, if it exists.
							
							
								 This method must be overridden in order to
 provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the type of node.
				
				
					 A given set of XML data is modeled as a tree of nodes.
 This enumeration specifies the different node types.
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 Attribute
					
						
							 An
 attribute.

							 Example XML: id="123"
							
							 An node can have the
following child node types: and
 . The node does not
appear as the child node of any other node type. It is not considered a
child node of an
.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 CDATA
					
						
							 A CDATA

 section.
							 Example XML:
 <![CDATA[escaped text]]>
							
							 CDATA sections are used to escape blocks of text that would otherwise
 be recognized as markup. A node cannot have any child
 nodes. It can appear as the child of the ,
 , and nodes.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 Comment
					
						
							 A comment.

							 Example XML: <!-- comment -->
							
							 A node cannot have any child
nodes. It can appear as the child of the ,
 , , and

nodes.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 Document
					
						
							 A document object that, as the root of the document tree, provides access
 to the entire XML document.

							 A node
 can have the following child node types:

, (maximum of one),
 , , and

. It cannot
appear as the child of any node types.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 DocumentFragment
					
						
							 A document fragment.

							 The node associates a
 node or sub-tree with a document without actually being contained within the
 document. A node can have the following child
 node types: , ,
 , , , and

. It
cannot appear as the child of any node types.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 DocumentType
					
						
							 The document type declaration, indicated by the following tag.

							 Example XML: <!DOCTYPE ...>
							
							 A node can have the
following child node types: and
 . It can appear as the child of the

node.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 Element
					
						
							 An element.

							 Example XML: <name>
							
An node can have the
following child node types: , ,
 , ,
 , and . It can be the
child of the , ,
 , and
nodes.

					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 EndElement
					
						
							 An end element.
							 Example XML: </name>
							
							 Returned when gets to the end of an element.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 EndEntity
					
						
							 Returned when gets to the end of the entity
 replacement as a result of a call to
 .
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 Entity
					
						
							 An entity declaration.
							 Example XML: <!ENTITY ...>
							
							 An node can have child nodes
 that represent the expanded entity (for example, and
 nodes). It can appear as the child of the

node.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 EntityReference
					
						
							 A reference to an entity.
							 Example XML: #
							
							 An node can have the
 following child node types: ,
 , ,
 , , and
 . It can appear as the child of the
 , ,
 , and

nodes.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 None
					
						
							 This is returned by the if a read
 method has not been called or if no more nodes
 are available to be read.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 Notation
					
						
							 A notation in the document type declaration.

							 Example XML: <!NOTATION ...>
							
							 A node cannot have any child
nodes. It can appear as the child of the
node.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 ProcessingInstruction
					
						
							 A processing instruction.

							 Example XML: <?pi test?>
							
							 A node cannot have
any child nodes. It can appear as the child of the ,
 , , and

nodes.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 SignificantWhitespace
					
						
							 White space between markup in a mixed content model or white
 space within the xml:space="preserve" scope.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 Text
					
						
							 The
 text content of a node.

							 A node cannot have any child nodes.
 It can appear as the child node of the ,
 , , and

nodes.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 Whitespace
					
						
							 White space between markup.

						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlNodeType
					
					
					 XmlDeclaration
					
						
							 The XML declaration.

							 Example XML: <?xml version="1.0"?>
							
							 The
node must be the first node in the document. It cannot have children. It is a
child of the
node. It can have attributes that provide version
and encoding information.
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Provides all the context information required by instances of
 the class
 to parse an XML fragment.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of the
 class with the specified
 values.
						
						 The to use. If is , this defaults to the used to construct .
						 The to use for looking up namespace information, or .
						 A specifying the xml:lang scope.
						 A value indicating the xml:space scope.
						
							 is not the same used to construct .
						
							 This method is equivalent to (, ,
 , , , ,
 , ,
 ,) constructor.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of
 the
 class with the specified values.
						
						 The to use. If is , this defaults to the used to construct .
						 The to use for looking up namespace information, or .
						 A specifying the xml:lang scope.
						 A value indicating the xml:space scope.
						 An instance of a class derived from the class indicating the encoding to use.
						
							 is not the same used to construct .
						
							 This method is equivalent to (,
 , , , ,
 , , , ,
).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of
 the
 class with the specified values.
						
						 The to use. If is , this defaults to the used to construct .
						 The to use for looking up namespace information, or .
						 A specifying the name of the document type declaration.
						 A specifying the public identifier.
						 A specifying the system identifier.
						 A specifying the internal DTD subset.
						 A specifying the base URI for the XML fragment (the location from which the fragment was loaded).
						 A containing the xml:lang scope.
						 A value indicating the xml:space scope.
						
							 is not the same used to construct .
						
							 This method is equivalent to (,
 , , ,
 , , , , ,
).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
						
						
						
						
						
						
						
					
					
						
							 Constructs and initializes a new instance of
 the
 class with the specified values.
						
						 The to use. If is , this defaults to the used to construct .
						 The to use for looking up namespace information, or .
						 A specifying the name of the document type declaration.
						 A specifying the public identifier.
						 A specifying the system identifier.
						 A specifying the internal DTD subset.
						 A specifying the base URI for the XML fragment (the location from which the fragment was loaded).
						 A specifying the xml:lang scope.
						 A value indicating the xml:space scope.
						 The to use.
						
							 is not the same used to construct .
						
							 The constructor sets to , to , to , to , to , and to . If
 is passed for any of these parameters, the corresponding
 property is set to .
							
								 The DocumentType (DTD) information stored in this
 constructor is ignored when an instance of the class is passed to a
 .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the base URI.
						
						
							 A specifying the base URI to use for resolving the DTD file.
						
						
							 If an attempt is made to set this property to , it is
 set to .
							
								 A networked XML document is comprised of chunks of data
 aggregated using various W3C standard inclusion mechanisms and therefore can
 contain nodes that come from different places. The property shows where these nodes
 originated.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the name of the document type in a document type declaration.
						
						
							 A specifying the name of the document type.
						
						
							 If an attempt is made to set this property to , it is
 set to .
							
								 A document type declaration is of the following form:
								 <!DOCTYPE PUBLIC "PublicId"
 "SystemId" [InternalSubset]>
								 This property, along with , , and properties, provide all the document type declaration information.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets or sets the encoding type.
						
						
							 A indicating the encoding
 type.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the internal subset in a document type declaration.
						
						
							 A
specifying
the internal subset.
						
						
							 If an attempt is made to set this property to , it is
 set to .
							
								 A document type declaration is of the following form:
								 <!DOCTYPE DocTypeName PUBLIC "PublicId" "SystemId"
 []>
								 This property, along with , , and properties, provide all the document type declaration information.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlNamespaceManager
					
					
					
						
							 Gets or sets the used by the current
 instance.
						
						
							 The used by the current
 instance.
						
						
							
								 A defines the current namespace scope
 and provides methods for looking up namespace information.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlNameTable
					
					
					
						
							 Gets or sets the used by the current instance to look up prefixes
 and namespace URIs.
						
						
							 The used by the current instance.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the public identifier in a document type declaration.
						
						
							 A
specifying the public identifier.
						
						
							 If an attempt is made to set this property to , it is
 set to .
							
								 A document type declaration is of the following form:
								 <!DOCTYPE DocTypeName PUBLIC " "
 "SystemId" [InternalSubset]>
								 This property, along with , , and properties, provide all the document type declaration information.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the system identifier in a document type declaration.
						
						
							 A
specifying the system identifier.
						
						
							 If an attempt is made to set this property to , it is
 set to .
							
								 A document type declaration is of the following form:
								 <!DOCTYPE DocTypeName PUBLIC "PublicId"
 " " [InternalSubset]>
								 This property, along with , , and properties, provide all the document type declaration information.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets or sets the current xml:lang scope.
						
						
							 A specifying the
 current xml:lang
scope. If there is no xml:lang in scope, is returned.
						
						
							 If an attempt is made to set this property to , it is
 set to .
							
								 The language attribute, xml:lang, specifies the
 language in which the content and attribute values of the current element are
 written.
								 For details on valid xml:lang values,
refer to section 2.12 of the W3C Extensible Markup Language (XML) 1.0
recommendation.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlSpace
					
					
					
						
							 Gets or sets the current xml:space scope.
						
						
							 One of the members of the enumeration
 indicating the xml:space scope.
						
						
							
								 The white space attribute, xml:space, specifies how white space is handled in
 the current element.
							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a reader that provides non-cached, forward-only access
 to XML data.
				
				
					 This class provides forward-only,
 read-only access to a stream of XML data. This class enforces the rules of
 well-formed XML but does not perform data validation.
					 This class conforms to the W3C Extensible Markup
 Language (XML) 1.0 and the Namespaces
 in XML recommendations.
					 A given set of
 XML data is modeled as a tree of nodes. The different types of
 nodes are specified in the enumeration. The reader is advanced to the next node
 using the method.
 The current node refers to the node on which the reader
 is positioned. The following table lists the node properties exposed for the
 current
 node.
					
						
							 Property
							 Description
						
						
							 AttributeCount
							 The
 number of attributes on the
 node.
						
						
							 BaseUri
							 The
 base URI of
 the node.
						
						
							 Depth
							 The
 depth of the
 node in the tree.
						
						
							 HasAttributes
							 Whether the node has attributes.
						
						
							 HasValue
							 Whether the node can have a text value.
						
						
							 IsDefault
							 Whether an node was
 generated from the default value defined in the DTD or schema.
						
						
							 IsEmptyElement
							 Whether an node is empty.
						
						
							 LocalName
							 The local name of the node.
						
						
							 Name
							 The
 qualified name of the node, equal to
 : .
						
						
							 NamespaceUri
							 The
 URI defining the namespace associated with the node.
						
						
							 NodeType
							 The of the
 node.
						
						
							 Prefix
							 A
 shorthand reference to the namespace associated with the node.
						
						
							 QuoteChar
							 The
 quotation mark character used to enclose the value of an
 attribute.
						
						
							 Value
							 The
 text value of the node.
						
						
							 XmlLang
							 The
 xml:lang scope within which the node
 resides.
						
					
					 This class does not expand default attributes or general
 entities. Any general entities encountered are returned as a single empty
 node.
					 This class checks that a Document Type Definition (DTD) is well-formed, but does not validate using the
 DTD.
					 To read strongly typed data, use the class.
					 This class throws a on XML parse errors.
After an exception is thrown, the state of the reader is not predictable. For
example, the reported node type might be different than the actual node type of
the current node.
					
						 This class is and implemented in the
class.
					
				
			
			
				 System.Object
			
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of attributes on the current node.
						
						
							 A containing the
 number of attributes on the current node, or zero if the current node does not support attributes.
						
						
							
								
 This property is only relevant to the ,
 , and node types of the

 enumeration. Other node types do not have attributes.

							
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the base Uniform Resource Identifier (URI) of the current node.
						
						
							 The base URI of the current node.
						
						
							
								 A networked XML document is comprised of chunks of
 data aggregated using various W3C standard inclusion mechanisms and
 therefore contains nodes that come from different places. DTD entities are an example
 of this, but this is not limited to DTDs. The base URI tells where these nodes
 come from. If there is no base URI for the nodes being returned (for example,
 they were parsed from an in-memory string),

 is returned.

							
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether this reader can parse
 and resolve entities.
						
						
							 A
equal to .
						
						
							
								 This property
 returns to indicate the reader can parse and resolve
 entities; otherwise, .
								 This property is
 read-only.
							
							
								 This property
 always returns .
							
							
								 Override this property
 to return for
 implementations that support schema or
 DTD information.
							
							
								 Use this
 property to determine whether the reader can parse and resolve entities.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Changes the to .
						
						
							
								 This method
 releases any resources allocated by the current instance, changes the
 to , and calls the
 method of any underlying or instance.

							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the depth of
 the current node in the XML document.

						
						
							 A
containing the depth of the current node in the XML document.
						
						
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the
is , signifying the reader is positioned at the end of the
stream.
						
						
							 A where indicates the reader is positioned at the end
 of the stream; otherwise, .
						
						
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the value of the attribute with the specified qualified name.
						
						 A specifying the qualified name of the attribute.
						
							 A
containing the value of the specified attribute, or if the
attribute is not found.
						
						
							
								 This method does not move the
 reader.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
						
							 For an example demonstrating this method, see (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns the value of the attribute with the specified local
 name and namespace URI.
						
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						
							 A
containing the value of the specified attribute, or if the
attribute is not found.
						
						
							
								 This method does not move the
 reader.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
						
							 For an example demonstrating this method, see (,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the value of the attribute with the specified index relative to the containing element.
						
						 A specifying the zero-based index of the attribute relative to the containing element.
						
							 A
containing the value of the specified attribute.
						
						
							 is less than 0, or greater than or equal to the of the containing element.
						
							
								 This method does not move the
 reader.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
						
							 For an example demonstrating this method, see (,).
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current node has any attributes.
						
						
							 A where indicates the current node has attributes; otherwise,
 .
						
						
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property
 returns if the property of the current node is greater than zero.
							
							
								 Override this
 property to customize the behavior of this property in types derived from
 the
 class.

							
							
								 Use this property to determine whether the current node has any attributes.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current node can have an associated text
 value.
						
						
							 A
where indicates the node on which the reader is currently
positioned can have an associated text value; otherwise,
 .
						
						
							
								
 The following members of the
 enumeration can have an associated value: ,
 , , ,
 , ,
 , , and
 .

							
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current node is an
 attribute that was generated from the default value defined
 in the DTD or schema.

						
						
							 A
where indicates the
current node is an attribute whose value was generated from the default value
defined in the DTD or schema; indicates the attribute value was
explicitly set.
						
						
							
								 As described
 above.
								 This property is
 read-only.
							
							
								
 This property
 should return

 for implementations that do not support schema or DTD information.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current node is an
 empty element (for example, <MyElement />).
						
						
							 A where indicates the
 current node is an element (
 equals) that ends with " />", otherwise, .
						
						
							
								 A corresponding node is not
 generated for empty elements.
								 This property
 is read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether
 the specified string is a valid XML name.
						
						 A specifying the name to validate.
						
							 A where indicates the name
 is valid; otherwise, .
						
						
							
								 This method uses the W3C XML
 1.0 Recommendation (http://www.w3.org/TR/2000/REC-xml-20001006#NT-Name) to determine whether the name is valid.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines whether the specified
 string is a valid XML name token (Nmtoken).
						
						 A specifying the name to validate.
						
							 A where indicates
 the name is valid; otherwise .
						
						
							
								 This method uses the W3C XML 1.0 Recommendation (http://www.w3.org/TR/2000/REC-xml-20001006#NT-Nmtoken
) to determine whether the name token is valid.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Determines if a node containing content is an
 node with the specified local name
 and namespace URI.
						
						 A specifying the local name of an element.
						 A specifying the namespace URI associated with the element.
						
							 A where indicates the node
 is an node with the specified local name and namespace
 URI;
 otherwise.
						
						 An error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method
 calls the method, which
 determines whether the current node can
 contain content and, if not, moves the reader to the next content node or
 the end of the input stream. When the reader is positioned on a content node,
 the node is checked to determine if it is an node with
 and properties equal to
 and , respectively.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to
 determine whether the node returned by the method
 is an node with the specified local
 name and namespace URI.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Determines if a node containing content is an node
 with the specified qualified name.
						
						 A specifying the qualified name of an element.
						
							 A
where indicates the node is an
 node with the specified name;
otherwise.
						
						 An error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method
 calls the method, which
 determines whether the current node can
 contain content and, if not, moves the reader to the next content node or
 the end of the input stream. When the reader is positioned on a content node,
 the node is checked to determine if it is an node with a property equal
 to .
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to
 determine whether the node returned by the method is an node with the specified name.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Determines if a node containing content is an

 node.
						
						
							 A where indicates the node is an

node;
otherwise.
						
						 An error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method calls the method, which
 determines whether
 the current node can contain content and, if not, moves the reader
 to the next content node or the end of the input stream. When the reader
 is positioned on a content node, the node is checked to determine if it is
 an
 node.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to
 determine whether the node returned by the method is an
 node.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
						
					
					
						
							 Retrieves the value of the attribute with the specified index relative to the containing element.
						
						 A specifying the zero-based index of the attribute relative to the containing element.
						
							 A containing the value of the attribute.
						
						
							 is less than 0 or greater than or equal to the of the containing element.
						
							
								 This property does not move the reader.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
						
					
					
						
							 Retrieves the value of the attribute with the specified qualified name.
						
						 A specifying the qualified name of the attribute.
						
							 A containing the value of the specified attribute, or

if the attribute is not found.
						
						
							
								 This property does not move the reader.
								 If the reader
 is positioned on a

 node, this method can be used to get the PUBLIC and
 SYSTEM literals.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
						
						
					
					
						
							 Retrieves the value of the attribute with the specified local name and namespace URI.
						
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						
							 A
containing the value of the specified attribute, or if the
attribute is not found.
						
						
							
								 This property does not move the reader.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the local name of the current node.

						
						
							 A
containing the local name of the current node or, for node types that do not
have a name (like , , and so on),
 .
						
						
							
								 As described
 above.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Resolves a namespace prefix in the scope of the current element.

						
						 A specifying the prefix whose namespace URI is to be resolved. To return the default namespace, specify .
						
							 A containing the
 namespace URI to which the prefix maps. If is not in or no matching namespace is found, is returned.
						
						
							
								 As described above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Moves the position of the current instance to the attribute with the specified index relative to the containing element.
						
						 A specifying the zero-based index of the attribute relative to the containing element.
						
							 is less than 0 or greater than or equal to the of the containing element.
						
							
								 After calling
 this method, the ,
 , and properties reflect the properties of current attribute.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Moves the position of the current instance to the attribute with the specified local name and
 namespace URI.
						
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						
							 A
where indicates the attribute was found; otherwise,
 . If , the position of the current
instance does not change.
						
						
							
								 After calling
 this method, the ,
 , and properties reflect the properties of current attribute.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Moves the position of the current instance to the attribute with the specified qualified
 name.
						
						 A specifying the qualified name of the attribute.
						
							 A
where indicates the attribute was found; otherwise,
 . If , the reader's position does
not change.
						
						
							
								 After calling
 this method, the ,
 , and properties reflect the properties of current attribute.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Xml.XmlNodeType
					
					
					
						
							 Determines whether the current node can contain content and, if not,
 moves the position of the current instance to the next content node or the
 end of the input stream.
						
						
							 The
								 of the content
 node, or if the
 position
 of the reader has reached the end of the input stream.
						
						 An error occurred while parsing the XML.
						
							
								
 The following members of can contain content:
 , , , ,
 , , and .

							
							
								 As described above.
							
							
								 If the
 current node is an node, this method
 moves the position of the reader
 back to the node that owns the attribute.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to determine whether the current
 node can contain content and, if not, move the position of the reader to the next content node.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Moves the position of the current instance to the node that contains the current
 node.
						
						
							 A where indicates the position of the reader was moved; indicates the reader was not positioned on an node and
 therefore the position of the reader was not
 moved.
						
						
							
								
 The , , and members of can contain
 attributes.

							
							
								 As described
 above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Moves the position of the current instance to the first attribute associated with the current node.
						
						
							 A
where indicates the current node contains at least one attribute; otherwise,
 .
						
						
							
								 If is non-zero,
 the position of
 the reader
 moves to the first attribute; otherwise, the position of the reader does not change.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Moves the position of the current instance to the next attribute associated with the current node.
						
						
							 A where indicates the position of the reader moved to the next attribute; if there were no more attributes.
						
						
							
								 As described above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the qualified name of the current node.
						
						
							 A
containing the qualified name of the current node or, for node types that do not
have a name (like , , and so on),
 .
						
						
							
								 The qualified name is equivalent to
 the

 prefixed with and the
 ':' character. For example, is
 "bk:book" for the element <bk:book>.

								 The name returned is dependent on the of the node. The following node types
 return the listed values. All other node types return an empty string.
								
									
										 Node Type
										 Name
									
									
										
											
										
										 The name of the attribute.
									
									
										
											
										
										 The document type name.
									
									
										
											
										
										 The tag name.
									
									
										
											
										
										 The name of the entity referenced.
									
									
										
											
										
										 The target of the processing
 instruction.
									
									
										
											
										
										 The literal string "xml".
									
								
								 This property is read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the namespace URI associated with the node on which the reader is positioned.
						
						
							 A containing the namespace URI of the current node or, if
 no namespace URI is associated with the current node, .

						
						
							
								 This property is relevant to
 and

 nodes
 only.
								 Namespaces conform to the W3C "Namespaces in XML" recommendation,
 REC-xml-names-19990114.
								 This property is read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlNameTable
					
					
					
						
							 Gets the name table used by the current instance to store
 and look up element and attribute names, prefixes, and namespaces.
						
						
							 The used by the current
 instance.
						
						
							
								 Element and attribute names,
 prefixes, and namespaces are stored as individual objects when a document is
 read.
								 This property is read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlNodeType
					
					
					
						
							 Gets the type of the current node.
						
						
							 One of the members of the enumeration representing the type of the current
 node.
						
						
							
								 This property does not return the following members:
 , ,
 , , and
 .
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the namespace prefix associated with the current node.

						
						
							 A
containing the namespace prefix associated with the current node.
						
						
							
								 A namespace prefix
 is used as a reference for a namespace URI and is defined in an element
 declaration. For example, <someElement xmlns:bk="someURL">, defines a
 prefix name "bk".

							
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Char
					
					
					
						
							 Gets the quotation mark character used to enclose the value of an attribute.

						
						
							 A specifying the quotation mark character (" or ') used to enclose the value of
 an attribute.

						
						
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Moves the position of the current instance to the next node in the stream, exposing its properties.
						
						
							 A
where indicates the node was read successfully, and
 indicates there were no more nodes to read.
						
						 An error occurred while parsing the XML.
						
							
								 As described above.
							
							
								
 This method must be overridden in order to provide the functionality as described herein, as there is no default implementation.

							
							
								 When a reader
 is first created and initialized, there is no information available. Calling
 this method is required to read the first node.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Parses an attribute value into one or more
 , , and
 nodes.
						
						
							 A where indicates the attribute value was parsed, and
 indicates the reader was not
 positioned on an attribute node or all the attribute values have been read.
							
						
						
							
								 To parse an
 node, call the method. After the node is parsed into child nodes, call
 the
 method again to read the value of the entity.
								 The
 of an
 attribute value node is one plus the depth of the attribute node. When general entity references
 are stepped into or out of, the

 increments or decrements by one, respectively.
							
							
								
 As described above.

							
							
								

 Implementations that cannot expand general entities should return general
 entities as a single empty (equals)

 node.

							
							
								 Use this method after calling to
read through the , or
nodes that make up the attribute
value. Call the method to resolve the

nodes.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Reads the contents of a text-only
 element with the specified local name and namespace URI.
						
						 A specifying the local name of an element.
						 A specifying the namespace URI associated with the element.
						
							 A containing the contents of the element.
						
						 The node is not an node, the property of the node does not equal , or the property of the node does not equal , the element does not contain a simple text value, or an error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method
 calls the method. If the returned node is an
 node, this method compares the
 and properties of the node to and
 , respectively. If they are equal, this method calls the
method to read
the contents of the element.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to
 read the contents of a text-only element with the specified local name and namespace URI.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Reads the contents of a text-only element with the specified qualified
 name.
						
						 A specifying the qualified name of an element.
						
							 A containing the contents of the element.
						
						 The node is not an node, the property of the node does not equal , the element does not contain a simple text value, or an error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method calls the
 method and, if
 the returned node is an node,
 compares the property of the node
 to . If they are equal, this method calls the method to read
 the contents of the element.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to read the contents of a text-only element with the specified qualified name.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the contents of a text-only element.
						
						
							 A containing the contents of the element.
						
						 The node is not an node, the element does not contain a simple text value, or an error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method calls the
 method and, if
 the returned node is an node, calls the
 method to read the contents.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to read the contents of a text-only element.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Reads an node and advances the reader to
 the next node.
						
						 The node is not an node or an error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method
 calls the method, which determines whether the
 current node can contain content and, if not, moves the reader to the next
 content node or the end of the input stream. The node the reader ends up
 positioned on is checked to determine if it is an
 node. If so, the node is read and the reader is moved to the next node.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to
 read an node and advance the reader to the next node.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the contents of the current node, including child nodes and markup.
						
						
							 A
containing the XML content, or if the current node is neither an element nor
attribute, or has no child nodes.
						
						 The XML was not well-formed, or an error occurred while parsing the XML.
						
							
								 The current node and corresponding end node are not returned.
								 If the current node is an element, after the call to this method, the reader
 is positioned after the corresponding end element.
								 If the current node is an attribute, the position of the reader is not changed.
								
									 For a comparison
 between this method and the method, see .
								
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the current node and its contents, including child nodes and markup.
						
						
							 A
containing the XML content, or if the current node is neither an element nor
attribute.
						
						 The XML was not well-formed, or an error occurred while parsing the XML.
						
							
								 The current node and corresponding end node are returned.
								 If the current node is an element, after the call to this method, the reader
 is positioned after the corresponding end element.
								 If the current node is an attribute, the position of the reader is not changed.
								
									 For a comparison
 between this method and the method, see .
								
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Reads an node and advances the reader to the next
 node.
						
						 The node is not an node or an error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method
 calls the method, which determines whether the
 current node can contain content and, if not, moves the reader to the next
 content node or the end of the input stream. The node the reader ends up
 positioned on is checked to determine if it is an
 node. If so, the node is read and the reader is moved to the next node.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to
 read an node and advance the reader to the next node.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Reads an
node with the specified qualified name and advances
the reader to the next node.
						
						 A specifying the qualified name of an element.
						 The node is not an node, the property of the node does not equal , or an error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method calls
 the method and, if the returned node is an
 node, compares the property of the node to
 . If they are equal, this method calls the
 method to read the element and move to the next node.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to
 read an node with the specified
 qualified name, and advance the reader to the next node.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Reads an node with the specified local name and
 namespace URI and advances the reader to the next node.
						
						 A specifying the local name of an element.
						 A specifying the namespace URI associated with the element.
						 The node is not an node, the property of the node does not equal , the property of the node does not equal , or an error occurred while parsing the XML.
						
							
								 As described above.
							
							
								 This method calls
 the method. If the returned node is an
 node, this method compares the
 and properties of the node to
 and , respectively. If they are equal, this method calls the
 method to read the element and move to the next node.
							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to
 read an node with the specified
 local name and namespace URI, and advance the reader to the next node.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.ReadState
					
					
					
						
							 Gets the read state of the reader.

						
						
							 One of the members of the enumeration.

						
						
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the contents of an element or text node as a string.
						
						
							 A
containing the contents of the or
node, or if the reader is positioned on any other type of
node.
						
						 An error occurred while parsing the XML.
						
							
								 If positioned on an node, this method concatenates all
 , ,
 , and node types, and returns the concatenated
 data as the element content. If none of these node types exist,

 is returned. Concatenation
 stops when any markup is encountered, which can occur in a mixed content
 model or when an element end tag is read.
								 If positioned on an element node, this method performs the same
concatenation from the node to the element end tag. If the
reader is positioned on an attribute node, this method has the same functionality as
if the reader were position on the element start tag.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Resolves the entity
 reference for nodes.
						
						 The reader is not positioned on a node.
						
							
								 This method
 parses the entity reference into child nodes. When the parsing is finished a
 new node is
 placed
 in the
 stream to close the

 scope. To step into the entity after this
 method has been called, call the method if the entity is part of an attribute value,
 or the method if the entity is part of element
 content.
								 If this method is not called, the parser moves to the
 next node past the entity (child nodes are bypassed).
							
							
								 This method must be overridden in order to provide the functionality as described in
 the Behaviors and Usage sections, as there is no default implementation.
								 This method is required
 to throw an exception for implementations that do not support schema or DTD
 information. In this case, the
 property is required to return
 .
							
							
								 Use this method
 to resolve the entity reference for nodes. Before calling
 this method, determine whether the reader can resolve an entity by
 checking the property.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Skips over the current element and moves the position of the current instance to the next node in the stream.
						
						 The XML was not well-formed, or an error occurred while parsing the XML.
						
							
								 If the reader
 is positioned on a non-empty node (equals), the position of the reader is moved to the node following the
 corresponding node. The properties of the
 nodes that are skipped over are not exposed. If the reader is positioned on any
 other node type, the position of the reader is moved to the next node, in this
 case behaving like the

 method.
							
							
								 This method
 calls the method before skipping to the next node.
							
							
								
 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method to skip over the current node.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the text value of the current node.
						
						
							 A containing the text value of the current node.
						
						
							
								 The value returned depends on the . The following table lists node types that have a value to return. All
 other node types return .
								
									
										 Node Type
										 Value
									
									
										
											
										
										 The value of the attribute.
									
									
										
											
										
										 The content of the CDATA section.
									
									
										
											
										
										 The content of the comment.
									
									
										
											
										
										 The internal subset.
									
									
										
											
										
										 The entire content, excluding the target.
									
									
										
											
										
										 The white space between markup in a mixed content
 model, or in the scope of xml:space = "preserve".
									
									
										
											
										
										
											 The content of the text node.
										
									
									
										
											
										
										 The white space between markup.
									
									
										
											
										
										 The content of the declaration.
									
								
								 This property is read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the current xml:lang scope.
						
						
							 A containing the
 current xml:lang scope.
						
						
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlSpace
					
					
					
						
							 Gets the current xml:space scope.
						
						
							 One of the members of the
enumeration. If no xml:space scope exists, this property defaults to
 .
						
						
							
								 As described
 above.
								 This property is
 read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Resolves external XML resources named by a
 URI.
				
				
					 This class is used to resolve external XML resources such as entities,
 document type definitions (DTDs), or schemas. It is also used to process include
 and import elements found in Extensible StyleSheet Language (XSL) stylesheets or
 XML Schema Definition language (XSD) schemas.
					 This class is and implemented in the
class.
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Property
					
						 System.Void
					
					
						
					
					
						
							 Sets the credentials used to authenticate Web
 requests.
						
						
							 A instance
 containing the
 credentials.
						
						
							
								 This property
 sets the credentials used to authenticate Web requests. If the virtual directory
 is configured to allow anonymous access, this property does not need to be set.
 Otherwise, the credentials of the user must be supplied.
								 This property is write-only.
							
							
								 This property must be overridden in order to
 provide the functionality described above, as there is no default implementation.

							
						
						
							 See for an example using this property.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
					
					
						
							 Maps a URI to an object
 containing the actual resource that the URI represents.
						
						 An instance of the class containing an absolute URI.
						 A containing the xlink:role, or used as an implementation specific argument in other scenarios.
						 The type of object to return.
						
							 A
containing the resource.
						
						
							 is .
						
							 is not a supported type.
						
							
								 As described above.
							
							
								 At a minimum, supporting the return of a object is required.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Uri
					
					
						
						
					
					
						
							 Resolves the absolute URI from the base and relative URIs.
						
						 The specifying the base URI used to resolve .
						
							 A specifying the URI to resolve. The URI can be absolute or relative.
						
						
							 A containing the absolute URI, or if can not be resolved.
						
						
							 and are .
						
							
								 As described above.
							
							
								 This method must be overridden in order to
 provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			
				
					 Specifies the white
 space attribute, xml:space, which indicates whether white space should be preserved in an element.
				
				
					
						 This enumeration is used by instances of the ,
 , and classes.
					
				
			
			
				 System.Enum
			
			
			
				
					
					
					 Field
					
						 System.Xml.XmlSpace
					
					
					 Default
					
						
							
								 xml:space = "default" is in scope.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlSpace
					
					
					 None
					
						
							 No xml:space attribute is in scope.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Xml.XmlSpace
					
					
					 Preserve
					
						
							
								 xml:space = "preserve" is in scope.
						
					
					 0
				
				
					
					
					 Field
					
						 System.Int32
					
					
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a reader that provides
 fast, non-cached, forward-only
 access to XML data.
				
				
					 This class provides forward-only,
 read-only access to a character stream of XML data. This class enforces the rules of
 well-formed XML but does not perform data validation.
					 This class implements the class and conforms to the W3C Extensible Markup
 Language (XML) 1.0 and the Namespaces
 in XML recommendations.
					 A given set of
 XML data is modeled as a tree of nodes. The different types of
 nodes are specified in the enumeration. The current node refers to the node on which
 the reader is positioned. The reader is advanced using any of the "read" or
 "moveto" methods. The following table lists the node properties exposed for the
 current
 node.
					
						
							 Property
							 Description
						
						
							 AttributeCount
							 The
 number of attributes on the
 node.
						
						
							 BaseUri
							 The
 base URI of
 the node.
						
						
							 Depth
							 The
 depth of the
 node in the tree.
						
						
							 HasAttributes
							 Whether the node has attributes. (Inherited from
)
						
						
							 HasValue
							 Whether the node can have a text value.
						
						
							 IsDefault
							 Whether an node was
 generated from the default value defined in the DTD or schema.
						
						
							 IsEmptyElement
							 Whether an node is empty.
						
						
							 LocalName
							 The local name of the node.
						
						
							 Name
							 The
 qualified name of the node, equal to
 :
 .
						
						
							 NamespaceUri
							 The
 URI defining the namespace associated with the node.
						
						
							 NodeType
							 The of the
 node.
						
						
							 Prefix
							 A
 shorthand reference to the namespace associated with the node.
						
						
							 QuoteChar
							 The
 quotation mark character used to enclose the value of an
 attribute.
						
						
							 Value
							 The
 text value of the node.
						
						
							 XmlLang
							 The
 xml:lang scope within which the node
 resides.
						
					
					 This class does not expand default attributes or resolve general
 entities. Any general entities encountered are returned as a single empty

node.
					 This class checks that a Document Type Definition
 (DTD) is well-formed, but does not validate using the DTD.
					 To read strongly typed data, use the
class.
					 This class throws a on XML parse
errors. After an exception is thrown, the state of the reader is not
predictable. For example, the reported node type can be different than the
actual node type of the current node.
				
			
			
				 System.Xml.XmlReader
			
			
			
				
					 DefaultMemberAttribute("Item")
					 1
					 System.Reflection.DefaultMemberAttribute
					 RuntimeInfrastructure
				
			
			
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified file.

						
						 A specifying the URL for the file containing the XML data.
						
							 is .
						
							 This constructor is equivalent to (, new ()).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class
 with the specified XML fragment.
						
						 A containing the XML fragment to parse.
						 The of the XML fragment. This also determines what the fragment string can contain. (See table below.)
						
							 The in which the is to be parsed, or .
						
						
							 is .
						
							 is not an , , or
							 .
						
							 The following table lists valid values for and how the reader will parse each of the
 different node types.
							
								
									 XmlNodeType
									 Fragment Can Contain
								
								
									 Element
									 Any
 valid element content (for example, any combination of elements, comments, processing instructions, CDATA sections, text, and entity references).
								
								
									 Attribute
									 The value of an attribute (the part inside the quotes).
								
								
									 Document
									 The contents of an entire XML document; document level rules are enforced.
								
							
							
								 If the XML fragment is an element or attribute, root
 level rules for well-formed XML documents are not enforced.
								 This constructor can handle
 strings returned from .
							
							 This constructor calls (.) or, if is
 , (
								 ()) to initialize properties of the class. Following this call, if is
not , the following properties are set to the specified
values.
							
								
									 Property
									 Value
								
								
									 BaseUri
									
										 . or, if is
 , .
								
								
									 Encoding
									
										 . or, if or . is
 , UTF-8.
								
								
									 XmlLang
									 If is not
 , . . If is
 , this property is not changed.
								
								
									 XmlSpace
									 If is not
 , . . If is
 , this property is not
 changed.
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 file and name table.

						
						 A specifying the URL for the file containing the XML data to read.
						 The to use.
						
							 is .
						
							 is .
						
							 This constructor calls () to initialize
 properties of the class.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 stream containing an XML fragment.
						
						 The containing the XML fragment to parse.
						 The of the XML fragment. This also determines what the fragment string can contain. (See table below.)
						
							 The in which the is to be parsed, or .
						
						
							 is .
						
							 is not an , , or
							 .
						
							 The following table lists valid values for .
							
								
									 XmlNodeType
									 Fragment Can Contain
								
								
									 Element
									 Any
 valid element content (for example, any combination of elements, comments, processing instructions, CDATA sections, text, and entity references).
								
								
									 Attribute
									 The value of an attribute (the part inside the quotes).
								
								
									 Document
									 The contents of an entire XML document; document level rules are enforced.
								
							
							
								 If the XML fragment is an element or attribute, the root level rules
 for well-formed XML documents are not enforced.
							
							 This constructor calls (.) or, if is
 , (
								 ()) to initialize properties of the class.
Afterwards, the following properties are set to the specified
values.
							
								
									 Property
									 Value
								
								
									 BaseUri
									
										 . or, if is
 , .
								
								
									 Encoding
									
										 . or, if or . is
 , the encoding corresponding to the
 byte-order mark at the beginning of the stream or, if no byte-order
 mark is found, UTF-8.
								
								
									 Namespaces
									
										 .
								
								
									 XmlLang
									 If is not
 , . . If is
 , this property is not changed.
								
								
									 XmlSpace
									 If is not
 , . . If is
 , this property is not
 changed.
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
					
						
							 Constructs a new instance of
 the class.
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified name table.
						
						 The to use.
						
							 is .
						
							 The public constructors call this constructor to initialize the following properties to
 the specified values. Derived classes can call this constructor to incorporate
 this behavior.
							
								
									 Property
									 Value
								
								
									 Namespaces
									
										
									
								
								
									 NameTable
									
										
									
								
								
									 Normalization
									
										
									
								
								
									 ReadState
									
										
									
								
								
									 WhitespaceHandling
									
										
									
								
								
									 XmlLang
									
										
									
								
								
									 XmlSpace
									
										
									
								
								
									 XmlResolver
									 new ()
								
							
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified stream.
						
						 The containing the XML data to read.
						
							 is .
						
							 This constructor is equivalent to (, , new ()).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
class with the specified URL and stream.
						
						 A specifying the URL to use for resolving external resources.
						 The containing the XML data to read.
						
							 is .
						
							 This constructor is equivalent to (, , new ()).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 stream and name table.
						
						 The containing the XML data to read.
						 The to use.
						
							 or is .
						
							 This constructor is equivalent to (, ,).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified
 URL, stream, and name table.
						
						 A specifying the URL to use for resolving external resources.
						 The containing the XML data to read.
						 The to use.
						
							 or is .
						
							 This constructor calls () to initialize properties of the
 class.
							
								 is set to the encoding corresponding
to the byte-order mark at the beginning of the stream or, if no byte-order mark
is found, UTF-8.
							
								 is set to or, if is , to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified .

						
						 A , set to the correct encoding, containing the XML data to read.
						
							 This constructor is equivalent to (, , new ()).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified URL and .
						
						 A specifying the URL to use for resolving external resources.
						 A , set to the correct encoding, containing the XML data to read.
						
							 This constructor is equivalent to (, , new ()).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified , and name table.
						
						 A , set to the correct encoding, containing the XML data to read.
						 The to use.
						
							 is .
						
							 This constructor is equivalent to (, ,).
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
						
					
					
						
							 Constructs and initializes a new instance of the class with the specified URL, , and name table.
						
						 A specifying the URL to use for resolving external resources.
						 A , set to the correct encoding, containing the XML data to read.
						 The to use.
						
							 is .
						
							 If is , a is thrown when the
method is called.
							 This constructor calls () to initialize
properties of the class.
							
								 is set to or, if is , to .
							
								 To pass a user defined string that represents full,
 well-formed XML data, create a with the string and pass the

 to this constructor.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the number of attributes on the current node.
						
						
							 A containing the
 number of attributes on the current node, or zero if the current node does not support attributes.
						
						
							 This property is read-only.
							
								 This property
 is relevant to the
 , , and node types of
 the enumeration. Other node types do not have
 attributes.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the base Uniform Resource Identifier (URI) of the current node.

						
						
							 The base URI of the current node.

						
						
							 This property is read-only.
							 This property is set when the reader is instantiated and
 defaults to .
							
								 A networked XML document is comprised of chunks of
 data aggregated using various W3C standard inclusion mechanisms and
 therefore contains nodes that come from different places. Document Type Definition
 (DTD) entities are an example of this, but this is not limited to DTDs. The base
 URI tells where these nodes
 come from.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Changes the to .
						
						
							 This method releases any resources allocated by the
 current instance, changes the to , and calls the method of any underlying or

 instance.

							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the depth of
 the current node in the XML document.

						
						
							 A containing the depth of the current node in the XML document.

						
						
							 This property is read-only.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Text.Encoding
					
					
					
						
							 Gets the encoding of the
 document.
						
						
							 If the is , a ; otherwise .
						
						
							 This property is read-only.
							 If no encoding attribute exists, this property
 defaults to UTF-8.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the is , signifying the reader is positioned at the end of the
 stream.
						
						
							 A where
indicates the reader is positioned at the end of the stream;
otherwise, .
						
						
							 This property is read-only.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the value of the attribute with the specified qualified name.
						
						 A specifying the qualified name of the attribute.
						
							 A containing the
 value of the specified attribute, or
 if
 the attribute is not found. If is ,
 is returned.
						
						
							 This method does not move the reader.
							
								 If the reader is positioned on a node, this method can be used to get
 the PUBLIC and SYSTEM literals.
								 This method overrides .
							
						
						
							 See the (,) method for an example
 using all three overloads of this method.
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
						
					
					
						
							 Returns the value of the attribute with the specified local name and namespace URI.
						
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						
							 A
containing the value of the specified attribute, or
if the attribute is not found. If is ,

is returned.
						
						
							 If is , the local namespace is
 searched for .
							 This method does not move the reader.
							
								 This method overrides .
							
						
						
							 This example writes the value of the attributes from the
 following XML fragment to the console:
							
								 <test xmlns:dt="urn:datatypes"
 dt:type="int"/>
							
							 The second attribute value is retrieved using all three
 overloads of this method.
							 using System;
using System.Xml;

public class Reader {

 public static void Main() {

 string xmlFragment = @"<test xmlns:dt=""urn:datatypes""
 dt:type=""int""/>";

 NameTable nameTable = new NameTable();
 XmlNamespaceManager xmlNsMan = new
 XmlNamespaceManager(nameTable);
 XmlParserContext xmlPContext = new
 XmlParserContext(null, xmlNsMan,
 null, XmlSpace.None);
 XmlTextReader xmlTReader = new
 XmlTextReader(xmlFragment,XmlNodeType.Element,
 xmlPContext);

 xmlTReader.Read();
 Console.WriteLine("{0}", xmlTReader.GetAttribute(0));

 string str1 = xmlTReader.GetAttribute(1);
 string str2 = xmlTReader.GetAttribute("dt:type");
 string str3 = xmlTReader.GetAttribute("type",
 "urn:datatypes");
 Console.WriteLine("{0} - {1} - {2}",
 str1, str2, str3);
 }
}

							 The output is
							 urn:datatypes
							 int - int - int
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the value of the attribute with the specified index relative to the containing element.
						
						 A specifying the zero-based index of the attribute relative to the containing element.
						
							 A containing the
 value of the specified attribute.
						
						
							 is less than 0, or greater than or equal to the of the containing element.
								
									 returns zero for all node types except , , , and . Therefore, this exception is thrown if the reader is not positioned on one of these node types.
							
						
						
							 This method does not move the reader.
							
								
 This method overrides .

							
						
						
							 See the (,
) method for an example using all three overloads of this method.
						
					
					 0
				
				
					
					
					 Method
					
						 System.IO.TextReader
					
					
					
						
							 Returns the remainder of the buffered XML.
						
						
							 The attached to the XML.
						
						
							 This method calls the method, and then resets the to .
							
								 Because performs a buffered read operation, it must be able to return the remainder
 of the unused buffer so that no data is lost. For example, this allows
 protocols (such as multi-part MIME) to package XML in the same stream.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current node can have
 an associated text value.
						
						
							 A where indicates the node on
 which the reader is currently positioned can have an associated text value;
 otherwise, .
						
						
							 This property is read-only.
							 The following members of the enumeration can have an associated value: ,
 ,
 ,
 ,
 ,
 ,
 ,
 , and
 .
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current node is an
 attribute that was generated from the default value defined
 in the DTD or schema.

						
						
							 This property always returns the value .

						
						
							 This property is read-only.
							 This property applies only to attribute nodes.

							
								
									 does not expand default
 attributes.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets a value indicating whether the current node is an
 empty element (for example, <MyElement />).
						
						
							 A where indicates the
 current node is an element (equals
) that ends
 with " />"; otherwise, .
						
						
							 This property is read-only.
							 A node is not generated for empty
 elements.
							
								 This property determines the difference between the
 following:
								
									 <item bar="123"/>
 (is).
								
									 <item bar="123">
 (is).
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
						
					
					
						
							 Retrieves the value of the attribute with the specified index relative to the containing element.
						
						 A specifying the zero-based index of the attribute relative to the containing element.
						
							 A containing the value of the attribute.
						
						
							 is less than 0 or greater than or equal to the of the containing element.
								
									 returns zero for all node types except , , , and . Therefore, this exception is thrown if the reader is not positioned on one of these node types.
							
						
						
							 This property is read-only.
							 This property does not move the reader.
							
								 This property overrides the indexer.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
						
					
					
						
							 Retrieves the value of the attribute with the specified qualified name.
						
						 A specifying the qualified name of the attribute.
						
							 A
containing the value of the specified attribute, or if the
attribute is not found.
						
						
							 This property is read-only.
							 This property does not move the reader.
							
								 If the reader is positioned on a node, this
 method can be used to get the PUBLIC and SYSTEM literals.
								 This property overrides the indexer.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
						
						
					
					
						
							 Retrieves the value of the attribute with the specified local name and namespace URI.
						
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						
							 A
containing the value of the specified attribute, or if the
attribute is not found.
						
						
							 This property is read-only.
							 This property does not move the reader.
							
								 This property overrides the indexer.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the current line number.
						
						
							 A containing the current line number.
						
						
							 This property is read-only.
							 The constructors initialize this property to
 one.
							
								 This property is most commonly used for error reporting, but can be called at
 any time.
								 The start of a document is indicated when this property
 is 1 and the
 property is 1.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets the current position in a line.
						
						
							 A containing the current line position.
						
						
							 This property is read-only.
							 The constructors initialize this property to one, which
 indicates the first character of text in a line.
							
								 For example, <root>, contains the character 'r'
 at equal to 2
 and
 the character '>' at equal to 6.
								 This property is most commonly used for error reporting, but can be called at
 any time.
								 The start of a document is indicated when this property is 1 and the property is 1.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the local name of the current node.

						
						
							 A
containing the local name of the current
node or, for node types that do not have a name (like
 ,
, and so on), .
						
						
							 This property is read-only.
							 The local name is equivalent to with and the ':' character removed. For
 example, is "book"
 for the
 element <bk:book>.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Resolves a namespace prefix in the scope of the current element.

						
						 A specifying the prefix whose namespace URI is to be resolved. To return the default namespace, specify .
						
							 A containing the
 namespace URI to which the prefix maps. If is , is not in , or no matching namespace is found, is returned.
						
						 The property of the current instance is and is .
						
							
								 In the following XML, if the reader is positioned on the
 href attribute, the prefix "a" is resolved by calling ("a"). The returned string is
 "urn:456".
								
									 <root xmlns:a="urn:456">
									 <item>
									 <ref href="a:b"/>
									 </item>
									 </root>
								
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Moves the position of the current instance to the attribute with the specified index relative to the containing element.
						
						 A specifying the zero-based index of the attribute relative to the containing element.
						
							 is less than 0 or greater than or equal to the of the containing element.
								
									 returns zero for all node types except , , , and . Therefore, this exception is thrown if the reader is not positioned on one of these node types.
							
						
						
							 After calling this method, the ,
 , and properties reflect
 the properties of the new attribute.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
						
					
					
						
							 Moves the position of the current instance to the attribute with the specified local name and namespace URI.
						
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						
							 A where indicates the attribute was found. If
 is , or the attribute was not found, is returned and the position of the reader does
 not change.
						
						
							 If is , the local namespace is
 searched for .
							 After calling this method, the , , and properties
reflect the properties of the new attribute.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
						
					
					
						
							 Moves the position of the current instance to the attribute with the specified qualified name.
						
						 A specifying the qualified name of the attribute.
						
							 A where indicates the attribute was found. If
 is , or the attribute was not found,
 is returned and the position
 of the reader does not change.
						
						
							 After calling this method, the ,
 , and properties
 reflect the properties of the new attribute.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Moves the position of the current instance to the node that contains the current
 node.
						
						
							 A where indicates the reader was moved;
 indicates the reader was not positioned on an
 node and therefore was not
 moved.
						
						
							
								 The , , and node types can contain attributes.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Moves the position of the current instance to the first attribute associated with the current node.
						
						
							 A where indicates the current node contains at least one attribute; otherwise, .
						
						
							 If is non-zero, the
 reader moves to the first attribute; otherwise, the position of the reader does
 not change.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Moves the position of the current instance to the next attribute associated with the current node.
						
						
							 A where indicates the reader moved to the next attribute;
 if there were no more attributes.
						
						
							 If the current node is an element node, this method is
 equivalent to .
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets
 the qualified name of the current node.
						
						
							 A
containing the qualified name of the current node or, for node types that do not
have a name (like , , and so on),
 .
						
						
							 This property is read-only.
							 The name returned is dependent on the of the node. The following node types
 return the listed values. All other node types return an empty string.
							
								
									 Node Type
									 Name
								
								
									
										
									
									 The name of the attribute.
								
								
									
										
									
									 The document type name.
								
								
									
										
									
									 The tag name.
								
								
									
										
									
									 The name of the entity referenced.
								
								
									
										
									
									 The target of the processing
 instruction.
								
								
									
										
									
									 The
 literal string "xml".
								
							
							
								 The qualified name is equivalent to the prefixed with
 and the ':' character. For
 example, is
 "bk:book" for the element <bk:book>.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether the reader supports namespaces.

						
						
							 A where indicates the reader supports namespaces; otherwise,
 . The default is .

						
						 When attempting to set the property, the was not .
						
							 This property determines whether the reader supports the
 XML Namespaces specification (http://www.w3.org/TR/REC-xml-names).
 If this property is , namespaces
 are ignored and the
 reader allows names to contain multiple colon characters.
							 If an attempt is made to set this property after a read
 operation has occurred, a
 is thrown.
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the namespace URI associated with the node on which the reader is positioned.

						
						
							 A containing the
 namespace URI of the current node or, if no namespace URI is associated with the
 current node, .

						
						
							 This property is read-only.
							 This property is relevant to
and nodes
only.
							
								 Namespaces conform to the W3C "Namespaces in XML"
 recommendation, REC-xml-names-19990114.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlNameTable
					
					
					
						
							 Gets the name table used by the current instance to store and look up element and attribute names, prefixes, and
 namespaces.
						
						
							 The used by the current instance.
						
						
							 This property is read-only.
							 The class stores element and attribute names, prefixes,
 and namespaces as individual objects when a document is read.
							 A qualified name is stored as a unique instance and separated into its prefix and local
name parts, which are also stored as unique strings instances. For example,
 <somePrefix:someElement>, is stored as three strings,
"somePrefix:someElement", "somePrefix", and "someElement".
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlNodeType
					
					
					
						
							 Gets the of the current node.
						
						
							 One of the members of the enumeration representing the type of
 the current node.

						
						
							 This property is read-only.
							 This property does not return the following
 types:
 , ,
 , , or
 .
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets or sets a value indicating whether to normalize white
 space and attribute values.
						
						
							 A where indicates to normalize; otherwise,
 . The default is .
						
						 When attempting to set the property, the current instance has been closed.
						
							 This property can be changed at any time before the current instance has been closed and takes affect on the next read operation.
							 If is set to
 , this also disables character range checking for numeric entities.
 As a result, character entities, such as " �", are allowed.
							
								 See "Attribute-Value Normalization" in the W3C XML 1.0 recommendation, REC-xml-19980210.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the namespace prefix associated with the current node.

						
						
							 A containing the namespace prefix associated with the current node.

						
						
							 This property is read-only.
							
								 A namespace prefix is used as a reference for a namespace
 URI and is defined in an element declaration. For example, <someElement
 xmlns:bk='someURL'>, defines a prefix name "bk".
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Char
					
					
					
						
							 Gets the quotation mark character used to enclose the value of an
 attribute.

						
						
							 A specifying the quotation mark character (" or ') used to enclose the value of
 an attribute.

						
						
							 This property is read-only.
							 This property applies only to an
 node.

							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Moves the position of the current instance to the next node in the
 stream, exposing its properties.
						
						
							 A where indicates the node was read successfully, and
 indicates there were no more nodes to read.
						
						 An error occurred while parsing the XML.
						
							
								 When a reader is first created and initialized, there is
 no information available. Calling this method is required
 to read the
 first node.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Boolean
					
					
					
						
							 Parses an attribute value into one or more
 and
 nodes.
						
						
							 A where indicates the attribute value was
 parsed, and
 indicates the reader was not positioned on an attribute node or all the
 attribute values have been read.
						
						
							 The class does not expand general entities; any encountered are returned as a single
 empty node (is).
							
								 Use this method after calling to read
 through the text or entity reference nodes that make up the attribute value. The
 of the attribute value nodes is one plus
 the depth of the attribute node. When general entity references are stepped into
 or out of, the
 is incremented of decremented by one, respectively.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads and decodes the Base64 encoded contents of an element
 and stores the result in a byte buffer.
						
						 A array to store the content.
						 A specifying the zero-based index into where the method should begin to write.
						 A specifying the number of bytes to write.
						
							 A
containing the number of bytes written to , or zero if the current
instance is not positioned on an element.
						
						
							 is .
						
							
								 < 0, or < 0.
							 - or -
							
								 > . - .
						
						 The Base64 sequence is not valid.
						
							
								 This method can be called successively to read large streams of embedded
 text.
								 Base64 encoding represents byte sequences in a text form
 comprised of the 65 US-ASCII characters (A-Z, a-z, 0-9, +, /, =) where each character encodes 6 bits of the binary data.
								 For more information on Base64 encoding, see RFC 2045
 (http://www.ietf.org/rfc/2045).
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads and decodes the BinHex encoded contents
 of an element and stores the result in a byte
 buffer.
						
						 A array to store the content.
						 A specifying the zero-based index into where the method should begin to write.
						 A specifying the number of bytes to write.
						
							 A
containing the number of bytes written to , or zero if the current
instance is not positioned on an element.
						
						
							 is .
						
							
								 < 0, or < 0.
							 -or-
							
								 > . - .
						
						 The BinHex sequence is not valid.
						
							
								 This method can be called successively to read large streams
 of embedded text.
								 For information on BinHex encoding, see RFC 1741 (http://www.ietf.org/rfc/rfc1741).
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Int32
					
					
						
						
						
					
					
						
							 Reads the text contents of an element into
 a character buffer.
						
						 A array to store the content.
						 A specifying the zero-based index into where the method should begin to write.
						 A specifying the number of characters to read and store in .
						
							 A containing the number of characters written to
 ,
 or zero if the current instance is not positioned on an element.
						
						
							
								 > . - .
						
						
							 is .
						
							
								 < 0, or < 0.
						
						
							 If the end of the character stream in the element is reached before the
 specified number of characters is read, the return value will be less than
 .
							 This method has the following functionality:
							
								
									

 It is designed to work on element nodes only; it
 returns zero for other node types.
								
								
									

 It returns the actual character content including
 markup. There is no attempt to resolve entities, CDATA, or any other markup
 encountered.
								
								
									

 It ignores XML markup that is not well-formed. For
 example, when reading the following XML string <A>1<A>2, 1<A>2 is returned. (It returns
 markup from the matching element pair and ignores others.)
								
								
									

 It does not do any normalization.
								
								
									

 When it has reached the end of the character stream,
 the reader is positioned after the end tag.
								
								
									

 Attribute read methods are not available.
								
							
							
								 Using this method is the most efficient way to process very large streams of
 text embedded in an XML document. Rather than allocating large string objects,
 this method returns text content a buffer at a time.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the contents of the current node, including child nodes and markup.
						
						
							 A containing the XML
 content, or if the current node is neither an element
 nor attribute, or has no child nodes.
						
						 The XML was not well-formed, or an error occurred while parsing the XML.
						
							 The current node and corresponding end node are not returned.
							 If the current node is an element, after the call to this method, the reader
 is positioned after the corresponding end element.
							 If the current node is an attribute, the position of the reader is not changed.
							
								 If the reader is positioned on a other than
 or , calling this method is equivalent
 to calling the
 method.
								 A comparison between calling the and methods on a XML fragment is shown
below.
								 Assume the reader is positioned on <book1 in the following XML fragment.
								
<books>
 <book1 id="123" cost="39.95">
 Title1
 <page1/>
 </book1>
</books>

								 Calling returns
								
									 Title1
									 <page1/>
								
								 Calling returns
								
<book1 id="123" cost="39.95">
 Title1
 <page1/>
</book1>

								 After either method returns, the reader is positioned on </books>.
								 Assume the reader is positioned on id in the previous XML fragment.
								 Calling returns
								
									 123
								
								 Calling returns
								
									 id="123"
								
								 After either method returns, the reader is still positioned on id.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the current node and its contents, including child nodes and markup.
						
						
							 A
containing the XML content, or if the current node is neither an element nor
attribute.
						
						 The XML was not well-formed, or an error occurred while parsing the XML.
						
							 The current node and corresponding end node are returned.
							 If the current node is an element, after the call to this method, the reader
 is positioned after the corresponding end element.
							 If the current node is an attribute, the position of the reader is not changed.
							
								 If the reader is positioned on a other than
 or , calling this method is equivalent
 to calling the method.
								 For a comparison
 between this method and the method, see .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.ReadState
					
					
					
						
							 Gets the read state of the reader.

						
						
							 One of the members of the enumeration.

						
						
							 This property is read-only.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
					
						
							 Reads the contents of an element or a text node as a string.
						
						
							 A containing the
 contents of the or
 node, or
 if the reader is positioned on any other type of node.
						
						 An invalid operation was attempted.
						 An error occurred while parsing the XML.
						
							 If positioned on an node, this method concatenates all
 , ,
 , and node types, and returns the concatenated
 data as the element content. If none of these node types exist,

is returned. Concatenation
stops when any markup is encountered, which can occur in a mixed content
model or when an element end tag is read.
							 If positioned on an element node, this method performs the same
concatenation from the node to the element end tag. If the
reader is positioned on an attribute node, this method has the same functionality as
if the reader were position on the element start tag.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Resets the to .
						
						 The current instance was constructed with a .
						
							 The , , , and properties are
 not changed by this method.
							
								 This method enables the parsing of multiple XML documents in a
 single stream. When the end of an XML document is reached, this method resets
 the state of the current instance in preparation for the next XML document.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Resolves the entity reference for nodes.
						
						 Any call to this method.
						
							
								
									 does not support
 entity resolution.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the text value of the current node.
						
						
							 A containing the text value of the current node.
						
						
							 This property is read-only.
							 The value returned depends on the . The following table lists node types that have a value to return. All
 other node types return .
							
								
									 Node Type
									 Value
								
								
									
										
									
									 The value of the attribute.
								
								
									
										
									
									 The content of the CDATA section.
								
								
									
										
									
									 The content of the comment.
								
								
									
										
									
									 The internal subset.
								
								
									
										
									
									 The entire content, excluding the target.
								
								
									
										
									
									 The white space in the scope of xml:space =
 "preserve".
								
								
									
										
									
									
										 The content of the text node.
									
								
								
									
										
									
									 The white space between markup.
								
								
									
										
									
									 The content of the declaration.
								
							
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.WhitespaceHandling
					
					
					
						
							 Gets or sets a value that specifies the type of white space returned
 by the reader.
						
						
							 One of the members of the enumeration. The default is
(returns both significant and insignificant white
space).
						
						 The value to be set is not one of the members of the enumeration.
						 When setting the property, the is .
						
							 This property can be changed at any time before the current instance is closed and takes
 affect on the next read
 operation.
							
								 Because an instance of the class
 does not have DTD information
 available to it, nodes are only
 returned within the xml:space="preserve" scope.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the current xml:lang scope.
						
						
							 A containing the
 current xml:lang scope.
						
						
							 This property is read-only.
							
								 This property represents the xml:lang scope within which
 the current node resides. For example, the following is an XML fragment with xml:lang

 set to US English:
								
									 <root xml:lang="en-us">
									 <name>Fred</name>
									 </root>
								
								 When the reader is positioned on the name
element, this property returns
"en-us".
								 The returned string is also in the for the
reader.
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Void
					
					
						
					
					
						
							 Sets the used for resolving DTD
 references.
						
						
							 The to use for resolving DTD references.
							 If this property is set to , any external DTD or entities encountered by
 the reader are not resolved.
						
						
							 This property is write-only.
							
 The is used to resolve the location of the file
 loaded into the reader and also to
 resolve DTD references. For example, if the XML included the DOCTYPE
 declaration, <!DOCTYPE book SYSTEM book.dtd>, the
 reader resolves this external file and ensures that the DTD is well-formed.

does not use
the DTD for validation.
							 This property can be changed at any time and takes
 affect on the next read operation.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlSpace
					
					
					
						
							 Gets the current xml:space scope.
						
						
							 One of the members of the enumeration. If no xml:space scope exists, this property defaults to
 .
						
						
							 This property is read-only.
							
								 The class has no DTD information available; therefore,
 nodes are only
 returned when inside the scope of xml:space
 = "preserve".
								 This property overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a writer that provides a fast, non-cached, forward-only way
 of generating streams or files containing XML data that conforms to the
 W3C Extensible Markup Language (XML) 1.0 and the Namespaces in XML
 recommendations.

				
				
					 This class maintains a namespace stack corresponding to
 all the namespaces defined in the current element stack. Namespaces can be
 declared manually to override the current namespace declaration. Prefixes can be
 specified to associate with a namespace. If there are multiple namespace declarations mapping different prefixes to the
 same namespace URI, this class walks the stack of namespace declarations backwards
 and picks the closest one.
					 If namespace conflicts occur inside an element, this
 class resolves the conflict by generating alternate prefixes. The generated
 prefixes are named ni, where n is the literal character 'n' and i is a number beginning at one. The number is reset
 to one for each element. See the example section
 for a demonstration of this behavior.
					 Attributes which are associated with a namespace URI
 must have a prefix (default namespaces do not apply to attributes). This
 conforms to section 5.2 of the W3C Namespaces in XML recommendation. If an
 attribute references a namespace URI, but does not specify a prefix, the writer
 generates a prefix for the attribute.
					 When writing an empty element, an additional space is
 added between tag name and the closing tag, for example <item />. This provides compatibility
with older browsers.
					 When a is used as method
parameter, and are equivalent.
 follows
the W3C rules.
					 This class implements the
class.
				
				
					 The following example demonstrates how this class
 resolves namespace conflicts inside an element. In the example, the writer writes an element that contains two attributes. The element and both
 attributes have the same prefix but different namespaces. The resulting XML
 fragment is written to the console.
					 using System;
using System.Xml;

public class WriteFragment
{
 public static void Main()
 {
 XmlTextWriter xWriter = new XmlTextWriter(Console.Out);
 xWriter.WriteStartElement("prefix", "Element1", "namespace");
 xWriter.WriteStartAttribute("prefix", "Attr1", "namespace1");
 xWriter.WriteString("value1");
 xWriter.WriteStartAttribute("prefix", "Attr2", "namespace2");
 xWriter.WriteString("value2");
 xWriter.Close();
 }
}

					 The output is
					
						 <prefix:Element1 n1:Attr1="value1" n2:Attr2="value2" xmlns:n2="namespace2"
 xmlns:n1="namespace1" xnlns:prefix="namespace" />
					
				
			
			
				 System.Xml.XmlWriter
			
			
			
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the class using the
 specified
 file.
						
						 A specifying the path and name of the file to write to.
						 The to generate, or .
						
							
								 is , contains only white space, or contains one or more implementation-specific invalid characters.
							 -or-
							 The encoding is not supported.
						
						
							 is .
						 The directory path specified in does not exist.
						
							 includes an invalid syntax for the path or file name.
						 The specified path, file name, or both exceeds the system-defined maximum length.
						 The caller does not have the required permissions.
						 Write access is not permitted by the operating system for the path specified in .
						
							 If exists, it is truncated and overwritten with the new
 content.
							 If is , the file is written as UTF-8
and the encoding attribute is omitted from the processing instruction.
							 The following properties are initialized to the specified values:
							
								 to .
							
								 to 2.
							
								 to the space character.
							
								 to .
							
								 to the double quote character.
							
								 to .
						
						 Requires permission to write to files. See .
					
					 0
				
				
					
					
					 Constructor
					
					
						
						
					
					
						
							 Constructs and initializes a new instance of the
 class using the specified output
 stream.
						
						 The to write to.
						 The to generate, or .
						
							
								 cannot be written to.
							 -or-
							 The encoding is not supported.
						
						
							 is .
						
							 If is , the stream
 is written as UTF-8 and the encoding attribute is omitted from the processing
 instruction.
							 The following properties are initialized to the
 specified values:
							
								 to .
							
								 to 2.
							
								 to the space character.
							
								 to .
							
								 to the double quote character.
							
								 to .
						
					
					 0
				
				
					
					
					 Constructor
					
					
						
					
					
						
							 Constructs and initializes a new instance of the
class.
						
						 The to write to, initialized to the correct encoding.
						
							 The following properties are initialized to the specified values:
							
								 to .
							
								 to 2.
							
								 to the space character.
							
								 to .
							
								 to the double quote character.
							
								 to .
							
								 If a specific encoding is necessary, set the encoding using the
 constructor of before instantiating the writer.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.IO.Stream
					
					
					
						
							 Gets the underlying stream used by the writer.
						
						
							 A , or if the current
 instance does not use an underlying stream.
						
						
							 This property is read-only.
							 If the current instance was constructed using
 a that is a subclass of the
 class, this property is equivalent to the

 property.
							 If the writer was constructed using a
 , this property returns the passed to the constructor.
							 If the writer was constructed using a file name, this
 property returns the representing the file.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the writer.
						
						
							 This method closes all elements and attributes created
 by the and methods,
 respectively, that are open when the method is
 called.
							 This method calls
 the
 method to flush the underlying buffered stream and then closes the stream.
							 This method sets
 the to .
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Clears all buffers and causes any buffered data to be
 written to the
 underlying stream.
						
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.Formatting
					
					
					
						
							 Indicates how the output
 is formatted.
						
						
							 One of the members of the enumeration. The default is (no
 special formatting).
						
						
							 If this property is set to , child elements are indented using
 the and

 properties. Only element content will be indented.
							
								 Writing any text content, including , puts
 that element into mixed content mode. Child elements do not inherit this "mixed"
 mode status. A child element of a "mixed" element will do indenting, unless it
 is also contains "mixed" content. Element content
 (http://www.w3.org/TR/1998/REC-xml-19980210#sec-element-content) and mixed
 content (http://www.w3.org/TR/1998/REC-xml-19980210#sec-mixed-content) are
 defined according to the XML 1.0 definitions of these terms.
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Int32
					
					
					
						
							 Gets or sets how many indentation characters to write for each level
 in the hierarchy when is set to .
						
						
							 A specifying the
 number of characters to use for each level. The default is 2.
						
						 The value to be set is less than zero.
						
							 Indentation is performed on the following members
 of : ,
 , ,
 , and . All
 other node types are not affected. The class
 does
 not indent the internal DTD subset.

						
					
					 0
				
				
					
					
					 Property
					
						 System.Char
					
					
					
						
							 Gets or sets the character to use for indenting
 when is set to
 .
						
						
							 A specifying the
 character to use for indenting. The default is space
 (character code 0x20).
						
						
							
								 This property can be set to any character. To ensure valid XML, set this property
 to a valid white space character: 0x9, 0x10, 0x13, or 0x20.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Returns the prefix defined in the current
 namespace scope for the specified namespace URI.
						
						 A specifying the namespace URI.
						
							 A containing the
 corresponding prefix, or if the prefix is not found and is
 the default namespace, or if no matching namespace URI is found in the current scope.
						
						
							 is or .
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Boolean
					
					
					
						
							 Gets
 or sets a value indicating whether the writer supports namespaces.
						
						
							 A where indicates the writer supports namespaces; otherwise,
 . The default is .
						
						 The of the current instance is not .
						
							 This property determines whether
 the writer supports the XML Namespaces specification (http://www.w3.org/TR/REC-xml-names).
							 If an attempt is made to set this property after a write
 operation has occurred, a
 is thrown.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Char
					
					
					
						
							 Gets or sets the character used to quote the value of an
 attribute.
						
						
							 A specifying the
 quotation mark character (" or ') used to enclose the value of an attribute. The
 default is the double quote.
						
						 The value to be set is not the single quote or double quote character.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Encodes the specified binary bytes as Base64 and writes the resulting text.
						
						 A array containing the bytes to encode.
						 A specifying the position within the array of the first byte to encode.
						 A specifying the number of bytes to encode.
						
							 is .
						 The buffer length minus is less than .
						
							 or is less than zero.
						 The is .
						
							
								 Base64 encoding
 represents byte sequences in a text form comprised of the 65 US-ASCII
 characters (A-Z, a-z, 0-9, +, /, =) where each
 character encodes 6 bits of the
 binary data.
								 For more information on Base64 encoding, see RFC 2045 (http://www.ietf.org/rfc/rfc2045).
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Encodes the specified binary bytes as BinHex and writes the resulting text.

						
						 A array containing the bytes to encode.
						 A specifying the position within the array of the first byte to encode.
						 A specifying the number of bytes to encode.
						
							 is .
						 The buffer length minus is less than .
						
							 or is less than zero.
						 The is .
						
							
								 For information on BinHex encoding, see RFC 1741
 (http://www.ietf.org/rfc/rfc1741).
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes out a CDATA block containing
 the specified text.
						
						 A specifying the text to place inside the CDATA block.
						 The text would result in a non-well formed XML document.
						 The is .
						
							 This method writes <![CDATA[
								
]]>.
							 If is or , this method writes an empty CDATA block,
 <![CDATA[]]>.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Forces the
 generation of a character entity for the specified Unicode character value.
						
						 The for which to generate the entity.
						 The character is in the surrogate pair character range, 0xd800 - 0xdfff, or the text would result in a non-well formed XML document.
						 The is .
						
							 This method writes the Unicode character in hexadecimal character entity
 reference format.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes text a buffer at a time.

						
						 A array containing the text to write.
						 A specifying the position within the array of the start of the text to write.
						 A specifying the number of characters to write.
						
							 is .
						
							
								 or is less than zero.
							 - or -
							 The buffer length minus is less than .
						
						 The is .
						
							
								 This method can be used to write large
 amounts of text a buffer at a time.
								 An exception is thrown if surrogate pair characters would be
 split across multiple buffer writes. This exception must be caught in order
 to continue writing the next surrogate pair characters. The XML specification defines the
 valid ranges for surrogate pairs.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes out a comment containing
 the specified text.
						
						 A containing the text to place inside the comment.
						 The text would result in a non-well formed XML document
						 The is .
						
							 This method writes <!--
								
								 -->.
							 If is or , this method
writes a comment with no content, <!---->.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Writes the document type declaration with the specified name
 and optional attributes.
						
						 A specifying the name of the document type.
						
							 A specifying the public identifier, which is an alternative to the system identifier.
						
						
							 A specifying the system identifier, which is the URI of the DTD (document type definition) for the document.
						
						
							 A specifying a URI that contains markup declarations.
						
						
							
								 is or .
							 -or-
							 The value for would result in invalid XML.
						
						 This method was called outside the prolog (after the root element).
						
							 The optional attributes, , , and , are not checked for invalid
 characters.
							
								 A document type declaration is of the following form:
								 <!DOCTYPE PUBLIC " " " " []>
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the attribute started with the
method.
						
						 The is not .
						
							
								 The and methods
 also will close an open attribute if one exists when
 they are called.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes open elements and attributes and sets
 the
 back to the
 state.
						
						 The current instance is in the wrong , or the document does not have a root element.
						
							 This method closes all elements and attributes created by
 the and methods,
 respectively, that are open when the
 method is called.
							
								 After calling this method, the current instance can be used to write a
 new XML document.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes an open element and pops the corresponding namespace scope.
						
						 No element was open, or the is .
						
							 If the open element does not contain content, it is closed as an empty element using " />"; otherwise an end element is written.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes an entity reference with the specified name.
						
						 A specifying the name of the entity reference.
						 A containing the text would result in a non-well formed XML document, or is either or .
						 The is .
						
							 This method writes %
								
								 ;.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes an open element and pops the corresponding namespace scope.
						
						 No start tag was open, or the is .
						
							 This method writes an end element regardless of whether there is any content in the element.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes out the specified name, ensuring it is a
 valid name according to the W3C XML 1.0 recommendation (http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name).
						
						 A specifying the name to write.
						
							
								 is or ; or is not a valid XML Name.
						
						 The is .
						
							 If is set to , this method checks that is also valid according to the W3C Namespaces in
 XML recommendation
 (http://www.w3.org/TR/REC-xml-names).
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes out the specified name, ensuring it is a valid name token (Nmtoken) according to
 the W3C XML 1.0 recommendation (http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name).
						
						 A specifying the name to write.
						
							
								 is or ; or is not a valid XML Nmtoken.
						
						 The is .
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes out a processing instruction with the specified
 name and text.
						
						 A specifying the name of the processing instruction.
						 A specifying the text to include in the processing instruction.
						
							 The text would result in a non-well formed XML document.
							 - or -
							
								 is or .
							 - or -
							 This method is being used to create an XML declaration after has already been called.
						
						 The is .
						
							 This method writes <?
								
								
								 ?>.
							 If is
 or , this method writes a processing
instruction with no text content, <?
								
								 ?>.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes out the qualified name.
						
						 A specifying the local name to write.
						 A specifying the namespace URI to associate with .
						
							
								 is or .
							 -or-
							
								 is , and is neither nor .
							 -or-
							
								 is not a valid XML name.
						
						 The is .
						
							 If maps to the current default namespace, no
 prefix is generated.
							 When writing attribute values, this method generates a prefix if is not found. When writing element content, this method throws an exception if
 is not found.
							 If the current instance supports namespaces (is set to), this method looks up the prefix that
is in scope for the given namespace and checks that the name
is valid according to the W3C Namespaces in XML recommendation
(http://www.w3.org/TR/REC-xml-names).
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes raw text from a character array.

						
						 A array containing the text to write.
						 A specifying the position within the array of the start of the text to write.
						 A specifying the number of characters to write.
						
							 is .
						
							
								 or is less than zero.
							 - or -
							 The buffer length minus is less than .
						
						 The is .
						
							 This method does not encode any characters.

							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes raw text from a string.
						
						 A specifying the text to write.
						 The is .
						
							 If is , is written.
							 This method does not encode any characters.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes the start of an attribute with the specified prefix
 and name, and associates the prefix with the specified namespace URI.
						
						 A specifying the namespace prefix of the attribute.
						 A specifying the local name of the attribute.
						 A specifying the namespace URI associated with the attribute.
						
							 is for the writer, and and are not both or .
						 The is not one of the following: or .
						
							 If any of the input parameters are or , the start attribute is written with that parameter missing.
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Writes the XML declaration with the version "1.0" and no
 standalone attribute.
						
						 The is not .
						
							
								 When is instantiated, the is set to . All the "write" methods change the
 to a value other than . Thus,
 if this method is not the first "write" method called, a

 is thrown.
								 If has been called and then the
 method is
 used to create another XML declaration, a will be thrown.
								 The output of this method using an encoding equal to and the default is
								
									 <?xml version="1.0" encoding="utf-16"?>
								
								 Character encoding is set when the writer is instantiated.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the XML declaration with the
 version "1.0" and the standalone attribute.
						
						 A where indicates to write "yes" as the value for the standalone attribute, and indicates to write "no".
						 The is not .
						
							
								 When is instantiated, the is set to . All the "write" methods change the
 to a value other than . Thus,
 if this method is not the first "write" method called, a

 is thrown.
								 If has been called and then the method is
 used to create another XML declaration, a
 will be thrown.
								 The output of this method with
equal to , an encoding equal to , and using the default is:
								
									 <?xml version="1.0" encoding="utf-16" standalone="yes"?>
								
								 Character encoding is set when the writer is instantiated.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a start element with the specified name, and associates it with the given namespace
 and prefix.
						
						 A specifying the namespace prefix of the element.
						
							 A specifying the local name of the element.
						
						
							 A specifying the namespace URI to associate with the element.
						
						
							 is for the writer, and and are not both .
						 The is .
						
							 If is already in scope and has an associated prefix, the
 current instance will automatically write that prefix also.
							 If any of the input parameters are or , the start element is written with that parameter missing.
							
								 Write any attributes using
 the , , and
 methods, then close the element
 using the method.
								 This method overrides .
							
						
						
							 This example demonstrates the
method, writing the XML to the
console.
							 using System;
using System.Xml;

public class WriteXml
{
 public static void Main()
 {
 XmlTextWriter xWriter =
 new XmlTextWriter(Console.Out);
 xWriter.WriteStartDocument();
 xWriter.WriteStartElement("prefix","element", "namespace");
 xWriter.WriteEndDocument();
 }
}

							 The output is
							
								 <?xml version="1.0" encoding=
 "someencoding"?>
							
							
								 <prefix:element xmlns:prefix="namespace"
 />
							
							 The value of the encoding attribute is the encoding of the output stream of the console.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.WriteState
					
					
					
						
							 Gets the write state of the writer.
						
						
							 One of the members of the enumeration.

						
						
							 This property is read-only.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the specified text.
						
						 A specifying the text to write.
						 The is and is neither nor .
						
							 This method performs the following conversions before writing the text:
							
								
									

 The characters '&', '<', and '>' are
 replaced with "&", "<", and ">", respectively.
								
								
									

 Character values in the range 0x-0x1F (excluding the
 white space characters 0x9, 0x10, and 0x13) are replaced with numeric
 character entities ("�" through "�x1F").
								
								
									

 If called in the context of an attribute value, double
 and single quotes are replaced with """ and "'"
 respectively.
								
							
							 If is or , this method writes a text
node with no data content.
							
								 This method overrides .
							
						
						
							 The following example demonstrates the conversions performed by this method.
							 using System;
using System.Xml;

public class WriteFrag {

 public static void Main() {

 XmlTextWriter xtWriter =
 new XmlTextWriter(Console.Out);
 xtWriter.WriteString("<1 & 2 = 3>");
 }
}

							 The output is
							 <1 & 2 = 3>
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Generates and writes the surrogate character entity
 for the surrogate character pair.
						
						 A containing the low surrogate. This must be a value between 0xDC00 and 0xDFFF.
						 A containing the high surrogate. This must be a value between 0xD800 and 0xDBFF.
						 An invalid surrogate character pair was passed.
						 The is .
						
							 This method only applies to a writer that uses the UTF-16 encoding
 type.
							 The surrogate character entity is written in hexadecimal format. The range
 for surrogate characters is #x10000 to #x10FFFF. The following formula is used
 to generate the surrogate character entity: (
								
								 - 0xD800) * 0x400 + (
								
								 - 0xDC00) + 0x10000.
							
								 For both HTML and XML, the document character set (and therefore the notation
 of numeric character references) is based on UCS [ISO-10646]. A single numeric
 character reference in a source document might therefore in some cases correspond
 to two 16-bit units in a string (a high surrogate and a low surrogate). These
 16-bit units are referred to as a surrogate pair.
								 For more information regarding surrogates or characters, refer to section 3.7
 of the Unicode 3.0/Unicode 2.0 standard located at http://www.unicode.org, or
 section 2.2 of the W3C XML 1.0 Recommendation located at
 http://www.w3.org/TR/REC-xml#charsets .
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the given white space.
						
						 A containing the white space characters.
						
							 is or or contains non-white space characters.
						 The is .
						
							
								 This method is used to manually format a document. Use the property to have the current instance
 format the output automatically.
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the language attribute, xml:lang, specifying the language in which the
 content and attribute values of the current element are written.

						
						
							 A
containing the language attribute, or if the
language attribute is not specified for the element.
						
						
							 This property is read-only.
							
								 This property overrides .
							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlSpace
					
					
					
						
							 Gets the white space attribute, xml:space, specifying how white space is handled in the
 current element.
						
						
							 One of the members of the enumeration, or if the white space attribute is not
 specified for the element.
						
						
							 This property is read-only.
							
								 This property overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Resolves external XML resources
 named by a URI.
				
				
					 This class is used to resolve external XML resources such as entities, document type definitions
 (DTDs), or schemas. It is also used to process include and import elements found in
 Extensible StyleSheet Language (XSL) stylesheets or XML Schema Definition
 language (XSD) schemas.
					 This class implements the class.
				
			
			
				 System.Xml.XmlResolver
			
			
			
				
					
					
					 Constructor
					
					
					
						
							 Constructs and initializes a new instance of
 the class.

						
					
					 0
				
				
					
					
					 Property
					
						 System.Void
					
					
						
					
					
						
							 Sets the credentials used to authenticate Web
 requests.
						
						
							 A instance containing the credentials.
						
						
							 This property is write-only.
							 If the virtual directory is configured to allow
 anonymous access, credentials are not needed and this property does not need to
 be set.
							
								 This property overrides .
							
						
						
							 The following example sets credentials for the virtual directory "http://localhost/bookstore/inventory.xml". There
 is no
 output from this example.
							 using System;
using System.Net;
using System.Xml;

public class App {

 public static void Main() {

 XmlTextReader xtReader =
 new XmlTextReader("http://localhost/" +
 "bookstore/inventory.xml");
 NetworkCredential netCredential =
 new NetworkCredential("username",
 "password",
 "domain");
 XmlUrlResolver xResolver = new XmlUrlResolver();
 xResolver.Credentials = netCredential;
 xtReader.XmlResolver= xResolver;
 }
}

							 The following example associates different credentials
 with different URIs and adds the credentials to a credential cache. The
 credentials can then be used to check authentication for different URIs
 regardless of the original source of the XML. There is no output from this
 example.
							 using System;
using System.Net;
using System.Xml;

public class App {

 public static void Main() {

 XmlTextReader xtReader =
 new XmlTextReader("http://localhost/" +
 "bookstore/inventory.xml");
 NetworkCredential netCredential1 =
 new NetworkCredential("username1",
 "password1",
 "domain1");
 NetworkCredential netCredential2 =
 new NetworkCredential("username2",
 "password2",
 "domain2");
 CredentialCache credCache = new CredentialCache();
 credCache.Add(new Uri("http://www.contoso.com/"),
 "Basic",
 netCredential1);
 credCache.Add(new Uri("http://app.contoso.com/"),
 "Basic",
 netCredential2);
 XmlUrlResolver xResolver = new XmlUrlResolver();
 xResolver.Credentials = credCache;
 xtReader.XmlResolver= xResolver;
 }
}

						
					
					 0
				
				
					
					
					 Method
					
						 System.Object
					
					
						
						
						
					
					
						
							 Maps a URI to an object
 containing the actual resource that the URI represents.
						
						 The returned from .
						 This parameter is not used.
						
							 or ().
						
							 A containing the
 resource, or
 if is .
						
						
							 is .
						
							 is not or ().
						
							
								 This method overrides .
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Uri
					
					
						
						
					
					
						
							 Resolves the absolute URI from the base and relative URIs.
						
						 The specifying the base URI used to resolve .
						
							 A specifying the URI to resolve. The URI can be absolute or relative.
						
						
							 A containing the absolute URI, or if can not be resolved.
						
						
							 is .
						
							 If is , it is set to .
							
								 The absolute URI can be used as the base URI for any subsequent requests for
 entities that are relative to this URI.
								 This method overrides .
							
						
					
					 0
				
			
			 0
		
		
			
			
			 XML
			
				 System.Xml
				 [00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00]
				 2.0.x.x
				 none
				
					
						 CLSCompliantAttribute(true)
						 0
					
				
			
			 All public static members of this type are safe for multithreaded operations. No instance members are guaranteed to be thread safe.
			
				
					 Represents a writer that provides a non-cached, forward-only means of generating streams or files containing XML data.
				
				
					 The output of this class conforms to the W3C Extensible Markup Language (XML)
 1.0 and the Namespaces in XML recommendations.
					
						 This class is and is implemented in the
 class.
					
				
			
			
				 System.Object
			
			
			
				
					
					
					 Constructor
					
					
					
						 Constructs a new instance of the class.
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the writer.
						
						
							
								 This method closes any remaining open elements or
 attributes.
								 This method calls
 the
 method to flush the underlying buffered stream and then closes the stream.
								 This method sets
 the to .
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Clears all buffers and causes any buffered data to be written to the
 underlying stream.
						
						
							
								 As described above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.String
					
					
						
					
					
						
							 Retrieves the prefix defined in the current
 namespace scope for the specified namespace URI.
						
						 A specifying the namespace URI.
						
							 A containing the corresponding prefix, or if
 the prefix is not found and is the default namespace, or
 if no matching namespace URI is found in the current scope.
						
						
							 is or .
						
							
								 As described above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes the attributes found at the current position of a
 .
						
						 A from which to copy the attributes.
						 A where specifies to copy the default attributes from ; otherwise, .
						
							 is .
						 The is .
						
							 is not positioned on a node of
							 , , or .
						
							
								 If the reader
 is positioned on an or
 node, this method writes all the contained attributes. If the reader is
 positioned on an

 node, this method writes the current attribute, then the rest of the attributes
 until the closing tag is reached. If the reader is positioned on any other node type, this method throws an exception.
							
							
								 This method
 positions the reader by calling its and methods, and retrieves the value of the attributes
 by calling the method of the
 reader.
							
							
								 Override
 this method to remove any content that would invalidate the document.

							
							
								 Use this method
 to write all the attributes found at the current position.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Writes a new attribute with the specified prefix, local
 name, namespace URI, and value.
						
						 A specifying the namespace prefix of the attribute.
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						 A specifying the value of the attribute.
						
							 is or .
						 The is not .
						
							 This method calls the following methods in order to write a complete
 attribute:
							
								 (, ,
)
							
								 ()
							
								 ()
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes a new attribute with the specified local name and value.
						
						 A specifying the local name of the attribute.
						 A specifying the value of the attribute.
						
							 is or .
						 The is not .
						
							 This method calls the following methods in order to
 write a complete attribute:
							
								 (, ,)
							
								 ()
							
								 ()
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a new attribute with the specified local name, namespace URI, and
 value.
						
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						 A specifying the value of the attribute.
						
							 is or .
						 The is not .
						
							 This method calls the following methods in order to
 write a complete attribute:
							
								 (, ,)
							
								 ()
							
								 ()
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Encodes the specified binary bytes as Base64 and writes out
 the resulting text.
						
						 A array containing the bytes to encode.
						 A specifying the position within the array of the first byte to encode.
						 A specifying the number of bytes to encode.
						
							 is .
						 The buffer length minus is less than .
						
							 or is less than zero.
						 The is .
						
							
								 Base64 encoding
 represents byte sequences in a text form comprised of the 65 US-ASCII characters
 (A-Z, a-z, 0-9, +, / ,=) where each character encodes 6 bits of the binary
 data. For more information on Base64 encoding, see RFC 2045 (http://www.ietf.org/rfc/rfc2045).

							
							
								 As described above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Encodes the specified binary bytes as BinHex and writes the resulting text.

						
						 A array containing the bytes to encode.
						 A specifying the position within the array of the first byte to encode.
						 A specifying the number of bytes to encode.
						
							 is .
						 The buffer length minus is less than .
						
							 or is less than zero.
						 The is .
						
							
								
 For information on BinHex encoding, see RFC 1741
 (http://www.ietf.org/rfc/rfc1741).

							
							
								 As described above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes out a CDATA block containing
 the specified text.
						
						 A specifying the text to place inside the CDATA block.
						 The text would result in a non-well formed XML document.
						 The is .
						
							
								 This method writes <![CDATA[
									
]]>.
								 If is or , this method writes an empty CDATA block,
 <![CDATA[]]>.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Forces the
 generation of a character entity for the specified Unicode character value.
						
						 The for which to generate the entity.
						 The character is in the surrogate pair character range, 0xd800 - 0xdfff, or the text would result in a non-well formed XML document.
						 The is .
						
							
								 This method forces the
 generation of a character entity for the specified Unicode character value and writes the Unicode character in hexadecimal character entity
 reference format.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes text a buffer at a time.

						
						 A array containing the text to write.
						 A specifying the position within the array of the start of the text to write.
						 A specifying the number of characters to write.
						
							 is .
						 The buffer length minus is less than .
						
							 or is less than zero.
						 The is .
						
							
								 As described above.
							
							
								
									 When
 overriding this method, throw an exception if surrogate pair characters
 would be split across multiple buffer writes. This exception must be caught in
 order to continue writing the next surrogate pair characters. The XML specification defines the valid ranges for surrogate pairs.

									 This method must be overridden in order to provide the functionality described above, as there is no default implementation.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a comment containing
 the specified text.
						
						 A containing the text to place inside the comment.
						 The text would result in a non-well formed XML document.
						 The is .
						
							
								 This method writes <!--
									
									 -->.
								 If is or , this method
 writes a comment with no content, <!---->.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
						
					
					
						
							 Writes the document type declaration with the specified name
 and optional attributes.
						
						 A specifying the name of the document type.
						
							 A specifying the public identifier, which is an alternative to the system identifier.
						
						
							 A specifying the system identifier, which is the URI of the DTD (document type definition) for the document.
						
						
							 A specifying a URI that contains markup declarations.
						
						
							
								 is or .
							 -or-
							 The value for would result in invalid XML.
						
						 This method was called outside the prolog (after the root element).
						
							
								 This method
 writes the document type declaration with the specified name and optional attributes.
 The optional attributes, , , and , are not
 checked for invalid characters.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes an element with the specified local name, namespace URI, and value.
						
						
							 A specifying the local name of the element.
						
						
							 A specifying the namespace URI to associate with the element.
						
						
							 A specifying the value of the element.
						
						 The is .
						
							 This method calls the following methods to write a complete element:
							
								 (,)
							
								 () - this method is not called if is either or

							
							
								 ()
							 If any of the input parameters are or , the element is written with that parameter missing.
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes an element with the specified local name and value.
						
						
							 A specifying the local name of the element.
						
						
							 A specifying the value of the element.
						
						 The is .
						
							 This method is equivalent to (,
 ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes the attribute started with the method.
						
						 The is not .
						
							
								 As described above.
							
							
								 Override the , , and methods so these methods also
 close any attributes that are open when they are called.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes open elements and attributes and sets the
 back to the
 state.
						
						 The current instance is in the wrong , or the document does not have a root element.
						
							
								 This method closes all elements and attributes created by
 the and methods,
 respectively, that are open when the
 method is called.

							
							
								
 This method must be overridden in order to provide the functionality as described herein, as there is no default implementation.

							
							
								 After calling this method, the current instance can be used to write a new XML
 document.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes an open element and pops the corresponding namespace scope.
						
						 No element was open, or the is .
						
							
								 This method closes one element and pops
 the corresponding namespace scope. If the open element does not contain content, it is closed as an empty element using " />"; otherwise an end element is written.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes an entity reference with the specified name.
						
						 A specifying the name of the entity reference.
						
							 is either or .
						
							
								 This method writes %
									
									 ;.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Closes an open element and pops the
 corresponding namespace scope.
						
						 No element was open, or the is .
						
							
								 This method
 closes one element and pops the corresponding namespace scope. This
 method writes an end element regardless of whether there is any content in the element.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the specified name, ensuring it is a
 valid name according to the W3C XML 1.0 recommendation (http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name).
						
						 A specifying the name to write.
						
							
								 is or ; or is not a valid XML Name.
						
						 The is .
						
							
								 This method writes the specified name, ensuring it is a
 valid name according to the W3C XML 1.0 recommendation.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the specified name, ensuring it is a valid name token (Nmtoken) according to
 the W3C XML 1.0 recommendation (http://www.w3.org/TR/1998/REC-xml-19980210#NT-Name).
						
						 A specifying the name to write.
						
							
								 is or ; or is not a valid XML Nmtoken.
						
						 The is .
						
							
								 As described above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes the node found at the current position of the
 specified , and all
 sub-nodes.
						
						 A from which to copy the attributes.
						 A where specifies to copy the default attributes from ; otherwise, .
						
							 is .
						 The is .
						
							
								 After the nodes are
 read, is moved to the next node at the same depth as the current node.
							
							
								

 If is in
 the
									 , this method moves to the end of the stream. If
 is
 in the
									 , this method is non-operational.

							
							
								 Override this
 method to customize the behavior of this method in types derived from
 the
 class.

							
							
								 Use this method
 to write the node found at the current position and all sub-nodes.

							
						
						
							 The following example uses a and
 a to copy an XML file, specified in the command line, to the
 console.
							 using System;
using System.Xml;

public class Copier {

 public static void Main(string[] args) {

 XmlTextReader xtReader = new XmlTextReader(args[0]);
 XmlTextWriter xtWriter =
 new XmlTextWriter(Console.Out);
 xtWriter.WriteNode(xtReader, false);
 xtWriter.Close();
 xtReader.Close();
 }
}

						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes a processing instruction with the specified name
 and text.
						
						 A specifying the name of the processing instruction.
						 A specifying the text to include in the processing instruction.
						
							 The text would result in a non-well formed XML document.
							 - or -
							
								 is or .
							 - or -
							 This method is being used to create an XML declaration after has already been called.
						
						 The is .
						
							
								 This method writes <?
									
									
									 ?>.
								 If is
 or , this method writes a processing
instruction with no text content, <?
									
									 ?>.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes the qualified name.
						
						 A specifying the local name to write.
						 A specifying the namespace URI to associate with .
						
							
								 is , is , or is not a valid XML name.
						
						 The is .
						
							
								 This method writes the qualified name. If
maps to the
current default namespace, no prefix is generated. When writing attribute values, this method generates a prefix if
is not found. When writing element content, it throws an exception if
 is not found.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes raw text from a character array.

						
						 A array containing the text to write.
						 A specifying the position within the array of the start of the text to write.
						 A specifying the number of characters to write.
						
							 is .
						 The buffer length minus is less than .
						
							 or is less than zero.
						 The is .
						
							
								 This method writes raw text from a character array. This method does not encode any characters.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes raw text from a string.
						
						 A specifying the text to write.
						 The is .
						
							
								 This method writes
 raw text from a string. This method does not encode any characters.
 If is , is written.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes the start of an attribute with the specified
 prefix and name, and associates the prefix with the specified namespace URI.
						
						 A specifying the namespace prefix of the attribute.
						 A specifying the local name of the attribute.
						 A specifying the namespace URI associated with the attribute.
						 The is not one of the following: or .
						
							
								 If any of the input parameters are or , the start attribute is written with that parameter missing.
							
							
								
									 When overriding
 this method, close any open attributes before writing the new
 attribute.
									 This method must be overridden in order to provide the functionality described above, as there is no default implementation.
								
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes the start of an attribute.
						
						 A specifying the local name of the attribute.
						 A specifying the namespace URI of the attribute.
						 The is .
						
							 This method calls (,
 ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the XML declaration with the version "1.0" and the
 standalone attribute.
						
						 A where indicates to write "standalone= yes"; indicates to write "standalone=no".
						 The is not .
						
							
								 Character encoding is set when the class in instantiated.
							
							
								 As described
 above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
					
						
							 Writes the XML declaration with the version "1.0" and no standalone attribute.
						
						 The is not .
						
							
								 Character encoding is set when the class in instantiated.
							
							
								 As described
 above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes a start element with the specified name.
						
						
							 A specifying the local name of the element.
						
						 The is .
						
							 This method calls (, ,
).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Writes a start element with the specified name, and associates it with the
 given namespace.
						
						
							 A specifying the local name of the element.
						
						
							 A specifying the namespace URI to associate with the element.
						
						 The is .
						
							 This method calls (,
 ,).
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
						
					
					
						
							 Writes a start element with the specified name,
 and associates it with the given namespace and prefix.
						
						 A specifying the namespace prefix of the element.
						
							 A specifying the local name of the element.
						
						
							 A specifying the namespace URI to associate with the element.
						
						 The is .
						
							
								 This method writes a start element and name, and associates it with a namespace and prefix.
 If the namespace is already in scope and has an associated prefix, that prefix is automatically written also.
								 If any of the input parameters are or , the start element is written with that parameter missing.
							
							
								 When
 overriding this method, also override the , , and methods so they close any
 open start
 element.
							
							
								 Use this method
 to write a specified start element and name, and associate it with a given namespace
 and prefix. Write any attributes using the , , and methods, then close the element using
 the
 method.

							
						
						
							 See for an example demonstrating this method.
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.WriteState
					
					
					
						
							 Gets the write state of the writer.
						
						
							 One of the members of the enumeration.

						
						
							
								 As described above.
								 This property is read-only.
							
							
								
 This property must be overridden in order to provide the functionality as described herein, as there is no default implementation.

							
							
								 Use this property to query the current state, for
 example, whether the writer is newly initialized, writing specific XML structures, or
 closed.
							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the specified text.
						
						 A specifying the text to write.
						 The is .
						
							
								 This method performs the following conversions before writing the text:
								
									
										 The characters '&', '<', and '>' are
 replaced with "&", "<", and ">", respectively.
									
									
										 Character values in the range 0x-0x1F (excluding the
 white space characters 0x9, 0x10, and 0x13) are replaced with numeric
 character entities ("�" through "�x1F").
									
									
										 If called in the context of an attribute value, double
 and single quotes are replaced with """ and "'"
 respectively.
									
								
								 If is or , this method writes a text
 node with no data content.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
						
					
					
						
							 Generates and writes the surrogate character entity
 for the surrogate character pair.
						
						 A containing the low surrogate. This must be a value between 0xDC00 and 0xDFFF.
						 A containing the high surrogate. This must be a value between 0xD800 and 0xDBFF.
						 An invalid surrogate character pair was passed.
						 The is .
						
							
								 Applications encode DOM strings using UTF-16. For
 both HTML and XML, the document character set (and therefore the notation of
 numeric character references) is based on UCS [ISO-10646]. A single numeric
 character reference in a source document might therefore in some cases correspond
 to two 16-bit units in a DOM string (a high surrogate and a low surrogate). These 16-bit units are referred to as
 a surrogate pair.
								 For more information regarding surrogates or characters,
 refer to section 3.7 of the Unicode 3.0/Unicode 2.0 standard located at
 http://www.unicode.org, or section 2.2 of
 the W3C XML 1.0 Recommendation located at http://www.w3.org/TR/REC-xml#charsets.
							
							
								
 This method generates and writes the surrogate character
 entity for a surrogate character pair. The surrogate character entity is written in hexadecimal
 format. The range for surrogate characters is #x10000 to #x10FFFF. The following formula is used
 to generate the surrogate character entity: (
									
									 - 0xD800) * 0x400 + (
									
									 - 0xDC00) + 0x10000.

							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Method
					
						 System.Void
					
					
						
					
					
						
							 Writes the given white space.
						
						 A containing the white space characters.
						
							 is or or contains non-white space characters.
						 The is .
						
							
								 As described above.
							
							
								 This method must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.String
					
					
					
						
							 Gets the language attribute, xml:lang, specifying the
 language in which the content and attribute values of the current element are written.

						
						
							 A
containing the language attribute, or if the language
attribute is not specified for the element.
						
						
							
								 As described above.
								 This property is read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
				
					
					
					 Property
					
						 System.Xml.XmlSpace
					
					
					
						
							 Gets the white space attribute, xml:space, specifying how white space is
 handled in the current element.
						
						
							 One of the members of the enumeration, or if the white space
 attribute is not specified for the element.
						
						
							
								 As described above.
								 This property is read-only.
							
							
								 This property must be overridden in order
 to provide the functionality described above, as there is no default implementation.

							
						
					
					 0
				
			
			 0
		
	

CLILibraryTypes.dtd
<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT AssemblyCulture (#PCDATA)>
<!ELEMENT AssemblyInfo (AssemblyName, AssemblyPublicKey, AssemblyVersion, AssemblyCulture, Attributes)>
<!ELEMENT AssemblyName (#PCDATA)>
<!ELEMENT AssemblyPublicKey (#PCDATA)>
<!ELEMENT AssemblyVersion (#PCDATA)>
<!ELEMENT Attribute (AttributeName, Excluded, ExcludedTypeName?, ExcludedLibraryName?)>
<!ELEMENT AttributeName (#PCDATA)>
<!ELEMENT Attributes (Attribute*)>
<!ELEMENT Base (BaseTypeName?, ExcludedBaseTypeName?, ExcludedLibraryName?)>
<!ELEMENT BaseTypeName (#PCDATA)>
<!ELEMENT Docs (summary?, altmember?, altcompliant?, param*, returns?, value?, exception*, threadsafe?, remarks?, example?, permission?)>
<!ELEMENT Excluded (#PCDATA)>
<!ELEMENT ExcludedBaseTypeName (#PCDATA)>
<!ELEMENT ExcludedLibrary (#PCDATA)>
<!ELEMENT ExcludedLibraryName (#PCDATA)>
<!ELEMENT ExcludedTypeName (#PCDATA)>
<!ELEMENT Interface (InterfaceName, Excluded)>
<!ELEMENT InterfaceName (#PCDATA)>
<!ELEMENT Interfaces (Interface*)>
<!ELEMENT Libraries (Types+)>
<!ELEMENT Member (MemberSignature+, MemberType, Attributes?, ReturnValue, Parameters, MemberValue?, Docs, Excluded, ExcludedLibrary*)>
<!ATTLIST Member
	MemberName CDATA #REQUIRED
>
<!ELEMENT MemberOfLibrary (#PCDATA)>
<!ELEMENT MemberSignature EMPTY>
<!ATTLIST MemberSignature
	Language CDATA #REQUIRED
	Value CDATA #REQUIRED
>
<!ELEMENT MemberType (#PCDATA)>
<!ELEMENT MemberValue (#PCDATA)>
<!ELEMENT Members (Member*)>
<!ELEMENT PRE EMPTY>
<!ELEMENT Parameter (Attributes?)>
<!ATTLIST Parameter
	Name NMTOKEN #REQUIRED
	Type CDATA #REQUIRED
>
<!ELEMENT Parameters (Parameter*)>
<!ELEMENT ReturnType (#PCDATA)>
<!ELEMENT ReturnValue (ReturnType?)>
<!ELEMENT SPAN (#PCDATA | para | paramref | SPAN | see | block)*>
<!ELEMENT ThreadingSafetyStatement (#PCDATA)>
<!ELEMENT Type (TypeSignature+, MemberOfLibrary, AssemblyInfo, ThreadingSafetyStatement?, Docs, Base, Interfaces, Attributes?, Members, TypeExcluded)>
<!ATTLIST Type
	Name CDATA #REQUIRED
	FullName CDATA #REQUIRED
	FullNameSP CDATA #REQUIRED
>
<!ELEMENT TypeExcluded (#PCDATA)>
<!ELEMENT TypeSignature EMPTY>
<!ATTLIST TypeSignature
	Language CDATA #REQUIRED
	Value CDATA #REQUIRED
>
<!ELEMENT Types (Type+)>
<!ATTLIST Types
	Library NMTOKEN #REQUIRED
>
<!ELEMENT altcompliant EMPTY>
<!ATTLIST altcompliant
	cref CDATA #REQUIRED
>
<!ELEMENT altmember EMPTY>
<!ATTLIST altmember
	cref CDATA #REQUIRED
>
<!ELEMENT block (#PCDATA | see | para | paramref | list | block | c | subscript | code | sup | pi)*>
<!ATTLIST block
	subset CDATA #REQUIRED
	type NMTOKEN #REQUIRED
>
<!ELEMENT c (#PCDATA | para | paramref | code | see)*>
<!ELEMENT code (#PCDATA)>
<!ATTLIST code
	lang CDATA #IMPLIED
>
<!ELEMENT codelink EMPTY>
<!ATTLIST codelink
	SampleID CDATA #REQUIRED
	SnippetID CDATA #REQUIRED
>
<!ELEMENT description (#PCDATA | SPAN | paramref | para | see | c | permille | block | sub)*>
<!ELEMENT example (#PCDATA | para | code | c | codelink | list | see)*>
<!ELEMENT exception (#PCDATA | paramref | see | para | SPAN | block)*>
<!ATTLIST exception
	cref CDATA #REQUIRED
>
<!ELEMENT i (#PCDATA)>
<!ELEMENT item (term, description*)>
<!ELEMENT list (listheader?, item*)>
<!ATTLIST list
	type NMTOKEN #REQUIRED
>
<!ELEMENT listheader (term, description+)>
<!ELEMENT onequarter EMPTY>
<!ELEMENT para (#PCDATA | see | block | paramref | c | onequarter | superscript | sup | permille | SPAN | list | pi | theta | sub)*>
<!ELEMENT param (#PCDATA | c | paramref | see | block | para | SPAN)*>
<!ATTLIST param
	name CDATA #REQUIRED
>
<!ELEMENT paramref EMPTY>
<!ATTLIST paramref
	name CDATA #REQUIRED
>
<!ELEMENT permille EMPTY>
<!ELEMENT permission (#PCDATA | see | paramref | para | block)*>
<!ATTLIST permission
	cref CDATA #REQUIRED
>
<!ELEMENT pi EMPTY>
<!ELEMENT pre EMPTY>
<!ELEMENT remarks (#PCDATA | para | block | list | c | paramref | see | pre | SPAN | code | PRE)*>
<!ELEMENT returns (#PCDATA | para | list | paramref | see)*>
<!ELEMENT see EMPTY>
<!ATTLIST see
	cref CDATA #IMPLIED
	langword CDATA #IMPLIED
	qualify CDATA #IMPLIED
>
<!ELEMENT sub (#PCDATA | paramref)*>
<!ELEMENT subscript EMPTY>
<!ATTLIST subscript
	term CDATA #REQUIRED
>
<!ELEMENT summary (#PCDATA | para | see | block | list)*>
<!ELEMENT sup (#PCDATA | i | paramref)*>
<!ELEMENT superscript EMPTY>
<!ATTLIST superscript
	term CDATA #REQUIRED
>
<!ELEMENT term (#PCDATA | block | see | paramref | para | c | sup | pi | theta)*>
<!ELEMENT theta EMPTY>
<!ELEMENT threadsafe (para+)>
<!ELEMENT value (#PCDATA | para | list | see)*>

