

 i

Common Language Infrastructure (CLI)

Partition I:

Concepts and Architecture

 iii

Table of Contents

Foreword vi i

1 Scope 8

2 Conformance 9

3 Nor mati ve references 10

4 Conventions 12

4.1 Organ ization 12

4.2 In format ive text 12

5 Terms and definit ions 13

6 Overview of the Common Language Infrastr uc ture 16

6.1 Relat ionsh ip to type sa fet y 16

6.2 Relat ionsh ip to managed metadata -dr iven execut i on 17

6.2.1 Managed code 17

6.2.2 Managed data 18

6.2.3 Summary 18

7 Common Language Specif ication 19

7.1 In troduct ion 19

7.2 Views of CLS compliance 19

7.2.1 CLS framework 19

7.2.2 CLS con sumer 20

7.2.3 CLS ext ender 20

7.3 CLS compliance 21

7.3.1 Marking i tems as CLS-complian t 22

8 Common Type Syste m 23

8.1 Relat ionsh ip to object -or ien ted programming 25

8.2 Values and types 25

8.2.1 Value t ypes and reference t ypes 25

8.2.2 Buil t - in value an d reference t ypes 26

8.2.3 Classes, in ter faces, and objects 27

8.2.4 Boxing and unboxing of values 27

iv Partition I

8.2.5 Iden t i ty and equal ity of values 28

8.3 Locat ions 29

8.3.1 Assignment -compat ible loca t i ons 29

8.3.2 Coercion 29

8.3.3 Cast ing 30

8.4 T ype mem bers 30

8.4.1 Fields, array elemen ts, and values 30

8.4.2 Methods 30

8.4.3 Stat ic fields and stat ic methods 31

8.4.4 Vir tual methods 31

8.5 Naming 31

8.5.1 Valid names 31

8.5.2 Assemblies and scoping 32

8.5.3 Visibi l i t y, accessibi l i t y, and secur i ty 33

8.6 Contracts 36

8.6.1 Signatures 36

8.7 Assignment compat ibi l i t y 40

8.7.1 Assignment compat ibi l i t y for signature types 43

8.7.2 Assignment compat ibi l i t y for locat ion t ypes 44

8.7.3 General assignment compat ibi l i t y 44

8.8 T ype sa fet y and ver i ficat ion 44

8.9 T ype defin er s 45

8.9.1 Array t ypes 45

8.9.2 Unmanaged poin ter types 46

8.9.3 Delegates 47

8.9.4 In ter face t ype defin i t ion 47

8.9.5 Class type defin i t ion 48

8.9.6 Object t ype defin i t ions 49

8.9.7 Value t ype defin i t ion 52

8.9.8 T ype inher i tance 52

8.9.9 Object t ype inher i tance 53

8.9.10 Value t ype inher i tance 53

8.9.11 In ter face t ype der ivat ion 53

8.10 Member inher i tance 53

8.10.1 Field inher i tance 53

8.10.2 Method inheri tance 54

8.10.3 Proper t y and even t inheri tance 54

8.10.4 Hiding, over riding, and layout 54

 Partition I v

8.11 Member defin i t ions 55

8.11.1 Method defin i t ions 55

8.11.2 Field defin i t ions 56

8.11.3 Proper t y defin i t ions 56

8.11.4 Even t defin i t ions 57

8.11.5 Nest ed t ype defin i t ions 57

9 Metadata 58

9.1 Componen ts and assemblies 58

9.2 Accessing metadata 58

9.2.1 Metadata tokens 58

9.2.2 Member signatures in metadata 59

9.3 Unmanaged code 59

9.4 Method implementat ion metadata 59

9.5 Class layout 59

9.6 Assemblies: name scopes for t ypes 60

9.7 Metadata extensibi l i ty 61

9.8 Globals, impor ts, and expor ts 62

9.9 Scoped sta t ics 62

10 Name and type rules for the Common Language Specif ication 63

10.1 Iden t i fier s 63

10.2 Over loading 63

10.3 Operator over loading 64

10.3.1 Unary operator s 64

10.3.2 Binary operator s 65

10.3.3 Conversion operator s 66

10.4 Naming pat terns 67

10.5 Except ions 67

10.6 Custom at tr ibutes 68

10.7 Gener ic types and methods 68

10.7.1 Nest ed t ype parameter r e-declara tion 68

10.7.2 T ype names and ari ty encoding 69

10.7.3 T ype constra in t r e-declara t ion 71

10.7.4 Constra int type r est r ict ions 71

10.7.5 Frameworks and accessi bi l i t y of nested t ypes 71

10.7.6 Frameworks and abstr act or vi r tual methods 72

11 Collected Common Language Specif ication rul es 73

vi Partition I

12 Virtual Exec uti on Syste m 76

12.1 Suppor ted data types 76

12.1.1 Native size: nat ive in t , nat ive unsigned in t, O and & 77

12.1.2 Handl ing of shor t in teger data types 78

12.1.3 Handl ing of float ing -poin t data types 78

12.1.4 CIL instruct ions an d numeric types 80

12.1.5 CIL instruct ions and poin ter types 81

12.1.6 Aggregate data 82

12.2 Modul e in format ion 85

12.3 Machine sta te 85

12.3.1 The global sta te 85

12.3.2 Method sta te 86

12.4 Control flow 89

12.4.1 Method cal ls 90

12.4.2 Except ion handl ing 93

12.5 Proxies and remoting 103

12.6 Memor y m odel and opt imiz ations 104

12.6.1 The memor y store 104

12.6.2 Alignment 104

12.6.3 Byte order ing 104

12.6.4 Optimizat ion 104

12.6.5 Locks and threads 105

12.6.6 Atomic r eads and wr i tes 106

12.6.7 Volat i le r eads and wr ites 106

12.6.8 Other memory model issues 107

13 Inde x 108

 Partition I vii

Foreword

This fourth edition cancels and replaces the third edition. Changes from the previous edition were made to align

this Standard with ISO/IEC 23271:2006.

The following companies and organizations have participated in the development of this standard, and their

contributions are gratefully acknowledged: Borland, Fujitsu Software Corporation, Hewlett-Packard, Intel

Corporation, IBM Corporation, ISE, IT University of Copenhagen, Jagger Software Ltd., Microsoft

Corporation, Monash University, Netscape, Novell/Ximian, Phone.Com, Plum Hall, Sun Microsystems, and

University of Canterbury (NZ)

 8

1 Scope

This International Standard defines the Common Language Infrastructure (CLI) in which applications written

in multiple high-level languages can be executed in different system environments without the need to rewrite

those applications to take into consideration the unique characteristics of those environments. This International

Standard consists of the following parts:

 Partition I: Concepts and Architecture – Describes the overall architecture of the CLI, and provides the

normative description of the Common Type System (CTS), the Virtual Execution System (VES), and

the Common Language Specification (CLS). It also provides an informative description of the

metadata.

 Partition II: Metadata Definition and Semantics – Provides the normative description of the metadata: its

physical layout (as a file format), its logical contents (as a set of tables and their relationships), and its

semantics (as seen from a hypothetical assembler, ilasm).

 Partition III: CIL Instruction Set – Describes the Common Intermediate Language (CIL) instruction set.

 Partition IV: Profiles and Libraries – Provides an overview of the CLI Libraries, and a specification of

their factoring into Profiles and Libraries. A companion file, CLILibrary.xml, considered to be part of

this Partition, but distributed in XML format, provides details of each class, value type, and interface in

the CLI Libraries.

 Partition V: Debug Interchange Format –

 Partition VI: Annexes – Contains some sample programs written in CIL Assembly Language (ILAsm),

information about a particular implementation of an assembler, a machine-readable description of the

CIL instruction set which can be used to derive parts of the grammar used by this assembler as well as

other tools that manipulate CIL, a set of guidelines used in the design of the libraries of Partition IV, and

portability considerations.

Partition%20IV%20Library.doc

 Partition I 9

2 Conformance

A system claiming conformance to this International Standard shall implement all the normative requirements

of this standard, and shall specify the profile (see Partition IV) that it implements. The minimal implementation

is the Kernel Profile. A conforming implementation can also include additional functionality provided that

functionality does not prevent running code written to rely solely on the profile as specified in this standard.

For example, a conforming implementation can provide additional classes, new methods on existing classes, or

a new interface on a standardized class, but it shall not add methods or properties to interfaces specified in this

standard.

A compiler that generates Common Intermediate Language (CIL, see Partition III) and claims conformance to

this International Standard shall produce output files in the format specified in this standard, and the CIL it

generates shall be correct CIL as specified in this standard. Such a compiler can also claim that it generates

verifiable code, in which case, the CIL it generates shall be verifiable as specified in this standard.

Partition%20IV%20Library.doc#Profiles
Partition%20III%20CIL.doc#title

10 Partition I

3 Normative references

[Note that many of these references are cited in the XML description of the class libraries.]

Extensible Markup Language (XML) 1.0 (Third Edition), 2004 February 4, http://www.w3.org/TR/2004/REC-

xml-2004

Federal Information Processing Standard (FIPS 180-1), Secure Hash Standard (SHA-1), 1995, April.

IEC 60559:1989, Binary Floating-point Arithmetic for Microprocessor Systems (previously designated IEC

559:1989).

ISO 639:1988, Codes for the representation of names of languages.

ISO 3166:1988, Codes for the representation of names of countries.

ISO/IEC 646:1991, ISO 7-bit coded character set for information interchange

ISO/IEC 9899:1990, Programming languages — C.

ISO/IEC 10646 (all parts), Universal Multiple-Octet Coded Character Set (UCS).

ISO/IEC 11578:1996 (E) Open Systems Interconnection - Remote Procedure Call (RPC), Annex A: Universal

Unique Identifier.

ISO/IEC 14882:2003, Programming languages — C++.

ISO/IEC 23270:2006, Programming languages — C#.

RFC-768, User Datagram Protocol. J. Postel. 1980, August.

RFC-791, Darpa Internet Program Protocol Specification. 1981, September.

RFC-792, Internet Control Message Protocol. Network Working Group. J. Postel. 1981, September.

RFC-793, Transmission Control Protocol. J. Postel. 1981, September.

RFC-919, Broadcasting Internet Datagrams. Network Working Group. J. Mogul. 1984, October.

RFC-922, Broadcasting Internet Datagrams in the presence of Subnets. Network Working Group. J. Mogul.

1984, October.

RFC-1035, Domain Names - Implementation and Specification. Network Working Group. P. Mockapetris.

1987, November.

RFC-1036, Standard for Interchange of USENET Messages, Network Working Group. M. Horton and R.

Adams. 1987, December.

RFC-1112. Host Extensions for IP Multicasting. Network Working Group. S. Deering 1989, August.

RFC-1222. Advancing the NSFNET Routing Architecture. Network Working Group. H-W Braun, Y. Rekhter.

1991 May. ftp://ftp.isi.edu/in-notes/rfc1222.txt

RFC-1510, The Kerberos Network Authentication Service (V5). Network Working Group. J. Kohl and C.

Neuman. 1993, September.

RFC-1741, MIME Content Type for BinHex Encoded Files: Format. Network Working Group. P. Faltstrom, D.

Crocker, and E. Fair. 1994, December.

RFC-1764. The PPP XNS IDP Control Protocol (XNSCP). Network Working Group. S. Senum. 1995, March.

RFC-1766, Tags for the Identification of Languages. Network Working Group. H. Alvestrand. 1995, March.

RFC-1792. TCP/IPX Connection Mib Specification. Network Working Group. T. Sung. 1995, April.

RFC-2236. Internet Group Management Protocol, Version 2. Network Working Group. W. Fenner. 1997,

November.

http://www.w3.org/TR/2004/REC-xml-2004
http://www.w3.org/TR/2004/REC-xml-2004
ftp://ftp.isi.edu/in-notes/rfc1222.txt

 Partition I 11

RFC-2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies.

Network Working Group. N. Freed. 1996, November.

RFC-2616, Hypertext Transfer Protocol -- HTTP/1.1. Network Working Group. R. Fielding, J. Gettys, J.

Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. 1999 June. ftp://ftp.isi.edu/in-notes/rfc2616.txt

RFC-2617, HTTP Authentication: Basic and Digest Access Authentication. Network Working Group.

J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart. 1999 June,
ftp://ftp.isi.edu/in-notes/rfc2617.txt

The Unicode Consortium. The Unicode Standard, Version 4.0, defined by: The Unicode Standard, Version 4.0

(Boston, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1).

ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2617.txt

12 Partition I

4 Conventions

4.1 Organization

The divisions of this International Standard are organized using a hierarchy. At the top level is the Partition.

The next level is the clause, followed by subclause. Divisions within a subclause are also referred to as

subclauses. Partitions are numbered using Roman numerals. All other divisions are numbered using Arabic

digits with their place in the hierarchy indicated by nested numbers. For example, Partition II, 14.4.3.2 refers to

subclause 2 in subclause 3 in subclause 4 in clause 14 in Partition II.

4.2 Informative text

This International Standard is intended to be used by implementers, academics, and application programmers.

As such, it contains explanatory material that, strictly speaking, is not necessary in a formal specification.

Examples are provided to illustrate possible forms of the constructions described. References are used to refer

to related clauses or subclauses. Notes are provided to give advice or guidance to implementers or

programmers. Annexes provide additional information.

Except for whole clauses or subclauses that are identified as being informative, informative text that is

contained within normative clauses and subclauses is identified as follows:

 The beginning and end of a block of informative text is marked using rectangular boxes.

 As some informative passages span pages, informative text also contains a bold set of vertical black

stripes in the right margin.

 By the use of the following pairs of markers: [Example: … end example], [Note: … end note], and
[Rationale: … end rationale].

Unless text is identified as being informative, it is normative.

 Partition I 13

5 Terms and definitions

For the purposes of this International Standard, the following definitions apply. Other terms are defined where

they appear in italic type.

ANSI character: A character from an implementation-defined 8-bit character set whose first 128 code points

correspond exactly to those of ISO/IEC 10646.

ANSI string: A string of ANSI characters, of which the final character has the value all-bits-zero.

assembly: A configured set of loadable code modules and other resources that together implement a unit of

functionality.

attribute: A characteristic of a type and/or its members that contains descriptive information. While the most

common attributes are predefined, and have a specific encoding in the metadata associated with them, user-

defined attributes can also be added to the metadata.

behavior, implementation-specific: Unspecified behavior, for which each implementation is required to

document the choice it makes.

behavior, unspecified: Behavior, for a well-formed program construct and correct data, that depends on the

implementation. The implementation is not required to document which behavior occurs.

behavior, undefined: Behavior, such as might arise upon use of an erroneous program construct or erroneous

data, for which this International Standard imposes no requirements. Undefined behavior can also be expected

in cases when this International Standard omits the description of any explicit definition of behavior.

boxing: The conversion of a value having some value type, to a newly allocated instance of the reference type

System.Object.

Common Intermediate Language (CIL): The instruction set understood by the VES.

Common Language Infrastructure (CLI): A specification for the format of executable code, and the run-
time environment that can execute that code.

Common Language Specification (CLS): An agreement between language designers and framework (class

library) designers. It specifies a subset of the CTS and a set of usage conventions.

Common Type System (CTS): A unified type system that is shared by compilers, tools, and the CLI itself. It

is the model that defines the rules the CLI follows when declaring, using, and managing types. The CTS

establishes a framework that enables cross-language integration, type safety, and high performance code

execution.

delegate: A reference type such that an instance of it can encapsulate one or more methods in an invocation

list. Given a delegate instance and an appropriate set of arguments, one can invoke all of the methods in a

delegate‘s invocation list with that set of arguments.

event: A member that enables an object or class to provide notifications.

Execution Engine: See Virtual Execution System.

field: A member that designates a typed memory location that stores some data in a program.

garbage collection : The process by which memory for managed data is allocated and released.

generic argument: The actual type used to instantiate a particular generic type or generic method. For

example, in List<string>, string is the generic argument corresponding to the generic parameter T in the

generic type definition List<T>.

generic parameter: A parameter within the definition of a generic type or generic method that acts as a place

holder for a generic argument. For example, in the generic type definition List<T>, T is a generic parameter.

14 Partition I

generics : The feature that allows types and methods to be defined such that they are parameterized with one or

more generic parameters.

library: A repository for a set of types, which are grouped into one or more assemblies. A library can also

contain modifications to types defined in other libraries. For example, a library can include additional methods,

interfaces, and exceptions for types defined in other libraries.

managed code: Code that contains enough information to allow the CLI to provide a set of core services. For
example, given an address for a method inside the code, the CLI must be able to locate the metadata describing

that method. It must also be able to walk the stack, handle exceptions, and store and retrieve security

information.

managed data: Data that is allocated and released automatically by the CLI, through a process called garbage

collection.

manifest: That part of an assembly that specifies the following information about that assembly: its version,

name, culture, and security requirements; which other files, if any, belong to that assembly, along with a

cryptographic hash of each file; which of the types defined in other files of that assembly are to be exported

from that assembly; and, optionally, a digital signature for the manifest itself, and the public key used to

compute it.

member: Any of the fields, array elements, methods, properties, and events of a type.

metadata: Data that describes and references the types defined by the CTS. Metadata is stored in a way that is
independent of any particular programming language. Thus, metadata provides a common interchange

mechanism for use between tools that manipulate programs (such as compilers and debuggers) as well as

between these tools and the VES.

method: A member that describes an operation that can be performed on values of an exact type.

method, generic: A method (be it static, instance, or virtual), defined within a type, whose signature includes

one or more generic parameters, not present in the type definition itself. The enclosing type itself might, or

might not, be generic. For example, within the generic type List<T>, the generic method S ConvertTo<S>() is

generic.

method, non-generic: A method that is not generic.

module: A single file containing content that can be executed by the VES.

object: An instance of a reference type. An object has more to it than a value. An object is self-typing; its type
is explicitly stored in its representation. It has an identity that distinguishes it from all other objects, and it has

slots that store other entities (which can be either objects or values). While the contents of its slots can be

changed, the identity of an object never changes.

profile: A set of libraries, grouped together to form a consistent whole that provides a fixed level of

functionality.

property: A member that defines a named value and the methods that access that value. A property definition

defines the accessing contracts on that value. Hence, the property definition specifies which accessing methods

exist and their respective method contracts.

signature: The part of a contract that can be checked and automatically enforced. Signatures are formed by

adding constraints to types and other signatures. A constraint is a limitation on the use of or allowed operations

on a value or location.

type, generic: A type whose definition is parameterized by one or more other types; for example, List<T>,

where T is a generic parameter. The CLI supports the creation and use of instances of generic types. For

example, List<int32> or List<string>.

type, reference: A type such that an instance of it contains a reference to its data.

type, value: A type such that an instance of it directly contains all its data.

unboxing: The conversion of a value having type System.Object, whose run-time type is a value type, to a

value type instance.

 Partition I 15

unmanaged code: Code that is not managed.

unmanaged data: Data that is not managed.

value: A simple bit pattern for something like an integer or a float. Each value has a type that describes both

the storage that it occupies and the meanings of the bits in its representation, and also the operations that can be

performed on that representation. Values are intended for representing the simple types and non-objects in

programming languages.

verification: The checking of both CIL and its related metadata to ensure that the CIL code sequences do not

permit any access to memory outside the program‘s logical address space. In conjunction with the validation

tests, verification ensures that the program cannot access memory or other resources to which it is not granted

access.

Virtual Execution System (VES): This system implements and enforces the CTS model. The VES is

responsible for loading and running programs written for the CLI. It provides the services needed to execute

managed code and data using the metadata to connect separately generated modules together at runtime. The

VES is also known as the Execution Engine.

16 Partition I

6 Overview of the Common Language Infrastructure

The Common Language Infrastructure (CLI) provides a specification for executable code and the execution

environment (the Virtual Execution System) in which it runs. Executable code is presented to the VES as

modules. A module is a single file containing executable content in the format specified in Partition II.

The remainder of this clause and its subclauses contain only informative text

At the center of the CLI is a unified type system, the Common Type System that is shared by compilers, tools,

and the CLI itself. It is the model that defines the rules the CLI follows when declaring, using, and managing

types. The CTS establishes a framework that enables cross-language integration, type safety, and high

performance code execution. This clause describes the architecture of the CLI by describing the CTS.

The following four areas are covered in this clause:

 The Common Type System (CTS)—The CTS provides a rich type system that supports the types

and operations found in many programming languages. The CTS is intended to support the

complete implementation of a wide range of programming languages. See §8

 Metadata—The CLI uses metadata to describe and reference the types defined by the CTS.

Metadata is stored (that is, persisted) in a way that is independent of any particular programming

language. Thus, metadata provides a common interchange mechanism for use between tools (such
as compilers and debuggers) that manipulate programs, as well as between these tools and the

VES. See §9.

 The Common Language Specification (CLS)—The CLS is an agreement between language

designers and framework (that is, class library) designers. It specifies a subset of the CTS and a

set of usage conventions. Languages provide their users the greatest ability to access frameworks

by implementing at least those parts of the CTS that are part of the CLS. Similarly, frameworks

will be most widely used if their publicly exported aspects (e.g., classes, interfaces, methods, and

fields) use only types that are part of the CLS and that adhere to the CLS conventions. See §10.

 The Virtual Execution System (VES)—The VES implements and enforces the CTS model. The

VES is responsible for loading and running programs written for the CLI. It provides the services

needed to execute managed code and data, using the metadata to connect separately generated
modules together at runtime (late binding). See §12.

Together, these aspects of the CLI form a unifying infrastructure for designing, developing, deploying, and

executing distributed components and applications. The appropriate subset of the CTS is available from each

programming language that targets the CLI. Language-based tools communicate with each other and with the

VES using metadata to define and reference the types used to construct the application. The VES uses the

metadata to create instances of the types as needed and to provide data type information to other parts of the

infrastructure (such as remoting services, assembly downloading, and security).

6.1 Relationship to type safety

Type safety is usually discussed in terms of what it does (e.g., guaranteeing encapsulation between different
objects) or in terms of what it prevents (e.g., memory corruption by writing where one shouldn‘t). However,

from the point of view of the CTS, type safety guarantees that:

 References are what they say they are – Every reference is typed, the object or value referenced

also has a type, and these types are assignment compatible (see §8.7).

 Identities are who they say they are – There is no way to corrupt or spoof an object, and, by

implication, a user or security domain. Access to an object is through accessible functions and

fields. An object can still be designed in such a way that security is compromised. However, a

local analysis of the class, its methods, and the things it uses, as opposed to a global analysis of

all uses of a class, is sufficient to assess the vulnerabilities.

Partition%20II%20Metadata.doc#Security

 Partition I 17

 Only appropriate operations can be invoked – The reference type defines the accessible

functions and fields. This includes limiting visibility based on where the reference is (e.g.,

protected fields only visible in derived classes).

The CTS promotes type safety (e.g., everything is typed). Type safety can optionally be enforced. The hard

problem is determining if an implementation conforms to a type-safe declaration. Since the declarations are

carried along as metadata with the compiled form of the program, a compiler from the Common Intermediate
Language (CIL) to native code (see §8.8) can type-check the implementations.

6.2 Relationship to managed metadata-driven execution

Metadata describes code by describing the types that the code defines and the types that it references externally.

The compiler produces the metadata when the code is produced. Enough information is stored in the metadata

to:

 Manage code execution – not just load and execute, but also memory management and execution

state inspection.

 Administer the code – Installation, resolution, and other services.

 Reference types in the code – Importing into other languages and tools as well as scripting and
automation support.

The CTS assumes that the execution environment is metadata-driven. Using metadata allows the CLI to

support:

 Multiple execution models – The metadata allows the execution environment to deal with a

mixture of interpreted, JIT-compiled, native, and legacy code, and still present uniform services

to tools like debuggers and profilers, consistent exception handling and unwinding, reliable code

access security, and efficient memory management.

 Auto support for services – Since the metadata is available at execution time, the execution

environment and the base libraries can automatically supply support for reflection, automation,

serialization, remote objects, and inter-operability with existing unmanaged native code with little

or no effort on the part of the programmer.

 Better optimization – Using metadata references instead of physical offsets, layouts, and sizes

allows the CLI to optimize the physical layouts of members and dispatch tables. In addition, this

allows the generated code to be optimized to match the particular CPU or environment.

 Reduced binding brittleness – Using metadata references reduces version-to-version brittleness

by replacing compile-time object layout with load-time layout and binding by name.

 Flexible deployment resolution – Since we can have metadata for both the reference and the

definition of a type, more robust and flexible deployment and resolution mechanisms are possible.

Resolution means that by looking in the appropriate set of places it is possible to find the

implementation that best satisfies these requirements for use in this context. There are five

elements of information in the foregoing: requirements and context are made available via

metadata; where to look, how to find an implementation, and how to decide the best match all
come from application packaging and deployment.

6.2.1 Managed code

Managed code is code that provides enough information to allow the CLI to provide a set of core services,

including

 Given an address inside the code for a method, locate the metadata describing the method

 Walk the stack

 Handle exceptions

 Store and retrieve security information

18 Partition I

This standard specifies a particular instruction set, the CIL (see Partition III), and a file format (see Partition II)

for storing and transmitting managed code.

6.2.2 Managed data

Managed data is data that is allocated and released automatically by the CLI, through a process called

garbage collection.

6.2.3 Summary

The CTS is about integration between languages: using another language‘s objects as if they were one‘s own.

The objective of the CLI is to make it easier to write components and applications in any language. It does this

by defining a standard set of types, by making all components fully self-describing, and by providing a high

performance common execution environment. This ensures that all CLI-compliant system services and

components will be accessible to all CLI-aware languages and tools. In addition, this simplifies deployment of

components and applications that use them, all in a way that allows compilers and other tools to leverage the

high performance execution environment. The CTS covers, at a high level, the concepts and interactions that

make all of this possible.

The discussion is broken down into four areas:

 Type System – What types are and how to define them.

 Metadata – How types are described and how those descriptions are stored.

 Common Language Specification – Restrictions required for language interoperability.

 Virtual Execution System – How code is executed and how types are instantiated, interact, and

die.

End informative text

Partition%20III%20CIL.doc#title
Partition%20II%20Metadata.doc#title

 Partition I 19

7 Common Language Specification

7.1 Introduction

The CLS is a set of rules intended to promote language interoperability. These rules shall be followed in order

to conform to the CLS. They are described in greater detail in subsequent clauses and are summarized in §11.

CLS conformance is a characteristic of types that are generated for execution on a CLI implementation. Such

types must conform to the CLI standard, in addition to the CLS rules. These additional rules apply only to

types that are visible in assemblies other than those in which they are defined, and to the members that are

accessible outside the assembly; that is, those that have an accessibility of public, family (but not on sealed

types), or family-or-assembly (but not on sealed types).

[Note: A library consisting of CLS-compliant code is herein referred to as a framework. Compilers that
generate code for the CLI can be designed to make use of such libraries, but not to be able to produce or extend

such library code. These compilers are referred to as consumers. Compilers that are designed to both produce

and extend frameworks are referred to as extenders. In the description of each CLS rule, additional informative

text is provided to assist the reader in understanding the rule‘s implication for each of these situations. end

note]

7.2 Views of CLS compliance

This block contains only informative text.

The CLS is a set of rules that apply to generated assemblies. Because the CLS is designed to support

interoperability for libraries and the high-level programming languages used to write them, it is often useful to

think of the CLS rules from the perspective of the high-level source code and tools, such as compilers, that are

used in the process of generating assemblies. For this reason, informative notes are added to the description of

CLS rules to assist the reader in understanding the rule‘s implications for several different classes of tools and

users. The different viewpoints used in the description are called framework, consumer, and extender, and
are described here.

7.2.1 CLS framework

A library consisting of CLS-compliant code is herein referred to as a framework. Frameworks are designed for

use by a wide range of programming languages and tools, including both CLS consumer and extender

languages. By adhering to the rules of the CLS, authors of libraries ensure that the libraries will be usable by a

larger class of tools than if they chose not to adhere to the CLS rules. The following are some additional

guidelines that CLS-compliant frameworks should follow:

 Avoid the use of names commonly used as keywords in programming languages.

 Not expect users of the framework to be able to author nested types.

 Assume that implementations of methods of the same name and signature on different interfaces

are independent.

 Not rely on initialization of value types to be performed automatically based on specified

initializer values.

 Assume users can instantiate and use generic types and methods, but do not require them to define

new generic types or methods, or deal with partially constructed generic types.

Frameworks shall not:

 Require users to define new generic types/methods, override existing generic methods, or deal

with partially constructed generics in any way.

A CLS Rule applies to this topic; see the normative text at the end of §7.2.

20 Partition I

7.2.2 CLS consumer

A CLS consumer is a language or tool that is designed to allow access to all of the features supplied by CLS-

compliant frameworks, but not necessarily be able to produce them. The following is a partial list of things

CLS consumer tools are expected to be able to do:

 Support calling any CLS-compliant method or delegate.

 Have a mechanism for calling methods whose names are keywords in the language.

 Support calling distinct methods supported by a type that have the same name and signature, but

implement different interfaces.

 Create an instance of any CLS-compliant type.

 Read and modify any CLS-compliant field.

 Access nested types.

 Access any CLS-compliant property. This does not require any special support other than the

ability to call the getter and setter methods of the property.

 Access any CLS-compliant event. This does not require any special support other than the ability

to call methods defined for the event.

 Have a mechanism to import, instantiate, and use generic types and methods.

[Note: Consumers should consider supporting:

 Type inferencing over generic methods with language-defined rules for matching.

 Casting syntax to clarify ambiguous casts to a common supertype.

end note]

The following is a list of things CLS consumer tools need not support:

 Creation of new types or interfaces.

 Initialization metadata (see Partition II) on fields and parameters other than static literal fields.

Note that consumers can choose to use initialization metadata, but can also safely ignore such

metadata on anything other than static literal fields.

7.2.3 CLS extender

A CLS extender is a language or tool that is designed to allow programmers to both use and extend CLS-

compliant frameworks. CLS extenders support a superset of the behavior supported by a CLS consumer (i.e.,
everything that applies to a CLS consumer also applies to CLS extenders). In addition to the requirements of a

consumer, extenders are expected to be able to:

 Define new CLS-compliant types that extend any (non-sealed) CLS-compliant base class.

 Have some mechanism for defining types whose names are keywords in the language.

 Provide independent implementations for all methods of all interfaces supported by a type. That

is, it is not sufficient for an extender to require a single code body to implement all in terface

methods of the same name and signature.

 Implement any CLS-compliant interface.

 Place any CLS-compliant custom attribute on all appropriate elements of metadata.

 Define new CLS-compliant (non-generic) types that extend any (non-sealed) CLS-compliant base

type. Valid base types include normal (non-generic) types and also fully constructed generic
types.

[Note: Extenders should consider supporting:

Partition%20II%20Metadata.doc

 Partition I 21

 Type inferencing over generic methods with language-defined rules for matching.

 Casting syntax to clarify ambiguous casts to a common supertype.

end note]

Extenders need not support the following:

 Definition of new CLS-compliant interfaces.

 Definition of nested types.

 Definition of generic types and methods.

 Overriding existing virtual generic methods.

The CLS is designed to be large enough that it is properly expressive yet small enough that all languages can

reasonably accommodate it.

End informative text

CLS Rule 48: If two or more CLS-compliant methods declared in a type have the same name and, for a
specific set of type instantiations, they have the same parameter and return types, then all these methods shall

be semantically equivalent at those type instantiations.

[Note:

CLS (consumer): May select any one of the methods.

CLS (extender): Same as consumer.

CLS (framework): Shall not expose methods that violate this rule. end note]

[Note: To avoid confusion, the CLS rules follow historical numbering from the previous version of this

Standard, despite removal/addition of rules in this version. As such, the first rule shown in this partition is

Rule 48. end note]

7.3 CLS compliance

As these rules are introduced in detail, they are described in a common format. For an example, see the first

rule below. The first paragraph specifies the rule itself. This is then followed by an informative description of

the implications of the rule from the three different viewpoints as described above.

The CLS defines language interoperability rules, which apply only to ―externally visible‖ items. The CLS unit

of that language interoperability is the assembly—that is, within a single assembly there are no restrictions as to
the programming techniques that can be used. Thus, the CLS rules apply only to items that are visible

(see §8.5.3) outside of their defining assembly and have public, family, or family-or-assembly accessibility

(see §8.5.3.2).

CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible outside of the defining
assembly.

[Note:

CLS (consumer): no impact.

CLS (extender): when checking CLS compliance at compile time, be sure to apply the rules only to

information that will be exported outside the assembly.

CLS (framework): CLS rules do not apply to internal implementation within an assembly. A type is CLS-

compliant if all its publicly accessible parts (those classes, interfaces, methods, fields, properties, and events

that are available to code executing in another assembly) either

 have signatures composed only of CLS-compliant types, or

 are specifically marked as not CLS-compliant. end note]

22 Partition I

Any construct that would make it impossible to rapidly verify code is excluded from the CLS. This allows all

CLS-compliant language translators to produce verifiable code if they so choose.

7.3.1 Marking i tems as CLS-compliant

The CLS specifies how to mark externally visible parts of an assembly to indicate whether or not they comply

with the CLS requirements. (Implementers are discouraged from marking extensions to this standard as CLS-

compliant.) This is done using the custom attribute mechanism (see §9.7 and Partition II). The class

System.CLSCompliantAttribute (see Partition IV) indicates which types and type members are CLS-

compliant. It also can be attached to an assembly, to specify the default level of compliance for all top-level

types that assembly contains.

The constructor for System.CLSCompliantAttribute takes a Boolean argument indicating whether the item

with which it is associated is CLS-compliant. This allows any item (assembly, type, or type member) to be

explicitly marked as CLS-compliant or not.

The rules for determining CLS compliance are:

 When an assembly does not carry an explicit System.CLSCompliantAttribute, it shall be

assumed to carry System.CLSCompliantAttribute(false).

 By default, a type inherits the CLS-compliance attribute of its enclosing type (for nested types) or

acquires the level of compliance attached to its assembly (for top-level types). A type can be
marked as either CLS-compliant or not CLS-compliant by attaching the

System.CLSCompliantAttribute attribute.

 By default, other members (methods, fields, properties, and events) inherit the CLS-compliance of

their type. They can be marked as not CLS-compliant by attaching the attribute

System.CLSCompliantAttribute(false).

CLS Rule 2: Members of non-CLS compliant types shall not be marked CLS-compliant.

[Note:

CLS (consumer): Can ignore any member that is not CLS-compliant using the above rules.

CLS (extender): Should encourage correct labeling of newly authored assemblies and publicly exported types

and members. Compile-time enforcement of the CLS rules is strongly encouraged.

CLS (framework): Shall correctly label all publicly exported members as to their CLS compliance. The rules

specified here can be used to minimize the number of markers required (for example, label the entire assembly

if all types and members are compliant or if there are only a few exceptions that need to be marked). end note]

Partition%20II%20Metadata.doc#title
Partition%20IV%20Library.doc

 Partition I 23

8 Common Type System

Types describe values and specify a contract (see §8.6) that all values of that type shall support. Because the

CTS supports Object-Oriented Programming (OOP) as well as functional and procedural programming

languages, it deals with two kinds of entities: objects and values. Values are simple bit patterns for things like

integers and floats; each value has a type that describes both the storage that it occupies and the meanings of

the bits in its representation, and also the operations that can be performed on that representation. Values are

intended for representing the corresponding simple types in programming languages like C, and also for

representing non-objects in languages like C++ and Java™.

Objects have rather more to them than do values. Each object is self-typing, that is, its type is explicitly stored

in its representation. It has an identity that distinguishes it from all other objects, and it has slots that store other

entities (which can be either objects or values). While the contents of its slots can be changed, the identity of an

object never changes.

There are several kinds of objects and values, as shown in the (informative) diagram below.

The generics feature allows a whole family of types and methods to be defined using a pattern, which includes

placeholders called generic parameters. These generic parameters are replaced, as required, by specific types,

to instantiate whichever member of the family is actually required. The design of generics meets the following

goals:

 Orthogonality: Where possible, generic types can occur in any context where existing CLI types can

occur.

 Language independence: No assumptions about the source language are made. But CLI-generics

attempts to support existing generics-like features of as many languages as possible. Furthermore, the

design permits clean extensions of languages currently lacking generics.

 Implementation independence: An implementation of the CLI is allowed to specialize representations

and code on a case-by-case basis, or to share all representations and code, perhaps boxing and
unboxing values to achieve this.

 Implementation efficiency: Performance of generics is no worse than the use of Object to simulate

generics; a good implementation can do much better, avoiding casts on reference type instantiations,

and producing specialized code for value type instantiations.

 Statically checkable at point of definition: A generic type definition can be validated and verified

independently of its instantiations. Thus, a generic type is statically verifiable, and its methods are

guaranteed to JIT-compile for all valid instantiations.

 Uniform behavior with respect to generic parameters: In general, the behavior of parameterized types

and generic methods is ―the same‖ at all type instantiations.

In addition, CLI supports covariant and contravariant generic parameters, with the following characteristics:

 It is type-safe (based on purely static checking)

 Simplicity: in particular, variance is only permitted on generic interfaces and generic delegates (not
classes or value-types)

 Languages not wishing to support variance can ignore the feature, and treat all generic types as non-
variant.

 Enable implementation of more complex covariance scheme as used in some languages, e.g. Eiffel.

24 Partition I

This figure is informative

Figure 1: Type System

Integer Types

Floating Point Types

Typed References

Built-in Value Types

(special encoding in signature)

Enums

User Defined

Value Types

Delegates

Boxed Enums

Boxed Value Types

Name Equivalent

Arrays

Structural Equivalent

Self-Describing Interface

Function

Managed

(might be in heap)

Unmanaged

Pointer

String

Object

Built-In Reference Types

Reference Types

(identity within app. domain)

Type

[Note: A managed pointer might point into the heap. end note]

End informative figure

 Partition I 25

8.1 Relationship to object -oriented programming

This subclause contains only informative text

The term type is often used in the world of value-oriented programming to mean data representation. In the

object-oriented world it usually refers to behavior rather than to representation. In the CTS, type is used to

mean both of these things: two entities have compatible types if and only if they have compatible

representations and compatible behaviors. Thus, in the CTS, if one type is derived from a base type, then

instances of the derived type can be substituted for instances of the base type because both the representation
and the behavior are compatible.

Unlike in some OOP languages, in the CTS, two objects that have fundamentally different representations have

different types. Some OOP languages use a different notion of type. They consider two objects to have the

same type if they respond in the same way to the same set of messages. This notion is captured in the CTS by

saying that the objects implement the same interface.

Similarly, some OOP languages (e.g., Smalltalk) consider message passing to be the fundamental model of

computation. In the CTS, this corresponds to calling virtual methods (see §8.4.4), where the signature of the

virtual method plays the role of the message.

The CTS itself does not directly capture the notion of ―typeless programming.‖ That is, there is no way to call

a non-static method without knowing the type of the object. Nevertheless, typeless programming can be

implemented based on the facilities provided by the reflection package (see Partition IV) if it is implemented.

End informative text

8.2 Values and types

Types describe values. Any value described by a type is called an instance of that type. Any use of a value—

storing it, passing it as an argument, operating on it—requires a type. This applies in particular to all variables,

arguments, evaluation stack locations, and method results. The type defines the allowable values and the

allowable operations supported by the values of the type. All operators and functions have expected types for

each of the values accessed or used.

Every value has an exact type that fully describes its type properties.

Every value is an instance of its exact type, and can be an instance of other types as well. In particular, if a

value is an instance of a type that inherits from another type, it is also an instance of that other type.

8.2.1 Value types and reference types

There are two kinds of types: value types and reference types.

 Value types – The values described by a value type are self-contained (each can be understood

without reference to other values).

 Reference types –A value described by a reference type denotes the location of another value.

There are four kinds of reference type:

o An object type is a reference type of a self-describing value (see §8.2.3). Some object

types (e.g., abstract classes) are only a partial description of a value.

o An interface type is always a partial description of a value, potentially supported by many

object types.

o A pointer type is a compile-time description of a value whose representation is a machine

address of a location. Pointers are divided into managed (§8.2.1.1, §12.1.1.2) and

unmanaged (§8.9.2).

o Built-in reference types.

Partition%20IV%20Library.doc#ReflectionPackage

26 Partition I

8.2.1.1 Managed pointers and related types

A managed pointer (§12.1.1.2), or byref (§8.6.1.3, §12.4.1.5.2), can point to a local variable, parameter, field

of a compound type, or element of an array. However, when a call crosses a remoting boundary (see §12.5) a

conforming implementation can use a copy-in/copy-out mechanism instead of a managed pointer. Thus

programs shall not rely on the aliasing behavior of true pointers. Managed pointer types are only allowed for

local variable (§8.6.1.3) and parameter signatures (§8.6.1.4); they cannot be used for field signatures (§8.6.1.2),
as the element type of an array (§8.9.1), and boxing a value of managed pointer type is disallowed (§8.2.4).

Using a managed pointer type for the return type of methods (§8.6.1.5) is not verifiable (§8.8).

 [Rationale: For performance reasons items on the GC heap may not contain references to the interior of other

GC objects, this motivates the restrictions on fields and boxing. Further returning a managed pointer which

references a local or parameter variable may cause the reference to outlive the variable, hence it is not

verifiable . end rationale]

There are three value types in the Base Class Library (see Partition IV): System.TypedReference,

System.RuntimeArgumentHandle, and System.ArgIterator; which are treated specially by the CLI.

The value type System.TypedReference, or typed reference or typedref , (§8.2.2, §8.6.1.3, §12.4.1.5.3)

contains both a managed pointer to a location and a runtime representation of the type that can be stored at that

location. Typed references have the same restrictions as byrefs. Typed references are created by the CIL

instruction mkrefany (see Partition III).

The value types System.RuntimeArgumentHandle and System.ArgIterator (see Partition IV and CIL

instruction arglist in Partition III), contain pointers into the VES stack. They can be used for local variable

and parameter signatures. The use of these types for fields, method return types, the element type of an array, or

in boxing is not verifiable (§8.8). These two types are referred to as byref-like types.

8.2.2 Built- in val ue and reference types

The following data types are an integral part of the CTS and are supported directly by the VES. They have

special encoding in the persisted metadata:

Table 1: Special Encoding

Name in CIL assembler

(see Partition II)

CLS Type? Name in class library

(see Partition IV)

Description

bool
1
 Yes System.Boolean True/false value

char
1
 Yes System.Char Unicode 16-bit char.

object Yes System.Object Object or boxed value type

string Yes System.String Unicode string

float32 Yes System.Single IEC 60559:1989 32-bit float

float64 Yes System.Double IEC 60559:1989 64-bit float

int8 No System.SByte Signed 8-bit integer

int16 Yes System.Int16 Signed 16-bit integer

int32 Yes System.Int32 Signed 32-bit integer

int64 Yes System.Int64 Signed 64-bit integer

native int Yes System.IntPtr Signed integer, native size

native unsigned int No System.UIntPtr Unsigned integer, native size

typedref No System.TypedReference Pointer plus exact type

unsigned int8 Yes System.Byte Unsigned 8-bit integer

Partition%20IV%20Library.doc
Partition%20III%20CIL.doc
Partition%20IV%20Library.doc
Partition%20III%20CIL.doc
Partition%20II%20Metadata.doc#title
Partition%20IV%20Library.doc#title

 Partition I 27

unsigned int16 No System.UInt16 Unsigned 16-bit integer

unsigned int32 No System.UInt32 Unsigned 32-bit integer

unsigned int64 No System.UInt64 Unsigned 64-bit integer

1 bool and char are integer types in the categorization shown in the figure above.

8.2.3 Classes, interfaces, and objects

A type fully describes a value if it unambiguously defines the value‘s representation and the operations defined

on that value.

For a value type, defining the representation entails describing the sequence of bits that make up the value‘s

representation. For a reference type, defining the representation entails describing the location and the sequence

of bits that make up the value‘s representation.

A method describes an operation that can be performed on values of an exact type. Defining the set of

operations allowed on values of an exact type entails specifying named methods for each operation.

Some types are only a partial description; for example, interface types. These types describe a subset of the

operations and none of the representation, and hence, cannot be an exact type of any value. Hence, while a

value has only one exact type, it can also be a value of many other types as well. Furthermore, since the exact

type fully describes the value, it also fully specifies all of the other types that a value of the exact type can have.

While it is true that every value has an exact type, it is not always possible to determine the exact type by

inspecting the representation of the value. In particular, it is never possible to determine the exact type of a

value of a value type. Consider two of the built-in value types, 32-bit signed and unsigned integers. While each

type is a full specification of their respective values (i.e., an exact type) there is no way to derive that exact type

from a value‘s particular 32-bit sequence.

For some values, called objects, it is always possible to determine the exact type from the value. Exact types of

objects are also called object types. Objects are values of reference types, but not all reference types describe

objects. Consider a value that is a pointer to a 32-bit integer, a kind of reference type. There is no way to

discover the type of the value by examining the pointer bits; hence it is not an object. Now consider the built-in

CTS reference type System.String (see Partition IV). The exact type of a value of this type is always

determinable by examining the value, hence values of type System.String are objects, and System.String is

an object type.

8.2.4 Boxing and unboxing of val ues

For every value type, the CTS defines a corresponding reference type called the boxed type. The reverse is not

true: In general, reference types do not have a corresponding value type. The representation of a value of a

boxed type (a boxed value) is a location where a value of the value type can be stored. A boxed type is an

object type and a boxed value is an object.

A boxed type cannot be directly referred to by name, therefore no field or local variable can be given a boxed

type. The closest named base class to a boxed enumerated value type is System.Enum; for all other value types

it is System.ValueType. Fields typed System.ValueType can only contain the null value or an instance of a

boxed value type. Locals typed System.Enum can only contain the null value or an instance of a boxed

enumeration type.

All value types have an operation called box. Boxing a value of any value type produces its boxed value; i.e., a
value of the corresponding boxed type containing a bitwise copy of the original value. If the value type is a

nullable type—defined as an instantiation of the value type System.Nullable<T>—the result is a null reference

or bitwise copy of its Value property of type T, depending on its HasValue property (false and true,

respectively). All boxed types have an operation called unbox, which results in a managed pointer to the bit
representation of the value.

The box instruction can be applied to more than just value types; such types are called boxable types. A type is
boxable if it is one of the following:

Partition%20IV%20Library.doc#KernelPackage

28 Partition I

 A value type (including instantiations of generic value types) excluding typed references (§8.2.1.1).

Boxing a byref-like type is not verifiable (§8.2.1.1).

[Rationale: Typed references are excluded so that objects in the GC heap cannot contain references to the

interior of other GC objects (§8.2.1.1). Byref-like types contain embedded pointers to entries in the VES

stack. If byref-like types are boxed these embedded pointers could outlive the entries to which they point,

so this operation is unverifiable. end rationale]

 A reference type (including classes, arrays, delegates, and instantiations of generic classes) excluding

managed pointers/byrefs (§8.2.1.1)

 A generic parameter (to a generic type definition, or a generic method definition) [Note: Boxing and

unboxing of generic arguments adds performance overhead to a CLI implementation. The constrained.
prefix can improve performance during virtual dispatch to a method defined by a value type, by avoiding

boxing the value type. end note]

The type System.Void is never boxable.

Interfaces and inheritance are defined only on reference types. Thus, while a value type definition (see §8.9.7)

can specify both interfaces that shall be implemented by the value type and the class (System.ValueType or

System.Enum) from which it inherits, these apply only to boxed values.

CLS Rule 3: Boxed value types are not CLS-compliant.

[Note:

In lieu of boxed types, use System.Object, System.ValueType, or System.Enum, as appropriate.

CLS (consumer): Need not import boxed value types.

CLS (extender): Need not provide syntax for defining or using boxed value types.

CLS (framework): Shall not use boxed value types in its publicly exported aspects. end note]

8.2.5 Identity and equal i ty of val ues

There are two binary operators defined on all pairs of values: identity and equality. They return a Boolean

result, and are mathematical equivalence operators; that is, they are:

 Reflexive – a op a is true.

 Symmetric – a op b is true if and only if b op a is true.

 Transitive – if a op b is true and b op c is true, then a op c is true.

In addition, while identity always implies equality, the reverse is not true. To understand the difference between

these operations, consider three variables, A, B, and C, whose type is System.String, where the arrow is
intended to mean ―is a reference to‖:

The values of the variables are identical if the locations of the sequences of characters are the same (i.e., there

is, in fact, only one string in memory). The values stored in the variables are equal if the sequences of

characters are the same. Thus, the values of variables A and B are identical, the values of variables A and C as

well as B and C are not identical, and the values of all three of A, B, and C are equal.

 Partition I 29

8.2.5.1 Identity

 The identity operator is defined by the CTS as follows.

 If the values have different exact types, then they are not identical.

 Otherwise, if their exact type is a value type, then they are identical if and only if the bit

sequences of the values are the same, bit by bit.

 Otherwise, if their exact type is a reference type, then they are identical if and only if the
locations of the values are the same.

Identity is implemented on System.Object via the ReferenceEquals method.

8.2.5.2 Equali ty

For value types, the equality operator is part of the definition of the exact type. Definitions of equality should

obey the following rules:

 Equality should be an equivalence operator, as defined above.

 Identity should imply equality, as stated earlier.

 If either (or both) operand is a boxed value, equality should be computed by

o first unboxing any boxed operand(s), and then

o applying the usual rules for equality on the resulting values.

Equality is implemented on System.Object via the Equals method.

[Note: Although two floating point NaNs are defined by IEC 60559:1989 to always compare as unequal, the

contract for System.Object.Equals requires that overrides must satisfy the requirements for an equivalence

operator. Therefore, System.Double.Equals and System.Single.Equals return True when comparing two

NaNs, while the equality operator returns False in that case, as required by the IEC standard. end note]

8.3 Locations

Values are stored in locations. A location can hold only one value at a time. All locations are typed. The type

of the location embodies the requirements that shall be met by values that are stored in the location. Examples

of locations are local variables and parameters.

More importantly, the type of the location specifies the restrictions on usage of any value that is loaded from
that location. For example, a location can hold values of potentially many exact types as long as all of the

values are assignment-compatible with the type of the location (see below). All values loaded from a location

are treated as if they are of the type of the location. Only operations valid for the type of the location can be

invoked even if the exact type of the value stored in the location is capable of additional operations.

8.3.1 Assignment-c ompatible locations

A value can be stored in a location only if one of the types of the value is assignment compatible with the type

of the location. A type is always assignment-compatible with itself. Assignment compatibility can often be

determined at compile time, in which case, there is no need for testing at run time. Assignment compatibility is

described in detail in §8.7.

8.3.2 Coercion

Sometimes it is desirable to take a value of a type that is not assignment-compatible with a location, and
convert the value to a type that is assignment-compatible. This is accomplished through coercion of the value.

Coercion takes a value of a particular type and a desired type and attempts to create a value of the desired type

that has equivalent meaning to the original value. Coercion can result in representation change as well as type

change; hence coercion does not necessarily preserve object identity.

There are two kinds of coercion: widening, which never loses information, and narrowing, in which

information might be lost. An example of a widening coercion would be coercing a value that is a 32-bit signed

30 Partition I

integer to a value that is a 64-bit signed integer. An example of a narrowing coercion is the reverse: coercing a

64-bit signed integer to a 32-bit signed integer. Programming languages often implement widening coercions as

implicit conversions, whereas narrowing coercions usually require an explicit conversion.

Some coercion is built directly into the VES operations on the built-in types (see §12.1). All other coercion

shall be explicitly requested. For the built-in types, the CTS provides operations to perform widening coercions

with no runtime checks and narrowing coercions with runtime checks or truncation, according to the operation
semantics.

8.3.3 Casting

Since a value can be of more than one type, a use of the value needs to clearly identify which of its types is

being used. Since values are read from locations that are typed, the type of the value which is used is the type

of the location from which the value was read. If a different type is to be used, the value is cast to one of its

other types. Casting is usually a compile time operation, but if the compiler cannot statically know that the

value is of the target type, a runtime cast check is done. Unlike coercion, a cast never changes the actual type of

an object nor does it change the representation. Casting preserves the identity of objects.

For example, a runtime check might be needed when casting a value read from a location that is typed as

holding a value of a particular interface. Since an interface is an incomplete description of the value, casting

that value to be of a different interface type will usually result in a runtime cast check.

8.4 Type members

As stated above, the type defines the allowable values and the allowable operations supported by the values of

the type. If the allowable values of the type have a substructure, that substructure is described via fields or array

elements of the type. If there are operations that are part of the type, those operations are described via methods

on the type. Fields, array elements, and methods are called members of the type. Properties and events are also

members of the type.

8.4.1 Fields, array e lements, and values

The representation of a value (except for those of built-in types) can be subdivided into sub-values. These sub-

values are either named, in which case, they are called fields, or they are accessed by an indexing expression, in

which case, they are called array elements. Types that describe values composed of array elements are array

types. Types that describe values composed of fields are compound types. A value cannot contain both fields

and array elements, although a field of a compound type can be an array type and an array element can be a
compound type.

Array elements and fields are typed, and these types never change. All of the elements in an array shall have

the same type. Each field of a compound type can have a different type.

8.4.2 Methods

A type can associate operations with that type or with each instance of that type. Such operations are called

methods. A method is named, and has a signature (see §8.6.1) that specifies the allowable types for all of its

arguments and for its return value, if any.

A method that is associated only with the type itself (as opposed to a particular instance of the type) is called a

static method (see §8.4.3).

A method that is associated with an instance of the type is either an instance method or a virtual method

(see §8.4.4). When they are invoked, instance and virtual methods are passed the instance on which this

invocation is to operate (known as this or a this pointer).

The fundamental difference between an instance method and a virtual method is in how the implementation is

located. An instance method is invoked by specifying a class and the instance method within that class. Except

in the case of instance methods of generic types, the object passed as this can be null (a special value indicating

that no instance is being specified) or an instance of any type that inherits (see §8.9.8) from the class that

defines the method. A virtual method can also be called in this manner. This occurs, for example, when an

implementation of a virtual method wishes to call the implementation supplied by its base class. The CTS

allows this to be null inside the body of a virtual method.

 Partition I 31

[Rationale: Allowing a virtual method to be called with a non-virtual call eliminates the need for a ―call super‖

instruction and allows version changes between virtual and non-virtual methods. It requires CIL generators to

insert explicit tests for a null pointer if they don‘t want the null this pointer to propagate to called methods. end

rationale]

A virtual or instance method can also be called by a different mechanism, a virtual call. Any type that inherits

from a type that defines a virtual method can provide its own implementation of that method (this is known as
overriding, see §8.10.4). It is the exact type of the object (determined at runtime) that is used to decide which

of the implementations to invoke.

8.4.3 Static f ie lds and static methods

Types can declare locations that are associated with the type rather than any particular value of the type. Such

locations are static fields of the type. As such, static fields declare a location that is shared by all values of the

type. Just like non-static (instance) fields, a static field is typed and that type never changes. Static fields are

always restricted to a single application domain basis (see §12.5), but they can also be allocated on a per-thread

basis.

Similarly, types can also declare methods that are associated with the type rather than with values of the type.

Such methods are static methods of the type. Since an invocation of a static method does not have an

associated value on which the static method operates, there is no this pointer available within a static method.

8.4.4 Virtual methods

An object type can declare any of its methods as virtual. Unlike other methods, each exact type that

implements the type can provide its own implementation of a virtual method. A virtual method can be invoked

through the ordinary method call mechanism that uses the static type, method name, and types of parameters to

choose an implementation, in which case, the this pointer can be null. In addition, however, a virtual method

can be invoked by a special mechanism (a virtual call) that chooses the implementation based on the

dynamically detected type of the instance used to make the virtual call rather than the type statically known at

compile time. Virtual methods can be marked final (see §8.10.2).

8.5 Naming

Names are given to entities of the type system so that they can be referred to by other parts of the type system

or by the implementations of the types. Types, fields, methods, properties, and events have names. With respect

to the type system, values, locals, and parameters do not have names. An entity of the type system is given a
single name (e.g., there is only one name for a type).

8.5.1 Valid names

All name comparisons are done on a byte-by-byte (i.e., case sensitive, locale-independent, also known as code-

point comparison) basis. Where names are used to access built-in VES-supplied functionality (e.g., the class

initialization method) there is always an accompanying indication on the definition so as not to build in any set

of reserved names.

CLS Rule 4: Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 governing
the set of characters permitted to start and be included in identifiers, available on-line at

http://www.unicode.org/unicode/reports/tr15/tr15-18.html. Identifiers shall be in the canonical format defined

by Unicode Normalization Form C. For CLS purposes, two identifiers are the same if their lowercase mappings

(as specified by the Unicode locale-insensitive, one-to-one lowercase mappings) are the same. That is, for two

identifiers to be considered different under the CLS they shall differ in more than simply their case. However,

in order to override an inherited definition the CLI requires the precise encoding of the original declaration be

used.

[Note:

CLS (consumer): Need not consume types that violate CLS Rule 4, but shall have a mechanism to allow

access to named items that use one of its own keywords as the name.

CLS (extender): Need not create types that violate CLS Rule 4. Shall provide a mechanism for defining new

names that obey these rules, but are the same as a keyword in the language.

http://www.unicode.org/unicode/reports/tr15/tr15-18.html

32 Partition I

CLS (framework): Shall not export types that violate CLS Rule 4. Should avoid the use of names that are

commonly used as keywords in programming languages (see Partition VI Annex D) end note]

8.5.2 Asse mblies and scoping

Generally, names are not unique. Names are collected into groupings called scopes. Within a scope, a name can

refer to multiple entities as long as they are of different kinds (methods, fields, nested types, properties, and

events) or have different signatures.

CLS Rule 5: All names introduced in a CLS-compliant scope shall be distinct independent of kind, except
where the names are identical and resolved via overloading. That is, while the CTS allows a single type to use

the same name for a method and a field, the CLS does not.

CLS Rule 6: Fields and nested types shall be distinct by identifier comparison alone, even though the CTS

allows distinct signatures to be distinguished. Methods, properties, and events that have the same name (by

identifier comparison) shall differ by more than just the return type, except as specified in CLS Rule 39.

[Note:

CLS (consumer): Need not consume types that violate these rules after ignoring any members that are marked

as not CLS-compliant.

CLS (extender): Need not provide syntax for defining types that violate these rules.

CLS (framework): Shall not mark types as CLS-compliant if they violate these rules unless they mark

sufficient offending items within the type as not CLS-compliant so that the remaining members do not conflict

with one another. end note]

A named entity has its name in exactly one scope. Hence, to identify a named entity, both a scope and a name

need to be supplied. The scope is said to qualify the name. Types provide a scope for the names in the type;

hence types qualify the names in the type. For example, consider a compound type Point that has a field

named x. The name ―field x‖ by itself does not uniquely identify the named field, but the qualified name

―field x in type Point‖ does.

Since types are named, the names of types are also grouped into scopes. To fully identify a type, the type name

shall be qualified by the scope that includes the type name. A type name is scoped by the assembly that

contains the implementation of the type. An assembly is a configured set of loadable code modules and other

resources that together implement a unit of functionality. The type name is said to be in the assembly scope of

the assembly that implements the type. Assemblies themselves have names that form the basis of the

CTS naming hierarchy.

The type definition:

 Defines a name for the type being defined (i.e., the type name) and specifies a scope in which

that name will be found.

 Defines a member scope in which the names of the different kinds of members (fields, methods,

events, and properties) are bound. The tuple of (member name, member kind, and member
signature) is unique within a member scope of a type.

 Implicitly assigns the type to the assembly scope of the assembly that contains the type definition.

The CTS supports an enum (also known as an enumeration type), an alternate name for an existing type. For

the purposes of matching signatures, an enum shall not be the same as the underlying type. Instances of an

enum, however, shall be assignment-compatible with the underlying type, and vice versa. That is, no cast

(see §8.3.3) or coercion (see §8.3.2) is required to convert from the enum to the underlying type, nor are they

required from the underlying type to the enum. An enum is considerably more restricted than a true type, as

follows:

 It shall have exactly one instance field, and the type of that field defines the underlying type of

the enumeration.

 It shall not have any methods of its own.

Partition%20VI%20Annexes.doc

 Partition I 33

 It shall derive from System.Enum (see Partition IV).

 It shall not implement any interfaces of its own.

 It shall not have any properties or events of its own.

 It shall not have any static fields unless they are literal. (see §8.6.1.2)

The underlying type shall be a built-in integer type. Enums shall derive from System.Enum, hence they are

value types. Like all value types, they shall be sealed (see §8.9.9).

CLS Rule 7: The underlying type of an enum shall be a built-in CLS integer type, the name of the field shall be

"value__", and that field shall be marked RTSpecialName.

CLS Rule 8: There are two distinct kinds of enums, indicated by the presence or absence of the

System.FlagsAttribute (see Partition IV) custom attribute. One represents named integer values; the other

represents named bit flags that can be combined to generate an unnamed value. The value of an enum is not

limited to the specified values.

CLS Rule 9: Literal static fields (see §8.6.1) of an enum shall have the type of the enum itself.

[Note:

CLS (consumer): Shall accept the definition of enums that follow these rules, but need not distinguish flags

from named values.

CLS (extender): Same as consumer. Extender languages are encouraged to allow the authoring of enums, but

need not do so.

CLS (framework): Shall not expose enums that violate these rules, and shall not assume that enums have only

the specified values (even for enums that are named values). end note]

8.5.3 Visibi l i ty, accessibi l i ty, and security

To refer to a named entity in a scope, both the scope and the name in the scope shall be visible (see §8.5.3.1).

Visibility is determined by the relationship between the entity that contains the reference (the referent) and the
entity that contains the name being referenced. Consider the following pseudo-code:

class A

{ int32 IntInsideA;

}

class B inherits from A

{ method X(int32, int32)

 { IntInsideA := 15;

 }

}

If we consider the reference to the field IntInsideA in class A:

 We call class B the referent because it has a method that refers to that field,

 We call IntInsideA in class A the referenced entity.

There are two fundamental questions that need to be answered in order to decide whether the referent is

allowed to access the referenced entity. The first is whether the name of the referenced entity is visible to the

referent. If it is visible, then there is a separate question of whether the referent is accessible (see §8.5.3.2) .

Access to a member of a type is permitted only if all three of the following conditions are met:

1. The type is visible and, in the case of a nested type, accessible.

2. The member is accessible.

3. All relevant security demands (see §8.5.3.3) have been granted.

An instantiated generic type is visible from some assembly if and only if the generic type itself and each of its

component parts (generic type definition and generic arguments) are visible. For example, if List is exported

Partition%20IV%20Library.doc#KernelPackage
Partition%20IV%20Library.doc

34 Partition I

from assembly A (i.e., declared ―public‖) and MyClass is defined in assembly B but not exported, then

List<MyClass> is visible only from within assembly B.

Accessibility of members of instantiated generic types is independent of instantiation.

Access to a member C<T1, … Tn>.m is therefore permitted if the following conditions are met:

 C<T1, … Tn> is visible.

 Member m within generic type C (i.e., C.m) is accessible.

 Security permissions have been granted.

8.5.3.1 Visibi l i ty of types

Only type names, not member names, have controlled visibility. Type names fall into one of the following three

categories

 Exported from the assembly in which they are defined. While a type can be marked to allow it to

be exported from the assembly, it is the configuration of the assembly that decides whether the

type name is made available.

 Not exported outside the assembly in which they are defined.

 Nested within another type. In this case, the type itself has the visibility of the type inside of

which it is nested (its enclosing type). See §8.5.3.4.

A top-level named type is exported if and only if it has public visibility. A type generated by a type definer is
exported if and only if it is made from exported types.

A type generated by a type definer is visible if all types from which it was generated are visible.

8.5.3.2 Accessibi l i ty of members and nested types

A type scopes all of its members, and it also specifies the accessibility rules for its members. Except where

noted, accessibility is decided based only on the statically visible type of the member being referenced and the

type and assembly that is making the reference. The CTS supports seven different rules for accessibility:

 compiler-controlled – accessible only through the use of a definition, not a reference, hence only

accessible from within a single compilation unit and under the control of the compiler.

 private: – accessible only to referents in the implementation of the exact type that defines the

member.

 family – accessible to referents that support the same type (i.e., an exact type and all of the types
that inherit from it). For verifiable code (see §8.8), there is an additional requirement that can

require a runtime check: the reference shall be made through an item whose exact type supports

the exact type of the referent. That is, the item whose member is being accessed shall inherit

from the type performing the access.

 assembly – accessible only to referents in the same assembly that contains the implementation of

the type.

 family-and-assembly – accessible only to referents that qualify for both family and assembly

access.

 family-or-assembly – accessible only to referents that qualify for either family or assembly

access.

 public – accessible to all referents.

A member or nested type is exported if and only if it has public, family-or-assembly, or family accessibility,

and its defining type (in the case of members) or its enclosing type (in the case of nested types) is exported.

The accessibility of a type definer is the same as that for the type from which it was generated.

 Partition I 35

In general, a member of a type can have any one of the accessibility rules assigned to it. There are three

exceptions, however:

1. Members (other than nested types) defined by an interface shall be public.

2. When a type defines a virtual method that overrides an inherited definition, the accessibility shall

either be identical in the two definitions or the overriding definition shall permit more access than

the original definition. For example, it is possible to override an assembly virtual method with a
new implementation that is public virtual, but not with one that is family virtual. In the case of

overriding a definition derived from another assembly, it is not considered restricting access if the

base definition has family-or-assembly access and the override has only family access.

3. A member defined by a nested type, or a nested type enclosed by a nested type, shall not have

greater accessibility than the nested type that defines it (in the case of a member) or the nested

type that encloses it (in the case of a nested type).

[Rationale: Languages including C++ allow this ―widening‖ of access. Restricting access would provide an

incorrect illusion of security since simply casting an object to the base class (which occurs implicitly on method

call) would allow the method to be called despite the restricted accessibility. To prevent overriding a virtual

method use final (see §8.10.2) rather than relying on limited accessibility. end rationale]

CLS Rule 10: Accessibility shall not be changed when overriding inherited methods, except when overriding a
method inherited from a different assembly with accessibility family-or-assembly. In this case, the override

shall have accessibility family.

[Note:

CLS (consumer): Need not accept types that widen access to inherited virtual methods.

CLS (extender): Need not provide syntax to widen access to inherited virtual methods.

CLS (frameworks): Shall not rely on the ability to widen access to a virtual method, either in the exported

portion of the framework or by users of the framework. end note]

8.5.3.3 Security permissi ons

Access to members is also controlled by security demands that can be attached to an assembly, type, method,

property, or event. Security demands are not part of a type contract (see §8.6), and hence are not inherited.

There are two kinds of demands:

 An inheritance demand. When attached to a type, it requires that any type that wishes to inherit

from this type shall have the specified security permission. When attached to a non-final virtual

method, it requires that any type that wishes to override this method shall have the specified

permission. It shall not be attached to any other member.

 A reference demand. Any attempt to resolve a reference to the marked item shall have specified

security permission.

Only one demand of each kind can be attached to any item. Attaching a security demand to an assembly
implies that it is attached to all types in the assembly unless another demand of the same kind is attached to the

type. Similarly, a demand attached to a type implies the same demand for all members of the type unless

another demand of the same kind is attached to the member. For additional information, see Declarative

Security in Partition II, and the classes in the System.Security namespace in Partition IV.

8.5.3.4 Nested types

A type can be a member of an enclosing type, in which case, it is a nested type. A nested type has the same

visibility as the enclosing type and has an accessibility as would any other member of the enclosing type. This

accessibility determines which other types can make references to the nested type. That is, for a class to define

a field or array element of a nested type, have a method that takes a nested type as a parameter or returns one as

value, etc., the nested type shall be both visible and accessible to the referencing type. A nested type is part of

the enclosing type so its methods have access to all members of its enclosing type, as well as family access to
members of the type from which it inherits (see §8.9.8). The names of nested types are scoped by their

Partition%20II%20Metadata.doc#BuiltInTypes
Partition%20IV%20Library.doc

36 Partition I

enclosing type, not their assembly (only top-level types are scoped by their assembly). There is no requirement

that the names of nested types be unique within an assembly.

8.6 Contracts

Contracts are named. They are the shared assumptions on a set of signatures (see §8.6.1) between all
implementers and all users of the contract. The signatures are the part of the contract that can be checked and

enforced.

Contracts are not types; rather they specify requirements on the implementation of types. Types state which

contracts they abide by (i.e., which contracts all implementations of the type shall support). An implementation

of a type can be verified to check that the enforceable parts of a contract—the named signatures—have been

implemented. The kinds of contracts are:

 Class contract– A class contract is specified with a class definition. Hence, a class definition

defines both the class contract and the class type. The name of the class contract and the name of

the class type are the same. A class contract specifies the representation of the values of the class

type. Additionally, a class contract specifies the other contracts that the class type supports (e.g.,

which interfaces, methods, properties, and events shall be implemented). A class contract, and
hence the class type, can be supported by other class types as well. A class type that supports the

class contract of another class type is said to inherit from that class type.

 Interface contract – An interface contract is specified with an interface definition . Hence, an

interface definition defines both the interface contract and the interface type. The name of the

interface contract and the name of the interface type are the same. Many types can support the

same interface contract. Like class contracts, interface contracts specify which other contracts the

interface supports (e.g., which interfaces, methods, properties, and events shall be implemented).

[Note: An interface type can never fully describe the representation of a value. Therefore an interface

type can never support a class contract, and hence can never be a class type or an exact type. end note]

 Method contract – A method contract is specified with a method definition. A method contract

is a named operation that specifies the contract between the implementation(s) of the method and
the callers of the method. A method contract is always part of a type con tract (class, value type,

or interface), and describes how a particular named operation is implemented. The method

contract specifies the contracts that each parameter to the method shall support and the contracts

that the return value shall support, if there is a return value.

 Property contract – A property contract is specified with a property definition. There is an

extensible set of operations for handling a named value, which includes a standard pair for

reading the value and changing the value. A property contract specifies method contracts for the

subset of these operations that shall be implemented by any type that supports the propert y

contract. A type can support many property contracts, but any given property contract can be

supported by exactly one type. Hence, property definitions are a part of the type definition of the

type that supports the property.

 Event contract – An event contract is specified with an event definition. There is an extensible
set of operations for managing a named event, which includes three standard methods (register

interest in an event, revoke interest in an event, fire the event). An event contract specifies

method contracts for all of the operations that shall be implemented by any type that supports the

event contract. A type can support many event contracts, but any given event contract can be

supported by exactly one type. Hence, event definitions are a part of the type definition of the

type that supports the event.

8.6.1 Signatures

Signatures are the part of a contract that can be checked and automatically enforced. Signatures are formed by

adding constraints to types and other signatures. A constraint is a limitation on the use of or allowed operations

on a value or location. Example constraints would be whether a location can be overwritten with a different

value or whether a value can ever be changed.

 Partition I 37

All locations have signatures, as do all values. Assignment compatibility requires that the signature of the

value, including constraints, be compatible with the signature of the location, including constraints. There are

four fundamental kinds of signatures: type signatures (see §8.6.1.1), location signatures (see §8.6.1.2),

parameter signatures (see §8.6.1.4), and method signatures (see §8.6.1.5). (A fifth kind, a local signature (see

§8.6.1.3) is really a version of a location signature.)

CLS Rule 11: All types appearing in a signature shall be CLS-compliant. All types composing an instantiated
generic type shall be CLS-compliant.

CLS Rule 12: The visibility and accessibility of types and members shall be such that types in the signature of

any member shall be visible and accessible whenever the member itself is visible and accessible. For example,
a public method that is visible outside its assembly shall not have an argument whose type is visible only

within the assembly. The visibility and accessibility of types composing an instantiated generic type used in the

signature of any member shall be visible and accessible whenever the member itself is visible and accessible.

For example, an instantiated generic type present in the signature of a member that is visible outside its

assembly shall not have a generic argument whose type is visible only within the assembly.

[Note:

CLS (consumer): Need not accept types whose members violate these rules.

CLS (extender): Need not provide syntax to violate these rules.

CLS (framework): Shall not violate this rule in its exported types and their members. end note]

The following subclauses describe the various kinds of signatures. These descriptions are cumulative: the

simplest signature is a type signature; a location signature is a type signature plus (optionally) some additional

attributes; and so forth.

8.6.1.1 Type signatures

Type signatures define the constraints on a value and its usage. A type, by itself, is a valid type signature. The
type signature of a value cannot be determined by examining the value or even by knowing the class type of the

value. The type signature of a value is derived from the location signature (see below) of the location from

which the value is loaded or from the operation that computes it. Normally the type signature of a value is the

type in the location signature from which the value is loaded.

[Rationale: The distinction between a Type Signature and a Location Signature (below) is made because

certain constraints, such as ―constant,‖ are constraints on values not locations. Future versions of this standard,

or non-standard extensions, can introduce type constraints, thus making the distinction meaningful. end

rationale]

8.6.1.2 Location signatures

All locations are typed. This means that all locations have a location signature, which defines constraints on

the location, its usage, and on the usage of the values stored in the location. Any valid type signature is a valid

location signature. Hence, a location signature contains a type and can additionally contain the constant
constraint. The location signature can also contain location constraints that give further restrictions on the uses

of the location. The location constraints are:

 The init-only constraint promises (hence, requires) that once the location has been initialized,

its contents never change. Namely, the contents are initialized before any access, and after

initialization, no value can be stored in the location. The contents are always identical to the

initialized value (see §8.2.3). This constraint, while logically applicable to any location, shall

only be placed on fields (static or instance) of compound types.

 The literal constraint promises that the value of the location is actually a fixed value of a built-

in type. The value is specified as part of the constraint. Compilers are required to replace all

references to the location with its value, and the VES therefore need not allocate space for the

location. This constraint, while logically applicable to any location, shall only be placed on static
fields of compound types. Fields that are so marked are not permitted to be referenced from CIL

38 Partition I

(they shall be in-lined to their constant value at compile time), but are available using reflection

and tools that directly deal with the metadata.

CLS Rule 13: The value of a literal static is specified through the use of field initialization metadata (see
Partition II). A CLS-compliant literal must have a value specified in field initialization metadata that is of

exactly the same type as the literal (or of the underlying type, if that literal is an enum).

[Note:

CLS (consumer): Must be able to read field initialization metadata for static literal fields and inline the value

specified when referenced. Consumers can assume that the type of the field initialization metadata is exactly

the same as the type of the literal field (i.e., a consumer tool need not implement conversions of the values).

CLS (extender): Must avoid producing field initialization metadata for static literal fields in which the type of

the field initialization metadata does not exactly match the type of the field.

CLS (framework): Should avoid the use of syntax specifying a value of a literal that requires conversion of the

value. Note that compilers can do the conversion themselves before persisting the field initialization metadata

resulting in a CLS-compliant framework, but frameworks are encouraged not to rely on such implicit

conversions. end note]

[Note: It might seem reasonable to provide a volatile constraint on a location that would require that the value

stored in the location not be cached between accesses. Instead, CIL includes a volatile. prefix to certain

instructions to specify that the value neither be cached nor computed using an existing cache. Such a constraint

can be encoded using a custom attribute (see §9.7), although this standard does not specify such an attribute.

end note]

8.6.1.3 Local signatures

A local signature specifies the contract on a local variable allocated during the running of a method. A local

signature contains a full location signature, plus it can specify one additional constraint:

The byref constraint states that the content of the corresponding location is a managed pointer. A managed

pointer can point to a local variable, parameter, field of a compound type, or element of an array. However,

when a call crosses a remoting boundary (see §12.5) a conforming implementation can use a copy-in/copy-out

mechanism instead of a managed pointer. Thus programs shall not rely on the aliasing behavior of true pointers.

In addition, there is one special local signature. The typed reference local variable signature states that the

local will contain both a managed pointer to a location and a runtime representation of the type that can be

stored at that location. A typed reference signature is similar to a byref constraint, but while the byref specifies

the type as part of the byref constraint (and hence statically as part of the type description), a typed reference

provides the type information dynamically. A typed reference is a full signature in itself and cannot be

combined with other constraints. In particular, it is not possible to specify a byref whose type is typed

reference.

The typed reference signature is actually represented as a built-in value type, like the integer and floating-point
types. In the Base Class Library (see Partition IV) the type is known as System.TypedReference and in the

assembly language used in Partition II it is designated by the keyword typedref. This type shall only be used

for parameters and local variables. It shall not be boxed, nor shall it be used as the type of a field, element of an

array, or return value.

CLS Rule 14: Typed references are not CLS-compliant.

[Note:

CLS (consumer): There is no need to accept this type.

CLS (extender): There is no need to provide syntax to define this type or to extend interfaces or classes that

use this type.

CLS (framework): This type shall not appear in exported members. end note]

Partition%20II%20Metadata.doc
Partition%20IV%20Library.doc
Partition%20II%20Metadata.doc#BuiltInTypes

 Partition I 39

8.6.1.4 Parameter signatures

A parameter signature, defines constraints on how an individual value is passed as part of a method

invocation. Parameter signatures are declared by method definitions. Any valid local signature is a valid

parameter signature.

8.6.1.5 Method signatures

A method signature is composed of

 a calling convention,

 the number of generic parameters, if the method is generic,

 if the calling convention specifies this is an instance method and the owning method definition

belongs to a type T then the type of the this pointer is:

 given by the first parameter signature, if the calling convention is instance explicit

(§II.15.3),

 inferred as &T, if T is a value type and the method definition is non-virtual (§8.9.7),

 inferred as ―boxed‖ T, if T is a value type and the method definition is virtual (this includes

method definitions from an interface implemented by T) (§8.9.7),

 inferred as T, otherwise

 a list of zero or more parameter signatures—one for each parameter of the method—and,

 a type signature for the result value, if one is produced.

Method signatures are declared by method definitions. Only one constraint can be added to a method signature

in addition to those of parameter signatures:

 The vararg constraint can be included to indicate that all arguments past this point are optional.

When it appears, the calling convention shall be one that supports variable argument lists.

Method signatures are used in two different ways: as part of a method definition and as a description of a

calling site when calling through a function pointer. In the latter case, the method signature indicates

 the calling convention (which can include platform-specific calling conventions),

 the types of all the argument values that are being passed, and

 if needed, a vararg marker indicating where the fixed parameter list ends and the variable

parameter list begins.

When used as part of a method definition, the vararg constraint is represented by the choice of calling

convention.

[Note: a single method implementation may be used both to satisfy a method definition of a type and to satisfy a

method definition of an interface the type implements. If the type is a value type, T, then the this pointer in the

method signature for the type‘s own method definition is a managed pointer &T, while it is ―boxed‖ T in the

method signature associated with the interface‘s method definition. end note]

 [Note: the presence of a this pointer affects parameter signature/argument number pairing in CIL. If the

parameter signature for the this pointer is inferred then the first parameter signature in the metadata is for

argument number one. If there is no this pointer, as with static methods, or this is an instance explicit

method, then the first parameter signature is for argument number zero. See the descriptions of the call and load

function instructions in Partition III. end note]

CLS Rule 15: The vararg constraint is not part of the CLS, and the only calling convention supported by the

CLS is the standard managed calling convention.

[Note:

40 Partition I

CLS (consumer): There is no need to accept methods with variable argument lists or unmanaged calling
convention.

CLS (extender): There is no need to provide syntax to declare vararg methods or unmanaged calling

conventions.

CLS (framework): Neither vararg methods nor methods with unmanaged calling conventions shall be

exported externally. end note]

8.7 Assignment compatibil ity

Assignment compatibility refers to the ability to store a value of type T (statically described by a type

signature) into a location of type U (described by a location signature), and is sometimes abbreviated U := T.

Because the type signature for T is described statically, the value might not actually be of the type described by
the signature, but rather something compatible with that type. No location or value shall have type

System.Void.

The formal description of assignment compatibility is provided here, and is extended in Partition III,

Verification type compatibility, with the verifier-assignable-to relation.

There are different rules for determining the compatibility of types, depending upon the context in which they

are evaluated. The following relations are defined in this section:

 compatible-with – this is the relation used by castclass (III.3.42) and isinst (III.3.43), and in

determining the validity of variant generic arguments. [Note: operations based on this relation do not

change the representation of a value. When casting, the source type is the dynamic type of the value.

end note]

 assignable-to – this is the relation used for general assignment; including load and store instructions
(III.3), implicit argument coercion (III.1.6), and method return (III.3.57). [Note: operations based on

this relation may change the representation of a value. When assigning, the source type is the static

type of the value. end note]

 array-element-compatible-with – this is the auxiliary relation used to determine the validity of

assignments to array elements

 pointer-element-compatible-with – this is the auxiliary relation used to determine the compatibility of

managed pointers

Informative text

These relations are defined in terms of six type subsets:

 storage types – these are the types that can occur as location (§8.6.1.2), local (§Error! Reference

source not found.) and parameter (§Error! Reference source not found.) signatures. [Note: method

signatures (§8.6.1.5) are not included here as there are no method values which can be assigned,

delegate types (§Error! Reference source not found.) are reference types (§8.2.1) and may occur in

the above signatures. end note]

 underlying types – in the CTS enumerations are alternate names for existing types (§8.5.2), termed

their underlying type. Except for signature matching (§8.5.2) enumerations are treated as their

underlying type. This subset is the set of storage types with the enumerations removed.

 reduced types – a value of value type S can be stored into, or loaded from, an array of value type T;

and an array of value type S can be assigned to an array of value type T; if and only if S and T have

the same reduced type. The reduced types are a subset of the underlying types.

 verification types – the verification algorithm treats certain types as interchangeable, assigning them a

common verification type. The verification types are a subset of the reduced types.

 intermediate types – only a subset of the built-in value types can be represented on the evaluation

stack (§12.1). Values of other built-in value types are translated to/from their intermediate type when

 Partition I 41

loaded onto/stored from the evaluation stack. The intermediate types are a subset of the verification

types plus the floating-point type F (which is not a member of the above four subsets).

 transient types – these are types which can only occur on the evaluation stack: boxed types,

controlled-mutability managed pointer types, and the null type. Assignment compatibility for these

types is defined by the verifier-assignable-to relation defined in §III.1.8.1.2.3.

The precise definitions of underlying type, reduced type, verification type and intermediate type are given
below.

End informative text

Treatment of floating-point types

Floating-point values have two types; the nominal type, and the representation type. There are three floating-

point types: float32, float64 and F. A value of (nominal) type float32 or float64 may be represented by

an implementation using a value of type F. See §Error! Reference source not found. for complete details.

Unless explicitly indicated any reference to floating-point types refers to the nominal type, in particular when

referring to signatures (§ 8.6.1) and assignment compatibility. Consequently when the assignment compatibility

rules indicate that a floating-point representation may change based on the (nominal) types the representation

types may already be the same and no change is actually performed.

Notation

In the following definitions and relations:

 S, T, U, V, W represent arbitrary type expressions;

 N, M represent declared type names; and

 X, Y represent declared (formal) type parameters.

The notation:

T is of the form N<{Xi ← Ti}>

is defined to mean:

T is a possibly-instantiated object, interface, delegate or value type of the form N<T1,...,Tn>, n ≥ 0 (for n = 0

the empty <> are omitted), and N is declared with generic parameters X1,...,Xn

Definitions

The following definitions are used in defining assignment compatibility.

The underlying type of a type T is the following:

1. If T is an enumeration type, then its underlying type is the underlying type declared in the

enumeration‘s definition.

2. Otherwise, the underlying type is itself.

The reduced type of a type T is the following:

1. If the underlying type of T is:

a. int8, or unsigned int8, then its reduced type is int8.

b. int16, or unsigned int16, then its reduced type is int16.

c. int32, or unsigned int32, then its reduced type is int32.

d. int64, or unsigned int64, then its reduced type is int64.

e. native int, or unsigned native int, then its reduced type is native int.

2. Otherwise, the reduced type is itself.

[Note: in other words the reduced type ignores the semantic differences between enumerations and the signed

and unsigned integer types; treating these types the same if they have the same number of bits. end note]

42 Partition I

The verification type (III.1.8.1.2.1) of a type T is the following:

1. If the reduced type of T is:

a. int8 or bool, then its verification type is int8.

b. int16 or character, then its verification type is int16.

c. int32 then its verification type is int32.

d. int64 then its verification type is int64.

e. native int, then its verification type is native int.

2. If T is a managed pointer type S& and the reduced type of S is:

a. int8 or bool, then its verification type is int8&.

b. int16 or character, then its verification type is int16&.

c. int32, then its verification type is int32&.

d. int64, then its verification type is int64&.

e. native int, then its verification type is native int&.

3. Otherwise, the verification type is itself.

[Note: in other words the verification type ignores the semantic differences between enumerations, characters,

booleans, the signed and unsigned integer types, and managed pointers to any of these; treating these types the

same if they have the same number of bits or point to types with the same number of bits. end note]

The intermediate type of a type T is the following:

1. If the verification type of T is int8, int16, or int32, then its intermediate type is int32.

2. If the verification type of T is a floating-point type then its intermediate type is F (III.1.1.1).

3. Otherwise, the intermediate type is the verification type of T.

[Note: the intermediate type is similar to the verification type in stack state according to the table in

III.1.8.1.2.1, differing only for floating-point types. The intermediate type of a type T may have a different

representation and meaning than T. end note]

The direct base class of a type T is the following:

1. If T is an array type (zero-based single-dimensional, or general) then its direct base class is

System.Array.

2. If T is an interface type, then its direct base class is System.Object.

3. If T is of the form N<{Xi ← Ti}>, and N is declared to extend a type U of the form M<{Yj ← Sj}>,
then the direct base class of T is U with any occurrence of X1,...,Xn in S1,...,Sm replaced by the

corresponding T1,...,Tn.

4. For any other form of type T, there is no direct base class.

 [Note: as a result of this definition, only System.Object itself and generic parameters have no direct base

class. end note]

The interfaces directly implemented by a type T are the following:

1. If T is of the form N<{Xi ← Ti}> and is declared to implement (or require implementation of, if N is

an interface) interfaces U1,…,Um of the form Mj<{Yj,k ← Sj.k}>, then the interfaces directly

implemented by T are U1, …,Um with any occurrence of Xi in Sj,k replaced by the corresponding Ti.

2. For any other form of type T, there are no directly implemented interfaces.

A type T is a reference type if and only if one of the following holds.

1. T is a possibly-instantiated object, delegate or interface of the form N<T1,…,Tn> (n ≥ 0)

 Partition I 43

2. T is an array type

[Note: generic parameters are not reference types. Therefore, the compatibility rules for reference types do not

apply. See the definition of verification compatibility in Partition III for the special case of boxed types. end

note]

For the purpose of type compatibility when determining a type from a signature:

i) Any byref (&) constraint (§8.6.1.3) is considered part of the type;

ii) The special signature typed reference (§8.6.1.3) is the type typedref;

iii) Any modopt, modreq, or pinned modifiers are ignored; and

iv) Any calling convention is considered part of the type.

[Note: the literal constraint is not considered as fields so marked cannot be referenced from CIL (§8.6.1.2). end

note]

8.7.1 Assignment compati bi l i ty for signature types

A signature type T is compatible-with a signature type U if and only if at least one of the following holds.

[Formally, the compatible-with relation is the smallest relation that is closed under the following rules.]

1. T is identical to U. [Note: this is reflexivity. end note]

2. There exists some V such that T is compatible-with V and V is compatible-with U. [Note: this is

transitivity. end note]

3. T is a reference type, and U is the direct base class of T.

4. T is a reference type, and U is an interface directly implemented by T.

5. T is a zero-based rank-1 array V[], and U is a zero-based rank-1 array W[], and V is array-element-

compatible-with W.

6. T is an array with rank r and element type V, and U is an array with the same rank r and element type

W, and V is array-element-compatible-with W.

7. T is a zero-based rank-1 array V[], and U is IList<W>, and V is array-element-compatible-with W.

8. T is D<T1,…,Tn> and U is D<U1,…,Un> for some interface or delegate type D with variance

declarations var_1 to var_n, and for each i from 1 to n, one of the following holds:

a. var_i = none (no variance), and Ti is identical to Ui

b. var_i = + (covariance), and Ti is compatible-with Ui

c. var_i = - (contravariance), and Ui is compatible-with Ti

A signature type T is array-element-compatible-with a signature type U if and only if T has underlying type V

and U has underlying type W and either:

1. V is compatible-with W; or

2. V and W have the same reduced type.

[Note: in other words, array-element-compatible-with extends compatible-with but is agnostic with respect to

enumerations and integral signed-ness. end note]

[Note: When W[] is compatible-with V[] and V and W have the same reduced type then no representation

change from V to W shall be performed, rather the bits of the value shall be interpreted according to the type W

rather than the type V (III.1.1.1).]

[Note: Variance rules do not mirror the reduced type equivalence rules of array-element-compatible-with. Thus,
for example by rule 7 above:

IList<int16> := int16[]

44 Partition I

IList<uint16> := int16[]

But by rule 8 above:

IList<int16> :≠ IList<uint16>

end note]

8.7.2 Assignment compati bi l i ty for location types

In this section the compatible-with relation is extended to deal with managed pointer types.

A location type T is compatible-with a location type U if and only if one of the following holds.

1. T and U are not managed pointer types and T is compatible-with U according to the definition in

§8.7.1.

2. T and U are both managed pointer types and T is pointer-element-compatible-with U.

A managed pointer type T is pointer-element-compatible-with a managed pointer type U if and only if T has

verification type V and U has verification type W and V is identical to W.

8.7.3 General assignment compatibi l i ty

In this section the relation assignable-to is defined which extends compatible-with to cover the primitive value
type assignments supported by the semantics of the various load and store instructions (III.3), implicit

argument coercion (III.1.6), and method return (III.3.57).

A location type T is assignable-to a location type U if one of the following holds:

1. T is identical to U. [Note: this is reflexivity. end note]

2. There exists some V such that T is assignable-to V and V is assignable-to U. [Note: this is transitivity.

end note]

3. T has intermediate type V, U has intermediate type W, and V is identical to W.

4. T has intermediate type native int and U has intermediate type int32, or vice-versa.

5. T is compatible-with U.

[Note: an assignment governed by assignable-to which involves an application of rules that use the

intermediate type may change the representation and meaning of the assigned value as it is translated to and

then from the intermediate type. end note]

8.8 Type safety and verificat ion

Since types specify contracts, it is important to know whether a given implementation lives up to these

contracts. An implementation that lives up to the enforceable part of the contract (the named signatures) is said

to be type-safe. An important part of the contract deals with restrictions on the visibility and accessibility of

named items as well as the mapping of names to implementations and locations in memory.

Type-safe implementations only store values described by a type signature in a location that is assignment-

compatible (§8.7) with the location signature of the location (see §8.6.1). Type-safe implementations never

apply an operation to a value that is not defined by the exact type of the value. Type-safe implementations only

access locations that are both visible and accessible to them. In a type-safe implementation, the exact type of a
value cannot change.

Verification is a mechanical process of examining an implementation and asserting that it is type-safe.

Verification is said to succeed if the process proves that an implementation is type-safe. Verification is said to

fail if that process does not prove the type safety of an implementation. Verification is necessarily conservative:

it can report failure for a type-safe implementation, but it never reports success for an implementation that is

not type-safe. For example, most verification processes report implementations that do pointer-based arithmetic

as failing verification, even if the implementation is, in fact, type-safe.

There are many different processes that can be the basis of verification. The simplest possible process simply

says that all implementations are not type-safe. While correct and efficient this is clearly not particularly useful.

 Partition I 45

By spending more resources (time and space) a process can correctly identify more type-safe implementations.

It has been proven, however, that no mechanical process can, in finite time and with no errors, correctly

identify all implementations as either type-safe or not type-safe. The choice of a particular verification process

is thus a matter of engineering, based on the resources available to make the decision and the importance of

detecting the type safety of different programming constructs.

8.9 Type definers

Type definers construct a new type from existing types. Implicit types (e.g., built-in types, arrays, and pointers

including function pointers) are defined when they are used. The mention of an implicit type in a signature is in

and of itself a complete definition of the type. Implicit types allow the VES to manufacture instances with a

standard set of members, interfaces, etc. Implicit types need not have user-supplied names.

All other types shall be explicitly defined using an explicit type definition. The explicit type definers are:

 interface definitions – used to define interface types

 class definitions – used to define class types, which can be either of the following:

o object types (including delegates)

o value types and their associated boxed types

[Note: While class definitions always define class types, not all class types require a class definition. Array

types and pointer types, which are implicitly defined, are also class types. See §8.2.3.

Similarly, not all types defined by a class definition are object types. Array types, explicitly defined object

types, and boxed types are object types. Pointer types, function pointer types, and value types are not object

types. See §8.2.3. end note]

Class, interface, and value type definitions can be parameterized, a feature known as generic type definitions.

That is, the definition of a class, interface, or value type can include generic parameters. When used, a specific

instantiation of the generic class, interface, or value type is made, at which point the generic parameters are

bound to specific generic arguments. The generic parameters can be constrained, so that only generic

arguments that match these constraints can be used for instantiations.

8.9.1 Array types

An array type shall be defined by specifying the element type of the array, the rank (number of dimensions)
of the array, and the upper and lower bounds of each dimension of the array. Hence, no separate definition of

the array type is needed. The bounds (as well as indices into the array) shall be signed integers. While the

actual bounds for each dimension are known only at runtime, the signature can specify the information that is

known at compile time (e.g., no bounds, a lower bound, or both an upper and a lower bound).

Array elements shall be laid out within the array object in row-major order (i.e., the elements associated with

the rightmost array dimension shall be laid out contiguously from lowest to highest index). The actual storage

allocated for each array element can include platform-specific padding. (The size of this storage, in bytes, is

returned by the sizeof instruction when it is applied to the type of that array‘s elements.)

Values of an array type are objects; hence an array type is a kind of object type (see §8.2.3). Array objects are

defined by the CTS to be a repetition of locations where values of the array element type are stored. The

number of repeated values is determined by the rank and bounds of the array.

Only type signatures, not location signatures, are allowed as array element types.

Exact array types are created automatically by the VES when they are required. Hence, the operations on an
array type are defined by the CTS. These generally are: allocating the array based on size and lower-bound

information, indexing the array to read and write a value, computing the address of an element of the array (a

managed pointer), and querying for the rank, bounds, and the total number of values stored in the array.

Additionally, a created vector with element type T, implements the interface

System.Collections.Generic.IList<U> (§8.7), where U := T.

46 Partition I

CLS Rule 16: Arrays shall have elements with a CLS-compliant type, and all dimensions of the array shall
have lower bounds of zero. Only the fact that an item is an array and the element type of the array shall be

required to distinguish between overloads. When overloading is based on two or more array types the element

types shall be named types.

[Note: So-called ―jagged arrays‖ are CLS-compliant, but when overloading multiple array types they are one-

dimensional, zero-based arrays of type System.Array.

CLS (consumer): There is no need to support arrays of non-CLS types, even when dealing with instances of

System.Array. Overload resolution need not be aware of the full complexity of array types. Programmers

should have access to the Get, Set, and Address methods on instances of System.Array if there is no language
syntax for the full range of array types.

CLS (extender): There is no need to provide syntax to define non-CLS types of arrays or to extend interfaces

or classes that use non-CLS array types. Shall provide access to the type System.Array, but can assume that all

instances will have a CLS-compliant type. While the full array signature must be used to override an inherited

method that has an array parameter, the full complexity of array types need not be made visible to

programmers. Programmers should have access to the Get, Set, and Address methods on instances of

System.Array if there is no language syntax for the full range of array types.

CLS (framework): Non-CLS array types shall not appear in exported members. Where possible, use only

one-dimensional, zero-based arrays (vectors) of simple named types, since these are supported in the widest

range of programming languages. Overloading on array types should be avoided, and when used shall obey the

restrictions. end note]

Array types form a hierarchy, with all array types inheriting from the type System.Array. This is an abstract

class (see §8.9.6.2) that represents all arrays regardless of the type of their elements, their rank, or their upper

and lower bounds. The VES creates one array type for each distinguishable array type. In general, array types
are only distinguished by the type of their elements and their rank. However, the VES treats single

dimensional, zero-based arrays (also known as vectors) specially. Vectors are also distinguished by the type of

their elements, but a vector is distinct from a single-dimensional array of the same element type that has a non-

zero lower bound. Zero-dimensional arrays are not supported.

Consider the following examples, using the syntax of CIL as described in Partition II:

Table 2: Array Examples

Static specification of type Actual type constructed Allowed in CLS?

int32[] vector of int32 Yes

int32[0...5] vector of int32 Yes

int32[1...5] array, rank 1, of int32 No

int32[,] array, rank 2, of int32 Yes

int32[0...3, 0...5] array, rank 2, of int32 Yes

int32[0..., 0...] array, rank 2, of int32 Yes

int32[1..., 0...] array, rank 2, of int32 No

8.9.2 Unmanaged pointer types

An unmanaged pointer type (also known simply as a ―pointer type‖) is defined by specifying a location

signature for the location the pointer references. Any signature of a pointer type includes this location

signature. Hence, no separate definition of the pointer type is needed.

While pointer types are reference types, values of a pointer type are not objects (see §8.2.3), and hence it is not

possible, given a value of a pointer type, to determine its exact type. The CTS provides two type-safe
operations on pointer types: one to load the value from the location referenced by the pointer and the other to

store an assignment compatible value into that location. The CTS also provides three operations on pointer

Partition%20II%20Metadata.doc

 Partition I 47

types (byte-based address arithmetic): adding to and subtracting integers from pointers, and subtracting one

pointer from another. The results of the first two operations are pointers to the same type signature as the

original pointer. See Partition III for details.

CLS Rule 17: Unmanaged pointer types are not CLS-compliant.

[Note:

CLS (consumer): There is no need to support unmanaged pointer types.

CLS (extender): There is no need to provide syntax to define or access unmanaged pointer types.

CLS (framework): Unmanaged pointer types shall not be externally exported. end note]

8.9.3 Delegates

Delegates are the object-oriented equivalent of function pointers. Unlike function pointers, delegates are

object-oriented, type-safe, and secure. Delegates are created by defining a class that derives from the base type

System.Delegate (see Partition IV). Each delegate type shall provide a method named Invoke with appropriate
parameters, and each instance of a delegate forwards calls to its Invoke method to one or more compatible

static or instance methods on particular objects. The objects and methods to which it delegates are chosen when

the delegate instance is created.

In addition to an instance constructor and an Invoke method, delegates can optionally have two additional

methods: BeginInvoke and EndInvoke. These are used for asynchronous calls.

While, for the most part, delegates appear to be simply another kind of user-defined class, they are tightly

controlled. The implementations of the methods are provided by the VES, not user code. The only additional

members that can be defined on delegate types are static or instance methods.

8.9.4 Interface type definit ion

An interface definition defines an interface type. An interface type is a named group of methods, locations,

and other contracts that shall be implemented by any object type that supports the interface contract of the same
name. An interface definition is always an incomplete description of a value, and, as such, can never define a

class type or an exact type, nor can it be an object type.

Zero or more object types can support an interface type, and only object types can support an interface type. An

interface type can require that objects that support it shall also support other (specified) interface types. An

object type that supports the named interface contract shall provide a complete implementation of the methods,

locations, and other contracts specified (but not implemented by) the interface type. Hence, a value of an object

type is also a value of all of the interface types the object type supports. Support for an interface contract is

declared, never inferred; i.e., the existence of implementations of the methods, locations, and other contracts

required by the interface type does not imply support of the interface contract.

CLS Rule 18: CLS-compliant interfaces shall not require the definition of non-CLS compliant methods in
order to implement them.

[Note:

CLS (consumer): There is no need to deal with such interfaces.

CLS (extender): Need not provide a mechanism for defining such interfaces.

CLS (framework): Shall not expose any non-CLS compliant methods on interfaces it defines for external use.

end note]

Interface types are necessarily incomplete since they say nothing about the representation of the values of the

interface type. For this reason, an interface type definition shall not provide field definitions for values of the
interface type (i.e., instance fields), although it can declare static fields (see §8.4.3).

Similarly, an interface type definition shall not provide implementations for any methods on the values of its

type. However, an interface type definition can—and usually does—define method contracts (method name and

method signature) that shall be implemented by supporting types. An interface type definition can define and

Partition%20III%20CIL.doc#BaseInstructions
Partition%20IV%20Library.doc#KernelPackage

48 Partition I

implement static methods (see §8.4.3) since static methods are associated with the interface type itself rather

than with any value of the type.

Interfaces can have static or virtual methods, but shall not have instance methods.

CLS Rule 19: CLS-compliant interfaces shall not define static methods, nor shall they define fields.

[Note:

CLS-compliant interfaces can define properties, events, and virtual methods.

CLS (consumer): Need not accept interfaces that violate these rules.

CLS (extender): Need not provide syntax to author interfaces that violate these rules.

CLS (framework): Shall not externally expose interfaces that violate these rules. Where static methods,

instance methods, or fields are required, a separate class can be defined that provides them. end note]

Interface types can also define event and property contracts that shall be implemented by object types that

support the interface. Since event and property contracts reduce to sets of method contracts (§8.6), the above
rules for method definitions apply. For more information, see §8.11.4 and §8.11.3.

Interface type definitions can specify other interface contracts that implementations of the interface type are

required to support. See §8.9.11 for specifics.

An interface type is given a visibility attribute, as described in §8.5.3, that controls from where the interface

type can be referenced. An interface type definition is separate from any object type definition that supports the

interface type. Hence, it is possible, and often desirable, to have a different visibility for the interface type and

the implementing object type. However, since accessibility attributes are relative to the implementing type

rather than the interface itself, all members of an interface shall have public accessibility, and no security

permissions can be attached to members or to the interface itself.

8.9.5 Class type definit ion

All types other than interfaces and those types for which a definition is automatically supplied by the CTS, are
defined by class definitions. A class type is a complete specification of the representation of the values of the

class type and all of the contracts (class, interface, method, property, and event) that are supported by the class

type. Hence, a class type is an exact type. Unless it specifies that the class is an abstract object type, a class

definition not only defines the class type, it also provides implementations for all of the contracts supported by

the class type.

A class definition, and hence the implementation of the class type, always resides in some assembly. (An

assembly is a configured set of loadable code modules and other resources that together implement a unit of

functionality.)

[Note: While class definitions always define class types, not all class types require a class definition. Array

types and pointer types, which are implicitly defined, are also class types. See §8.2.3. end note]

An explicit class definition is used to define:

 An object type (see §8.2.3).

 A value type and its associated boxed type (see §8.2.4).

An explicit class definition:

 Names the class type.

 Implicitly assigns the class type name to a scope, i.e., the assembly that contains the class

definition, (see §8.5.2).

 Defines the class contract of the same name (see §8.6).

 Defines the representations and valid operations of all values of the class type using member

definitions for the fields, methods, properties, and events (see §8.11).

 Defines the static members of the class type (see §8.11).

 Partition I 49

 Specifies any other interface and class contracts also supported by the class type.

 Supplies implementations for member and interface contracts supported by the class type.

 Explicitly declares a visibility for the type, either public or assembly (see §8.5.3).

 Can optionally specify a method (called .cctor) to be called to initialize the type.

The semantics of when and what triggers execution of such type initialization methods, is as follows:

1. A type can have a type-initializer method, or not.

2. A type can be specified as having a relaxed semantic for its type-initializer method (for

convenience below, we call this relaxed semantic BeforeFieldInit).

3. If marked BeforeFieldInit then the type‘s initializer method is executed at, or sometime before,

first access to any static field defined for that type.

4. If not marked BeforeFieldInit then that type‘s initializer method is executed at (i.e., is triggered

by):

 first access to any static field of that type, or

 first invocation of any static method of that type, or

 first invocation of any instance or virtual method of that type if it is a value type or

 first invocation of any constructor for that type.

5. Execution of any type's initializer method will not trigger automatic execution of any initializer

methods defined by its base type, nor of any interfaces that the type implements

For reference types, a constructor has to be called to create a non-null instance. Thus, for reference types, the

.cctor will be called before instance fields can be accessed and methods can be called on non-null instances. For

value types, an ―all-zero‖ instance can be created without a constructor (but only this value can be created

without a constructor). Thus for value types, the .cctor is only guaranteed to be called for instances of the value

type that are not ―all-zero‖. [Note: This changes the semantics slightly in the reference class case from the first

edition of this standard, in that the .cctor might not be called before an instance method is invoked if the 'this'
argument is null. The added performance of avoiding class constructors warrants this change. end note]

[Note: BeforeFieldInit behavior is intended for initialization code with no interesting side-effects, where exact

timing does not matter. Also, under BeforeFieldInit semantics, type initializers are allowed to be executed at

or before first access to any static field of that type, at the discretion of the CLI.

If a language wishes to provide more rigid behavior—e.g., type initialization automatically triggers execution

of base class‘s initializers, in a top-to-bottom order—then it can do so by either:

 defining hidden static fields and code in each class constructor that touches the hidden static field of its

base class and/or interfaces it implements, or

 by making explicit calls to System.Runtime.CompilerServices.RuntimeHelpers.RunClassConstructor

(see Partition IV).

end note]

8.9.6 Object type definit ions

All objects are instances of an object type. The object type of an object is set when the object is created and it

is immutable. The object type describes the physical structure of the instance and the operations that are

allowed on it. All instances of the same object type have the same structure and the same allowable operations.

Object types are explicitly declared by a class type definition, with the exception of array types, which are

intrinsically provided by the VES.

Partition%20IV%20Library.doc

50 Partition I

8.9.6.1 Scope and visibi l i ty

Since object type definitions are class type definitions, object type definitions implicitly specify the scope of

the name of object type to be the assembly that contains the object type definition, see §8.5.2. Similarly, object

type definitions shall also explicitly state the visibility attribute of the object type (either publicor assembly);

see §8.5.3.

8.9.6.2 Concreteness

An object type can be marked as abstract by the object type definition. An object type that is not marked

abstract is, by definition, concrete. Only object types can be declared as abstract. Only an abstract object type

is allowed to define method contracts for which the type or the VES does not also provide the implementation.

Such method contracts are called abstract methods (see §8.11). Methods on an abstract class need not be

abstract.

It is an error to attempt to create an instance of an abstract object type, whether or not the type has abstract

methods. An object type that derives from an abstract object type can be concrete if it provides

implementations for all abstract methods in the base object type and is not itself marked as abstract. Instances

can be made of such a concrete derived class. Locations can have an abstract type, and instances of a concrete

type that derives from the abstract type can be stored in them.

8.9.6.3 Type members

Object type definitions include member definitions for all of the members of the type. Briefly, members of a
type include fields into which values are stored, methods that can be invoked, properties that are available, and

events that can be raised. Each member of a type can have attributes as described in §8.4.

 Fields of an object type specify the representation of values of the object type by specifying the

component pieces from which it is composed (see 8.4.1). Static fields specify fields associated

with the object type itself (see §8.4.3). The fields of an object type are named and they are typed

via location signatures. The names of the members of the type are scoped to the type (see §8.5.2).

Fields are declared using a field definition (see §8.11.2).

 Methods of an object type specify operations on values of the type (see §8.4.2). Static methods

specify operations on the type itself (see §8.4.3). Methods are named and they have a method

signature. The names of methods are scoped to the type (see §8.5.2). Methods are declared using

a method definition (see §8.11.1).

 Properties of an object type specify named values that are accessible via methods that read and

write the value. The name of the property is the grouping of the methods; the methods themselves

are also named and typed via method signatures. The names of properties are scoped to the type

(see §8.5.2). Properties are declared using a property definition (see §8.11.3).

 Events of an object type specify named state transitions in which subscribers can

register/unregister interest via accessor methods. When the state changes, the subscribers are

notified of the state transition. The name of the event is the grouping of the accessor methods;

the methods themselves are also named and typed via method signatures. The names of events

are scoped to the type (see §8.5.2). Events are declared using an event definition (see §8.11.4).

8.9.6.4 Supporting interface contracts

Object type definitions can declare that they support zero or more interface contracts. Declaring support for an
interface contract places a requirement on the implementation of the object type to fully implement that

interface contract. Implementing an interface contract always reduces to implementing the required set of

methods, i.e., the methods required by the interface type.

The different types that the object type implements (i.e., the object type and any implemented interface types),

are each a separate logical grouping of named members. If a class Foo implements an interface IFoo, and IFoo

declares a member method int a(), and Foo also declares a member method int a(), there are two members,

one in the IFoo interface type and one in the Foo class type. An implementation of Foo will provide an

implementation for both, potentially shared.

 Partition I 51

Similarly, if a class implements two interfaces IFoo and IBar, each of which defines a method int a(), the

class will supply two method implementations, one for each interface, although they can share the actual code

of the implementation.

CLS Rule 20: CLS-compliant classes, value types, and interfaces shall not require the implementation of non-
CLS-compliant members.

[Note:

CLS (consumer): Need not accept classes, value types or interfaces that violate this rule.

CLS (extender): Need not provide syntax to author classes, value types, or interfaces that violate this rule.

CLS (framework): Shall not externally expose classes, value types, or interfaces that violate this rule. If a
CLS-compliant framework exposes a class implementing a non-CLS-compliant interface, the framework shall

provide concrete implementations of all non-CLS-compliant members. This ensures that CLS extenders do not

need syntax for implementing non-CLS-compliant members. end note]

8.9.6.5 Supporting c lass contracts

Object type definitions can declare support for one other class contract. Declaring support for another class

contract is synonymous with object type inheritance (see §8.9.9).

8.9.6.6 Constr uctors

New values of an object type are created via constructors. Constructors shall be instance methods, defined via

a special form of method contract, which defines the method contract as a constructor for a particular object

type. The constructors for an object type are part of the object type definition. While the CTS and VES ensure

that only a properly defined constructor is used to make new values of an object type, the ultimate correctness

of a newly constructed object is dependent on the implementation of the constructor itself.

Object types shall define at least one constructor method, but that method need not be public. Creating a new

value of an object type by invoking a constructor involves the following steps, in order:

1. Space for the new value is allocated in managed memory.

2. VES data structures of the new value are initialized and user-visible memory is zeroed.

3. The specified constructor for the object type is invoked.

Inside the constructor, the object type can do any initialization it chooses (possibly none).

CLS Rule 21: An object constructor shall call some instance constructor of its base class before any access
occurs to inherited instance data. (This does not apply to value types, which need not have constructors.)

CLS Rule 22: An object constructor shall not be called except as part of the creation of an object, and an object

shall not be initialized twice.

[Note:

CLS (consumer): Shall provide syntax for choosing the constructor to be called when an object is created.

CLS (extender): Shall provide syntax for defining constructor methods with different signatures. It can issue a

compiler error if the constructor does not obey these rules.

CLS (framework): Can assume that object creation includes a call to one of the constructors, and that no

object is initialized twice. System.Object.MemberwiseClone (see Partition IV) and deserialization (including

object remoting) shall not run constructors. end note]

8.9.6.7 Final izers

A class definition that creates an object type can supply an instance method (called a finalizer) to be called

when an instance of the class is no longer reachable. The class System.GC (see Partition IV) provides limited

control over the behavior of finalizers through the methods SuppressFinalize and ReRegisterForFinalize.

Partition%20IV%20Library.doc
Partition%20IV%20Library.doc#KernelPackage

52 Partition I

Conforming implementations of the CLI can specify and provide additional mechanisms that affect the

behavior of finalizers.

A conforming implementation of the CLI shall not automatically call a finalizer twice for the same object

unless

 there has been an intervening call to ReRegisterForFinalize (not followed by a call to

SuppressFinalize), or

 the program has invoked an implementation-specific mechanism that is clearly specified to

produce an alteration to this behavior.

[Rationale: Programmers expect that finalizers are run precisely once on any given object unless they take an

explicit action to cause the finalizer to be run multiple times. end rationale]

It is valid to define a finalizer for a value type. However, that finalizer will only be run for boxed instances of

that value type.

[Note: Since programmers might depend on finalizers to be called, the CLI should make every effort, before it

shuts down, to ensure that finalizers are called for all objects that have not been exempted from finalization by

a call to SuppressFinalize. The implementation should specify any conditions under which this behavior

cannot be guaranteed. end note]

[Note: Since resources might become exhausted if finalizers are not called expeditiously, the CLI should ensure
that finalizers are called soon after the instance becomes inaccessible. While relying on memory pressure to

trigger finalization is acceptable, implementers should consider the use of additional metrics. end note]

8.9.7 Value type definit ion

Not all types defined by a class definition are object types (see §8.2.3); in particular, value types are not object

types, but they are defined using a class definition. A class definition for a value type defines both the

(unboxed) value type and the associated boxed type (see §8.2.4). The members of the class definition define the

representation of both:

1. When a non-static method (i.e., an instance or virtual method) is called on the value type, its this

pointer is a managed reference to the instance, whereas when the method is called on the

associated boxed type, the this pointer is an object reference.

Instance methods on value types receive a this pointer that is a managed pointer to the unboxed

type whereas virtual methods (including those on interfaces implemented by the value type)
receive an instance of the boxed type.

2. Value types do not support interface contracts, but their associated boxed types do.

3. A value type does not inherit; rather the base type speci fied in the class definition defines the

base type of the boxed type.

4. The base type of a boxed type shall not have any fields.

5. Unlike object types, instances of value types do not require a constructor to be called when an

instance is created. Instead, the verification rules require that verifiable code initialize instances

to zero (null for object fields).

8.9.8 Type inheritance

Inheritance of types is another way of saying that the derived type guarantees support for all of the type

contracts of the base type. In addition, the derived type usually provides additional functionality or specialized
behavior. A type inherits from a base type by implementing the type contract of the base type. An interface type

implements zero or more other interfaces. Value types do not inherit, although the associated boxed type is an

object type and hence inherits from other types.

The derived class type shall support all of the supported interfaces contracts, class contracts, event contracts,

method contracts, and property contracts of its base type. In addition, all of the locations defined by the base

type are also defined in the derived type. The inheritance rules guarantee that code that was compiled to work

 Partition I 53

with a value of a base type will still work when passed a value of the derived type. Because of this, a derived

type also inherits the implementations of the base type. The derived type can extend, override, and/or hide these

implementations.

8.9.9 Object type inheritance

With the sole exception of System.Object, which does not inherit from any other object type, all object types

shall either explicitly or implicitly declare support for (i.e., inherit from) exactly one other object type. The

graph of the inherits-relation shall form a singly rooted tree with System.Object at the base; i.e., all object

types eventually inherit from the type System.Object. The introduction of generic types makes it more difficult

to give a precise definition; see §Partition II.

An object type declares that it shall not be used as a base type (be inherited from) by declaring that it is a sealed

type.

CLS Rule 23: System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a CLS-

compliant class.

Arrays are object types and, as such, inherit from other object types. Since array object types are manufactured

by the VES, the inheritance of arrays is fixed. See §8.9.1.

8.9.10 Value type inheritance

In their unboxed form value types do not inherit from any type. Boxed value types shall inherit directly from

System.ValueType unless they are enumerations, in which case, they shall inherit from System.Enum. Boxed

value types shall be sealed.

Logically, the boxed type corresponding to a value type

 Is an object type.

 Will specify which object type is its base type (i.e., the object type from which it inherits).

 Will have a base type that has no fields defined.

 Will be sealed to avoid dealing with the complications of value slicing.

The more restrictive rules specified here allow for more efficient implementation without severely

compromising functionality.

8.9.11 Interface type derivation

Interface types can require the implementation of one or more other interfaces. Any type that implements

support for an interface type shall also implement support for any required interfaces specified by that interface.

This is different from object type inheritance in two ways:

 Object types form a single inheritance tree; interface types do not.

 Object type inheritance specifies how implementations are inherited; required interfaces do not,

since interfaces do not define implementation. Required interfaces specify additional contracts

that an implementing object type shall support.

To highlight the last difference, consider an interface, IFoo, that has a single method. An interface, IBar, which

derives from it, is requiring that any object type that supports IBar also support IFoo. It does not say anything

about which methods IBar itself will have.

8.10 Member inheritance

Only object types can inherit implementations, hence only object types can inherit members (see §8.9.8). While

interface types can be derived from other interface types, they only ―inherit‖ the requirement to implement

method contracts, never fields or method implementations.

Partition%20II%20Metadata.doc#Security

54 Partition I

8.10.1 Field inheritance

A derived object type inherits all of the non-static fields of its base object type. This allows instances of the

derived type to be used wherever instances of the base type are expected (the shapes, or layouts, of the

instances will be the same). Static fields are not inherited. Just because a field exists does not mean that it can

be read or written. The type visibility, field accessibility, and security attributes of the field definition

(see §8.5.3) determine if a field is accessible to the derived object type.

8.10.2 Method inheritance

A derived object type inherits all of the instance and virtual methods of its base object type. It does not inherit

constructors or static methods. Just because a method exists does not mean that it can be invoked. It shall be

accessible via the typed reference that is being used by the referencing code. The type visibility, method

accessibility, and security attributes of the method definition (see §8.5.3) determine if a method is accessible to

the derived object type.

A derived object type can hide a non-virtual (i.e., static or instance) method of its base type by providing a new

method definition with the same name or same name and signature. Either method can still be invoked, subject

to method accessibility rules, since the type that contains the method always qualifies a method reference.

Virtual methods can be marked as final, in which case, they shall not be overridden in a derived object type.

This ensures that the implementation of the method is available, by a virtual call, on any object that supports

the contract of the base class that supplied the final implementation. If a virtual method is not final it is possible
to demand a security permission in order to override the virtual method, so that the ability to provide an

implementation can be limited to classes that have particular permissions. When a derived type overrides a

virtual method, it can specify a new accessibility for the virtual method, but the accessibility in the derived

class shall permit at least as much access as the access granted to the method it is overriding. See §8.5.3.

8.10.3 Property and event inheritance

Fundamentally, properties and events are constructs of the metadata intended for use by tools that target the

CLI and are not directly supported by the VES itself. Therefore, it is the job of the source language compiler

and the reflection library (see Partition IV) to determine rules for name hiding, inheritance, and so forth. The

source compiler shall generate CIL that directly accesses the methods named by the events and properties, not

the events or properties themselves.

8.10.4 Hiding, overriding, and layout

There are two separate issues involved in inheritance. The first is which contracts a type shall implement and

hence which member names and signatures it shall provide. The second is the layout of the instance so that an

instance of a derived type can be substituted for an instance of any of its base types. Only the non-static fields

and the virtual methods that are part of the derived type affect the layout of an object.

The CTS provides independent control over both the names that are visible from a base type (hiding) and the

sharing of layout slots in the derived class (overriding). Hiding is controlled by marking a member in the

derived class as either hide by name or hide by name-and-signature. Hiding is always performed based on

the kind of member, that is, derived field names can hide base field names, but not method names, property

names, or event names. If a derived member is marked hide by name, then members of the same kind in the

base class with the same name are not visible in the derived class; if the member is marked hide by name-and-

signature then only a member of the same kind with exactly the same name and type (for fields) or method

signature (for methods) is hidden from the derived class. Implementation of the distinction between these two
forms of hiding is provided entirely by source language compilers and the reflection library; it has no direct

impact on the VES itself.

[Example: For example:

Partition%20IV%20Library.doc#KernelPackage

 Partition I 55

class Base

{ field int32 A;

 field System.String A;

 method int32 A();

 method int32 A(int32);

}

class Derived inherits from Base

{ field int32 A;

 hidebysig method int32 A();

}

The member names available in type Derived are:

Table 3: Member names

Kind of member Type / Signature of member Name of member

Field int32 A

Method () -> int32 A

Method (int32) -> int32 A

end example]

While hiding applies to all members of a type, overriding deals with object layout and is applicable only to

instance fields and virtual methods. The CTS provides two forms of member overriding, new slot and expect

existing slot. A member of a derived type that is marked as a new slot will always get a new slot in the object‘s

layout, guaranteeing that the base field or method is available in the object by using a qualified reference that

combines the name of the base type with the name of the member and its type or signature. A member of a

derived type that is marked as expect existing slot will re-use (i.e., share or override) a slot that corresponds to a

member of the same kind (field or method), name, and type if one already exists from the base type; if no such

slot exists, a new slot is allocated and used.

The general algorithm that is used for determining the names in a type and the layout of objects of the type is

roughly as follows:

 Flatten the inherited names (using the hide by name or hide by name-and-signature rule)

ignoring accessibility rules.

 For each new member that is marked ―expect existing slot‖, look to see if an exact match on kind

(i.e., field or method), name, and signature exists and use that slot if it is found, otherwise

allocate a new slot.

 After doing this for all new members, add these new member-kind/name/signatures to the list of

members of this type

 Finally, remove any inherited names that match the new members based on the hide by name or

hide by name-and-signature rules.

8.11 Member definit ions

Object type definitions, interface type definitions, and value type definitions can include member definitions.

Field definitions define the representation of values of the type by specifying the substructure of the value.

Method definitions define operations on values of the type and operations on the type itself (static methods).

Property and event definitions shall only be defined on object types. Properties and events define named groups

of accessor method definitions that implement the named event or property behavior. Nested type declarations

define types whose names are scoped by the enclosing type and whose instances have full access to all

members of the enclosing class.

Depending on the kind of type definition, there are restrictions on the member definitions allowed.

56 Partition I

8.11.1 Method definit ions

Method definitions are composed of a name, a method signature, and optionally an implementation of the

method. The method signature defines the calling convention, type of the parameters to the method, and the

return type of the method (see §8.6.1). The implementation is the code to execute when the method is invoked.

A value type or object type shall define only one method of a given name and signature. However, a derived

object type can have methods that are of the same name and signature as its base object type. See §8.10.2
and §8.10.4.

The name of the method is scoped to the type (see §8.5.2). Methods can be given accessibility attributes

(see §8.5.3). Methods shall only be invoked with arguments that are assignment compatible with the parameter

types of the method signature. The return value of the method shall also be assignment compatible with the

location in which it is stored.

Methods can be marked as static, indicating that the method is not an operation on values of the type but rather

an operation associated with the type as a whole. Methods not marked as static define the valid operations on a

value of a type. When a non-static method is invoked, a particular value of the type, referred to as this or the

this pointer, is passed as the first parameter.

A method definition that does not include a method implementation shall be marked as abstract. All non-static

methods of an interface definition are abstract. Abstract method definitions are only allowed in object types that

are marked as abstract.

A non-static method definition in an object type can be marked as virtual, indicating that an alternate

implementation can be provided in derived types. All non-static method definitions in interface definitions shall

be virtual methods. Virtual method can be marked as final, indicating that derived object types are not allowed

to override the method implementation.

Method definitions can be parameterized, a feature known as generic method definitions. When used, a

specific instantiation of the generic method is made, at which point the generic parameters are bound to specific

generic arguments. Generic methods can be defined as members of a non-generic type; or can be defined as

members of a generic type, but parameterized by different generic parameter (or parameters) than its owner

type. For example, the Stack<T> class might include a generic method S ConvertTo<S> (), where the S

generic parameter is distinct from the T generic parameter in Stack<T>.

8.11.2 Field definit ions

Field definitions are composed of a name and a location signature. The location signature defines the type of

the field and the accessing constraints, see §8.6.1. A value type or object type shall define only one field of a

given name and type. However, a derived object type can have fields that are of the same name and type as its

base object type. See §8.10.1 and §8.10.4.

The name of the field is scoped to the type (see §8.5.2). Fields can be given accessibility attributes, see §8.5.3.

Fields shall only store values that are assignment compatible with the type of the field (see §8.3.1).

Fields can be marked as static, indicating that the field is not part of values of the type but rather a location

associated with the type as a whole. Locations for the static fields are created when the type is loaded and

initialized when the type is initialized.

Fields not marked as static define the representation of a value of a type by defining the substructure of the

value (see §8.4.1). Locations for such fields are created within every value of the type whenever a new value is
constructed. They are initialized during construction of the new value. A non-static field of a given name is

always located at the same place within every value of the type.

A field that is marked serializable is to be serialized as part of the persistent state of a value of the type. This

standard does not require that a conforming implementation provide support for serialization (or its counterpart,

deserialization), not does it specify the mechanism by which these operations might be accomplished.

8.11.3 Property definit ions

A property definition defines a named value and the methods that access the value. A property definition

defines the accessing contracts on that value. Hence, the property definition specifies which accessing methods

exist and their respective method contracts. An implementation of a type that declares support for a property

 Partition I 57

contract shall implement the accessing methods required by the property contract. The implementation of the

accessing methods defines how the value is retrieved and stored.

A property definition is always part of either an interface definition or a class definition. The name and value of

a property definition is scoped to the type that includes the property definition. The CTS requires that the

method contracts that comprise the property shall match the method implementations, as with any other method

contract. There are no CIL instructions associated with properties, just metadata.

By convention, properties define a getter method (for accessing the current value of the property) and

optionally a setter method (for modifying the current value of the property). The CTS places no restrictions on

the set of methods associated with a property, their names, or their usage.

CLS Rule 24: The methods that implement the getter and setter methods of a property shall be marked

SpecialName in the metadata.

CLS Rule 25: No longer used. [Note: In an earlier version of this standard, this rule stated ―The accessibility of

a property and of its accessors shall be identical.‖ The removal of this rule allows, for example, public access to

a getter while restricting access to the setter. end note]

CLS Rule 26: A property‘s accessors shall all be static, all be virtual, or all be instance.

CLS Rule 27: The type of a property shall be the return type of the getter and the type of the last argument of

the setter. The types of the parameters of the property shall be the types of the parameters to the getter and the

types of all but the final parameter of the setter. All of these types shall be CLS-compliant, and shall not be

managed pointers (i.e., shall not be passed by reference).

CLS Rule 28: Properties shall adhere to a specific naming pattern. See §10.4. The SpecialName attribute
referred to in CLS rule 24 shall be ignored in appropriate name comparisons and shall adhere to identifier rules.

A property shall have a getter method, a setter method, or both.

[Note:

CLS (consumer): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to

identifier rules. Otherwise, no direct support other than the usual access to the methods that define the

property.

CLS (extender): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to

identifier rules. Otherwise, no direct support other than the usual access to the methods that define the

property. In particular, an extender need not be able to define properties.

CLS (framework): Shall design understanding that not all CLS languages will access the property using

special syntax. end note]

8.11.4 Event definit ions

The CTS supports events in precisely the same way that it supports properties (see §8.11.3). The conventional

methods, however, are different and include means for subscribing and unsubscribing to events as well as for

firing the event.

CLS Rule 29: The methods that implement an event shall be marked SpecialName in the metadata.

CLS Rule 30: The accessibility of an event and of its accessors shall be identical.

CLS Rule 31: The add and remove methods for an event shall both either be present or absent.

CLS Rule 32: The add and remove methods for an event shall each take one parameter whose type defines the

type of the event and that shall be derived from System.Delegate.

CLS Rule 33: Events shall adhere to a specific naming pattern. See §10.4. The SpecialName attribute referred

to in CLS rule 29 shall be ignored in appropriate name comparisons and shall adhere to identifier rules.

[Note:

CLS (consumer): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to

identifier rules. Otherwise, no direct support other than the usual access to the methods that define the event.

58 Partition I

CLS (extender): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the event.

In particular, an extender need not be able to define events.

CLS (framework): Shall design based on the understanding that not all CLS languages will access the event

using special syntax. end note]

8.11.5 Nested type definit ions

A nested type definition is identical to a top-level type definition, with one exception: a top-level type has a

visibility attribute, while the visibility of a nested type is the same as the visibility of the enclosing type.

See §8.5.3.

 Partition I 59

9 Metadata

This clause and its subclauses contain only informative text, with the exception

of the CLS rules introduced here and repeated in §11. The metadata format is

specified in Partition II

New types—value types and reference types—are introduced into the CTS via type declarations expressed in

metadata. In addition, metadata is a structured way to represent all information that the CLI uses to locate and

load classes, lay out instances in memory, resolve method invocations, translate CIL to native code, enforce

security, and set up runtime context boundaries. Every CLI PE/COFF module (see Partition II) carries a

compact metadata binary that is emitted into the module by the CLI-enabled development tool or compiler.

Each CLI-enabled language will expose a language-appropriate syntax for declaring types and members and for

annotating them with attributes that express which services they require of the infrastructure. Type imports are
also handled in a language-appropriate way, and it is the development tool or compiler that consumes the

metadata to expose the types that the developer sees.

Note that the typical component or application developer will not need to be aware of the rules for emitting and

consuming CLI metadata. While it can help a developer to understand the structure of metadata, the rules

outlined in this clause are primarily of interest to tool builders and compiler writers.

9.1 Components and assemblies

Each CLI component carries the metadata for declarations, implementations, and references specific to that

component. Therefore, the component-specific metadata is referred to as component metadata, and the

resulting component is said to be self-describing. In object models such as COM or CORBA, this information
is represented by a combination of typelibs, IDL files, DLLRegisterServer, and a myriad of custom files in

disparate formats and separate from the actual executable file. In contrast, the metadata is a fundamental part of

a CLI component.

Collections of CLI components and other files are packaged together for deployment into assemblies,

discussed in more detail in a later subclause. An assembly is a logical unit of functionality that serves as the

primary unit of reuse in the CLI. Assemblies establish a name scope for types.

Types declared and implemented in individual components are exported for use by other implementations via

the assembly in which the component participates. All references to a type are scoped by the identity of the

assembly in whose context the type is being used. The CLI provides services to locate a referenced assembly

and request resolution of the type reference. It is this mechanism that provides an isolation scope for

applications: the assembly alone controls its composition.

9.2 Access ing metadata

Metadata is emitted into and read from a CLI module using either direct access to the file format as described

in Partition II or through the Reflection library. It is possible to create a tool that verifies a CLI module,

including the metadata, during development, based on the specifications supplied in Partition II and

Partition III.

When a class is loaded at runtime, the CLI loader imports the metadata into its own in-memory data structures,

which can be browsed via the CLI Reflection services. The Reflection services should be considered as similar

to a compiler; they automatically walk the inheritance hierarchy to obtain information about inherited methods

and fields, they have rules about hiding by name or name-and-signature, rules about inheritance of methods and
properties, and so forth.

9.2.1 Metadata tokens

A metadata token is an implementation-dependent encoding mechanism. Partition II describes the manner in

which metadata tokens are embedded in various sections of a CLI PE/COFF module. Metadata tokens are

embedded in CIL and native code to encode method invocations and field accesses at call sites; the token is

Partition%20II%20Metadata.doc#FileFormat
Partition%20II%20Metadata.doc#FileFormat
Partition%20II%20Metadata.doc#_FileFormat
Partition%20II%20Metadata.doc
Partition%20III%20CIL.doc
Partition%20II%20Metadata.doc#FileFormat

60 Partition I

used by various infrastructure services to retrieve information from metadata about the reference and the type

on which it was scoped in order to resolve the reference.

A metadata token is a typed identifier of a metadata object (such as type declaration and member declaration).

Given a token, its type can be determined and it is possible to retrieve the specific metadata attributes for that

metadata object. However, a metadata token is not a persistent identifier. Rather it is scoped to a specific

metadata binary. A metadata token is represented as an index into a metadata data structure, so access is fast
and direct.

9.2.2 Member signatures in metadata

Every location—including fields, parameters, method return values, and properties—has a type, and a

specification for its type is carried in metadata.

A value type describes values that are represented as a sequence of bits. A reference type describes values that

are represented as the location of a sequence of bits. The CLI provides an explicit set of built-in types, each of

which has a default runtime form as either a value type or a reference type. The metadata APIs can be used to

declare additional types, and part of the type specification of a variable encodes the identity of the type as well

as which form (value or reference) the type is to take at runtime.

Metadata tokens representing encoded types are passed to CIL instructions that accept a type (newobj,
newarray, ldtoken). (See the CIL instruction set specification in Partition III.)

These encoded type metadata tokens are also embedded in member signatures. To optimize runtime binding of

field accesses and method invocations, the type and location signatures associated with fields and methods are

encoded into member signatures in metadata. A member signature embodies all of the contract information that

is used to decide whether a reference to a member succeeds or fails.

9.3 Unmanaged code

It is possible to pass data from CLI managed code to unmanaged code. This always involves a transition from

managed to unmanaged code, which has some runtime cost, but data can often be transferred without copying.

When data must be reformatted the VES provides a reasonable specification of default behavior, but it is

possible to use metadata to explicitly require other forms of marshalling (i.e., reformatted copying). The

metadata also allows access to unmanaged methods through implementation-specific pre-existing mechanisms.

9.4 Method implementation metadata

For each method for which an implementation is supplied in the current CLI module, the tool or compiler will
emit information used by the CIL-to-native code compilers, the CLI loader, and other infrastructure services.

This information includes:

 Whether the code is managed or unmanaged.

 Whether the implementation is in native code or CIL (note that all CIL code is managed).

 The location of the method body in the current module, as an address relative to the start of the

module file in which it is located (a Relative Virtual Address, or RVA). Or, alternatively, the

RVA is encoded as 0 and other metadata is used to tell the infrastructure where the method

implementation will be found, including:

o A method implementation to be located by implementation-specific means described outside

this Standard.

o Forwarding calls through an imported global static method.

9.5 Class layout

In the general case, the CLI loader is free to lay out the instances of a class in any way it chooses, consistent

with the rules of the CTS. However, there are times when a tool or compiler needs more control over the

layout. In the metadata, a class is marked with an attribute indicating whether its layout rule is:

Partition%20III%20CIL.doc#ObjectModelInstructions

 Partition I 61

 autolayout:: A class marked autolayout indicates that the loader is free to lay out the class in

any way it sees fit; any layout information that might have been specified is ignored. This is the

default.

 sequentiallayout: A class marked sequentiallayout guides the loader to preserve field order as

emitted, but otherwise the specific offsets are calculated based on the CLI type of the field; these

can be shifted by explicit offset, padding, and/or alignment information.

 explicitlayout: A class marked explicitlayout causes the loader to ignore field sequence and to

use the explicit layout rules provided, in the form of field offsets and/or overall class size or

alignment. There are restrictions on valid layouts, specified in Partition II.

It is also possible to specify an overall size for a class. This enables a tool or compiler to emit a value type

specification where only the size of the type is supplied. This is useful in declaring CLI built-in types (such as

32-bit integer). It is also useful in situations where the data type of a member of a structured value type does

not have a representation in CLI metadata (e.g., C++ bit fields). In the latter case, as long as the tool or

compiler controls the layout, and CLI doesn‘t need to know the details or play a role in the layout, this is

sufficient. Note that this means that the VES can move bits around but can‘t marshal across machines – the

emitting tool or compiler will need to handle the marshaling.

Optionally, a developer can specify a packing size for a class. This is layout information that is not often used,
but it allows a developer to control the alignment of the fields. It is not an alignment specification, per se, but

rather serves as a modifier that places a ceiling on all alignments. Typical values are 1, 2, 4, 8, or 16. Generic

types shall not be marked explicitlayout.

For the full specification of class layout attributes, see the classes in System.Runtime.InteropServices in

Partition IV.

9.6 Assemblies: name scopes for types

An assembly is a collection of resources that are built to work together to deliver a cohesive set of

functionality. An assembly carries all of the rules necessary to ensure that cohesion. It is the unit of access to

resources in the CLI.

Externally, an assembly is a collection of exported resources, including types. Resources are exported by name.

Internally, an assembly is a collection of public (exported) and private (internal to the assembly) resources. It is

the assembly that determines which resources are to be exported outside of the assembly and which resources

are accessible only within the current assembly scope. It is the assembly that controls how a reference to a

resource, public or private, is mapped onto the bits that implement the resource. For types in particular, the

assembly can also supply runtime configuration information. A CLI module can be thought of as a packaging

of type declarations and implementations, where the packaging decisions can change under the covers without

affecting clients of the assembly.

The identity of a type is its assembly scope and its declared name. A type defined identically in two different

assemblies is considered two different types.

Assembly Dependencies: An assembly can depend on other assemblies. This happens when implementations

in the scope of one assembly reference resources that are scoped in or owned by another assembly.

 All references to other assemblies are resolved under the control of the current assembly scope.

This gives an assembly an opportunity to control how a reference to another assembly is mapped

onto a particular version (or other characteristic) of that referenced assembly (although that target

assembly has sole control over how the referenced resource is resolved to an implementation).

 It is always possible to determine which assembly scope a particular implementation is running

in. All requests originating from that assembly scope are resolved relative to that scope.

From a deployment perspective, an assembly can be deployed by itself, with the assumption that any other

referenced assemblies will be available in the deployed environment. Or, it can be deployed with its dependent

assemblies.

Manifests: Every assembly has a manifest that declares which files make up the assembly, what types are

exported, and what other assemblies are required to resolve type references within the assembly. Just as CLI

Partition%20II%20Metadata.doc
Partition%20IV%20Library.doc

62 Partition I

components are self-describing via metadata in the CLI component, so are assemblies self-describing via their

manifests. When a single file makes up an assembly it contains both the metadata describing the types defined

in the assembly and the metadata describing the assembly itself. When an assembly contains more than one file

with metadata, each of the files describes the types defined in the file, if any, and one of these files also

contains the metadata describing the assembly (including the names of the other files, their cryptographic

hashes, and the types they export outside of the assembly).

Applications: Assemblies introduce isolation semantics for applications. An application is simply an assembly

that has an external entry point that triggers (or causes a hosting environment such as a browser to trigger) the

creation of a new application domain. This entry point is effectively the root of a tree of request invocations

and resolutions. Some applications are a single, self-contained assembly. Others require the availability of other

assemblies to provide needed resources. In either case, when a request is resolved to a module to load, the

module is loaded into the same application domain from which the request originated. It is possible to monitor

or stop an application via the application domain.

References: A reference to a type always qualifies a type name with the assembly scope within which the

reference is to be resolved; that is, an assembly establishes the name scope of available resources. However,

rather than establishing relationships between individual modules and referenced assemblies, every reference is

resolved through the current assembly. This allows each assembly to have absolute control over how references

are resolved. See Partition II.

9.7 Metadata extens ibil ity

CLI metadata is extensible. There are three reasons this is important:

 The CLS is a specification for conventions that languages and tools agree to support in a uniform

way for better language integration. The CLS constrains parts of the CTS model, and the CLS

introduces higher-level abstractions that are layered over the CTS. It is important that the

metadata be able to capture these sorts of development-time abstractions that are used by tools

even though they are not recognized or supported explicitly by the CLI.

 It should be possible to represent language-specific abstractions in metadata that are neither CLI

nor CLS language abstractions. For example, it should be possible, over time, to enable languages
like C++ to not require separate headers or IDL files in order to use types, methods, and data

members exported by compiled modules.

 It should be possible, in member signatures, to encode types and type modifiers that are used in

language-specific overloading. For example, to allow C++ to distinguish int from long even on

32-bit machines where both map to the underlying type int32.

This extensibility comes in the following forms:

 Every metadata object can carry custom attributes, and the metadata APIs provide a way to

declare, enumerate, and retrieve custom attributes. Custom attributes can be identified by a simple

name, where the value encoding is opaque and known only to the specific tool, language, or

service that defined it. Or, custom attributes can be identified by a type reference, where the

structure of the attribute is self-describing (via data members declared on the type) and any tool
including the CLI reflection services can browse the value encoding.

CLS Rule 34: The CLS only allows a subset of the encodings of custom attributes. The only types that

shall appear in these encodings are (see Partition IV): System.Type, System.String, System.Char,
System.Boolean, System.Byte, System.Int16, System.Int32, System.Int64, System.Single,

System.Double, and any enumeration type based on a CLS-compliant base integer type.

[Note:

CLS (consumer): Shall be able to read attributes encoded using the restricted scheme.

CLS (extender): Must meet all requirements for CLS consumer and be able to author new classes and

new attributes. Shall be able to attach attributes based on existing attribute classes to any metadata that is

emitted. Shall implement the rules for the System.AttributeUsageAttribute (see Partition IV).

Partition%20II%20Metadata.doc#AssembliesManifestsandModules
Partition%20IV%20Library.doc
Partition%20IV%20Library.doc

 Partition I 63

CLS (framework): Shall externally expose only attributes that are encoded within the CLS rules and

following the conventions specified for System.AttributeUsageAttribute end note]

 In addition to CTS type extensibility, it is possible to emit custom modifiers into member

signatures (see Types in Partition II). The CLI will honor these modifiers for purposes of method

overloading and hiding, as well as for binding, but will not enforce any of the language-specific

semantics. These modifiers can reference the return type or any parameter of a method, or the

type of a field. They come in two kinds: required modifiers that anyone using the member must

understand in order to correctly use it, and optional modifiers that can be ignored if the modifier

is not understood.

CLS Rule 35: The CLS does not allow publicly visible required modifiers (modreq, see Partition II),
but does allow optional modifiers (modopt, see Partition II) it does not understand.

[Note:

CLS (consumer): Shall be able to read metadata containing optional modifiers and correctly copy

signatures that include them. Can ignore these modifiers in type matching and overload resolution. Can

ignore types that become ambiguous when the optional modifiers are ignored, or that use required
modifiers.

CLS (extender): Shall be able to author overrides for inherited methods with signatures that include

optional modifiers. Consequently, an extender must be able to copy such modifiers from metadata that it

imports. There is no requirement to support required modifiers, nor to author new methods that have any

kind of modifier in their signature.

CLS (framework): Shall not use required modifiers in externally visible signatures unless they are

marked as not CLS-compliant. Shall not expose two members on a class that differ only by the use of

optional modifiers in their signature, unless only one is marked CLS-compliant. end note]

9.8 Globals, imports, and exports

The CTS does not have the notion of global statics: all statics are associated with a particular class.

Nonetheless, the metadata is designed to support languages that rely on static data that is stored directly in a

PE/COFF file and accessed by its relative virtual address. In addition, while access to managed data and
managed functions is mediated entirely through the metadata itself, the metadata provides a mechanism for

accessing unmanaged data and unmanaged code.

CLS Rule 36: Global static fields and methods are not CLS-compliant.

[Note:

CLS (consumer): Need not support global static fields or methods.

CLS (extender): Need not author global static fields or methods.

CLS (framework): Shall not define global static fields or methods. end note]

9.9 Scoped stat ics

The CTS does not include a model for file- or function-scoped static functions or data members. However,

there are times when a compiler needs a metadata token to emit into CIL for a scoped function or data member.

The metadata allows members to be marked so that they are never visible or accessible outside of the PE/COFF

file in which they are declared and for which the compiler guarantees to enforce all access rules.

End informative text

Partition%20II%20Metadata.doc
Partition%20II%20Metadata.doc
Partition%20II%20Metadata.doc

64 Partition I

10 Name and type rules for the Common Language Specification

10.1 Identifiers

Languages that are either case-sensitive or case-insensitive can support the CLS. Since its rules apply only to

items exported to other languages, private members or types that aren‘t exported from an assembly can use any

names they choose. For interoperation, however, there are some restrictions.

In order to make tools work well with a case-sensitive language it is important that the exact case of identifiers

be maintained. At the same time, when dealing with non-English languages encoded in Unicode, there might be

more than one way to represent precisely the same identifier that includes combining characters. The CLS

requires that identifiers obey the restrictions of the appropriate Unicode standard and they are persisted in

Canonical form C, which preserves case but forces combining characters into a standard representation. See
CLS Rule 4, in §8.5.1.

At the same time, it is important that externally visible names not conflict with one another when used from a

case-insensitive programming language. As a result, all identifier comparisons shall be done internally to CLS-

compliant tools using the Canonical form KC, which first transforms characters to their case-canonical

representation. See CLS Rule 4, in §8.5.1.

When a compiler for a CLS-compliant language supports interoperability with a non-CLS-compliant language

it must be aware that the CTS and VES perform all comparisons using code-point (i.e., byte-by-byte)

comparison. Thus, even though the CLS requires that persisted identifiers be in Canonical form C, references to

non-CLS identifiers will have to be persisted using whatever encoding the non-CLS language chose to use. It is

a language design issue, not covered by the CTS or the CLS, precisely how this should be handled.

10.2 Overloading

[Note: Although the CTS describes inheritance, object layout, name hiding, and overriding of virtual methods,

it does not discuss overloading at all. While this is surprising, it arises from the fact that overloading is entirely

handled by compilers that target the CTS and not the type system itself. In the metadata, all references to types

and type members are fully resolved and include the precise signature that is intended. This choice was made

since every programming language has its own set of rules for coercing types and the VES does not provide a

means for expressing those rules. end note]

Following the rules of the CTS, it is possible for duplicate names to be defined in the same scope as long as

they differ in either kind (field, method, etc.) or signature. The CLS imposes a stronger restriction for

overloading methods. Within a single scope, a given name can refer to any number of methods provided they

differ in any of the following:

 Number of parameters

 Type of any parameter

Notice that the signature includes more information, but CLS-compliant languages need not produce or

consume classes that differ only by that additional information (see Partition II for the complete list of

information carried in a signature):

 Calling convention

 Custom modifiers

 Return type

 Whether a parameter is passed by value or by reference

There is one exception to this rule. For the special names op_Implicit and op_Explicit, described

in §10.3.3, methods can be provided that differ only by their return type. These are marked specially and can
be ignored by compilers that don‘t support operator overloading.

Partition%20II%20Metadata.doc

 Partition I 65

Properties shall not be overloaded by type (that is, by the return type of their getter method), but they can be

overloaded with different number or types of indices (that is, by the number and types of the parameters of their

getter methods). The overloading rules for properties are identical to the method overloading rules.

CLS Rule 37: Only properties and methods can be overloaded.

CLS Rule 38: Properties and methods can be overloaded based only on the number and types of their

parameters, except the conversion operators named op_Implicit and op_Explicit, which can also be

overloaded based on their return type.

[Note:

CLS (consumer): Can assume that only properties and methods are overloaded, and need not support
overloading based on return type unless providing special syntax for operator overloading. If return type

overloading isn‘t supported, then the op_Implicit and op_Explicit can be ignored since the functionality

shall be provided in some other way by a CLS-compliant framework. Consumers must first apply the hide-by-

name and hide-by-signature-and-name rules (§8.10.4) to avoid any ambiguity.

CLS (extender): Should not permit the authoring of overloads other than those specified here. It is not

necessary to support operator overloading at all, hence it is possible to entirely avoid support for overloading

on return type.

CLS (framework): Shall not publicly expose overloading except as specified here. Frameworks authors

should bear in mind that many programming languages, including object-oriented languages, do not support

overloading and will expose overloaded methods or properties through mangled names. Most languages

support neither operator overloading nor overloading based on return type, so op_Implicit and op_Explicit

shall always be augmented with some alternative way to gain the same functionality. end note]

[Note: The names visible on any class C, are the names visible in that class and its base classes. As a consequence, the

names of methods on interfaces implemented by C that are only implemented via MethodImpls (see Partition II) are

not visible on class C. The names visible on an interface I, consist only of the names directly defined on this interface.

As a consequence, the names of methods from other interfaces (which I requires be implemented) are not visible on I

itself. end note]

10.3 Operator overloading

CLS-compliant consumer and extender tools are under no obligation to allow defining of operator overloading.

CLS-compliant consumer and extender tools do not have to provide a special mechanism to call these methods.

[Note: This topic is addressed by the CLS so that

 languages that do provide operator overloading can describe their rules in a way that other languages can

understand, and

 languages that do not provide operator overloading can still access the underlying functionality without the

addition of special syntax.

end note]

Operator overloading is described by using the names specified below, and by setting a special bit in the

metadata (SpecialName) so that they do not collide with the user‘s name space. A CLS-compliant producer

tool shall provide some means for setting this bit. If these names are used, they shall have precisely the

semantics described here.

10.3.1 Unary operator s

Unary operators take one operand, perform some operation on it, and return the result. They are represented as

static methods on the class that defines the type of their one operand. Table 4: Unary Operator Names shows

the names that are defined.

Table 4: Unary Operator Names

Partition%20II%20Metadata.doc#FileFormat

66 Partition I

Name ISO/IEC 14882:2003 C++ Operator Symbol

(This column is informative.)

op_Decrement Similar to --
1

op_Increment Similar to ++
1

op_UnaryNegation - (unary)

op_UnaryPlus + (unary)

op_LogicalNot !

op_True
2

Not defined

op_False
2
 Not defined

op_AddressOf & (unary)

op_OnesComplement ~

op_PointerDereference * (unary)

1 From a pure C++ point of view, the way one must write these functions for the CLI differs in one very

important aspect. In C++, these methods must increment or decrement their operand directly, whereas, in CLI,

they must not; instead, they simply return the value of their operand +/- 1, as appropriate, without modifying

their operand. The operand must be incremented or decremented by the compiler that generates the code for the

++/-- operator, separate from the call to these methods.

2 The op_True and op_False operators do not exist in C++. They are provided to support tri-state Boolean

types, such as those used in database languages.

10.3.2 Binary operators

Binary operators take two operands, perform some operation on them, and return a value. They are represented

as static methods on the class that defines the type of one of their two operands. Table 5: Binary Operator

Names shows the names that are defined.

Table 5: Binary Operator Names

Name ISO/IEC 14882:2003 C++ Operator Symbol

(This column is informative.)

op_Addition + (binary)

op_Subtraction - (binary)

op_Multiply * (binary)

op_Division /

op_Modulus %

op_ExclusiveOr ^

op_BitwiseAnd & (binary)

op_BitwiseOr |

op_LogicalAnd &&

op_LogicalOr ||

op_Assign Not defined (= is not the same)

op_LeftShift <<

op_RightShift >>

op_SignedRightShift Not defined

op_UnsignedRightShift Not defined

op_Equality ==

 Partition I 67

op_GreaterThan >

op_LessThan <

op_Inequality !=

op_GreaterThanOrEqual >=

op_LessThanOrEqual <=

op_UnsignedRightShiftAssignment Not defined

op_MemberSelection ->

op_RightShiftAssignment >>=

op_MultiplicationAssignment *=

op_PointerToMemberSelection ->*

op_SubtractionAssignment -=

op_ExclusiveOrAssignment ^=

op_LeftShiftAssignment <<=

op_ModulusAssignment %=

op_AdditionAssignment +=

op_BitwiseAndAssignment &=

op_BitwiseOrAssignment |=

op_Comma ,

op_DivisionAssignment /=

10.3.3 Conversion operators

Conversion operators are unary operations that allow conversion from one type to another. The operator

method shall be defined as a static method on either the operand or return type. There are two types of

conversions:

 An implicit (widening) coercion shall not lose any magnitude or precision. These should be

provided using a method named op_Implicit.

 An explicit (narrowing) coercion can lose magnitude or precision. These should be provided

using a method named op_Explicit.

[Note: Conversions provide functionality that can‘t be generated in other ways, and many languages do not

support the use of the conversion operators through special syntax. Therefore, CLS rules require that the same

functionality be made available through an alternate mechanism. It is recommended that the more common

ToXxx (where Xxx is the target type) and FromYyy (where Yyy is the name of the source type) naming pattern

be used. end note]

Because these operations can exist on the class of their operand type (so-called ―from‖ conversions) and would

therefore differ on their return type only, the CLS specifically allows that these two operators be overloaded

based on their return type. The CLS, however, also requires that if this form of overloading is used then the

language shall provide an alternate means for providing the same functionality since not all CLS languages will

implement operators with special syntax.

CLS Rule 39: If either op_Implicit or op_Explicit is provided, an alternate means of providing the coercion
shall be provided.

[Note:

CLS (consumer): Where appropriate to the language design, use the existence of op_Implicit and/or

op_Explicit in choosing method overloads and generating automatic coercions.

CLS (extender): Where appropriate to the language design, implement user-defined implicit or explicit

coercion operators using the corresponding op_Implicit, op_Explicit, ToXxx, and/or FromXxx methods.

68 Partition I

CLS (framework): If coercion operations are supported, they shall be provided as FromXxx and ToXxx, and

optionally op_Implicit and op_Explicit as well. CLS frameworks are encouraged to provide such coercion

operations. end note]

10.4 Naming patterns

See also Partition VI.

While the CTS does not dictate the naming of properties or events, the CLS does specify a pattern to be

observed.

For Events:

An individual event is created by choosing or defining a delegate type that is used to indicate the event. Then,
three methods are created with names based on the name of the event and with a fixed signature. For the

examples below we define an event named Click that uses a delegate type named EventHandler.

EventAdd, used to add a handler for an event

 Pattern: void add_<EventName> (<DelegateType> handler)

 Example: void add_Click (EventHandler handler);

EventRemove, used to remove a handler for an event

 Pattern: void remove_<EventName> (<DelegateType> handler)

 Example: void remove_Click (EventHandler handler);

EventRaise, used to indicate that an event has occurred

 Pattern: void family raise_<EventName> (Event e)

For Properties:

An individual property is created by deciding on the type returned by its getter method and the types of the

getter‘s parameters (if any). Then, two methods are created with names based on the name of the property and

these types. For the examples below we define two properties: Name takes no parameters and returns a

System.String, while Item takes a System.Object parameter and returns a System.Object. Item is referred to

as an indexed property, meaning that it takes parameters and thus can appear to the user as through it were an

array with indices.

PropertyGet, used to read the value of the property

 Pattern: <PropType> get_<PropName> (<Indices>)

 Example: System.String get_Name ();

 Example: System.Object get_Item (System.Object key);

PropertySet, used to modify the value of the property

 Pattern: void set_<PropName> (<Indices>, <PropType>)

 Example: void set_Name (System.String name);

 Example: void set_Item (System.Object key, System.Object value);

10.5 Exceptions

The CLI supports an exception handling model, which is introduced in §12.4.2. CLS-compliant frameworks

can define and throw externally visible exceptions, but there are restrictions on the type of objects thrown:

CLS Rule 40: Objects that are thrown shall be of type System.Exception or a type inheriting from it.
Nonetheless, CLS-compliant methods are not required to block the propagation of other types of exceptions.

[Note:

CLS (consumer): Need not support throwing or catching of objects that are not of the specified type.

CLS (extender): Must support throwing of objects of type System.Exception or a type inheriting from it.

Need not support the throwing of objects having other types.

CLS (framework): Shall not publicly expose thrown objects that are not of type System.Exception or a type

inheriting from it. end note]

Partition%20VI%20Annexes.doc

 Partition I 69

10.6 Custo m attributes

In order to allow languages to provide a consistent view of custom attributes across language boundaries, the

Base Class Library provides support for the following rule defined by the CLS:

CLS Rule 41: Attributes shall be of type System.Attribute, or a type inheriting from it.

[Note:

CLS (consumer): Need not support attributes that are not of the specified type.

CLS (extender): Must support the authoring of custom attributes.

CLS (framework): Shall not publicly expose attributes that are not of type System.Attribute or a type

inheriting from it. end note]

The use of a particular attribute class can be restricted in various ways by placing an attribute on the attribute

class. The System.AttributeUsageAttribute is used to specify these restrictions. The restrictions supported

by the System.AttributeUsageAttribute are:

 What kinds of constructs (types, methods, assemblies, etc.) can have the attribute applied to them.

By default, instances of an attribute class can be applied to any construct. This is specified by

setting the value of the ValidOn property of System.AttributeUsageAttribute. Several

constructs can be combined.

 Multiple instances of the attribute class can be applied to a given piece of metadata. By default,

only one instance of any given attribute class can be applied to a single metadata item. Th e

AllowMultiple property of the attribute is used to specify the desired value.

 Do not inherit the attribute when applied to a type. By default, any attribute attached to a type
should be inherited to types that derive from it. If multiple instances of the attribute class are

allowed, the inheritance performs a union of the attributes inherited from the base class and those

explicitly applied to the derived class type. If multiple instances are not allowed, then an attribute

of that type applied directly to the derived class overrides the attribute supplied by the base class.

This is specified by setting the Inherited property of System.AttributeUsageAttribute to the

desired value.

[Note: Since these are CLS rules and not part of the CTS itself, tools are required to specify explicitly the

custom attributes they intend to apply to any given metadata item. That is, compilers or other tools that

generate metadata must implement the AllowMultiple and Inherit rules. The CLI does not supply attributes

automatically. The usage of attributes in the CLI is further described in Partition II. end note]

10.7 Generic types and methods

The following subclauses describe the CLS rules for generic types and methods.

10.7.1 Nested type parameter re -declaration

Any type exported by a CLS-compliant framework, that is nested in a generic type, itself declares, by position,

all the generic parameters of that enclosing type. (The nested type can also introduce new generic parameters.)

As such, any CLS-compliant type nested inside a generic type is itself generic. Such redeclared generic

parameters shall precede any newly introduced generic parameters. [Example: Consider the following C#

source code:

public class A<T> {

 public class B {}

 public class C<U,V> {

 public class D<W> {}

 }

}

public class X {

 public class Y<T> {}

}

The relevant corresponding ILAsm code is:

July%20Draft/Partition%20II%20Metadata.doc#Attributes Used by the CLI

70 Partition I

.class … A`1<T> … { // T is introduced

 .class … nested … B<T> … { } // T is redeclared

 .class … nested … C`2<T,U,V> … { // T is redeclared; U and V are introduced

 .class … nested … D`1<T,U,V,W> … { } // T, U, and V are redeclared; W is introduced

 }

}

.class … X … {

 .class … nested Y`1<T> … { } // Nothing is redeclared; T is introduced

}

As generic parameter re-declaration is based on parameter position matching, not on parameter name matching,

the name of a redeclared generic parameter need not be the same as the one it re-declares. For example:

.class … A`1<T> … { // T is introduced

 .class … nested … B<Q> … { } // T is redeclared (as Q)

 .class … nested … C`2<T1,U,V> … { // T is redeclared (as T1); U and V

 // are introduced

 .class … nested … D`1<R1,R2,R3,W> … { } // T1, U, and V are redeclared (as R1, R2,

 // and R3); W is introduced

 }

}

A CLS-compliant Framework should therefore expose the following types:

Lexical Name Total Generic

Parameters

Redeclared Generic

Parameters

Introduced Generic

Parameters

A<T> 1 (T) 0 1 T

A<T>.B 1 (T) 1 T 0

A<T>.C<U,V> 3 (T,U,V) 1 T 2 U,V

A<T>.C<U,V>.D<W> 4 (T,U,V,W) 3 T,U,V 1 W

X 0 0 0

A.Y<T>

1 (T) 0 1 T

end example]

CLS Rule 42: Nested types shall have at least as many generic parameters as the enclosing type. Generic
parameters in a nested type correspond by position to the generic parameters in its enclosing type.

[Note:

CLS (consumer): Need not consume types that violate this rule.

CLS (extender): Same as consumers. Extenders choosing to support definition of types nested in generic types
shall follow this rule for externally visible types.

CLS (framework): Shall not expose types that violate this rule. end note]

10.7.2 Type names and arity encoding

CLS-compliant generic type names are encoded using the format ―name[`arity]‖ , where […] indicates that the

grave accent character ―`‖ and arity together are optional. The encoded name shall follow these rules:

1. name shall be an ID (see Partition II) that does not contain the ―`‖ character.

2. arity is specified as an unsigned decimal number without leading zeros or spaces.

3. For a normal generic type, arity is the number of type parameters declared on the type.

4. For a nested generic type, arity is the number of newly introduced type parameters.

[Example: Consider the following C# source code:

 Partition I 71

public class A<T> {

 public class B {}

 public class C<U,V> {

 public class D<W> {}

 }

}

public class X {

 public class Y<T> {}

}

The relevant corresponding ILAsm code is:

.class … A`1<T> … { // T is introduced

 .class … nested … B<T> … { } // T is redeclared

 .class … nested … C`2<T,U,V> … { // T is redeclared; U and V are introduced

 .class … nested … D`1<T,U,V,W> … { } // T, U, and V are redeclared; W is introduced

 }

}

.class … X … {

 .class … nested Y`1<T> … { } // Nothing is redeclared; T is introduced

}

A CLS-compliant Framework should expose the following types:

Lexical Name Total Generic

Parameters

Redeclared Generic

Parameters

Introduced

Generic

Parameters

Metadata

Encoding

A<T> 1 (T) 0 1 T A`1

A<T>.B 1 (T) 1 T 0 B

A<T>.C<U,V> 3 (T,U,V) 1 T 2 U,V C`2

A<T>.C<U,V>.D<W> 4 (T,U,V,W) 3 T,U,V 1 W D`1

X 0 0 0 X

A.Y<T>

1 (T) 0 1 T Y`1

While a type name encoded in metadata does not explicitly mention its enclosing type, the CIL and Reflection

type name grammars do include this detail:

Lexical Name Metadata

Encoding

CIL Reflection

A<T> A`1 A`1 A`1[T]

A<T>.B B A`1/B A`1+B[T]

A<T>.C<U,V> C`2 A`1/C`2 A`1+C`2[T,U,V]

A<T>.C<U,V>.D<W> D`1 A`1/C`2/D`1 A`1+C`2+D`1[T,U,V,W]

X X X X

A.Y<T>

Y`1 X/Y`1 X+Y`1[T]

end example]

CLS Rule 43: The name of a generic type shall encode the number of type parameters declared on the non-
nested type, or newly introduced to the type if nested, according to the rules defined above.

[Note:

CLS (consumer): Need not consume types that violate this rule.

CLS (extender): Same as consumers. Extenders choosing to support definition of generic types shall follow

this rule for externally visible types.

CLS (framework): Shall not expose types that violate this rule. end note]

72 Partition I

10.7.3 Type constraint re -declaration

CLS Frameworks shall ensure that a generic type explicitly re-declares any constraints present on generic

parameters in its base class and all implemented interfaces. Put another way, CLS Extenders and Consumers

should be able to examine just the specific type in question, to determine the set of constraints that need to be

satisfied.

CLS Rule 44: A generic type shall redeclare sufficient constraints to guarantee that any constraints on the base
type, or interfaces would be satisfied by the generic type constraints.

[Note:

CLS (consumer): Need not consume types that violate this rule. Consumers who check constraints need only
look at the type being instantiated to determine the applicable constraints.

CLS (extender): Same as consumers. Extenders choosing to support definition of generic types shall follow

this rule.

CLS (framework): Shall not expose types that violate this rule. end note]

10.7.4 Constraint type restr ictions

CLS Rule 45: Types used as constraints on generic parameters shall themselves be CLS-compliant.

[Note:

CLS (consumer): Need not consume types that violate this rule.

CLS (extender): Same as consumers. Extenders choosing to support definition of generic types shall follow

this rule when checking for CLS compliance, and need not provide syntax to violate this rule.

CLS (framework): Shall not expose types that violate this rule. end note]

10.7.5 Frameworks and accessibi l i ty of nested types

CLI generics treat the generic type declaration and all instantiations of that generic type as having the same

accessibility scope. However, language accessibility rules may differ in this regard, with some choosing to

follow the CLI accessibility model, while others use a more restrictive, per-instantiation model. To enable

consumption by all CLS languages, CLS frameworks shall be designed with a conservative per-instantiation

model of accessibility in mind, and not expose nested types or require access to protected members based on

specific, alternate instantiations of a generic type.

This has implications for signatures containing nested types with family accessibility. Open generic types shall

not expose fields or members with signatures containing a specific instantiation of a nested generic type with
family accessibility. Non-generic types extending a specific instantiation of a generic base class or interface,

shall not expose fields or members with signatures containing a different instantiation of a nested generic type

with family accessibility. [Example: Consider the following C# source code:

public class C<T> {

 protected class N {…}

 protected void M1(C<int>.N n) {…} // Not CLS-compliant - C<int>.N not

 // accessible from within C<T> in all languages

 protected void M2(C<T>.N n) {…} // CLS-compliant – C<T>.N accessible inside C<T>

}

public class D : C<long> {

 protected void M3(C<int>.N n) {…} // Not CLS-compliant – C<int>.N is not

 // accessible in D (extends C<long>)

 protected void M4(C<long>.N n) {…} // CLS-compliant, C<long>.N is

 // accessible in D (extends C<long>)

}

The relevant corresponding ILASM code is:

 Partition I 73

.class public … C`1<T> … {

 .class … nested … N<T> … {}

 .method family hidebysig instance void M1(class C`1/N<int32> n) … {}

 // Not CLS-compliant - C<int>.N is not accessible from within C<T> in all languages

 .method family hidebysig instance void M2(class C`1/N<!0> n) … {}

 // CLS-compliant – C<T>.N is accessible inside C<T>

}

.class public … D extends class C`1<int64> {

 .method family hidebysig instance void M3(class C`1/N<int32> n) … {}

 // Not CLS-compliant – C<int>.N is not accessible in D (extends C<long>)

 .method family hidebysig instance void M4(class C`1/N<int64> n) … {}

 // CLS-compliant, C<long>.N is accessible in D (extends C<long>)

}

end example]

CLS Rule 46: The visibility and accessibility of members (including nested types) in an instantiated generic
type shall be considered to be scoped to the specific instantiation rather than the generic type declaration as a

whole. Assuming this, the visibility and accessibility rules of CLS rule 12 still apply.

[Note:

CLS (consumer): Need not consume types that violate this rule.

CLS (extender): Shall use this more restrictive notion of accessibility when determining CLS compliance.

CLS (framework): Shall not expose members that violate this rule. end note]

10.7.6 Frameworks and abstract or virtual methods

CLS Frameworks shall not expose libraries that require CLS Extenders to override or implement generic

methods to use the framework. This does not imply that virtual or abstract generic methods are non-compliant;

rather, the framework shall also provide concrete implementations with appropriate default behavior.

CLS Rule 47: For each abstract or virtual generic method, there shall be a default concrete (non-abstract)
implementation.

[Note:

CLS (consumer): No impact.

CLS (extender): Need not provide syntax for overriding generic methods.

CLS (framework): Shall not expose generic methods that violate this rule without also providing appropriate

concrete implementations. end note]

74 Partition I

11 Collected Common Language Specification rules

The complete set of CLS rules are collected here for reference. Recall that these rules apply only to ―externally

visible‖ items—types that are visible outside of their own assembly and members of those types that have

public, family, or family-or-assembly accessibility. Furthermore, items can be explicitly marked as CLS-

compliant or not using the System.CLSCompliantAttribute. The CLS rules apply only to items that are

marked as CLS-compliant.

CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible outside of the

defining assembly. (§7.3)

CLS Rule 2: Members of non-CLS compliant types shall not be marked CLS-compliant. (§7.3.1)

CLS Rule 3: Boxed value types are not CLS-compliant. (§8.2.4.)

CLS Rule 4: Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0

governing the set of characters permitted to start and be included in identifiers, available on -line at

http://www.unicode.org/unicode/reports/tr15/tr15-18.html. Identifiers shall be in the canonical format
defined by Unicode Normalization Form C. For CLS purposes, two identifiers are the same if their

lowercase mappings (as specified by the Unicode locale-insensitive, one-to-one lowercase mappings)

are the same. That is, for two identifiers to be considered different under the CLS they shall differ in

more than simply their case. However, in order to override an inherited definition the CLI requires the

precise encoding of the original declaration be used. (§8.5.1)

CLS Rule 5: All names introduced in a CLS-compliant scope shall be distinct independent of kind,

except where the names are identical and resolved via overloading. That is, while the CTS allows a

single type to use the same name for a method and a field, the CLS does not. (§8.5.2)

CLS Rule 6: Fields and nested types shall be distinct by identifier comparison alone, even though the

CTS allows distinct signatures to be distinguished. Methods, properties, and events that have the same

name (by identifier comparison) shall differ by more than just the return type, except as specified in
CLS Rule 39. (§8.5.2)

CLS Rule 7: The underlying type of an enum shall be a built-in CLS integer type, the name of the field

shall be "value__", and that field shall be marked RTSpecialName. (§8.5.2)

CLS Rule 8: There are two distinct kinds of enums, indicated by the presence or absence of the

System.FlagsAttribute (see Partition IV) custom attribute. One represents named integer values; the

other represents named bit flags that can be combined to generate an unnamed value. The value of an

enum is not limited to the specified values. (§8.5.2)

CLS Rule 9: Literal static fields (see §8.6.1) of an enum shall have the type of the enum itself. (§8.5.2)

CLS Rule 10: Accessibility shall not be changed when overriding inherited methods, except when

overriding a method inherited from a different assembly with accessibility family-or-assembly. In this

case, the override shall have accessibility family. (§8.5.3.2)

CLS Rule 11: All types appearing in a signature shall be CLS-compliant. All types composing an
instantiated generic type shall be CLS-compliant. (§8.6.1)

CLS Rule 12: The visibility and accessibility of types and members shall be such that types in the

signature of any member shall be visible and accessible whenever the member itself is visible and

accessible. For example, a public method that is visible outside its assembly shall not have an

argument whose type is visible only within the assembly. The visibility and accessibility of types

composing an instantiated generic type used in the signature of any member shall be visible and

accessible whenever the member itself is visible and accessible. For example, an instantiated generic

type present in the signature of a member that is visible outside its assembly shall not have a generic

argument whose type is visible only within the assembly. (§8.6.1)

CLS Rule 13: The value of a literal static is specified through the use of field initialization metadata

(see Partition II). A CLS-compliant literal must have a value specified in field initialization metadata

 Partition I 75

that is of exactly the same type as the literal (or of the underlying type, if that literal is an enum).

(§8.6.1.2)

CLS Rule 14: Typed references are not CLS-compliant. (§8.6.1.3)

CLS Rule 15: The vararg constraint is not part of the CLS, and the only calling convention supported

by the CLS is the standard managed calling convention. (§8.6.1.5)

CLS Rule 16: Arrays shall have elements with a CLS-compliant type, and all dimensions of the array
shall have lower bounds of zero. Only the fact that an item is an array and the element type of the array

shall be required to distinguish between overloads. When overloading is based on two or more array

types the element types shall be named types. (§8.9.1)

CLS Rule 17: Unmanaged pointer types are not CLS-compliant. (§8.9.2)

CLS Rule 18: CLS-compliant interfaces shall not require the definition of non-CLS compliant methods

in order to implement them. (§8.9.4)

CLS Rule 19: CLS-compliant interfaces shall not define static methods, nor shall they define fields.

(§8.9.4)

CLS Rule 20: CLS-compliant classes, value types, and interfaces shall not require the implementation

of non-CLS-compliant members. (§8.9.6.4)

CLS Rule 21: An object constructor shall call some instance constructor of its base class before any

access occurs to inherited instance data. (This does not apply to value types, which need not have
constructors.) (§8.9.6.6)

CLS Rule 22: An object constructor shall not be called except as part of the creation of an object, and

an object shall not be initialized twice. (§8.9.6.6)

CLS Rule 23: System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a

CLS-compliant class. (§8.9.9)

CLS Rule 24: The methods that implement the getter and setter methods of a property shall be

marked SpecialName in the metadata. (§8.11.3)

CLS Rule 25: No longer used. [Note: In an earlier version of this standard, this rule stated ―The

accessibility of a property and of its accessors shall be identical.‖ The removal of this rule allows, for

example, public access to a getter while restricting access to the setter. end note] (§8.11.3)

CLS Rule 26: A property‘s accessors shall all be static, all be virtual, or all be instance. (§8.11.3)

CLS Rule 27: The type of a property shall be the return type of the getter and the type of the last

argument of the setter. The types of the parameters of the property shall be the types of the parameters

to the getter and the types of all but the final parameter of the setter. All of these types shall be CLS-

compliant, and shall not be managed pointers (i.e., shall not be passed by reference). (§8.11.3)

CLS Rule 28: Properties shall adhere to a specific naming pattern. See §10.4. The SpecialName

attribute referred to in CLS rule 24 shall be ignored in appropriate name comparisons and shall adhere

to identifier rules. A property shall have a getter method, a setter method, or both. (§8.11.3)

CLS Rule 29: The methods that implement an event shall be marked SpecialName in the metadata.

(§8.11.4)

CLS Rule 30: The accessibility of an event and of its accessors shall be identical. (§8.11.4)

CLS Rule 31: The add and remove methods for an event shall both either be present or absent.
(§8.11.4)

CLS Rule 32: The add and remove methods for an event shall each take one parameter whose type

defines the type of the event and that shall be derived from System.Delegate. (§8.11.4)

CLS Rule 33: Events shall adhere to a specific naming pattern. See §10.4. The SpecialName attribute

referred to in CLS rule 29 shall be ignored in appropriate name comparisons and shall adhere to

identifier rules. (§8.11.4)

76 Partition I

CLS Rule 34: The CLS only allows a subset of the encodings of custom attributes. The only types that

shall appear in these encodings are (see Partition IV): System.Type, System.String, System.Char,
System.Boolean, System.Byte, System.Int16, System.Int32, System.Int64, System.Single,

System.Double, and any enumeration type based on a CLS-compliant base integer type. (§9.7)

CLS Rule 35: The CLS does not allow publicly visible required modifiers (modreq, see Partition II),

but does allow optional modifiers (modopt, see Partition II) it does not understand. (§9.7)

CLS Rule 36: Global static fields and methods are not CLS-compliant. (§9.8)

CLS Rule 37: Only properties and methods can be overloaded. (§10.2)

CLS Rule 38: Properties and methods can be overloaded based only on the number and types of their

parameters, except the conversion operators named op_Implicit and op_Explicit, which can also be

overloaded based on their return type. (§10.2)

CLS Rule 39: If either op_Implicit or op_Explicit is provided, an alternate means of providing the

coercion shall be provided. (§10.3.3)

CLS Rule 40: Objects that are thrown shall be of type System.Exception or a type inheriting from it.

Nonetheless, CLS-compliant methods are not required to block the propagation of other types of

exceptions. (§10.5)

CLS Rule 41: Attributes shall be of type System.Attribute, or a type inheriting from it. (§10.6)

CLS Rule 42: Nested types shall have at least as many generic parameters as the enclosing type.

Generic parameters in a nested type correspond by position to the generic parameters in its enclosing

type. (§10.7.1)

CLS Rule 43: The name of a generic type shall encode the number of type parameters declared on the

non-nested type, or newly introduced to the type if nested, according to the rules defined above.

(§10.7.2)

CLS Rule 44: A generic type shall redeclare sufficient constraints to guarantee that any constraints on

the base type, or interfaces would be satisfied by the generic type constraints. (§10.7.3)

CLS Rule 45: Types used as constraints on generic parameters shall themselves be CLS-compliant.

(§10.7.4)

CLS Rule 46: The visibility and accessibility of members (including nested types) in an instantiated

generic type shall be considered to be scoped to the specific instantiation rather than the generic type

declaration as a whole. Assuming this, the visibility and accessibility rules of CLS rule 12 still apply.

(§10.7.5)

CLS Rule 47: For each abstract or virtual generic method, there shall be a default concrete (non -

abstract) implementation. (§10.7.6)

Error! Reference source not found. (§7.2.1)

 Partition I 77

12 Virtual Execution System

The Virtual Execution System (VES) provides an environment for executing managed code. It provides direct

support for a set of built-in data types, defines a hypothetical machine with an associated machine model and

state, a set of control flow constructs, and an exception handling model. To a large extent, the purpose of the

VES is to provide the support required to execute the CIL instruction set (see Partition III).

12.1 Supported data types

The CLI directly supports the data types shown in Table 6: Data Types Directly Supported by the CLI. That is,

these data types can be manipulated using the CIL instruction set (see Partition III).

Table 6: Data Types Directly Supported by the CLI

Data Type Description

int8 8-bit two‘s-complement signed value

unsigned int8 8-bit unsigned binary value

int16 16-bit two‘s-complement signed value

unsigned int16 16-bit unsigned binary value

int32 32-bit two‘s-complement signed value

unsigned int32 32-bit unsigned binary value

int64 64-bit two‘s-complement signed value

unsigned int64 64-bit unsigned binary value

float32 32-bit IEC 60559:1989 floating-point value

float64 64-bit IEC 60559:1989 floating-point value

native int native size two‘s-complement signed value

native unsigned int native size unsigned binary value, also unmanaged pointer

F native size floating-point number (internal to VES, not user visible)

O native size object reference to managed memory

& native size managed pointer (can point into managed memory)

The CLI model uses an evaluation stack. Instructions that copy values from memory to the evaluation stack are

―loads‖; instructions that copy values from the stack back to memory are ―stores‖. The full set of data types in

Table 6: Data Types Directly Supported by the CLI can be represented in memory. However, the CLI supports

only a subset of these types in its operations upon values stored on its evaluation stack—int32, int64, and

native int. In addition, the CLI supports an internal data type to represent floating-point values on the internal

evaluation stack. The size of the internal data type is implementation-dependent. For further information on the

treatment of floating-point values on the evaluation stack, see §12.1.3 and Partition III. Short numeric values

(int8, int16, unsigned int8, and unsigned int16) are widened when loaded and narrowed when stored. This

reflects a computer model that assumes, for numeric and object references, memory cells are 1, 2, 4, or 8 bytes
wide, but stack locations are either 4 or 8 bytes wide. User-defined value types can appear in memory locations

or on the stack and have no size limitation; the only built-in operations on them are those that compute their

address and copy them between the stack and memory.

The only CIL instructions with special support for short numeric values (rather than support for simply the 4-

or 8-byte integral values) are:

 Load and store instructions to/from memory: ldelem, ldind, stelem, stind

 Data conversion: conv , conv.ovf

Partition%20III%20CIL.doc
Partition%20III%20CIL.doc
July%20Draft/Partition%20III%20CIL.doc#Numeric Data Types

78 Partition I

 Array creation: newarr

The signed integer types (int8, int16, int32, int64, and native int) and their corresponding unsigned

integer types (unsigned int8, unsigned int16, unsigned int32, unsigned int64, and native unsigned

int) differ only in how the bits of the integer are interpreted. For those operations in which an unsigned integer

is treated differently from a signed integer (e.g., in comparisons or arithmetic with overflow) there are separate

instructions for treating an integer as unsigned (e.g., cgt.un and add.ovf.un).

This instruction set design simplifies CIL-to-native code (e.g., JIT) compilers and interpreters of CIL by

allowing them to internally track a smaller number of data types. See §12.3.2.1.

As described below, CIL instructions do not specify their operand types. Instead, the CLI keeps track of

operand types based on data flow and aided by a stack consistency requirement described below. For example,

the single add instruction will add two integers or two floats from the stack.

12.1.1 Native size: native int , native unsigned int, O and &

The native-size types (native int, native unsigned int, O, and &) are a mechanism in the CLI for deferring

the choice of a value‘s size. These data types exist as CIL types; however, the CLI maps each to the native size

for a specific processor. (For example, data type I would map to int32 on a Pentium processor, but to int64 on

an IA64 processor.) So, the choice of size is deferred until JIT compilation or runtime, when the CLI has been

initialized and the architecture is known. This implies that field and stack frame offsets are also not known at

compile time. For languages like Visual Basic, where field offsets are not computed early anyway, this is not a

hardship. In languages like C or C++, where sizes must be known when source code is compiled, a

conservative assumption that they occupy 8 bytes is sometimes acceptable (for example, when laying out

compile-time storage).

12.1.1.1 Unmanaged pointers as type native unsigned int

[Rationale: For languages like C, when compiling all the way to native code, where the size of a pointer is

known at compile time and there are no managed objects, the fixed-size unsigned integer types (unsigned

int32 or unsigned int64) can serve as pointers. However choosing pointer size at compile time has its

disadvantages. If pointers were chosen to be 32- bit quantities at compile time, the code would be restricted to

4 gigabytes of address space, even if it were run on a 64-bit machine. Moreover, a 64-bit CLI would need to

take special care so those pointers passed back to 32-bit code would always fit in 32 bits. If pointers were

chosen at compile time to be 64 bits, the code would run on a 32-bit machine, but pointers in every data

structure would be twice as large as necessary on that CLI.

For other languages, where the size of a data type need not be known at compile time, it is desirable to defer the

choice of pointer size from compile time to CLI initialization time. In that way, the same CIL code can handle

large address spaces for those applications that need them, while also being able to reap the size benefit of 32-
bit pointers for those applications that do not need a large address space. end rationale]

The native unsigned int type is used to represent unmanaged pointers with the VES. The metadata allows

unmanaged pointers to be represented in a strongly typed manner, but these types are translated into type

native unsigned int for use by the VES.

12.1.1.2 Object reference and managed pointer types: O and &

The O data type represents an object reference that is managed by the CLI. As such, the number of specified

operations is severely limited. In particular, references shall only be used on operations that indicate that they

operate on reference types (e.g., ceq and ldind.ref), or on operations whose metadata indicates that references

are allowed (e.g., call, ldsfld, and stfld).

The & data type (managed pointer) is similar to the O type, but points to the interior of an object. That is, a

managed pointer is allowed to point to a field within an object or an element within an array, rather than to

point to the ‗start‘ of object or array.

Object references (O) and managed pointers (&) can be changed during garbage collection, since the data to

which they refer might be moved.

 Partition I 79

[Note: In summary, object references, or O types, refer to the ‗outside‘ of an object, or to an object as-a-whole.

But managed pointers, or & types, refer to the interior of an object. The & types are sometimes called ―byref

types‖ in source languages, since passing a field of an object by reference is represented in the VES by using an

& type to represent the type of the parameter. end note]

In order to allow managed pointers to be used more flexibly, they are also permitted to point to areas that aren‘t

under the control of the CLI garbage collector, such as the evaluation stack, static variables, and unmanaged

memory. This allows them to be used in many of the same ways that unmanaged pointers (U) are used.

Verification restrictions guarantee that, if all code is verifiable, a managed pointer to a value on the evaluation

stack doesn‘t outlast the life of the location to which it points.

12.1.1.3 Portabi l i ty: storing pointers in memory

Several instructions, including calli, cpblk, initblk, ldind.*, and stind.*, expect an address on the top of the
stack. If this address is derived from a pointer stored in memory, there is an important portability consideration.

1. Code that stores pointers in a native-sized integer or pointer location (types native int, O,

native unsigned int, or &) is always fully portable.

2. Code that stores pointers in an 8-byte integer (type int64 or unsigned int64) can be portable.

But this requires that a conv.ovf.un instruction be used to convert the pointer from its memory
format before its use as a pointer. This might cause a runtime exception if run on a 32-bit

machine.

3. Code that uses any smaller integer type to store a pointer in memory (int8, unsigned int8,

int16, unsigned int16, int32, unsigned int32) is never portable, even though the use of an

unsigned int32 or int32 will work correctly on a 32-bit machine.

12.1.2 Handling of short integer data types

The CLI defines an evaluation stack that contains either 4-byte or 8-byte integers; however, it also has a

memory model that encompasses 1- and 2-byte integers. To be more precise, the following rules are part of the

CLI model:

 Loading from 1- or 2-byte locations (arguments, locals, fields, statics, pointers) expands to 4-byte

values. For locations with a known type (e.g., local variables) the type being accessed determines

whether the load sign-extends (signed locations) or zero-extends (unsigned locations). For

pointer dereference (ldind.*), the instruction itself identifies the type of the location (e.g.,

ldind.u1 indicates an unsigned location, while ldind.i1 indicates a signed location).

 Storing into a 1- or 2-byte location truncates to fit and will not generate an overflow error.

Specific instructions (conv.ovf.*) can be used to test for overflow before storing.

 Calling a method assigns values from the evaluation stack to the arguments for the method, hence

it truncates just as any other store would when the argument is larger than the parameter.

 Returning from a method assigns a value to an invisible return variable, so it also truncates as a

store would when the type of the value returned is larger than the return type of the method.

Since the value of this return variable is then placed on the evaluation stack, it is then sign -

extended or zero-extended as would any other load. Note that this truncation followed by

extending is not identical to simply leaving the computed value unchanged.

It is the responsibility of any translator from CIL to native machine instructions to make sure that these rules

are faithfully modeled through the native conventions of the target machine. The CLI does not specify, for

example, whether truncation of short integer arguments occurs at the call site or in the target method.

12.1.3 Handling of f loating-point data types

Floating-point calculations shall be handled as described in IEC 60559:1989. This standard describes encoding

of floating-point numbers, definitions of the basic operations and conversion, rounding control, and exception

handling.

80 Partition I

The standard defines special values, NaN, (not a number), +infinity, and –infinity. These values are returned

on overflow conditions. A general principle is that operations that have a value in the limit return an

appropriate infinity while those that have no limiting value return NaN (see the standard for details).

[Note: The following examples show the most commonly encountered cases.

X rem 0 = NaN

0 * +infinity = 0 * -infinity = NaN

(X / 0) = +infinity, if X > 0

 NaN, if X = 0

 infinity, if X < 0

NaN op X = X op NaN = NaN for all operations

(+infinity) + (+infinity) = (+infinity)

X / (+infinity) = 0

X mod (-infinity) = -X

(+infinity) - (+infinity) = NaN

This standard does not specify the behavior of arithmetic operations on denormalized floating-point numbers,

nor does it specify when or whether such representations should be created. This is in keeping with IEC

60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that are

created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this behavior

is deliberately left implementation-specific. end note]

For purposes of comparison, infinite values act like a number of the correct sign, but with a very large

magnitude when compared with finite values. For comparison purposes, NaN is ‗unordered‘ (see clt, clt.un).

While the IEC 60559:1989 standard also allows for exceptions to be thrown under unusual conditions (such as

overflow and invalid operand), the CLI does not generate these exceptions. Instead, the CLI uses the NaN,

+infinity, and –infinity return values and provides the instruction ckfinite to allow users to generate an
exception if a result is NaN, +infinity, or –infinity.

The rounding mode defined in IEC 60559:1989 shall be set by the CLI to ―round to the nearest number,‖ and

neither the CIL nor the class library provide a mechanism for modifying this setting. Conforming

implementations of the CLI need not be resilient to external interference with this setting. That is, they need not

restore the mode prior to performing floating-point operations, but rather, can rely on it having been set as part
of their initialization.

For conversion to integers, the default operation supplied by the CIL is ―truncate towards zero‖. Class libraries

are supplied to allow floating-point numbers to be converted to integers using any of the other three traditional

operations (round to nearest integer, floor (truncate towards –infinity), ceiling (truncate towards +infinity)).

Storage locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed size. The

supported storage sizes are float32 and float64. Everywhere else (on the evaluation stack, as arguments, as

return types, and as local variables) floating-point numbers are represented using an internal floating-point

type. In each such instance, the nominal type of the variable or expression is either float32or float64, but its

value can be represented internally with additional range and/or precision. The size of the internal floating-

point representation is implementation-dependent, can vary, and shall have precision at least as great as that of

the variable or expression being represented. An implicit widening conversion to the internal representation

from float32 or float64 is performed when those types are loaded from storage. The internal representation is
typically the native size for the hardware, or as required for efficient implementation of an operation. The

internal representation shall have the following characteristics:

 The internal representation shall have precision and range greater than or equal to the nominal

type.

 Conversions to and from the internal representation shall preserve value.

[Note: This implies that an implicit widening conversion from float32 (or float64) to the internal

representation, followed by an explicit conversion from the internal representation to float32 (or float64),

will result in a value that is identical to the original float32 (or float64) value. end note]

[Rationale: This design allows the CLI to choose a platform-specific high-performance representation for

floating-point numbers until they are placed in storage locations. For example, it might be able to leave

floating-point variables in hardware registers that provide more precision than a user has requested. At the

 Partition I 81

same time, CIL generators can force operations to respect language-specific rules for representations through

the use of conversion instructions. end rationale]

When a floating-point value whose internal representation has greater range and/or precision than its nominal

type is put in a storage location, it is automatically coerced to the type of the storage location. This can involve

a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, the value

might be retained in the internal representation for future use, if it is reloaded from the storage location without
having been modified. It is the responsibility of the compiler to ensure that the retained value is still valid at

the time of a subsequent load, taking into account the effects of aliasing and other execution threads (see

memory model (§12.6)). This freedom to carry extra precision is not permitted, however, following the

execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal representation must be
exactly representable in the associated type.

[Note: To detect values that cannot be converted to a particular storage type, a conversion instruction (conv.r4,

or conv.r8) can be used, followed by a check for a non-finite value using ckfinite. Underflow can be detected
by converting to a particular storage type, comparing to zero before and after the conversion. end note]

[Note: The use of an internal representation that is wider than float32 or float64 can cause differences in

computational results when a developer makes seemingly unrelated modifications to their code, the result of

which can be that a value is spilled from the internal representation (e.g., in a register) to a location on the

stack. end note]

12.1.4 CIL instr uctions and numeric types

This subclause contains only informative text

Most CIL instructions that deal with numbers take their operands from the evaluation stack (see §12.3.2.1), and

these inputs have an associated type that is known to the VES. As a result, a single operation like add can have
inputs of any numeric data type, although not all instructions can deal with all combinations of operand types.

Binary operations other than addition and subtraction require that both operands be of the same type. Addition

and subtraction allow an integer to be added to or subtracted from a managed pointer (types & and O). Details

are specified in Partition II.

Instructions fall into the following categories:

Numeric: These instructions deal with both integers and floating point numbers, and consider integers to be

signed. Simple arithmetic, conditional branch, and comparison instructions fit in this category.

Integer: These instructions deal only with integers. Bit operations and unsigned integer division/remainder fit

in this category.

Floating-point: These instructions deal only with floating-point numbers.

Specific: These instructions deal with integer and/or floating-point numbers, but have variants that deal

specially with different sizes and unsigned integers. Integer operations with overflow detection, data conversion

instructions, and operations that transfer data between the evaluation stack and other parts of memory

(see §12.3.2) fit into this category.

Unsigned/unordered: There are special comparison and branch instructions that treat integers as unsigned and

consider unordered floating-point numbers specially (as in ―branch if greater than or unordered‖):

Load constant: The load constant (ldc.*) instructions are used to load constants of type int32, int64,

float32, or float64. Native size constants (type native int) shall be created by conversion from int32

(conversion from int64 would not be portable) using conv.i or conv.u.

Table 7: CIL Instructions by Numeric Category shows the CIL instructions that deal with numeric values,
along with the category to which they belong. Instructions that end in ―.*‖ indicate all variants of the

instruction (based on size of data and whether the data is treated as signed or unsigned). The notation ―[.s]‖

means both the long and short forms of these instructions.

Table 7: CIL Instructions by Numeric Category

Partition%20II%20Metadata.doc#Pointers

82 Partition I

add Numeric div Numeric

add.ovf.* Specific div.un Integer

and Integer ldc.* Load constant

beq[.s] Numeric ldelem. * Specific

bge[.s] Numeric ldind.* Specific

bge.un[.s] Unsigned/unordered mul Numeric

bgt[.s] Numeric mul.ovf.* Specific

bgt.un[.s] Unsigned/unordered neg Integer

ble[.s] Numeric newarr.* Specific

ble.un[.s] Unsigned/unordered not Integer

blt[.s] Numeric or Integer

blt.un[.s] Unsigned/unordered rem Numeric

bne.un[.s] Unsigned/unordered rem.un Integer

ceq Numeric shl Integer

cgt Numeric shr Integer

cgt.un Unsigned/unordered shr.un Specific

ckfinite Floating point stelem.* Specific

clt Numeric stind.* Specific

clt.un Unsigned/unordered sub Numeric

conv.* Specific sub.ovf.* Specific

conv.ovf.* Specific xor Integer

End informative text

12.1.5 CIL instr uctions and pointer types

This subclause contains only informative text

[Rationale: Some implementations of the CLI will require the ability to track pointers to objects and to collect

objects that are no longer reachable (thus providing memory management by ―garbage collection‖). This

process moves objects in order to reduce the working set and thus will modify all pointers to those objects as

they move. For this to work correctly, pointers to objects can only be used in certain ways. The O (object

reference) and & (managed pointer) data types are the formalization of these restrictions. end rationale]

The use of object references is tightly restricted in the CIL. They are used almost exclusively with the ―virtual

object system‖ instructions, which are specifically designed to deal with objects. In addition, a few of the base

instructions of the CIL handle object references. In particular, object references can be:

1. Loaded onto the evaluation stack to be passed as arguments to methods (ldloc, ldarg), and stored

from the stack to their home locations (stloc, starg)

2. Duplicated or popped off the evaluation stack (dup, pop)

3. Tested for equality with one another, but not other data types (beq, beq.s, bne, bne.s, ceq)

4. Loaded-from / stored-into unmanaged memory, in type unmanaged code only (ldind.ref,
stind.ref)

 Partition I 83

5. Created as a null reference (ldnull)

6. Returned as a value (ret)

Managed pointers have several additional base operations.

1. Addition and subtraction of integers, in units of bytes, returning a managed pointer (add,

add.ovf.u, sub, sub.ovf.u)

2. Subtraction of two managed pointers to elements of the same array, returning the number of bytes

between them (sub, sub.ovf.u)

3. Unsigned comparison and conditional branches based on two managed pointers (bge.un,

bge.un.s, bgt.un, bgt.un.s, ble.un, ble.un.s, blt.un, blt.un.s, cgt.un, clt.un)

Arithmetic operations upon managed pointers are intended only for use on pointers to elements of the same

array. If other uses of arithmetic on managed pointers are made, the behavior is unspecified.

[Rationale: Since the memory manager runs asynchronously with respect to programs and updates managed

pointers, both the distance between distinct objects and their relative position can change. end rationale]

End informative text

12.1.6 Aggregate data

This subclause contains only informative text

The CLI supports aggregate data, that is, data items that have sub-components (arrays, structures, or object

instances) but are passed by copying the value. The sub-components can include references to managed

memory. Aggregate data is represented using a value type, which can be instantiated in two different ways:

 Boxed: as an object, carrying full type information at runtime, and typically allocated on the heap

by the CLI memory manager.

 Unboxed: as a ―value type instance‖ that does not carry type information at runtime and that is

never allocated directly on the heap. It can be part of a larger structure on the heap – a field of a

class, a field of a boxed value type, or an element of an array. Or it can be in the local variables

or incoming arguments array (see §12.3.2). Or it can be allocated as a static variable or static

member of a class or a static member of another value type.

Because value type instances, specified as method arguments, are copied on method call, they do not have
―identity‖ in the sense that objects (boxed instances of classes) have.

12.1.6.1 Homes for val ues

The home of a data value is where it is stored for possible reuse. The CLI directly supports the following home

locations:

 An incoming argument

 A local variable of a method

 An instance field of an object or value type

 A static field of a class, interface, or module

 An array element

For each home location, there is a means to compute (at runtime) the address of the home location and a means

to determine (at JIT compile time) the type of a home location. These are summarized in Table 8: Address and
Type of Home Locations.

Table 8: Address and Type of Home Locations

84 Partition I

Type of Home Runtime Address Computation JIT compile time Type

Determination

Argument ldarga for by-value arguments or ldarg for
by-reference (byref) arguments

Method signature

Local Variable ldloca for by-value locals or ldloc for by-
reference (byref) byref locals

Locals signature in method

header

Field ldflda Type of field in the class,

interface, or module

Static ldsflda Type of field in the class,

interface, or module

Array Element ldelema for single-dimensional zero-based
arrays or call the instance method Address

Element type of array

In addition to homes, built-in values can exist in two additional ways (i.e., without homes):

1. as constant values (typically embedded in the CIL instruction stream using ldc.* instructions)

2. as an intermediate value on the evaluation stack, when returned by a method or CIL instruction.

12.1.6.2 Operations on val ue type instances

Value type instances can be created, passed as arguments, returned as values, and stored into and extracted

from locals, fields, and elements of arrays (i.e., copied). Like classes, value types can have both static and non-

static members (methods and fields). But, because they carry no type information at runtime, value type

instances are not substitutable for items of type System.Object; in this respect, they act like the built-in types

int32, int64, and so forth. There are two operations, box and unbox, that convert between value type instances
and objects.

12.1.6.2.1 Init ial iz ing instances of val ue types

There are three options for initializing the home of a value type instance. You can zero it by loading the address

of the home (see Table 8: Address and Type of Home Locations) and using the initobj instruction (for local
variables this is also accomplished by setting the localsinit bit in the method‘s header). You can call a user-

defined constructor by loading the address of the home (see Table 8: Address and Type of Home Locations)

and then calling the constructor directly. Or you can copy an existing instance into the home, as described

in §12.1.6.2.2.

12.1.6.2.2 Loading and storing instances of val ue types

There are two ways to load a value type onto the evaluation stack:

 Directly load the value from a home that has the appropriate type, using an ldarg, ldloc, ldfld, or

ldsfld instruction.

 Compute the address of the value type, then use an ldobj instruction.

Similarly, there are two ways to store a value type from the evaluation stack:

 Directly store the value into a home of the appropriate type, using a starg, stloc, stfld, or stsfld

instruction.

 Compute the address of the value type, then use a stobj instruction.

12.1.6.2.3 Passing and returning val ue types

Value types are treated just as any other value would be treated:

 To pass a value type by value, simply load it onto the stack as you would any other argument:

use ldloc, ldarg, etc., or call a method that returns a value type. To access a value type parameter

that has been passed by value use the ldarga instruction to compute its address or the ldarg
instruction to load the value onto the evaluation stack.

 Partition I 85

 To pass a value type by reference, load the address of the value type as you normally would (see

Table 8: Address and Type of Home Locations). To access a value type parameter that has been

passed by reference use the ldarg instruction to load the address of the value type and then the

ldobj instruction to load the value type onto the evaluation stack.

 To return a value type, just load the value onto an otherwise empty evaluation stack and then

issue a ret instruction.

12.1.6.2.4 Call ing methods

Static methods on value types are handled no differently from static methods on an ordinary class: use a call
instruction with a metadata token specifying the value type as the class of the method. Non-static methods (i.e.,
instance and virtual methods) are supported on value types, but they are given special treatment. A non-static

method on a reference type (rather than a value type) expects a this pointer that is an instance of that class. This

makes sense for reference types, since they have identity and the this pointer represents that identity. Value

types, however, have identity only when boxed. To address this issue, the this pointer on a non-static method of

a value type is a byref parameter of the value type rather than an ordinary by-value parameter.

A non-static method on a value type can be called in the following ways:

 For unboxed instances of a value type, the exact type is known statically. The call instruction can

be used to invoke the function, passing as the first parameter (the this pointer) the address of the

instance. The metadata token used with the call instruction shall specify the value type itself as
the class of the method.

 Given a boxed instance of a value type, there are three cases to consider:

o Instance or virtual methods introduced on the value type itself: unbox the instance and call

the method directly using the value type as the class of the method.

o Virtual methods inherited from a base class: use the callvirt instruction and specify the

method on the System.Object, System.ValueType or System.Enum class as appropriate.

o Virtual methods on interfaces implemented by the value type: use the callvirt instruction

and specify the method on the interface type.

12.1.6.2.5 Boxing and unboxing

Boxing and unboxing are conceptually equivalent to (and can be seen in higher-level languages as) casting

between a value type instance and System.Object. Because they change data representations, however, boxing

and unboxing are like the widening and narrowing of various sizes of integers (the conv and conv.ovf
instructions) rather than the casting of reference types (the isinst and castclass instructions). The box

instruction is a widening (always type-safe) operation that converts a value type instance to System.Object by

making a copy of the instance and embedding it in a newly allocated object. unbox is a narrowing (runtime

exception can be generated) operation that converts a System.Object (whose exact type is a value type) to a

value type instance. This is done by computing the address of the embedded value type instance without

making a copy of the instance.

12.1.6.2.6 castclass and isinst on val ue types

Casting to and from value type instances isn‘t permitted (the equivalent operations are box and unbox). When

boxed, however, it is possible to use the isinst instruction to see whether a value of type System.Object is the
boxed representation of a particular class.

12.1.6.3 Opaque c lasses

Some languages provide multi-byte data structures whose contents are manipulated directly by address

arithmetic and indirection operations. To support this feature, the CLI allows value types to be created with a

specified size but no information about their data members. Instances of these ―opaque classes‖ are handled in

precisely the same way as instances of any other class, but the ldfld, stfld, ldflda, ldsfld, and stsfld instructions
shall not be used to access their contents.

End informative text

86 Partition I

12.2 Module information

Partition II provides details of the CLI PE file format. The CLI relies on the following information about each

method defined in a PE file:

 The instructions composing the method body, including all exception handlers.

 The signature of the method, which specifies the return type and the number, order, parameter

passing convention, and built-in data type of each of the arguments. It also specifies the native

calling convention (this does not affect the CIL virtual calling convention, just the native code).

 The exception handling array. This array holds information delineating the ranges over which

exceptions are filtered and caught. See Partition II and §12.4.2.

 The size of the evaluation stack that the method will require.

 The size of the locals array that the method will require.

 A ―localsinit flag‖ that indicates whether the local variables and memory pool (§12.3.2.4) should

be initialized by the CLI (see also localloc §III.3.47).

 Type of each local variable in the form of a signature of the local variable array (called the

―locals signature‖).

In addition, the file format is capable of indicating the degree of portability of the file. There is one kind of

restriction that can be described:

 Restriction to a specific 32-bit size for integers.

By stating which restrictions are placed on executing the code, the CLI class loader can prevent non-portable

code from running on an architecture that it cannot support.

12.3 Machine s tate

One of the design goals of the CLI is to hide the details of a method call frame from the CIL code generator.

This allows the CLI (and not the CIL code generator) to choose the most efficient calling convention and stack

layout. To achieve this abstraction, the call frame is integrated into the CLI. The machine state definitions

below reflect these design choices, where machine state consists primarily of global state and method state.

12.3.1 The global state

The CLI manages multiple concurrent threads of control (not necessarily the same as the threads provided by a

host operating system), multiple managed heaps, and a shared memory address space.

[Note: A thread of control can be thought of, somewhat simplistically, as a singly linked list of method states,

where a new state is created and linked back to the current state by a method call instruction – the traditional

model of a stack-based calling sequence. Notice that this model of the thread of control doesn‘t correctly

explain the operation of tail., jmp, or throw instructions. end note]

Figure 2: Machine State Model illustrates the machine state model, which includes threads of control, method

states, and multiple heaps in a shared address space. Method state, shown separately in Figure 3: Method State,

is an abstraction of the stack frame. Arguments and local variables are part of the method state, but they can

contain Object References that refer to data stored in any of the managed heaps. In general, arguments and

local variables are only visible to the executing thread, while instance and static fields and array elements can

be visible to multiple threads, and modification of such values is considered a side-effect.

Partition%20II%20Metadata.doc#FileFormat
Partition%20II%20Metadata.doc#ExceptionHandling
Partition%20III%20CIL.doc#Instrlocalloc

 Partition I 87

Figure 2: Machine State Model

Figure 3: Method State

12.3.2 Method state

Method state describes the environment within which a method executes. (In conventional compiler

terminology, it corresponds to a superset of the information captured in the ―invocation stack frame‖). The CLI

method state consists of the following items:

 An instruction pointer (IP) – This points to the next CIL instruction to be executed by the CLI in

the present method.

88 Partition I

 An evaluation stack – The stack is empty upon method entry. Its contents are entirely local to the

method and are preserved across call instructions (that‘s to say, if this method calls another, once

that other method returns, our evaluation stack contents are ―still there‖). The evaluat ion stack is

not addressable. At all times it is possible to deduce which one of a reduced set of types is stored

in any stack location at a specific point in the CIL instruction stream (see §12.3.2.1).

 A local variable array (starting at index 0) – Values of local variables are preserved across calls
(in the same sense as for the evaluation stack). A local variable can hold any data type.

However, a particular slot shall be used in a type consistent way (where the type system is the one

described in §12.3.2.1). Local variables are initialized to 0 before entry if the localsinit flag for

the method is set (see §12.2). The address of an individual local variable can be taken using the

ldloca instruction.

 An argument array – The values of the current method‘s incoming arguments (starting at

index 0). These can be read and written by logical index. The address of an argument can be

taken using the ldarga instruction. The address of an argument is also implicitly taken by the

arglist instruction for use in conjunction with type-safe iteration through variable-length
argument lists.

 A methodInfo handle – This contains read-only information about the method. In particular it

holds the signature of the method, the types of its local variables, and data about its exception

handlers.

 A local memory pool – The CLI includes instructions for dynamic allocation of objects from the

local memory pool (localloc). Memory allocated in the local memory pool is addressable. The
memory allocated in the local memory pool is reclaimed upon method context termination.

 A return state handle – This handle is used to restore the method state on return from the current

method. Typically, this would be the state of the method‘s caller. This corresponds to what in

conventional compiler terminology would be the dynamic link.

 A security descriptor – This descriptor is not directly accessible to managed code but is used by

the CLI security system to record security overrides (assert, permit-only, and deny).

The four areas of the method state—incoming arguments array, local variables array, local memory pool and

evaluation stack—are specified as if logically distinct areas. A conforming implementation of the CLI can map

these areas into one contiguous array of memory, held as a conventional stack frame on the underlying target

architecture, or use any other equivalent representation technique.

12.3.2.1 The evaluati on stack

Associated with each method state is an evaluation stack. Most CLI instructions retrieve their arguments from

the evaluation stack and place their return values on the stack. Arguments to other methods and their return

values are also placed on the evaluation stack. When a procedure call is made the arguments to the called

methods become the incoming arguments array (see §12.3.2.2) to the method. This can require a memory copy,

or simply a sharing of these two areas by the two methods.

The evaluation stack is made up of slots that can hold any data type, including an unboxed instance of a value

type. The type state of the stack (the stack depth and types of each element on the stack) at any given point in a

program shall be identical for all possible control flow paths. For example, a program that loops an unknown

number of times and pushes a new element on the stack at each iteration would be prohibited.

While the CLI, in general, supports the full set of types described in §12.1, the CLI treats the evaluation stack

in a special way. While some JIT compilers might track the types on the stack in more detail, the CLI only

requires that values be one of:

 int64, an 8-byte signed integer

 int32, a 4-byte signed integer

 native int, a signed integer of either 4 or 8 bytes, whichever is more convenient for the target

architecture

 Partition I 89

 F, a floating point value (float32, float64, or other representation supported by the underlying

hardware)

 &, a managed pointer

 O, an object reference

 *, a ―transient pointer,‖ which can be used only within the body of a single method, that points to

a value known to be in unmanaged memory (see the CIL Instruction Set specification for more
details. * types are generated internally within the CLI; they are not created by the user).

 A user-defined value type

The other types are synthesized through a combination of techniques:

 Shorter integer types in other memory locations are zero-extended or sign-extended when loaded

onto the evaluation stack; these values are truncated when stored back to their home location.

 Special instructions perform numeric conversions, with or without overflow detection, between

different sizes and between signed and unsigned integers.

 Special instructions treat an integer on the stack as though it were unsigned.

 Instructions that create pointers which are guaranteed not to point into the memory manager‘s

heaps (e.g., ldloca, ldarga, and ldsflda) produce transient pointers (type *) that can be used

wherever a managed pointer (type &) or unmanaged pointer (type native unsigned int) is

expected.

 When a method is called, an unmanaged pointer (type native unsigned int or *) is permitted to

match a parameter that requires a managed pointer (type &). The reverse, however, is not

permitted since it would allow a managed pointer to be ―lost‖ by the memory manager.

 A managed pointer (type &) can be explicitly converted to an unmanaged pointer (type native

unsigned int), although this is not verifiable and might produce a runtime exception.

12.3.2.2 Local variables and arguments

Part of each method state is an array that holds local variables and an array that holds arguments. Like the

evaluation stack, each element of these arrays can hold any single data type or an instance of a value type. Both

arrays start at 0 (that is, the first argument or local variable is numbered 0). The address of a local variable can

be computed using the ldloca instruction, and the address of an argument using the ldarga instruction.

Associated with each method is metadata that specifies:

 whether the local variables and memory pool memory will be initialized when the method is

entered.

 the type of each argument and the length of the argument array (but see below for variable
argument lists).

 the type of each local variable and the length of the local variable array.

The CLI inserts padding as appropriate for the target architecture. That is, on some 64-bit architectures all local

variables can be 64-bit aligned, while on others they can be 8-, 16-, or 32-bit aligned. The CIL generator shall

make no assumptions about the offsets of local variables within the array. In fact, the CLI is free to reorder the

elements in the local variable array, and different implementations might choose to order them in different

ways.

12.3.2.3 Variable argument l ists

The CLI works in conjunction with the class library to implement methods that accept argument lists of

unknown length and type (―vararg methods‖). Access to these arguments is through a type-safe iterator in the

library, called System.ArgIterator (see Partition IV).

Partition%20IV%20Library.doc

90 Partition I

The CIL includes one instruction provided specifically to support the argument iterator, arglist. This instruction
shall only be used within a method that is declared to take a variable number of arguments. It returns a value

that is needed by the constructor for a System.ArgIterator object. Basically, the value created by arglist
provides access both to the address of the argument list that was passed to the method and a runtime data

structure that specifies the number and type of the arguments that were provided. This is sufficient for the class

library to implement the user visible iteration mechanism.

From the CLI point of view, vararg methods have an array of arguments like other methods. But only the initial

portion of the array has a fixed set of types and only these can be accessed directly using the ldarg, starg, and

ldarga instructions. The argument iterator allows access to both this initial segment and the remaining entries
in the array.

12.3.2.4 Local memory pool

Part of each method state is a local memory pool. Memory can be explicitly allocated from the local memory

pool using the localloc instruction. All memory in the local memory pool is reclaimed on method exit, and that
is the only way local memory pool memory is reclaimed (there is no instruction provided to free local memory

that was allocated during this method invocation). The local memory pool is used to allocate objects whose

type or size is not known at compile time and which the programmer does not wish to allocate in the managed

heap.

Because the local memory pool cannot be shrunk during the lifetime of the method, a language implementation

cannot use the local memory pool for general-purpose memory allocation.

12.4 Control flow

The CIL instruction set provides a rich set of instructions to alter the normal flow of control from one CIL

instruction to the next.

 Conditional and Unconditional Branch instructions for use within a method, provided the

transfer doesn‘t cross a protected region boundary (see §12.4.2).

 Method call instructions to compute new arguments, transfer them and control to a known or

computed destination method (see §12.4.1).

 Tail call prefix to indicate that a method should relinquish its stack frame before executing a

method call (see §12.4.1).

 Return from a method, returning a value if necessary.

 Method jump instructions to transfer the current method‘s arguments to a known or computed

destination method (see §12.4.1).

 Exception-related instructions (see §12.4.2). These include instructions to initiate an exception,

transfer control out of a protected region, and end a filter, catch clause, or finally clause.

While the CLI supports control transfers within a method, there are several restrictions that shall be observed:

1. Control transfer is never permitted to enter a catch handler or finally clause (see §12.4.2) except

through the exception handling mechanism.

2. Control transfer out of a protected region is covered in §12.4.2.

3. The evaluation stack shall be empty after the return value is popped by a ret instruction.

4. Regardless of the control flow that allows execution to arrive there, each slot on the stack shall

have the same data type at any given point within the method body.

5. In order for the JIT compilers to efficiently track the data types stored on the stack, the stack shall

normally be empty at the instruction following an unconditional control transfer instruction (br,
br.s, ret, jmp, throw, endfilter, endfault, or endfinally). The stack shall be non-empty at such
an instruction only if at some earlier location within the method there has been a forward branch

to that instruction.

 Partition I 91

6. Control is not permitted to simply ―fall through‖ the end of a method. All paths shall terminate

with one of these instructions: ret, throw, jmp, or (tail. followed by call, calli, or callvirt).

12.4.1 Method cal ls

Instructions emitted by the CIL code generator contain sufficient information for different implementations of

the CLI to use different native calling conventions. All method calls initialize the method state areas

(see §12.3.2) as follows:

1. The incoming arguments array is set by the caller to the desired values.

2. The local variables array always has null for object types and for fields within value types that
hold objects. In addition, if the localsinit flag is set in the method header, then the local

variables array is initialized to 0 for all integer types and to 0.0 for all floating-point types. Value

types are not initialized by the CLI, but verified code will supply a call to an initializer as part of

the method‘s entry point code.

3. The evaluation stack is empty.

12.4.1.1 Call s i te descriptors

Call sites specify additional information that enables an interpreter or JIT compiler to synthesize any native

calling convention. All CIL calling instructions (call, calli, and callvirt) include a description of the call site.

This description can take one of two forms. The simpler form, used with the calli instruction, is a ―call site
description‖ (represented as a metadata token for a stand-alone call signature) that provides:

 The number of arguments being passed.

 The data type of each argument.

 The order in which they have been placed on the call stack.

 The native calling convention to be used

The more complicated form, used for the call and callvirt instructions, is a ―method reference‖ (a metadata
methodref token) that augments the call site description with an identifier for the target of the call instruction.

12.4.1.2 Call ing instructions

The CIL has three call instructions that are used to transfer argument values to a destination method. Under
normal circumstances, the called method will terminate and return control to the calling method.

 call is designed to be used when the destination address is fixed at the time the CIL is l inked. In

this case, a method reference is placed directly in the instruction. This is comparable to a direct

call to a static function in C. It can be used to call static or instance methods or the (statically

known) base class method within an instance method body.

 calli is designed for use when the destination address is calculated at run time. A method pointer

is passed on the stack and the instruction contains only the call site description.

 callvirt, part of the CIL common type system instruction set, uses the class of an object (known

only at runtime) to determine the method to be called. The instruction includes a method

reference, but the particular method isn‘t computed until the call actually occurs. This allows an

instance of a derived class to be supplied and the method appropriate for that derived class to be

invoked. The callvirt instruction is used both for instance methods and methods on interfaces.

For further details, see the CTS specification and the CIL instruction set specification in
Partition III.

In addition, each of these instructions can be immediately preceded by a tail. instruction prefix. This specifies

that the calling method terminates with this method call (and returns whatever value is returned by the called

method). The tail. prefix instructs the JIT compiler to discard the caller‘s method state prior to making the

call (if the call is from untrusted code to trusted code the frame cannot be fully discarded for security reasons).

When the called method executes a ret instruction, control returns not to the calling method but rather to

wherever that method would itself have returned (typically, return to caller‘s caller). Notice that the tail.

92 Partition I

instruction shortens the lifetime of the caller‘s frame so it is unsafe to pass managed pointers (type &) as

arguments.

Finally, there are two instructions that indicate an optimization of the tail. case:

 jmp is followed by a methodref or methoddef token and indicates that the current method‘s state

should be discarded, its arguments should be transferred intact to the destination method, and

control should be transferred to the destination. The signature of the calling method shall exactly
match the signature of the destination method.

12.4.1.3 Computed destinati ons

The destination of a method call can be either encoded directly in the CIL instruction stream (the call and jmp

instructions) or computed (the callvirt, and calli instructions). The destination address for a callvirt instruction
is automatically computed by the CLI based on the method token and the value of the first argument (the this

pointer). The method token shall refer to a virtual method on a class that is a direct ancestor of the class of the

first argument. The CLI computes the correct destination by locating the nearest ancestor of the first argument‘s

class that supplies an implementation of the desired method.

[Note: The implementation can be assumed to be more efficient than the linear search implied here. end note]

For the calli instruction the CIL code is responsible for computing a destination address and pushing it on the

stack. This is typically done through the use of an ldftn or ldvirtfn instruction at some earlier time. The ldftn
instruction includes a metadata token in the CIL stream that specifies a method, and the instruction pushes the

address of that method. The ldvirtfn instruction takes a metadata token for a virtual method in the CIL stream

and an object on the stack. It performs the same computation described above for the callvirt instruction but
pushes the resulting destination on the stack rather than calling the method.

The calli instruction includes a call site description that includes information about the native calling
convention that should be used to invoke the method. Correct CIL code shall specify a calling convention in the

calli instruction that matches the calling convention for the method that is being called.

12.4.1.4 Virtual cal l ing conventi on

The CIL provides a ―virtual calling convention‖ that is converted by the JIT compiler into a native calling

convention. The JIT compiler determines the optimal native calling convention for the target architecture. This

allows the native calling convention to differ from machine to machine, including details of register usage,

local variable homes, copying conventions for large call-by-value objects (as well as deciding, based on the

target machine, what is considered ―large‖). This also allows the JIT compiler to reorder the values placed on

the CIL virtual stack to match the location and order of arguments passed in the native calling convention.

The CLI uses a single uniform calling convention for all method calls. It is the responsibility of the

implementation to convert this into the appropriate native calling convention. The contents of the stack at the

time of a call instruction (call, calli, or callvirt any of which can be preceded by tail.) are as follows:

1. If the method being called is an instance method (class or interface) or a virtual method, the this

pointer is the first object on the stack at the time of the call instruction. For methods on objects

(including boxed value types), the this pointer is of type O (object reference). For methods on

value types, the this pointer is provided as a byref parameter; that is, the value is a pointer

(managed, &, or unmanaged, * or native int) to the instance.

2. The remaining arguments appear on the stack in left-to-right order (that is, the lexically leftmost

argument is the lowest on the stack, immediately following the this pointer, if any). §12.4.1.5

describes how each of the three parameter passing conventions (by-value, byref, and typed

reference) should be implemented.

12.4.1.5 Parameter passing

The CLI supports three kinds of parameter passing, all indicated in metadata as part of the signature of the

method. Each parameter to a method has its own passing convention (e.g., the first parameter can be passed by-

value while all others are passed byref). Parameters shall be passed in one of the following ways (see detailed

descriptions below):

 Partition I 93

 By-value – where the value of an object is passed from the caller to the callee.

 By-reference – where the address of the data is passed from the caller to the callee, and the type

of the parameter is therefore a managed or unmanaged pointer.

 Typed reference – where a runtime representation of the data type is passed along with the

address of the data, and the type of the parameter is therefore one specially supplied for this

purpose.

It is the responsibility of the CIL generator to follow these conventions. Verification checks that the types of

parameters match the types of values passed, but is otherwise unaware of the details of the calling convention.

12.4.1.5.1 By-value parameters

For built-in types (integers, floats, etc.) the caller copies the value onto the stack before the call. For objects the

object reference (type O) is pushed on the stack. For managed pointers (type &) or unmanaged pointers (type

native unsigned int), the address is passed from the caller to the callee. For value types, see the protocol
in §12.1.6.2.

12.4.1.5.2 By-reference parameters

By-reference parameters (identified by the presence of a byref constraint) are the equivalent of C++ reference

parameters or PASCAL var parameters: instead of passing as an argument the value of a variable, field, or

array element, its address is passed instead; and any assignment to the corresponding parameter actually
modifies the corresponding caller‘s variable, field, or array element. Much of this work is done by the higher-

level language, which hides from the user the need to compute addresses to pass a value and the use of

indirection to reference or update values.

Passing a value by reference requires that the value have a home (see §12.1.6.1) and it is the address of this

home that is passed. Constants, and intermediate values on the evaluation stack, cannot be passed as byref

parameters because they have no home.

The CLI provides instructions to support byref parameters:

 calculate addresses of home locations (see Table 8: Address and Type of Home Locations)

 load and store built-in data types through these address pointers (ldind.*, stind.*, ldfld, etc.)

 copy value types (ldobj and cpobj).

Some addresses (e.g., local variables and arguments) have lifetimes tied to that method invocation. These shall
not be referenced outside their lifetimes, and so they should not be stored in locations that last beyond their

lifetime. The CIL does not (and cannot) enforce this restriction, so the CIL generator shall enforce this

restriction or the resulting CIL will not work correctly. For code to be verifiable (see §8.8) byref parameters

shall only be passed to other methods or referenced via the appropriate stind or ldind instructions.

12.4.1.5.3 Typed reference parameters

By-reference parameters and value types are sufficient to support statically typed languages (C++, Pascal, etc.).

They also support dynamically typed languages that pay a performance penalty to box value types before

passing them to polymorphic methods (Lisp, Scheme, Smalltalk, etc.). Unfortunately, they are not sufficient to
support languages like Visual Basic that require byref passing of unboxed data to methods that are not statically

restricted as to the type of data they accept. These languages require a way of passing both the address of the

home of the data and the static type of the home. This is exactly the information that would be provided if the

data were boxed, but without the heap allocation required of a box operation.

Typed reference parameters address this requirement. A typed reference parameter is very similar to a standard

byref parameter but the static data type is passed as well as the address of the data. Like byref parameters, the

argument corresponding to a typed reference parameter will have a home.

[Note: If it were not for the fact that verification and the memory manager need to be aware of the data type

and the corresponding address, a byref parameter could be implemented as a standard value type with two

fields: the address of the data and the type of the data. end note]

Like a regular byref parameter, a typed reference parameter can refer to a home that is on the stack, and that

home will have a lifetime limited by the call stack. Thus, the CIL generator shall apply appropriate checks on

94 Partition I

the lifetime of byref parameters; and verification imposes the same restrictions on the use of typed reference

parameters as it does on byref parameters (see §12.4.1.5.2).

A typed reference is passed by either creating a new typed reference (using the mkrefany instruction) or by
copying an existing typed reference. Given a typed reference argument, the address to which it refers can be

extracted using the refanyval instruction; the type to which it refers can be extracted using the refanytype

instruction.

12.4.1.5.4 Parameter interactions

A given parameter can be passed using any one of the parameter passing conventions: by-value, by-reference,

or typed reference. No combination of these is allowed for a single parameter, although a method can have

different parameters with different calling mechanisms.

A parameter that has been passed in as typed reference shall not be passed on as by-reference or by-value

without a runtime type check and (in the case of by-value) a copy.

A byref parameter can be passed on as a typed reference by attaching the static type.

Table 9: Parameter Passing Conventions illustrates the parameter passing convention used for each data type.

Table 9: Parameter Passing Conventions

Type of data Pass By How data is sent

Built-in value type

(int, float, etc.)

Value Copied to called method, type statically known at both sides

Reference Address sent to called method, type statically known at both sides

Typed

reference

Address sent along with type information to called method

User-defined value
type

Value Called method receives a copy; type statically known at both sides

Reference Address sent to called method, type statically known at both sides

Typed
reference

Address sent along with type information to called method

Object Value Reference to data sent to called method, type statically known and class

available from reference

Reference Address of reference sent to called method, type statically known and

class available from reference

Typed

reference

Address of reference sent to called method along with static type

information, class (i.e., dynamic type) available from reference

12.4.2 Exception handling

Exception handling is supported in the CLI through exception objects and protected blocks of code. When an

exception occurs, an object is created to represent the exception. All exception objects are instances of some

class (i.e., they can be boxed value types, but not pointers, unboxed value types, etc.). Users can create their

own exception classes, typically by deriving from System.Exception (see Partition IV).

There are four kinds of handlers for protected blocks. A single protected block shall have exactly one handler

associated with it:

 A finally handler that shall be executed whenever the block exits, regardless of whether that
occurs by normal control flow or by an unhandled exception.

 A fault handler that shall be executed if an exception occurs, but not on completion of normal

control flow.

 A catch handler that handles any exception of a specified class or any of its sub-classes.

Partition%20IV%20Library.doc#KernelPackage

 Partition I 95

 A filter handler that runs a user-specified set of CIL instructions to determine if the exception

should be handled by the associated handler, or passed on to the next protected block.

Protected regions, the type of the associated handler, and the location of the associated handler and (if needed)

user-supplied filter code are described through an Exception Handler Table associated with each method. The

exact format of the Exception Handler Table is specified in detail in Partition II. Details of the exception

handling mechanism are also specified in Partition II.

12.4.2.1 Exceptions thr own by the CLI

CLI instructions can throw the following exceptions as part of executing individual instructions. The

documentation for each instruction lists all the exceptions the instruction can throw (except for the general

purpose System.ExecutionEngineException described below that can be generated by all instructions).

Base Instructions (see Partition III)

 System.ArithmeticException

 System.DivideByZeroException

 System.ExecutionEngineException

 System.InvalidAddressException

 System.OverflowException

 System.SecurityException

 System.StackOverflowException

Object Model Instructions (see Partition III)

 System.TypeLoadException

 System.IndexOutOfRangeException

 System.InvalidAddressException

 System.InvalidCastException

 System.MissingFieldException

 System.MissingMethodException

 System.NullReferenceException

 System.OutOfMemoryException

 System.SecurityException

 System.StackOverflowException

The System.ExecutionEngineException is special. It can be thrown by any instruction and indicates an

unexpected inconsistency in the CLI. Running exclusively verified code can never cause this exception to be

thrown by a conforming implementation of the CLI. However, unverified code (even though that code is

conforming CIL) can cause this exception to be thrown if it might corrupt memory. Any attempt to execute

non-conforming CIL or non-conforming file formats can result in unspecified behavior: a conforming

implementation of the CLI need not make any provision for these cases.

There are no exceptions for things like ‗MetaDataTokenNotFound.‘ CIL verification (see Partition III) will

detect this inconsistency before the instruction is executed, leading to a verification violation. If the CIL is not

verified this type of inconsistency shall raise System.ExecutionEngineException.

Exceptions can also be thrown by the CLI, as well as by user code, using the throw instruction. The handling of

an exception is identical, regardless of the source.

Partition%20II%20Metadata.doc#Exception Handler Tables
Partition%20II%20Metadata.doc#Exception Handling
Partition%20III%20CIL.doc#BaseInstructions
Partition%20III%20CIL.doc#ObjectModelInstructions
Partition%20III%20CIL.doc#ObjectModelInstructions

96 Partition I

12.4.2.2 Deriving from exception c lasses

Certain types of exceptions thrown by the CLI can be derived from to provide more information to the user.

The specification of CIL instructions in Partition III describes what types of exceptions should be thrown by

the runtime environment when an abnormal situation occurs. Each of these descriptions allows a conforming

implementation to throw an object of the type described or an object of a derived class of that type.

[Note: For instance, the specification of the ckfinite instruction requires that an exception of type

System.ArithmeticException or a derived class of ArithmeticException be thrown by the CLI. A

conforming implementation might simply throw an exception of type ArithmeticException, but it might also
choose to provide more information to the programmer by throwing an exception of type

NotFiniteNumberException with the offending number. end note]

12.4.2.3 Resol uti on e xceptions

CIL allows types to reference, among other things, interfaces, classes, methods, and fields. Resolution errors

occur when references are not found or are mismatched. Resolution exceptions can be generated by references

from CIL instructions, references to base classes, to implemented interfaces, and by references from signatures

of fields, methods and other class members.

To allow scalability with respect to optimization, detection of resolution exceptions is given latitude such that it

might occur as early as install time and as late as execution time.

The latest opportunity to check for resolution exceptions from all references except CIL instructions is as part

of initialization of the type that is doing the referencing (see Partition II). If such a resolution exception is

detected the static initializer for that type, if present, shall not be executed.

The latest opportunity to check for resolution exceptions in CIL instructions is as part of the first execution of

the associated CIL instruction. When an implementation chooses to perform resolution exception checking in

CIL instructions as late as possible, these exceptions, if they occur, shall be thrown prior to any other non-

resolution exception that the VES might throw for that CIL instruction. Once a CIL instruction has passed the

point of throwing resolution errors (it has completed without exception, or has completed by throwing a non-

resolution exception), subsequent executions of that instruction shall no longer throw resolution exceptions.

If an implementation chooses to detect some resolution errors, from any references, earlier than the latest

opportunity for that kind of reference, it is not required to detect all resolution exceptions early.

An implementation that detects resolution errors early is allowed to prevent a class from being installed, loaded

or initialized as a result of resolution exceptions detected in the class itself or in the transitive closure of types

from following references of any kind.

For example, each of the following represents a permitted scenario. An installation program can throw

resolution exceptions (thus failing the installation) as a result of checking CIL instructions for resolution errors

in the set of items being installed. An implementation is allowed to fail to load a class as a result of checking

CIL instructions in a referenced class for resolution errors. An implementation is permitted to load and

initialize a class that has resolution errors in its CIL instructions.

The following exceptions are among those considered resolution exceptions:

 BadImageFormatException

 EntryPointNotFoundException

 MissingFieldException

 MissingMemberException

 MissingMethodException

 NotSupportedException

 TypeLoadException

 TypeUnloadedException

For example, when a referenced class cannot be found, a TypeLoadException is thrown. When a referenced

method (whose class is found) cannot be found, a MissingMethodException is thrown. If a matching method

being used consistently is accessible, but violates declared security policy, a SecurityException is thrown.

Partition%20III%20CIL.doc#title
Partition%20II%20Metadata.doc#Type Initializer

 Partition I 97

12.4.2.4 Timing and choice of excepti ons

Certain types of exceptions thrown by CIL instructions might be detected before the instruction is executed. In

these cases, the specific time of the throw is not precisely defined, but the exception should be thrown no later

than the instruction is executed. Relaxation of the timing of exceptions is provided so that an implementation

can choose to detect and throw an exception before any code is run (e.g., at the time of CIL to native code

conversion).

There is a distinction between the time of detecting the error condition and throwing the associated exception.

An error condition can be detected early (e.g., at JIT time), but the condition can be signaled later (e.g., at the

execution time of the offending instruction) by throwing an exception.

The following exceptions are among those that can be thrown early by the runtime:

 MissingFieldException

 MissingMethodException

 SecurityException

 TypeLoadException

In addition, as to when class initialization (see Partition II) occurs is not fully specified. In particular, there is

no guarantee when System.TypeInitializationException might be thrown.

If more than one exception's conditions are met by a method invocation, as to which exception is thrown is
unspecified.

12.4.2.5 Overview of excepti on handling

See the exception handling specification in Partition II for details.

Each method in an executable has associated with it a (possibly empty) array of exception handling

information. Each entry in the array describes a protected block, its filter, and its handler (which shall be a

catch handler, a filter handler, a finally handler, or a fault handler). When an exception occurs, the CLI

searches the array for the first protected block that

 Protects a region including the current instruction pointer and

 Is a catch handler block and

 Whose filter wishes to handle the exception

If a match is not found in the current method, the calling method is searched, and so on. If no match is found
the CLI will dump a stack trace and abort the program.

[Note: A debugger can intervene and treat this situation like a breakpoint, before performing any stack

unwinding, so that the stack is still available for inspection through the debugger. end note]

If a match is found, the CLI walks the stack back to the point just located, but this time calling the finally and

fault handlers. It then starts the corresponding exception handler. Stack frames are discarded either as this

second walk occurs or after the handler completes, depending on information in the exception handler array

entry associated with the handling block.

Some things to notice are:

 The ordering of the exception clauses in the Exception Handler Table is important. If handlers

are nested, the most deeply nested try blocks shall come before the try blocks th at enclose them.

 Exception handlers can access the local variables and the local memory pool of the routine that
catches the exception, but any intermediate results on the evaluation stack at the time the

exception was thrown are lost.

 An exception object describing the exception is automatically created by the CLI and pushed onto

the evaluation stack as the first item upon entry of a filter or catch clause.

 Execution cannot be resumed at the location of the exception, except with a filter handler.

Partition%20IV%20Library.doc#KernelPackage
Partition%20II%20Metadata.doc#Exception Handling

98 Partition I

12.4.2.6 CIL support for exceptions

The CIL has special instructions to:

 Throw and rethrow a user-defined exception.

 Leave a protected block and execute the appropriate finally clauses within a method, without

throwing an exception. This is also used to exit a catch clause. Notice that leaving a protected

block does not cause the fault clauses to be called.

 End a user-supplied filter clause (endfilter) and return a value indicating whether to handle the

exception.

 End a finally clause (endfinally) and continue unwinding the stack.

12.4.2.7 Lexical nesting of protected blocks

A protected region (also called a try block) is described by an address and a length: the trystart is the address

of the first instruction to be protected, and the trylength is the length of the protected region. (The tryend, the

address immediately following the last instruction to be protected, can be trivially computed from these two).

 A handler region is described by an address and a length: the handlerstart is the address of the first

instruction of the handler and the handlerlength is the length of the handler region. (The handlerend, the

address immediately following the last instruction of the handler, can be trivially computed from these two.)

Every method can have associated with it a set of exception entries, called the exception set. Each exception

entry consists of

 Optional: a type token (the type of exception to be handled) or filterstart (the address of the first

instruction of the user-supplied filter code)

 Required: protected block

 Required: handler region. There are four kinds of handler regions: catch handlers, filtered

handlers, finally handlers, and fault handlers. (A filtered handler is the code that runs if the filter

evaluates to true.)

If an exception entry contains a filterstart, then filterstart strictly precedes handlerstart. The filter starts at

the instruction specified by filterstart and contains all instructions up to (but not including) that specified by

handlerstart. The lexically last instruction in the filter must be endfilter. If there is no filterstart then the filter
is empty (hence it does not overlap with any region).

No two regions (protected block, filter, handler region) of a single exception entry may overlap with one

another.

Each region must begin and end on an instruction boundary.

For every pair of exception entries in an exception set, one of the following must be true:

 They nest: all three regions of one entry shall be within a single region of the other entry, with

the further restriction that the enclosing region shall not be a filter. [Note: Functions called from

within a filter can contain exception handling. end note]

 They are disjoint: all six regions of the two entries are pairwise-disjoint (no addresses overlap).

 They mutually protect: the protected blocks are the same and the other regions are pairwise-

disjoint. In this case, all handlers shall be either catch handlers or filtered handlers. The

precedence of the handler regions is determined by their ordering in the Exception Handler Table

(Partition II).

The encoding of an exception entry in the file format (see Partition II) guarantees that only a filtered handler

(not a catch handler, fault handler or finally handler) can have a filter.

An exception-handling block is either a protected region, a filter, a catch handler, a filter handler, a fault

handler, or a finally handler.

Partition%20II%20Metadata.doc#Exception Handler Tables

 Partition I 99

12.4.2.8 Control f low restr ictions on pr otected blocks

12.4.2.8.1 Fall Through

An instruction I1 is capable of fall through if one of the following is true:

 I1 is not a control-flow instruction (i.e., the only way control flow could be altered by I1 would

be if it threw an exception).

 I1 is a switch or conditional branch. [Note: Fall through would be the not-taken case. end note]

 I1 is a method call instruction.

[Note: For the purposes of this section, the ability of an instruction to fall through can be determined purely by

the type of the instruction. end note]

[Note: Most instructions can allow control to fall through after their execution—only unconditional branches,

ret, jmp, leave(.s), endfinally, endfault, endfilter, throw, and rethrow do not. Call instructions do allow
control to fall through, since the next instruction to be executed in the current method is the one lexically

following the call instruction, which executes after the call returns. end note]

[Note: The determination of validity with respect to fall through can be done lexically; no control-flow or data-

flow analysis is required. end note]

Entry to filters or handlers can only be accomplished through the CLI exception system; that is, it is not valid
for control to fall through into such blocks. This means filters and handlers cannot appear at the beginning of a

method, or immediately following any instruction that can cause control flow to fall through.

[Note: Conditional branches can have multiple effects on control flow. Since one of the possible effects is to

allow control flow to fall through, a filter or handler cannot appear immediately following a conditional branch.

end note]

Entry to protected blocks can be accomplished by fall-through, at which time the evaluation stack shall be

empty.

Exit from protected blocks, filters, or handlers cannot be accomplished via fall through.

12.4.2.8.2 Control -f l ow Instr uctions

Instructions that affect control flow have restrictions on how they are used in protected blocks, filters, and

handlers. The particular rules depend on the type of instruction. This subclause describes restrictions based on

the following:

 The source of the instruction; i.e., the address of the start of the instruction.

 The target(s) of the instruction; i.e., the address(es) of all instructions within the same method

that might be executed following it, excluding fall through (which has been addressed above). If

an instruction has a target rule, the exact definition of the target precedes that rule.

For the source and each target of an instruction, consider each protected block, filter, or handler that encloses
that address. If all rules are satisfied for all enclosing protected blocks, filters, or handlers, for the source of an

instruction and all targets, then the instruction is valid with respect to exception-handling. (Obviously, the

instruction shall still follow all other validity rules.) An instruction is considered to be within a block even if

the source of the instruction is at the very start of that block.

12.4.2.8.2.1 throw (and all CIL instructions not listed below)

source

1. There are no source restrictions.

target

1. There are no target restrictions.

12.4.2.8.2.2 rethrow:

100 Partition I

source

1. Shall be enclosed in a catch handler

[Note: The catch handler need not be the innermost enclosing exception-handling block. For example, the

rethrow may be within a finally that is within a catch. In such a case, the exception to be rethrown is the one
caught by the innermost enclosing catch handler. end note]

target

1. There are no target restrictions.

12.4.2.8.2.3 ret:

source

1. Shall not be enclosed in any protected block, filter, or handler.

[Note: To return from a protected block, filtered handler, or catch handler, a leave(.s) instruction is needed to

transfer control to an address outside all exception-handling blocks, then a ret instruction is needed at that
address. end note]

[Note: Since the tail. prefix on an instruction requires that that instruction be followed by ret, tail calls are not
allowed from within protected blocks, filters, or handlers. end note]

target

1. There are no target restrictions.

12.4.2.8.2.4 jmp:

source

1. Shall not be enclosed in any protected block, filter, or handler

target

1. There are no target restrictions.

12.4.2.8.2.5 endfilter:

source

1. Shall appear as the lexically last instruction in the filter.

[Note: The endfilter is required even if no control-flow path reaches it. This can happen if, for example, the

filter does a throw. end note]

[Note: The lexical nesting rules prohibit nesting other exception-handling entries inside a filter. Thus the

innermost exception-handling block enclosing an endfilter instruction shall be a filter. end note]

target

1. There are no target restrictions.

12.4.2.8.2.6 endfinally/endfault:

source

1. The innermost enclosing protected block, filter, or handler shall be a finally or fault handler

[Note: endfinally and endfault are aliases for the same CIL opcode. Conventionally, CIL assemblers require

that endfinally be used within a finally handler, and endfault be used within a fault handler, but the instruction
emitted is exactly the same by either name. end note]

[Note: A finally or fault handler can contain more than one endfinally/endfault. The lexically last instruction

in the finally or fault handler need not be endfinally/endfault. In fact, a finally or fault handler might not

 Partition I 101

require an endfinally/endfault at all if all control-flow paths terminate through other means. This can happen
if, for example, the finally or fault handler throws. end note]

target

1. There are no target restrictions.

12.4.2.8.2.7 Branches (br, br.s, conditional branches, switch):

source

1. If the source of the branch is within a protected block, filter, or handler, the target(s) shall be

within the same protected block, filter, or handler

target

The target of br, br.s, and the conditional branches, is the address specified. The targets of switch are all of the
addresses specified in the jump table.

1. If any target of the branch is within a protected block, except the first instruction of that protected

block, the source shall be within the same protected block.

2. If any target of the branch is within a filter or handler, the source shall be within the same filter or
handler.

[Note: Code can branch to the first instruction of a protected block, but not into the middle of one. end note]

[Note: Since the conditional branches and switch have a fall-through case, they shall also obey the rules for fall

through. end note]

12.4.2.8.2.8 leave and leave.s:

source

1. If the source is within a filter, fault handler, or finally handler, the target shall be within the same

filter, fault handler, or finally handler.

[Note: This means control cannot be transferred out of a filter, fault handler, or finally handler via

the leave(.s) instruction. end note]

2. If the source is within a protected block, the target shall be within the same protected block,

within an enclosing protected block, the first instruction of a disjoint protected block, or not

within any protected block.

3. If the source is within a catch handler or filtered handler, the target shall be within the same catch

handler or filtered handler, within the associated protected block, within a protected block that

encloses the catch handler or filtered handler, the first instruction of a disjoint protected block, or

not within any protected block.

[Note: If the source is outside any exception-handling block, that fact implies no additional restrictions on the

target. In effect, a leave from outside of exception handling acts like a branch, with the side-effect of emptying
the evaluation stack. end note]

target

The target of leave(.s) is the address specified by leave(.s).

1. If the target is within a filter or handler, the source shall be within the same fil ter or handler.

2. If the target is within a protected block, except the first instruction of that protected block, the

source shall be within the same protected block, or within the associated catch handler or filtered

handler.

[Note: To be clear, if the target is the first instruction of a protected block, the source can be outside of the

protected block. end note]

102 Partition I

[Note: This means that it is possible to transfer control from a catch handler or a filtered handler to the

associated protected block. end note]

12.4.2.8.2.9 Examples

 [Example: Example 1

{

EX1:

 br TryStart2

 .try

 {

TryStart1:

 .try

 {

TryStart2:

 leave End

 }

 finally

 {

 endfinally

 }

 }

 finally

 {

 endfinally

 }

End:

 ret

}

Consider the br TryStart2 instruction at EX1. It is not contained within any exception-handling block, so the

source rules do not apply and are thus satisfied. The target is contained within two protected regions, so the

target rules are applied once for each region.

Considering the outermost protected region, branch target rule 1 is satisfied since the target is the first

instruction of the outermost protected region. Branch target rule 2 does not apply to protected regions and is

thus satisfied.

Considering the innermost protected region, branch target rule 1 is satisfied since the target is the first

instruction of the innermost protected region. Branch target rule 2 does not apply to protected regions and is

thus satisfied.

Thus, the branch instruction at EX1 is valid from the exception-handling perspective. end example]

[Example: Example 2

{

 ldc.i4.0

EX2:

 brtrue TryStart2

 .try

 {

TryStart1:

EX3:

 br TryStart2

 .try

 {

TryStart2:

 leave End

 }

 finally

 {

 endfinally

 }

 }

 Partition I 103

 finally

 {

 endfinally

 }

End:

 ret

}

Consider the brtrue TryStart2 instruction at EX2. It is not contained within any exception-handling block, so

the source rules do not apply and are thus satisfied. The target is contained within two protected regions, so the

target rules are applied once for each region.

Branch target rule 1 is satisfied for the inner protected block since the target is the first instruction of the block.

However, branch target rule 1 is not satisfied for the outer protected block since the source is not within the

outer protected block and the target is not the first instruction of that block.

Thus the conditional branch instruction at EX2 is invalid from an exception-handling perspective.

Now consider the br TryStart2 instruction at EX3. It is within one protected block, so the source rules are

applied considering that protected block. Branch source rule 1 is satisfied since the target is within that

protected block. The target is contained within two protected regions, so the target rules are applied once for
each region.

Considering the outer protected block, branch target rule 1 is satisfied since the source is also within the outer

protected block. Branch target rule 2 does not apply to protected blocks, and is thus satisfied.

Considering the inner protected block, branch target rule 1 is satisfied since the target is the first instruction of

the inner protected block. Branch target rule 2 does not apply to protected blocks, and is thus satisfied.

Thus, the branch instruction at EX3 is valid from an exception-handling perspective. end example]

[Example: Example 3

 {

 .try

 {

 newobj instance void [mscorlib]System.Exception::.ctor()

 throw

AfterThrow:

 leave End

 }

 catch [mscorlib]System.Exception

 {

 .try

 {

 newobj instance void [mscorlib]System.Exception::.ctor()

 throw

 }

 catch [mscorlib]System.Exception

 {

EX4:

 leave AfterThrow

 }

 leave End

 }

End:

 ret

 }

Consider the leave instruction at EX4. It is contained within two catch handlers, so the source rules are applied

once for each region.

Considering the outer catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus

satisfied. Leave source rule 3 is satisfied since the target is within the associated protected region.

Considering the inner catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus

satisfied. Leave source rule 3 is not satisfied since the target is in the middle of a disjoint protected region.

104 Partition I

Thus, the leave instruction at EX4 is invalid from an exception-handling perspective. However, for illustration

purposes, consider the target rules as well.

The target is within one protected region, so the target rules are applied considering that protected region.

Leave target rule 1 does not apply to protected regions, and is thus satisfied. Leave target rule 2 is satisfied

because the source is within a catch block associated with the protected region. end example]

[Example: Example 4

{

 .try

 {

 .try

 {

 newobj instance void [mscorlib]System.Exception::.ctor()

 throw

 }

 catch [mscorlib] System.Exception

 {

EX5:

 leave EndOfOuterTry

 }

EndOfOuterTry:

 // …

 leave End

 }

 catch [mscorlib]System.Exception

 {

 leave End

 }

End:

 ret

}

Consider the leave instruction at EX5. It is contained within a protected region and within a catch handler, so

the source rules are applied once for each.

Considering the protected region, leave source rules 1 and 3 do not apply to protected regions and are thus
satisfied. Leave source rule 2 is satisfied because the target is within the same protected region.

Considering the catch handler, leave source rules 1 and 2 do not apply to catch handlers and are thus satisfied.

Leave source rule 3 is satisfied because the target is within a protected block that encloses the catch handler.

The target is within one protected region, so the target rules are applied considering that protected region.

Target rule 1 does not apply to protected regions and is thus satisfied. Target rule 2 is satisfied because the

source is within the same protected block.

Thus the leave instruction at EX5 is valid from an exception-handling perspective. end example]

12.5 Proxies and remoting

A remoting boundary exists if it is not possible to share the identity of an object directly across the boundary.
For example, if two objects exist on physically separate machines that do not share a common address space,

then a remoting boundary will exist between them. There are other administrative mechanisms for creating

remoting boundaries.

The VES provides a mechanism, called the application domain, to isolate applications running in the same

operating system process from one another. Types loaded into one application domain are distinct from the

same type loaded into another application domain, and instances of objects shall not be directly shared from

one application domain to another. Hence, the application domain itself forms a remoting boundary.

The VES implements remoting boundaries based on the concept of a proxy. A proxy is an object that exists on

one side of the boundary and represents an object on the other side. The proxy forwards references to instance

fields and methods to the actual object for interpretation. Proxies do not forward references to static fields or

calls to static methods.

 Partition I 105

The implementation of proxies is provided automatically for instances of types that derive from

System.MarshalByRefObject (see Partition IV).

12.6 Memory model and optimizations

12.6.1 The memory store

By ―memory store‖ we mean the regular process memory that the CLI operates within. Conceptually, this store

is simply an array of bytes. The index into this array is the address of a data object. The CLI accesses data

objects in the memory store via the ldind.* and stind.* instructions.

12.6.2 Alignment

Built-in data types shall be properly aligned, which is defined as follows:

 1-byte, 2-byte, and 4-byte data is properly aligned when it is stored at a 1-byte, 2-byte, or 4-byte

boundary, respectively.

 8-byte data is properly aligned when it is stored on the same boundary required by the underlying

hardware for atomic access to a native int.

Thus, int16 and unsigned int16 start on even address; int32, unsigned int32, and float32 start on an

address divisible by 4; and int64, unsigned int64, and float64 start on an address divisible by 4 or 8,

depending upon the target architecture. The native size types (native int, native unsigned int, and &) are

always naturally aligned (4 bytes or 8 bytes, depending on the architecture). When generated externally, these
should also be aligned to their natural size, although portable code can use 8-byte alignment to guarantee

architecture independence. It is strongly recommended that float64 be aligned on an 8-byte boundary, even

when the size of native int is 32 bits.

There is a special prefix instruction, unaligned., that can immediately precede an ldind, stind, initblk, or cpblk

instruction. This prefix indicates that the data can have arbitrary alignment; the JIT compiler is required to

generate code that correctly performs the effect of the instructions regardless of the actual alignment.

Otherwise, if the data is not properly aligned, and no unaligned. prefix has been specified, executing the
instruction can generate unaligned memory faults or incorrect data.

12.6.3 Byte ordering

For data types larger than 1 byte, the byte ordering is dependent on the target CPU. Code that depends on byte

ordering might not run on all platforms. The PE file format (see §12.2) allows the file to be marked to indicate

that it depends on a particular type ordering.

12.6.4 Optimization

Conforming implementations of the CLI are free to execute programs using any technology that guarantees,

within a single thread of execution, that side-effects and exceptions generated by a thread are visible in the

order specified by the CIL. For this purpose only volatile operations (including volatile reads) constitute
visible side-effects. (Note that while only volatile operations constitute visible side-effects, volatile operations

also affect the visibility of non-volatile references.) Volatile operations are specified in §12.6.7. There are no
ordering guarantees relative to exceptions injected into a thread by another thread (such exceptions are

sometimes called ―asynchronous exceptions‖ (e.g., System.Threading.ThreadAbortException).

[Rationale: An optimizing compiler is free to reorder side-effects and synchronous exceptions to the extent that

this reordering does not change any observable program behavior. end rationale]

[Note: An implementation of the CLI is permitted to use an optimizing compiler, for example, to convert CIL

to native machine code provided the compiler maintains (within each single thread of execution) the same order

of side-effects and synchronous exceptions.

This is a stronger condition than ISO C++ (which permits reordering between a pair of sequence points) or ISO

Scheme (which permits reordering of arguments to functions). end note]

Partition%20IV%20Library.doc

106 Partition I

Optimizers are granted additional latitude for relaxed exceptions in methods. A method is E-relaxed for a kind

of exception if the innermost custom attribute System.Runtime.CompilerServices.

CompilationRelaxationsAttribute pertaining to exceptions of kind E is present and specifies to relax

exceptions of kind E. (Here, ―innermost‖ means inspecting the method, its class, and its assembly, in that

order.)

A E-relaxed sequence is a sequence of instructions executed by a thread, where

 Each instruction causing visible side effects or exceptions is in an E-relaxed method.

 The sequence does not cross the boundary of a non-trivial protected or handler region. A region

is trivial if it can be optimized away under the rules for non-relaxed methods.

Below, an E-check is defined as a test performed by a CIL instruction that upon failure causes an exception of

kind E to be thrown. Furthermore, the type and range tests performed by the methods that set or get an array

element‘s value, or that get an array element‘s address are considered checks here.

A conforming implementation of the CLI is free to change the timing of relaxed E-checks in an E-relaxed

sequence, with respect to other checks and instructions as long as the observable behavior of the program is

changed only in the case that a relaxed E-check fails. If an E-check fails in an E-relaxed sequence:

 The rest of the associated instruction must be suppressed, in order to preserve verifiability. If the

instruction was expected to push a value on the VES stack, no subsequent instruction that uses
that value should visibly execute.

 It is unspecified whether or not any or all of the side effects in the E-relaxed sequence are made

visible by the VES.

 The check‘s exception is thrown some time in the sequence, unless the sequence throws another

exception. When multiple relaxed checks fail, it is unspecified as to which exception is thrown

by the VES.

[Note: Relaxed checks preserve verifiability, but not necessarily security. Because a relaxed check‘s exception

might be deferred and subsequent code allowed to execute, programmers should never rely on implicit checks

to preserve security, but instead use explicit checks and throws when security is an issue. end note]

[Rationale: Different programmers have different goals. For some, trading away precise exception behavior is

unacceptable. For others, optimization is more important. The programmer must specify their preference.

Different kinds of exceptions may be relaxed or not relaxed separately because different programmers have
different notions of which kinds of exceptions must be timed precisely. end rationale]

[Note: For background and implementation information for relaxed exception handling , plus examples, see

Annex F of Partition VI. end note]

12.6.5 Locks and threads

The logical abstraction of a thread of control is captured by an instance of the System.Threading.Thread

object in the class library. Classes beginning with the prefix ―System.Threading‖ (see Partition IV) provide

much of the user visible support for this abstraction.

To create consistency across threads of execution, the CLI provides the following mechanisms:

1. Synchronized methods. A lock that is visible across threads controls entry to the body of a

synchronized method. For instance and virtual methods the lock is associated with the this pointer.

For static methods the lock is associated with the type to which the method belongs. The lock is

taken by the logical thread (see System.Threading.Thread in Partition IV) and can be entered any

number of times by the same thread; entry by other threads is prohibited while the first thread is

still holding the lock. The CLI shall release the lock when control exits (by any means) the method

invocation that first acquired the lock.

2. Explicit locks and monitors. These are provided in the class library, see

System.Threading.Monitor. Many of the methods in the System.Threading.Monitor class accept

an Object as argument, allowing direct access to the same lock that is used by synchronized

methods. While the CLI is responsible for ensuring correct protocol when this lock is only used by

Partition%20IV%20Library.doc
Partition%20IV%20Library.doc

 Partition I 107

synchronized methods, the user must accept this responsibility when using explicit monitors on

these same objects.

3. Volatile reads and writes. The CIL includes a prefix, volatile., that specifies that the

subsequent operation is to be performed with the cross-thread visibility constraints described

in §12.6.7. In addition, the class library provides methods to perform explicit volatile reads

(System.Thread.VolatileRead) and writes (System.Thread.VolatileWrite), as well as barrier

synchronization (System.Thread.MemoryBarrier).

4. Built-in atomic reads and writes. All reads and writes of certain properly aligned data types are

guaranteed to occur atomically. See §12.6.6.

5. Explicit atomic operations. The class library provides a variety of atomic operations in the

System.Threading.Interlocked class. These operations (e.g., Increment, Decrement, Exchange,

and CompareExchange) perform implicit acquire/release operations.

Acquiring a lock (System.Threading.Monitor.Enter or entering a synchronized method) shall implicitly

perform a volatile read operation, and releasing a lock (System.Threading.Monitor.Exit or leaving a

synchronized method) shall implicitly perform a volatile write operation. See §12.6.7.

12.6.6 Atomic reads and writes

A conforming CLI shall guarantee that read and write access to properly aligned memory locations no larger

than the native word size (the size of type native int) is atomic (see §12.6.2) when all the write accesses to a

location are the same size. Atomic writes shall alter no bits other than those written. Unless explicit layout

control (see Partition II (Controlling Instance Layout)) is used to alter the default behavior, data elements no

larger than the natural word size (the size of a native int) shall be properly aligned. Object references shall

be treated as though they are stored in the native word size.

[Note: There is no guarantee about atomic update (read-modify-write) of memory, except for methods provided

for that purpose as part of the class library (see Partition IV). An atomic write of a ―small data item‖ (an item

no larger than the native word size) is required to do an atomic read/modify/write on hardware that does not

support direct writes to small data items. end note]

[Note: There is no guaranteed atomic access to 8-byte data when the size of a native int is 32 bits even

though some implementations might perform atomic operations when the data is aligned on an 8-byte

boundary. end note]

12.6.7 Volati le reads and writes

The volatile. prefix on certain instructions shall guarantee cross-thread memory ordering rules. They do not
provide atomicity, other than that guaranteed by the specification of §12.6.6.

A volatile read has ―acquire semantics‖ meaning that the read is guaranteed to occur prior to any references to

memory that occur after the read instruction in the CIL instruction sequence. A volatile write has ―release

semantics‖ meaning that the write is guaranteed to happen after any memory references prior to the write

instruction in the CIL instruction sequence.

A conforming implementation of the CLI shall guarantee this semantics of volatile operations. This ensures

that all threads will observe volatile writes performed by any other thread in the order they were performed. But

a conforming implementation is not required to provide a single total ordering of volatile writes as seen from

all threads of execution.

An optimizing compiler that converts CIL to native code shall not remove any volatile operation, nor shall it

coalesce multiple volatile operations into a single operation.

[Rationale: One traditional use of volatile operations is to model hardware registers that are visible through

direct memory access. In these cases, removing or coalescing the operations might change the behavior of the

program. end rationale]

Partition%20II%20Metadata.doc#ExplicitLayout
Partition%20IV%20Library.doc#ThreadingPackage

108 Partition I

[Note: An optimizing compiler from CIL to native code is permitted to reorder code, provided that it guarantees

both the single-thread semantics described in §12.6 and the cross-thread semantics of volatile operations. end

note]

12.6.8 Other memory model issue s

All memory allocated for static variables (other than those assigned RVAs within a PE file, see Partition II) and

objects shall be zeroed before they are made visible to any user code.

A conforming implementation of the CLI shall ensure that, even in a multi-threaded environment and without

proper user synchronization, objects are allocated in a manner that prevents unauthorized memory access and

prevents invalid operations from occurring. In particular, on multiprocessor memory systems where explicit

synchronization is required to ensure that all relevant data structures are visible (for example, vtable pointers)

the Execution Engine shall be responsible for either enforcing this synchronization automatically or for

converting errors due to lack of synchronization into non-fatal, non-corrupting, user-visible exceptions.

It is explicitly not a requirement that a conforming implementation of the CLI guarantee that all state updates

performed within a constructor be uniformly visible before the constructor completes. CIL generators can

ensure this requirement themselves by inserting appropriate calls to the memory barrier or volatile write

instructions.

Partition%20II%20Metadata.doc#FieldRVA

 Partition I 109

13 Index

& 77

accessibility..33

assembly ..34

compiler-controlled ..34

family...34

family-and-assembly ..34

family-or-assembly ...34

private ..34

public ...34

alignment ... 105

application ...62

application domain ... 62, 104

ArgIterator ...89

argument array ...88

ArithmeticException...95

array .. 30, 45

jagged ..46

storage layout ...45

zero-dimensional ..46

Array ...46

array element..30

assembly ...13, 32, 59, 61

assembly dependency ...61

assignment compatibility29, 32, 37, 40

atomicity .. 107

attribute .. 13, 69

Attribute ...69

AttributeUsageAttribute 62, 69

BadImageFormatException96

behavior ...25

implementation-specific13

undefined ...13

unspecified ...13

bool..26

Boolean .. 26, 62

boxing .. 13, 27, 85

byref .. 79

Byte ... 26, 62

byte ordering .. 105

cast .. 30

explicit ... 67

implicit .. 67

narrowing... 67

widening .. 67

char ... 26

Char... 26, 62

character

ANSI ... 13

combining .. 64

CIL ...13, 17, 77

class contract ... 36

class definition ... 36, 48

class layout .. 60

autolayout .. 61

explicitlayout ... 61

layoutsequential ... 61

class, abstract ... 25

CLI .. 13, 16

CLS ..13, 16, 19

CLS compliance... 21

identifying ... 22

rules for ... 22

CLS consumer ... 20

CLS extender ... 20

CLS framework ... 19

CLSCompliantAttribute ... 22

code

managed .. 14, 17

unmanaged ... 15

coercion ... 29

COFF module See PE module

Common Intermediate Language See CIL

110 Partition I

Common Language Infrastructure See CLI

Common Language Specification.................. See CLS

Common Type System.................................. See CTS

CompilationRelaxationsAttribute106

component ... 59

self-describing ... 59

component metadata .. 59

conformance .. 9

constraint... 36

byref .. 38

location See location constraint

init-only ... 37

literal ... 37

vararg .. See vararg

volatile .. 38

constructor .. 51

consumer ... 19

contract .. 23, 36, 60

class ... See class contract

event .. See event contract

interface See interface contract

method See method contract

property See property contract

contravariance ... 23

conversion

explicit .. 30

implicit .. 30

covariance ... 23

CTS.. 13, 16

data

aggregate ... 83

managed ... 14, 17, 18

unmanaged .. 15

delegate .. 13, 47

Delegate ... 47, 57

DivideByZeroException .. 95

Double ... 26, 62

Equals ... 29

EntryPointNotFoundException 96

enum .. 32

Enum ... 28, 33

equality .. 28, 29

evaluation stack.. 88

event .. 13, 50

naming pattern for .. 68

event contract ... 36

event definition .. 36, 57

examples .. 12

exception ... 68

relaxed ... 106

timing of .. 97

Exception ... 68, 94

exception handling ... 94

execution engine .. 13

execution model ... 17

ExecutionEngineException 95

export

member .. 34

nested type ... 34

type .. 34

extender ... 19

extensions .. 9

F 77

field ... 13, 30, 50

instance .. 31

serializable ... 56

static .. 31, 56

field definition ... 56

finalizer ... 51

FlagsAttribute .. 33

float32 ... 26, 77

float64 ... 26, 77

framework ... 16, 19

garbage collection .. 13, 18

GC ... 51

ReRegisterForFinalize .. 51

 Partition I 111

SuppressFinalize...51

generic argument ..13

generic parameter ...13

generics ..14

global static ..63

handle

methodInfo ...88

return state..88

handler

catch ..94

fault..94

filter ...95

finally...94

handler region ..98

hiding ... 54, 55, 56

by name..54

by name and signature ..54

home ..83

identical ...28

identifier ..64

case folding of ..64

case-insensitive ..64

case-sensitive ...64

identity ... 28, 29

casting and ...30

coercion and ...29

indexed property....................... See property, indexed

IndexOutOfRangeException95

infinity ...80

inheritance ... 36, 52

instance ..25

instruction pointer ..87

int

native ... 26, 77

native unsigned... 26, 77

int16 .. 26, 77

unsigned ... 27, 77

Int16 .. 26, 62

int32 .. 26, 77

unsigned .. 27, 77

Int32 .. 26, 62

int64 .. 26, 77

unsigned .. 27, 77

Int64 .. 26, 62

int8 .. 26, 77

unsigned .. 26, 77

interface contract.. 36

interface definition ... 36, 47

Intermediate Language See CIL

IntPtr ... 26

InvalidAddressException 95

InvalidCastException ... 95

JIT ... 78

kind ... 32

layout .. 54

library .. 14

literal ... 33

local signature .. 38

local variable array ... 88

localsinit flag .. 84, 86, 88, 91

location .. 29

location signature ... 37

lock ... 106

manifest ... 14, 61

MarshalByRefObject.. 105

marshalling .. 60

member...14, 30, 50

member signatures ... 60

message ... 25

metadata ...14, 16, 59

component See component metadata

metadata extensibility... 62

metadata token ... 59

method.. 14, 27, 30, 50

abstract .. 56

add ... 57

112 Partition I

final .. 31, 54, 56

generic .. 14

getter ... 56

instance ... 30

non-generic.. 14

remove .. 57

setter ... 56

static ... 30, 31, 56

virtual ... 30, 31, 56

method contract ... 36

method definition 36, 39, 55

method signature ... 39

method state .. 87

MissingFieldException 95, 96, 97

MissingMemberException 96

MissingMethodException 95, 96, 97

modifier

optional ... 63

required ... 63

module ... 14, 16

Monitor ..106

name ... 31

overloading of ... 64

qualified .. 32

scope of .. See scope

special ... 65

uniqueness of ... 32

NaN .. 80

narrowing ... 29, 67

notes ... 12

NotFiniteNumberException 96

NotSupportedException ... 96

null.. 30

NullReferenceException .. 95

O 77

object ... 14, 23, 26, 27

Object .. 28, 53

Equals ... 29

MemberwiseClone ... 51

ReferenceEquals ... 29

OOP..................... See Programming, Object-Oriented

op_Addition ... 66

op_AdditionAssignment ... 67

op_AddressOf .. 66

op_Assign .. 66

op_BitwiseAnd .. 66

op_BitwiseAndAssignment 67

op_BitwiseOr ... 66

op_BitwiseOrAssignment 67

op_Comma .. 67

op_Decrement .. 66, 70, 71

op_Division ... 66

op_DivisionAssignment ... 67

op_Equality.. 66

op_ExclusiveOr ... 66

op_ExclusiveOrAssignment 67

op_Explicit .. 64, 67

op_False .. 66

op_GreaterThan ... 67

op_GreaterThanOrEqual .. 67

op_Implicit .. 64, 67

op_Increment ... 66, 70, 71

op_Inequality ... 67

op_LeftShift ... 66

op_LeftShiftAssignment ... 67

op_LessThan .. 67

op_LessThanOrEqual ... 67

op_LogicalAnd .. 66

op_LogicalNot ... 66, 70, 71

op_LogicalOr ... 66

op_MemberSelection ... 67

op_Modulus ... 66

op_ModulusAssignment ... 67

op_MultiplicationAssignment 67

op_Multiply ... 66

op_OnesComplement ... 66

 Partition I 113

op_PointerDereference ...66

op_PointerToMemberSelection...............................67

op_RightShift ...66

op_RightShiftAssignment67

op_SignedRightShift ..66

op_Subtraction ...66

op_SubtractionAssignment67

op_True ...66

op_UnaryNegation 66, 70, 71

op_UnaryPlus ... 66, 70, 71

op_UnsignedRightShift ..66

op_UnsignedRightShiftAssignment67

operator

addition .. See op_Addition

address-of See op_AddressOf

assignment, compound, addition See

op_AdditionAssignment

assignment, compound, bitwise AND................ See
op_BitwiseAndAssignment

assignment, compound, bitwise OR See

op_BitwiseOrAssignment

assignment, compound, division See

op_DivisionAssignment

assignment, compound, exclusive OR See

op_ExclusiveOrAssignment

assignment, compound, left-shift See

op_LeftShiftAssignment

assignment, compound, multiplication See

op_MultiplicationAssignment

assignment, compound, remainder See

op_ModulusAssignment

assignment, compound, right-shift See

op_RightShiftAssignment

assignment, compound, right-shift, unsigned See

op_UnsignedRightShiftAssignment

assignment, compound, subtraction See

op_SubtractionAssignment

assignment, simple See op_Assign

bitwise AND See op_BitwiseAnd

bitwise OR See op_BitwiseOr

comma .. See op_Comma

conversion, explicit See op_Explicit

conversion, implicit See op_Implicit

decrement See op_Decrement

division ... See op_Division

equality ... See op_Equality

exclusive OR........................... See op_ExclusiveOr

false ... See op_False

greater-than See op_GreaterThan

greater-than-or-equal .. See op_GreaterThanOrEqual

increment See op_Increment

inequality See op_Inequality

left-shift See op_LeftShift

less-than See op_LessThan

less-than-or-equal See op_LessThanOrEqual

logical AND See op_LogicalAnd

logical NOT See op_LogicalNot

logical OR.................................. See op_LogicalOr

member selection See op_MemberSelection

multiplicationSee op_Multiply

negation See op_UnaryNegation

ones-complement See op_OnesComplement

pointer dereference See op_PointerDereference

pointer-to-member, compound, See

op_PointerToMemberSelection

remainder See op_Modulus

right-shift See op_RightShift

right-shift, signedSee op_SignedRightShift

right-shift, unsignedSee op_UnsignedRightShift

subtraction See op_Subtraction

true ... See op_True

unary plus See op_UnaryPlus

operator overloading .. 65

optimization ... 17, 105

OutOfMemoryException .. 95

OverflowException .. 95

overriding .. 31, 54

parameter passing .. 92

parameter signature .. 39

114 Partition I

PE module ... 59

pointer

function ... 47

managed .. 38

pool

local memory .. 88

prefix

constrained. ... 28

tail. ... 90, 91

unaligned. ...105

volatile. .. 38, 107

profile ... 14

programming

functional .. 23

object-oriented ... 23

procedural ... 23

typeless ... 25

property .. 14, 50

indexed .. 68

naming pattern for ... 68

property contract ... 36

property definition .. 36, 56

protected region ... 98

proxy ..104

publicly accessible parts .. 21

rank ... 45

reference ... 62

referenced entity .. 33

referent .. 33

Relative Virtual Address See RVA

remoting boundary..104

representation .. 25

rounding mode .. 80

Runtime.CompilerServices 49

RVA ... 60

SByte .. 26

scope .. 32, 49

assembly.. 32

member .. 32

sealed ... 53

security .. 35

Security ... 35

security demand

inheritance ... 35

reference .. 35

security descriptor .. 88

SecurityException .. 95, 97

serialization.. 56

signature .. 14, 36

local .. See local signature

location See location signature

method See method signature

parameter See parameter signature

type .. See type signature

Single .. 26, 62

Equals .. 29

slot

expect existing ... 55

new .. 55

SpecialName .. 57

StackOverflowException .. 95

string ... 26

ANSI ... 13

String ... 26, 62

System.ArgIterator See ArgIterator

System.Array ..See Array

System.Attribute See Attribute

System.AttributeUsageAttribute See

AttributeUsageAttribute

System.Boolean See Boolean

System.Byte ... See Byte

System.Char .. See Boolean

System.CLSCompliantAttribute See

CLSCompliantAttribute

System.Delegate..................................... See Delegate

System.Double ... See Double

 Partition I 115

System.Enum 53, See Enum

System.Exception See Exception

System.FlagsAttribute See FlagsAttribute

System.GC ... See GC

System.Int16 ... See Int16

System.Int32 ... See Int32

System.Int64 ... See Int64

System.IntPtr...See IntPtr

System.MarshalByRefObject See

MarshalByRefObject

System.Object ... See Object

System.SByte ... See SByte

System.Security.......................................See Security

System.Single ... See Single

System.String ... See String

System.Threading See Threading

System.Type ... See Type

System.TypedReference See TypedReference

System.TypeInitializationException See

TypeInitializationException

System.UInt16 ... See UInt16

System.UInt32 ... See UInt32

System.UInt64 ... See UInt64

System.UIntPtr ... See UIntPtr

System.ValueType See ValueType

this ... 30, 56

thread ... 106

Thread.. 106

ThreadAbortException ... 105

try block See protected region

type ..25

& See &

abstract ... 48, 50

array .. See array

boxed ...27

built-in ...26

class ... 36, 48

compound ..30

concrete ... 50

enclosing.. 34, 35

enumeration .. See enum

exact .. 25, 31

exact array ... 45

explicit ... 45

F See F

float32 .. See float32

float64 .. See float64

generic ... 14

implicit .. 45

int, native ... See int, native

int, native unsigned See int, native unsigned

int16 .. See int16

int16, unsigned See int16, unsigned

int32 .. See int32

int32, unsigned See int32, unsigned

int64 .. See int64

int64, unsigned See int64, unsigned

int8 .. See int8

int8, unsigned See int8, unsigned

interface ..25, 27, 36

nested .. 34, 35

O See O

object ..25, 27, 49

pointer ... 25, 46

reference .. 14, 25

sealed ... 53

value .. 14, 25

Type .. 62

type definer .. 45

type definition .. 32

type member ... See member

type name .. 32

exportable .. 34

nested .. 34

non-exportable ... 34

type safety ... 16, 44

116 Partition I

type signature .. 37

typed reference ... 26, 38

typedref 26, See typed reference

TypedReference ... 26, 38

TypeInitializationException 97

TypeLoadException.................................... 95, 96, 97

TypeUnloadedException .. 96

UInt16 ... 27

UInt32 ... 27

UInt64 ... 27

UIntPtr .. 26

unboxing .. 14, 27, 85

Unicode standard ... 11

validation

metadata .. 59

value .. 15, 23, 25

boxed ... 27

coersion of a ..See coersion

null ... See null

partial description ... 25

ValueType ... 28, 53

vararg .. 39

vector ... 46

verification ... 15, 17, 44

versioning .. 17

VES ... 15, 16, 77

virtual call .. 31

Virtual Execution System See VES

visibility ... 33, 49

assembly .. 50

public ... 50

widening .. 29, 67

