

What you need to use this book

The following list is the recommended operating system requirements for running the C# code in this book:

❑ Windows 2000 Professional or higher with IIS installed

❑ Windows XP Professional with IIS installed

❑ Visual Studio .NET Professional or higher

The book is intended for experienced developers, probably from a VB 6, C++, or Java background. Although
previous experience of C# or .NET programming is useful, it is not required.

Summary of Contents

Introduction 1
Chapter 1: C# and .NET Architecture 11
Chapter 2: C# Basics 37
Chapter 3: Object-Oriented C# 109
Chapter 4: Advanced C# Topics 169
Chapter 5: C# and the Base Classes 259
Chapter 6: Programming in the .NET Environment 337
Chapter 7: Windows Applications 381
Chapter 8: Assemblies 437
Chapter 9: Data Access with .NET 513
Chapter 10: Viewing .NET Data 567
Chapter 11: Manipulating XML 615
Chapter 12: File and Registry Operations 673
Chapter 13: Working with the Active Directory 717
Chapter 14: ASP.NET Pages 753
Chapter 15: Web Services 791
Chapter 16: User Controls and Custom Controls 815
Chapter 17: COM Interoperability 851
Chapter 18: COM+ Services 875
Chapter 19: Graphics with GDI+ 897
Chapter 20: Accessing the Internet 957
Chapter 21: Distributed Applications with .NET Remoting 981
Chapter 22: Windows Services 1035
Chapter 23:.NET Security 1085
Appendix A: Principles of Object-Oriented Programming 1141
Appendix B: C# Compilation Options 1181
Index 1191

Data Access with .NET
In this chapter, we'll be discussing how to get at data from your C# programs using ADO.NET. Over the
course of this chapter, we'll be covering the following areas:

❑ Connecting to the database – how to utilize the new SqlConnection and OleDbConnection
classes to connect to and disconnect from the database. Connections utilize the same form of
connection strings as did OLEDB providers (and therefore ADO), and these are briefly discussed.
We then go through a set of best practices for utilizing database connections, and show how to
ensure that a connection is closed after use, which is one of the sources of poor application
performance.

❑ Executing Commands – ADO.NET has the concept of a command object, which may execute SQL
directly, or may issue a stored procedure with return values. The various options on command
objects are discussed in depth, with examples to show how commands can be used for each of the
options presented by the Sql and OleDB classes.

❑ Stored Procedures – How to call stored procedures using command objects, and how the results of
those stored procedures may be integrated back into the data cached on the client.

❑ The ADO.NET object model – this is significantly different from the objects available with ADO,
and the DataSet, DataTable, DataRow, and DataColumn classes are all discussed. A
DataSet can also include relationships between tables, and also constraints. These issues are also
discussed.

❑ Using XML and XML Schemas – ADO.NET is built upon an XML framework, so we'll examine
how some of the support for XML has been added to the data classes.

Chapter 9

514

We'll also present a guide to the naming conventions that preside in the world of ADO.NET and explain some
of the reasoning behind them. First, though, let's take a brief tour of ADO.NET and see what's on offer.

ADO.NET Overview
Like most of the .NET Framework, ADO.NET is more than just a thin veneer over some existing API. The
similarity to ADO is in name only – the classes and method of accessing data are completely different.

ADO (Microsoft's ActiveX Data Objects) was a library of COM components that has had many incarnations
over the last few years. Currently at version 2.7, ADO consists primarily of the Connection, Command,
Recordset, and Field objects. A connection would be opened to the database, some data selected into a
recordset, consisting of fields, that data would then be manipulated, updated on the server, and the connection
would be closed. ADO also introduced the concept of a disconnected recordset, which was used where keeping
the connection open for long periods of time was not desirable.

There were several problems that ADO did not address satisfactorily, most notably the unwieldiness (in
physical size) of a disconnected recordset. This support was more necessary than ever with the evolution of
"web-centric" computing, so a fresh approach was taken. There are a number of similarities between
ADO.NET programming and ADO (not only the name), so upgrading from ADO shouldn't be too difficult.
What's more, if you're using SQL Server, there's a fantastic new set of managed classes that are very highly
tuned to squeeze maximum performance out of the database. This alone should be reason enough to move.

ADO.NET ships with two database client namespaces – one for SQL Server, the other for databases exposed
through an OLE DB interface. If your database of choice has an OLE DB driver, you will be able to easily
connect to it from .NET – just use the OLE DB classes and connect through your current database driver.

Namespaces
All of the examples in this chapter access data in one way or another. The following namespaces expose the
classes and interfaces used in .NET data access:

❑ System.Data – All generic data access classes

❑ System.Data.Common – Classes shared (or overridden) by individual data providers

❑ System.Data.OleDb – OLE DB provider classes

❑ System.Data.SqlClient – SQL Server provider classes

❑ System.Data.SqlTypes – SQL Server data types

Data Access with .NET

515

The main classes in ADO.NET are listed below:

Shared Classes
ADO.NET contains a number of classes that are used regardless of whether you are using the SQL Server
classes or the OLE DB classes.

The following are contained in the System.Data namespace:

❑ DataSet – This object may contain a set of DataTables, can include relationships between these
tables, and is designed for disconnected use.

❑ DataTable – A container of data. A DataTable consists of one or more DataColumns, and
when populated will have one or more DataRows containing data.

❑ DataRow – A number of values, akin to a row from a database table, or a row from a spreadsheet.

❑ DataColumn – Contains the definition of a column, such as the name and data type.

❑ DataRelation – A link between two DataTables within a DataSet. Used for foreign key and
master/detail relationships.

❑ Constraint – Defines a rule for a DataColumn (or set of data columns), such as
unique values.

These next two classes are to be found in the System.Data.Common namespace:

❑ DataColumnMapping – Maps the name of a column from the database with the name of a column
within a DataTable.

❑ DataTableMapping – Maps a table name from the database to a DataTable within a DataSet.

Database Specific Classes
In addition to the shared classes above, ADO.NET contains a number of database-specific classes shown
below. These classes implement a set of standard interfaces defined within the System.Data namespace,
allowing the classes to be used if required in a generic manner. For example, both the SqlConnection and
OleDbConnection classes implement the IDbConnection interface.

❑ SqlCommand, OleDbCommand – A wrapper for SQL statements or stored procedure calls.

❑ SqlCommandBuilder, OleDbCommandBuilder – A class used to generate SQL commands
(such as INSERT, UPDATE, and DELETE statements) from a SELECT statement.

❑ SqlConnection, OleDbConnection – The connection to the database. Similar to an ADO
Connection.

❑ SqlDataAdapter, OleDbDataAdapter – A class used to hold select, insert, update, and delete
commands, which are then used to populate a DataSet and update the Database.

❑ SqlDataReader, OleDbDataReader – A forward only, connected data reader.

❑ SqlParameter, OleDbParameter – Defines a parameter to a stored procedure.

❑ SqlTransaction, OleDbTransaction – A database transaction, wrapped in an object.

Chapter 9

516

The most important new feature of the ADO.NET classes is that they are designed to work in a disconnected
manner, which is important in today's highly web-centric world. It is now common practice to architect a service
(such as an online bookshop) to connect to a server, retrieve some data, and then work on that data on the client
PC before reconnecting and passing the data back for processing. The disconnected nature of ADO.NET enables
this type of behavior.

ADO 2.1 introduced the disconnected recordset, which would permit data to be retrieved from a database, passed
to the client for processing, and then reattached to the server. This was often cumbersome to use, as disconnected
behavior hadn't been designed in from the start. The ADO.NET classes are different – in all but one case (the
Sql/OleDb DataReader) they are designed for use offline from the database.

The classes and interfaces used for data access in the .NET Framework will be introduced as
the chapter continues. I will mainly concentrate on the Sql classes when connecting to the
database, because the Framework SDK samples install an MSDE database (SQL Server). In
most cases the OleDb classes mimic exactly the Sql code.

Using Database Connections
In order to access the database, you need to provide connection parameters, such as the machine that the
database is running on, and possibly your login credentials. Anyone who has worked with ADO will be
immediately familiar with the .NET connection classes, OleDbConnection and SqlConnection:

System.Data.OleDb.OleDbConnection

System.Data.SqlClient.SqlConnectionSystem.Data.IDbConnection

System.Data.IDbConnection

The following code snippet illustrates how to create, open, and close a connection to the Northwind
database. In the examples within this chapter I use the Northwind database, which is installed with the .NET
Framework SDK samples:

using System.Data.SqlClient;

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=Northwind";

SqlConnection conn = new SqlConnection(source);
conn.Open();

// Do something useful

conn.Close();

The connection string should be very familiar to you if you've ever used ADO or OLE DB before – indeed,
you should be able to cut and paste from your old code if you use the OleDb provider. In the example
connection string, the parameters used are as follows. The parameters are delimited by a semicolon in the
connection string.

Data Access with .NET

517

❑ server=(local)\\NetSDK – This denotes the database server to connect to. SQL Server
permits a number of separate database server processes to be running on the same machine, so here
we're connecting to the NetSDK processes on the local machine.

❑ uid=QSUser – This parameter describes the database user. You can also use User ID.

❑ pwd=QSPassword – And this is the password for that user. The .NET SDK comes with a set of
sample databases, and this user/password combination is added during the installation of the .NET
samples. You can also use Password.

❑ database=Northwind – This describes the database instance to connect to – each SQL Server
process can expose several database instances.

The example opens a database connection using the defined connection string, and then closes that connection.
Once the connection has been opened, you can issue commands against the data source, and when you're
finished, the connection can be closed.

SQL Server has another mode of authentication – it can use Windows integrated security, so that the
credentials supplied at logon are passed through to SQL Server. This is catered for by removing the uid and
pwd portions of the connection string , and adding in Integrated Security=SSPI.

In the download code available for this chapter, you will find a file Login.cs that simplifies the examples in
this chapter. It is linked to all the example code, and includes database connection information used for the
examples; you can alter this to supply your own server name, user, and password as appropriate. This by
default uses Windows integrated security; however, you can change the username and password as
appropriate.

Now that we know how to open connections, before we move on we should consider some good practices
concerning the handling of connections.

Using Connections Efficiently
In general, when using "scarce" resources in .NET, such as database connections, windows, or graphics
objects, it is good practice to ensure that each resource is closed after use. Although the designers of .NET
have implemented automatic garbage collection, which will tidy up eventually, it is necessary to actively
release resources as early as possible.

This is all too apparent when writing code that accesses a database, as keeping a connection open for slightly
longer than necessary can affect other sessions. In extreme circumstances, not closing a connection can lock
other users out of an entire set of tables, considerably hurting application performance. Closing database
connections should be considered mandatory, so this section shows how to structure your code so as to
minimize the risk of leaving a resource open.

There are two main ways to ensure that database connections and the like are released after use.

Chapter 9

518

Option One – try/catch/finally
The first option to ensure that resources are cleaned up is to utilize try…catch…finally blocks, and
ensure that you close any open connections within the finally block. Here's a short example:

try
{

// Open the connection
conn.Open();
// Do something useful

}
catch (Exception ex)
{

// Do something about the exception
}
finally
{

// Ensure that the connection is freed
conn.Close () ;

}

Within the finally block you can release any resources you have used. The only trouble with this method is
that you have to ensure that you close the connection – it is all too easy to forget to add in the finally
clause, so something less prone to vagaries in coding style might be worthwhile.

Also, you may find that you open a number of resources (say two database connections and a file) within a
given method, so the cascading of try…catch…finally blocks can sometimes become less easy to read.
There is however another way to guarantee resource cleanup – the using statement.

Option Two – The using Block Statement
During development of C#, .NET's method of clearing up objects after they are no longer referenced using
nondeterministic destruction became a topic of very heated discussion. In C++, as soon as an object went out
of scope, its destructor would be automatically called. This was great news for designers of resource-based
classes, as the destructor was the ideal place to close the resource if the user had forgotten to do so. A C++
destructor is called in any and every situation when an object goes out of scope – so for instance if an
exception was raised and not caught, all objects with destructors would have them called.

With C# and the other managed languages, there is no concept of automatic, deterministic destruction –
instead there is the garbage collector, which will dispose of resources at some point in the future. What makes
this nondeterministic is that you have little say over when this process actually happens. Forgetting to close a
database connection could cause all sorts of problems for a .NET executable. Luckily, help is at hand. The
following code demonstrates how to use the using clause to ensure that objects that implement the
IDisposable interface (discussed in Chapter 2) are cleared up immediately the block exits.

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=Northwind";

using (SqlConnection conn = new SqlConnection (source))

Data Access with .NET

519

{
// Open the connection
conn.Open () ;

// Do something useful
}

The using clause was introduced in Chapter 2. The object within the using clause must implement the
IDisposable interface, or a compilation error will be flagged if the object does not support this interface.
The Dispose() method will automatically be called on exiting the using block.

Looking at the IL code for the Dispose() method of SqlConnection (and OleDbConnection), both of
these check the current state of the connection object, and if open will call the Close() method.

When programming, you should use at least one of these methods, and probably both. Wherever you acquire
resources it is good practice to utilize the using () statement, as even though we all mean to write the
Close() statement, sometimes we forget, and in the face of exceptions the using clause does the right
thing. There is no substitute for good exception handling either, so in most instances I would suggest you use
both methods together as in the following example:

try
{

using (SqlConnection conn = new SqlConnection (source))
{

// Open the connection
conn.Open () ;

// Do something useful

// Close it myself
conn.Close () ;

}
}
catch (Exception e)
{

// Do something with the exception here...
}

Here I have explicitly called Close() which isn't strictly necessary as the using clause will ensure that this
is done anyway; however, you should ensure that any resources such as this are released as soon as possible – you may
have more code in the rest of the block and there's no point locking a resource unnecessarily.

In addition, if an exception is raised within the using block, the IDisposable.Dispose method will be
called on the resource guarded by the using clause, which in this case will ensure that the database
connection is always closed. This produces easier to read code than having to ensure you close a connection
within an exception clause.

One last word – if you are writing a class that wraps a resource, whatever that resource may be, always
implement the IDisposable interface to close the resource. That way anyone coding with your class can
utilize the using() statement and guarantee that the resource will be cleared up.

Chapter 9

520

Transactions
Often when there is more than one update to be made to the database, these updates must be performed within
the scope of a transaction. A transaction in ADO.NET is begun by calling one of the BeginTransaction()
methods on the database connection object. These methods return an object that implements the
IDbTransaction interface, defined within System.Data.

The following sequence of code initiates a transaction on a SQL Server connection:

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=Northwind";

SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlTransaction tx = conn.BeginTransaction();

// Execute some commands, then commit the transaction

tx.Commit();
conn.Close();

When you begin a transaction, you can choose the isolation level for commands executed within that
transaction. The level determines how isolated your transaction is from others occurring on the database
server. Certain database engines may support fewer than the four presented here. The options are as follows:

Isolation Level Description

ReadCommitted The default for SQL Server. This level ensures that data written by one
transaction will only be accessible in a second transaction after the first
commits.

ReadUncommitted This permits your transaction to read data within the database, even data that
has not yet been committed by another transaction. As an example, if two users
were accessing the same database, and the first inserted some data without
concluding their transaction (by means of a Commit or Rollback), then the
second user with their isolation level set to ReadUncommitted could read the
data.

RepeatableRead This level, which extends the ReadCommitted level, ensures that if the same
statement is issued within the transaction, regardless of other potential updates
made to the database, the same data will always be returned. This level does
require extra locks to be held on the data, which could adversely affect
performance.

This level guarantees that, for each row in the initial query, no changes can be
made to that data. It does however permit "phantom" rows to show up – these
are completely new rows that another transaction may have inserted while your
transaction is running.

Data Access with .NET

521

Isolation Level Description

Serializable This is the most "exclusive" transaction level, which in effect serializes access
to data within the database. With this isolation level, phantom rows can never
show up, so a SQL statement issued within a serializable transaction will
always retrieve the same data.

The negative performance impact of a Serializable transaction should not
be underestimated – if you don't absolutely need to use this level of isolation,
it is advisable to stay away from it.

The SQL Server default isolation level, ReadCommitted, is a good compromise between data coherence and
data availability, as fewer locks are required on data than in RepeatableRead or Serializable modes.
However, there are situations where the isolation level should be increased, and so within .NET you can
simply begin a transaction with a different level from the default. There are no hard and fast rules as to which
levels to pick – that comes with experience.

One last word on transactions – if you are currently using a database that does not support
transactions, it is well worth changing to a database that does!

Commands
I briefly touched on the idea of issuing commands against a database in the Using Database Connections
section. A command is, in its simplest form, a string of text containing SQL statements that is to be issued to
the database. A command could also be a stored procedure, or the name of a table that will return all columns
and all rows from that table (in other words, a SELECT *-style clause).

A command can be constructed by passing the SQL clause as a parameter to the constructor of the SqlCommand
class, as shown below:

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=Northwind";

string select = "SELECT ContactName,CompanyName FROM Customers";
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);

The SqlCommand and OleDbCommand classes have a property called CommandType, which is used to
define whether the command is a SQL clause, a call to a stored procedure, or a full table statement (which
simply selects all columns and rows from a given table). The following table summarizes the CommandType
enumeration:

Chapter 9

522

CommandType Example

Text

(default)

String select = "SELECT ContactName FROM Customers";

SqlCommand cmd = new SqlCommand(select , conn);

StoredProcedure SqlCommand cmd = new SqlCommand("CustOrderHist", conn);

cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add("@CustomerID", "QUICK");

TableDirect OleDbCommand cmd = new OleDbCommand("Categories", conn);

cmd.CommandType = CommandType.TableDirect;

When executing a stored procedure, it may be necessary to pass parameters to that procedure. The example
above sets the @CustomerID parameter directly, although there are other ways of setting the parameter value,
which we will look at later in the chapter.

Note: The TableDirect command type is only valid for the OleDb provider – an
exception is thrown by the Sql provider if you attempt to use this command type with it.

Executing Commands
Once you have the command defined, you need to execute it. There are a number of ways to issue the
statement, depending on what you expect to be returned (if anything) from that command. The SqlCommand
and OleDbCommand classes provide the following execute methods:

❑ ExecuteNonQuery() – Execute the command but do not return any output

❑ ExecuteReader() – Execute the command and return a typed IDataReader

❑ ExecuteScalar() – Execute the command and return a single value

In addition to the above methods, the SqlCommand class also exposes the following method

❑ ExecuteXmlReader() – Execute the command, and return an XmlReader object, which can be
used to traverse the XML fragment returned from the database.

The example code in this section can be found in the Chapter 09\01_ExecutingCommands subdirectory
of the code download.

ExecuteNonQuery()
This method is commonly used for UPDATE, INSERT, or DELETE statements, where the only returned value is
the number of records affected. This method can, however, return results if you call a stored procedure that
has output parameters.

Data Access with .NET

523

using System;
using System.Data.SqlClient;
public class ExecuteNonQueryExample
{

public static void Main(string[] args)
{

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=Northwind";

string select = "UPDATE Customers " +
"SET ContactName = 'Bob' " +
"WHERE ContactName = 'Bill'";

SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);
int rowsReturned = cmd.ExecuteNonQuery();
Console.WriteLine("{0} rows returned.", rowsReturned);
conn.Close();

}
}

ExecuteNonQuery() returns the number of rows affected by the command as an int.

ExecuteReader()
This method executes the command and returns a SqlDataReader or OleDbDataReader object,
depending on the provider in use. The object returned can be used to iterate through the record(s) returned, as
shown in the following code:

using System;
using System.Data.SqlClient;
public class ExecuteReaderExample

{
public static void Main(string[] args)
{

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=Northwind";

string select = "SELECT ContactName,CompanyName FROM Customers";
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);
SqlDataReader reader = cmd.ExecuteReader();
while(reader.Read())
{

Console.WriteLine("Contact : {0,-20} Company : {1}" ,
reader[0] , reader[1]);

}
}

}

Chapter 9

524

The SqlDataReader and OleDbDataReader objects will be discussed later in this chapter.

ExecuteScalar()
On many occasions it is necessary to return a single result from a SQL statement, such as the count of records
in a given table, or the current date/time on the server. The ExecuteScalar method can be used in such
situations:

using System;
using System.Data.SqlClient;
public class ExecuteScalarExample

{
public static void Main(string[] args)
{

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=Northwind";

string select = "SELECT COUNT(*) FROM Customers";
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);
object o = cmd.ExecuteScalar();
Console.WriteLine (o) ;

}
}

The method returns an object, which you can cast into the appropriate type if required.

ExecuteXmlReader() (SqlClient Provider Only)
As its name implies, this method will execute the command and return an XmlReader object to the caller.
SQL Server permits a SQL SELECT statement to be extended with a FOR XML clause. This clause can take one
of three options:

❑ FOR XML AUTO – builds a tree based on the tables in the FROM clause

❑ FOR XML RAW – result set rows are mapped to elements, with columns mapped to attributes

❑ FOR XML EXPLICIT –you must specify the shape of the XML tree to be returned

Data Access with .NET

525

Professional SQL Server 2000 XML (Wrox Press, ISBN 1-861005-46-6) includes a complete description of
these options. For this example I shall use AUTO:

using System;
using System.Data.SqlClient;
using System.Xml;
public class ExecuteXmlReaderExample
{

public static void Main(string[] args)
{

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +

"database=Northwind";

string select = "SELECT ContactName,CompanyName " +
"FROM Customers FOR XML AUTO";

SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select, conn);
XmlReader xr = cmd.ExecuteXmlReader();
while(xr.Read())
{

Console.WriteLine(xr.ReadOuterXml());
}
conn.Close();

}
}

Note that we have to import the System.Xml namespace in order to output the returned XML. This
namespace and further XML capabilities of the .NET Framework are explored in more detail in Chapter 11.

Here we include the FOR XML AUTO clause in the SQL statement, then call the ExecuteXmlReader()
method. A screenshot of the possible output from this code is shown below:

Chapter 9

526

In the SQL clause, we specified FROM Customers, so an element of type Customers is shown in the output.
To this are added attributes, one for each column selected from the database. This builds up an XML fragment
for each row selected from the database.

Calling Stored Procedures
Calling a stored procedure with a command object is just a matter of defining the name of the stored
procedure, adding a parameter's definition for each parameter of the procedure, then executing the command
with one of the methods presented in the previous section.

In order to make the examples in this section more useful, I have defined a set of stored procedures that can be
used to insert, update, and delete records from the Region table in the Northwind example database. I have
chosen this table despite its small size, as it can be used to define examples for each of the types of stored
procedures you will commonly write.

Calling a Stored Procedure that Returns Nothing
The simplest example of calling a stored procedure is one that returns nothing to the caller. There are two such
procedures defined below, one for updating a pre-existing Region record, and the other for deleting a given
Region record.

Record Update
Updating a Region record is fairly trivial, as there is only one column that can be modified (assuming
primary keys cannot be updated). You can type these examples directly into the SQL Server Query Analyzer,
or run the StoredProcs.sql file in the Chapter 09\02_StoredProcs subdirectory, which will install
each of the stored procedures in this section:

CREATE PROCEDURE RegionUpdate (@RegionID INTEGER,
@RegionDescription NCHAR(50)) AS

SET NOCOUNT OFF
UPDATE Region

SET RegionDescription = @RegionDescription
WHERE RegionID = @RegionID

GO

An update command on a more real-world table might need to re-select and return the updated record in its
entirety. This stored procedure takes two input parameters (@RegionID and @RegionDescription), and
issues an UPDATE statement against the database.

To run this stored procedure from within .NET code, you need to define a SQL command and execute it:

SqlCommand aCommand = new SqlCommand("RegionUpdate", conn);

aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter ("@RegionID",

SqlDbType.Int,
0,

"RegionID"));

Data Access with .NET

527

aCommand.Parameters.Add(new SqlParameter("@RegionDescription",
SqlDbType.NChar,
50,
"RegionDescription"));

aCommand.UpdatedRowSource = UpdateRowSource.None;

This code creates a new SqlCommand object named aCommand, and defines it as a stored procedure. We then
add each parameter in turn, and finally set the expected output from the stored procedure to one of the values
in the UpdateRowSource enumeration, which is discussed later in this chapter.

The stored procedure takes two parameters: the unique primary key of the Region record being updated, and
the new description to be given to this record.

Once the command has been created, it can be executed by issuing the following commands:

aCommand.Parameters[0].Value = 999;
aCommand.Parameters[1].Value = "South Western England";
aCommand.ExecuteNonQuery();

Here we are setting the value of the parameters, then executing the stored procedure. As the procedure returns
nothing, ExecuteNonQuery() will suffice.

Command parameters may be set by ordinal as shown above, or set by name.

Record Deletion
The next stored procedure required is one that can be used to delete a Region record from
the database:

CREATE PROCEDURE RegionDelete (@RegionID INTEGER) AS
SET NOCOUNT OFF
DELETE FROM Region
WHERE RegionID = @RegionID

GO

This procedure only requires the primary key value of the record. The code uses a SqlCommand object to call
this stored procedure as follows:

SqlCommand aCommand = new SqlCommand("RegionDelete" , conn);
aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter("@RegionID" , SqlDbType.Int , 0 ,

"RegionID"));
aCommand.UpdatedRowSource = UpdateRowSource.None;

This command only accepts a single parameter as shown in the following code, which will execute the
RegionDelete stored procedure; here we see an example of setting the parameter by name:

aCommand.Parameters["@RegionID"].Value= 999;
aCommand.ExecuteNonQuery();

Chapter 9

528

Calling a Stored Procedure that Returns Output Parameters
Both of the previous examples execute stored procedures that return nothing. If a stored procedure includes
output parameters, then these need to be defined within the .NET client so that they can be filled when the
procedure returns.

The following example shows how to insert a record into the database, and return the primary key of that
record to the caller.

Record Insertion
The Region table only consists of a primary key (RegionID) and description field (RegionDescription).
To insert a record, this numeric primary key needs to be generated, then a new row inserted into the database.
I have chosen to simplify the primary key generation in this example by creating one within the stored procedure.
The method used is exceedingly crude, which is why I have devoted a section to key generation later in the chapter.
For now this primitive example will suffice:

CREATE PROCEDURE RegionInsert(@RegionDescription NCHAR(50),
@RegionID INTEGER OUTPUT)AS

SET NOCOUNT OFF
SELECT @RegionID = MAX(RegionID)+ 1
FROM Region
INSERT INTO Region(RegionID, RegionDescription)
VALUES(@RegionID, @RegionDescription)

GO

The insert procedure creates a new Region record. As the primary key value is generated by the database
itself, this value is returned as an output parameter from the procedure (@RegionID). This is sufficient for
this simple example, but for a more complex table (especially one with default values), it is more common not
to utilize output parameters, and instead select the entire inserted row and return this to the caller. The .NET
classes can cope with either scenario.

SqlCommand aCommand = new SqlCommand("RegionInsert" , conn);
aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter("@RegionDescription" ,

SqlDbType.NChar ,
50 ,
"RegionDescription"));

aCommand.Parameters.Add(new SqlParameter("@RegionID" ,
SqlDbType.Int,
0 ,
ParameterDirection.Output ,
false ,
0 ,
0 ,
"RegionID" ,
DataRowVersion.Default ,
null));

aCommand.UpdatedRowSource = UpdateRowSource.OutputParameters;

Here, the definition of the parameters is much more complex. The second parameter, @RegionID, is defined
to include its parameter direction, which in this example is Output. In addition to this flag, on the last line of
the code, we utilize the UpdateRowSource enumeration to indicate that we expect to return data from this
stored procedure via output parameters. This flag is mainly used when issuing stored procedure calls from a
DataTable (covered later in the chapter).

Data Access with .NET

529

Calling this stored procedure is similar to the previous examples, except in this instance we need to read the
output parameter after executing the procedure:

aCommand.Parameters["@RegionDescription"].Value = "South West";
aCommand.ExecuteNonQuery();
int newRegionID = (int) aCommand.Parameters["@RegionID"].Value;

After executing the command, we read the value of the @RegionID parameter and cast this to
an integer.

You may be wondering what to do if the stored procedure you call returns output parameters and a set of rows.
In this instance, define the parameters as appropriate, and rather than calling ExecuteNonQuery(), call one
of the other methods (such as ExecuteReader()) that will permit you to traverse any record(s) returned.

Quick Data Access: The Data Reader
A data reader is the simplest and fastest way of selecting some data from a data source, but also the least
capable. You cannot directly instantiate a data reader object – an instance is returned from a SqlCommand or
OleDbCommand object having called the ExecuteReader() method – from a SqlCommand object, a
SqlDataReader object is returned, and from the OleDbCommand object, a OleDbDataReader object is
returned.

The following code demonstrates how to select data from the Customers table in the Northwind database.
The example connects to the database, selects a number of records, loops through these selected records and
outputs them to the console.

This example utilizes the OLE DB provider as a brief respite from the SQL provider. In most cases the classes
have a one-to-one correspondence with their SqlClient cousins, so for instance there is the
OleDbConnection object, which is similar to the SqlConnection object used in the previous examples.

To execute commands against an OLE DB data source, the OleDbCommand class is used. The following code
shows an example of executing a simple SQL statement and reading the records by returning an
OleDbDataReader object.

The code for this example can be found in the Chapter 09\03_DataReader directory.

Note the second using directive below that makes available the OleDb classes:

using System;
using System.Data.OleDb;

Chapter 9

530

All the data providers currently available are shipped within the same DLL, so it is only necessary to reference
the System.Data.dll assembly to import all classes used in this section:

public class DataReaderExample
{

public static void Main(string[] args)
{

string source = "Provider=SQLOLEDB;" +
"server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=northwind";

string select = "SELECT ContactName,CompanyName FROM Customers";
OleDbConnection conn = new OleDbConnection(source);
conn.Open();
OleDbCommand cmd = new OleDbCommand(select , conn);
OleDbDataReader aReader = cmd.ExecuteReader();
while(aReader.Read())

Console.WriteLine("'{0}' from {1}" ,
aReader.GetString(0) , aReader.GetString(1));

aReader.Close();
conn.Close();

}
}

The preceding code includes many familiar aspects of C# covered in other chapters. To compile the example,
issue the following command:

csc /t:exe /debug+ DataReaderExample.cs /r:System.Data.dll

The following code from the example above creates a new OLE DB .NET database connection, based on the
source connection string:

OleDbConnection conn = new OleDbConnection(source);
conn.Open();
OleDbCommand cmd = new OleDbCommand(select, conn);

The third line creates a new OleDbCommand object, based on a particular SELECT statement, and the
database connection to be used when the command is executed. When you have a valid command, you then
need to execute it, which returns an initialized OleDbDataReader:

OleDbDataReader aReader = cmd.ExecuteReader();

An OleDbDataReader is a forward-only "connected" cursor. In other words, you can only traverse through
the records returned in one direction, and the database connection used is kept open until the data reader has
been closed.

An OleDbDataReader keeps the database connection open until explicitly closed.

Data Access with .NET

531

The OleDbDataReader class cannot be directly instantiated – it is always returned by a call to the
ExecuteReader() method of the OleDbCommand class. Once you have an open data reader, there are
various ways to access the data contained within the reader.

When the OleDbDataReader object is closed (via an explicit call to Close(), or the object being garbage
collected), the underlying connection may also be closed, depending on which of the ExecuteReader()
methods is called. If you call ExecuteReader() and pass CommandBehavior.CloseConnection, you
can force the connection to be closed when the reader
is closed.

The OleDbDataReader class has an indexer that permits access (although not type-safe access) to any field
using the familiar array style syntax:

object o = aReader[0];
object o = aReader["CategoryID"];

Assuming that the CategoryID field was the first in the SELECT statement used to populate the reader, these
two lines are functionally equivalent, although the second is slower than the first – I wrote a simple test
application that performed a million iterations of accessing the same column from an open data reader, just to
get some numbers that were big enough to read. I know – you probably don't read the same column a million
times in a tight loop, but every (micro) second counts, and you might as well write code that is as close to
optimal as possible.

Just for interest, the numeric indexer took on average 0.09 seconds for the million accesses, and the textual
one 0.63 seconds. The reason for this difference is that the textual method looks up the column number
internally from the schema and then accesses it using its ordinal. If you know this information beforehand you
can do a better job of accessing the data.

So should you use the numeric indexer? Maybe, but there is a better way.

In addition to the indexers presented above, the OleDbDataReader has a set of type-safe methods that can
be used to read columns. These are fairly self-explanatory, and all begin with Get. There are methods to read
most types of data, such as GetInt32, GetFloat, GetGuid, and so on.

My million iterations using GetInt32 took 0.06 seconds. The overhead in the numeric indexer is incurred
while getting the data type, calling the same code as GetInt32, then boxing (and in this instance unboxing)
an integer. So, if you know the schema beforehand, are willing to use cryptic numbers instead of column
names, and you can be bothered to use a type-safe function for each and every column access, you stand to
gain somewhere in the region of a ten fold speed increase over using a textual column name (when selecting
those million copies of the same column).

Needless to say, there is a tradeoff between maintainability and speed. If you must use numeric indexers,
define constants within class scope for each of the columns that you will be accessing.

The code above can be used to select data from any OLE DB database; however, there are a number of SQL
Server-specific classes that can be used with the obvious portability tradeoff.

The following example is the same as the above, except in this instance I have replaced the OLE DB provider and
all references to OLE DB classes with their SQL counterparts. The changes in the code from the previous
example have been highlighted. The example is in the 04_DataReaderSql directory:

Chapter 9

532

using System;
using System.Data.SqlClient;
public class DataReaderSql
{

public static int Main(string[] args)
{

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=northwind";

string select = "SELECT ContactName,CompanyName FROM Customers";
SqlConnection conn = new SqlConnection(source);
conn.Open();
SqlCommand cmd = new SqlCommand(select , conn);
SqlDataReader aReader = cmd.ExecuteReader();
while(aReader.Read())

Console.WriteLine("'{0}' from {1}" , aReader.GetString(0) ,
aReader.GetString(1));

aReader.Close();
conn.Close();
return 0;

}
}

Notice the difference? If you're typing this in then do a global replace on OleDb with Sql, change the data
source string and recompile. It's that easy!

I ran the same performance tests on the indexers for the SQL provider, and this time the numeric indexers
were both exactly the same at 0.13 seconds for the million accesses, and the string-based indexer ran at about
0.65 seconds. You would expect the native SQL Server provider to be faster than going through OleDb, which
up until I tested this section under the release version of .NET it was. I'm reasonably sure that this is an
anomaly due to the simplistic test approach I am using (selecting the same value 1,000,000 times), and would
expect a real-world test to show better performance from the managed SQL provider.

If you are interested in running the code on your own computer to see what performance is like, see the
05_IndexerTestingOleDb and 06_IndexerTestingSql examples included in the code download.

Managing Data and Relationships: The DataSet
The DataSet class has been designed as an offline container of data. It has no notion of database
connections. In fact, the data held within a DataSet doesn't necessarily need to have come from a database –
it could just as easily be records from a CSV file, or points read from a measuring device.

A DataSet consists of a set of data tables, each of which will have a set of data columns and data rows. In
addition to defining the data, you can also define links between tables within the DataSet. One common
scenario would be when defining a parent-child relationship (commonly known as master/detail). One record
in a table (say Order) links to many records in another table (say Order_Details). This relationship can be
defined and navigated within the DataSet.

Data Access with .NET

533

DataSet

DataColumn}DataTable

DataTable

{
DataRow {
DataRow

DataColumn}

The following sections describe the classes that are used with a DataSet.

Data Tables
A data table is very similar to a physical database table – it consists of a set of columns with particular
properties, and may contain zero or more rows of data. A data table may also define a primary key, which can
be one or more columns, and may also contain constraints on columns. The generic term for this information
used throughout the rest of the chapter is schema.

There are several ways to define the schema for a particular data table (and indeed the DataSet as a whole).
These are discussed after we introduce data columns and data rows.

The following diagram shows some of the objects that are accessible through the data table:

DataRow

DataColumn

Constraint

Object

DataTable

Columns

Rows

Constraints

ExtendedProperties

A DataTable object (and also a DataColumn) can have an arbitrary number of extended properties
associated with it. This collection can be populated with any user-defined information pertaining to the object.
For example, a given column might have an input mask used to validate the contents of that column – the
typical example would be the US social security number. Extended properties are especially useful when the
data is constructed within a middle tier and returned to the client for
some processing. You could, for example, store validation criteria (such as min and max) for
numeric columns.

Chapter 9

534

When a data table has been populated, either by selecting data from a database, reading data from a file, or
manually populating within code, the Rows collection will contain this retrieved data.

The Columns collection contains DataColumn instances that have been added to this table. These define the
schema of the data, such as the data type, nullability, default values, and so on. The Constraints collection
can be populated with either unique or primary key constraints.

One example of where the schema information for a data table is used is when displaying that data in a
DataGrid (which we'll discuss at length in the next chapter). The DataGrid control uses properties such as
the data type of the column to decide what control to use for that column. A bit field within the database will
be displayed as a checkbox within the DataGrid. If a column is defined within the database schema as NOT
NULL, then this fact will be stored within the DataColumn so that it can be tested when the user attempts to
move off a row.

Data Columns
A DataColumn object defines properties of a column within the DataTable, such as the data type of that
column, whether the column is read only, and various other facts. A column can be created in code, or can be
automatically generated by the runtime.

When creating a column, it is also useful to give it a name; otherwise the runtime will generate a name for you
in the form Columnn where n is an incrementing number.

The data type of the column can be set either by supplying it in the constructor, or by setting the DataType
property. Once you have loaded data into a data table you cannot alter the type of a column – you'll just
receive an ArgumentException.

Data columns can be created to hold the following .NET Framework data types:

Boolean Decimal Int64 TimeSpan

Byte Double Sbyte UInt16

Char Int16 Single UInt32

DateTime Int32 String UInt64

Once created, the next thing to do with a DataColumn object is to set up other properties, such as the
nullability of the column or the default value. The following code fragment shows a few of the more common
options to set on a DataColumn:

DataColumn customerID = new DataColumn("CustomerID" , typeof(int));
customerID.AllowDBNull = false;
customerID.ReadOnly = false;
customerID.AutoIncrement = true;
customerID.AutoIncrementSeed = 1000;
DataColumn name = new DataColumn("Name" , typeof(string));
name.AllowDBNull = false;
name.Unique = true;

Data Access with .NET

535

The following properties can be set on a DataColumn:

Property Description

AllowDBNull If true, permits the column to be set to DBNull.

AutoIncrement Defines that this column value is automatically generated as an
incrementing number.

AutoIncrementSeed The initial seed value for an AutoIncrement column.

AutoIncrementStep Defines the step between automatically generated column values, with a
default of one.

Caption Can be used for displaying the name of the column on screen.

ColumnMapping Defines how a column is mapped into XML when a DataSet is saved by
calling DataSet.WriteXml.

ColumnName The name of the column. This is auto-generated by the runtime if not set in
the constructor.

DataType The System.Type value of the column.

DefaultValue Can define a default value for a column.

Expression This property defines the expression to be used in a computed column.

Data Rows
This class makes up the other part of the DataTable class. The columns within a data table are defined in
terms of the DataColumn class. The actual data within the table is accessed using the DataRow object. The
following example shows how to access rows within a data table. The code for this example is available in the
07_SimpleDatasetSql directory. First, the connection details:

string source = "server=(local)\\NetSDK;" +
"uid=QSUser;pwd=QSPassword;" +
"database=northwind";

string select = "SELECT ContactName,CompanyName FROM Customers";
SqlConnection conn = new SqlConnection(source);

The following code introduces the SqlDataAdapter class, which is used to place data into a DataSet. The
SqlDataAdapter will issue the SQL clause, and fill a table in the DataSet called Customers with the
output of this following query. We'll be discussing the data adapter class further in the Populating a DataSet
section.

SqlDataAdapter da = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
da.Fill(ds , "Customers");

Chapter 9

536

In the code below, you may notice the use of the DataRow indexer to access values from within that row. The
value for a given column can be retrieved using one of the several overloaded indexers. These permit you to
retrieve a value knowing the column number, name, or DataColumn:

foreach(DataRow row in ds.Tables["Customers"].Rows)
Console.WriteLine("'{0}' from {1}" , row[0] ,row[1]);

One of the most appealing aspects of a DataRow is that it is versioned. This permits you to receive various
values for a given column in a particular row. The versions are described in the following table:

DataRowVersion Value Description

Current The value existing at present within the column. If no edit has occurred,
this will be the same as the original value. If an edit (or edits) have
occurred, the value will be the last valid value entered.

Default The default value (in other words, any default set up for the column).

Original The value of the column when originally selected from the database. If
the DataRow's AcceptChanges method is called, then this value will
update to be the Current value.

Proposed When changes are in progress for a row, it is possible to retrieve this
modified value. If you call BeginEdit() on the row and make
changes, each column will have a proposed value until either
EndEdit() or CancelEdit() is called.

The version of a given column could be used in many ways. One example is when updating rows within the
database, in which instance it is common to issue an SQL statement such as the following:

UPDATE Products
SET Name = Column.Current
WHERE ProductID = xxx
AND Name = Column.Original;

Obviously this code would never compile, but it shows one use for original and current values of a column
within a row.

To retrieve a versioned value from the DataRow, use one of the indexer methods that accept a
DataRowVersion value as a parameter. The following code snippet shows how to obtain all values of each
column in a DataTable:

foreach (DataRow row in ds.Tables["Customers"].Rows)
{

foreach (DataColumn dc in ds.Tables["Customers"].Columns)
{

Console.WriteLine ("{0} Current = {1}" , dc.ColumnName ,
row[dc,DataRowVersion.Current]);

Console.WriteLine (" Default = {0}" , row[dc,DataRowVersion.Default]);
Console.WriteLine (" Original = {0}" , row[dc,DataRowVersion.Original]);

}
}

Data Access with .NET

537

The whole row has a state flag called RowState, which can be used to determine what operation is needed on
the row when it is persisted back to the database. The RowState property is set to keep track of all the
changes made to the DataTable, such as adding new rows, deleting existing rows, and changing columns
within the table. When the data is reconciled with the database, the row state flag is used to determine what
SQL operations should occur. These flags are defined by the DataRowState enumeration:

DataRowState Value Description

Added The row has been newly added to a DataTable's Rows collection. All
rows created on the client are set to this value, and will ultimately issue
SQL INSERT statements when reconciled with the database.

Deleted This indicates that the row has been marked as deleted from the
DataTable by means of the DataRow.Delete() method. The row
still exists within the DataTable, but will not normally be viewable on
screen (unless a DataView has been explicitly set up). DataViews will
be discussed in the next chapter. Rows marked as deleted in the
DataTable will be deleted from the database when reconciled.

Detached A row is in this state immediately after it is created, and can also be
returned to this state by calling DataRow.Remove(). A detached row
is not considered to be part of any data table, and as such no SQL for
rows in this state will be issued.

Modified A row will be Modified if the value in any column has been changed.

Unchanged The row has not been changed since the last call to
AcceptChanges().

The state of the row depends also on what methods have been called on the row. The AcceptChanges()
method is generally called after successfully updating the data source (that is, after persisting changes to the
database).

The most common way to alter data in a DataRow is to use the indexer; however, if you have a number of
changes to make you also need to consider the BeginEdit() and EndEdit() methods.

When an alteration is made to a column within a DataRow, the ColumnChanging event is raised on the
row's DataTable. This permits you to override the ProposedValue property of the
DataColumnChangeEventArgs class classes, and change it as required. This is one way of performing
some data validation on column values. If you call BeginEdit() before making changes, the
ColumnChanging event will not be raised. This permits you to make multiple changes and then call
EndEdit() to persist these changes. If you wish to revert to the original values, call CancelEdit().

A DataRow can be linked in some way to other rows of data. This permits the creation of navigable links
between rows, which is common in master/detail scenarios. The DataRow contains a GetChildRows()
method that will return an array of associated rows from another table in the same DataSet as the current
row. These are discussed in the Data Relationships section later in this chapter.

Chapter 9

538

Schema Generation
There are three ways to create the schema for a DataTable. These are:

❑ Let the runtime do it for you

❑ Write code to create the table(s)

❑ Use the XML schema generator

Runtime Schema Generation
The DataRow example shown earlier presented the following code for selecting data from a database and
populating a DataSet:

SqlDataAdapter da = new SqlDataAdapter(select , conn);
DataSet ds = new DataSet();
da.Fill(ds , "Customers");

This is obviously easy to use, but it has a few drawbacks too. One example is that you have to make do with
the column names selected from the database, which may be fine, but in certain instances you might want to
rename a physical database column (say PKID) to something more user-friendly.

You could naturally rename columns within your SQL clause, as in SELECT PID AS PersonID FROM
PersonTable; I would always recommend not renaming columns within SQL, as the only place a column
really needs to have a "pretty" name is on screen.

Another potential problem with automated DataTable/DataColumn generation is that you have no control
over the column types that the runtime chooses for your data. It does a fairly good job of deciding the correct
data type for you, but as usual there are instances where you need more control. You might for example have
defined an enumerated type for a given column, so as to simplify user code written against your class. If you
accept the default column types that the runtime generates, the column will likely be an integer with a 32-bit
range, as opposed to an enum with five options.

Lastly, and probably most problematic, is that when using automated table generation, you have no type-safe
access to the data within the DataTable – you are at the mercy of indexers, which return instances of
object rather than derived data types. If you like sprinkling your code with typecast expressions then skip
the following sections.

Hand-Coded Schema
Generating the code to create a DataTable, replete with associated DataColumns is fairly easy. The
examples within this section will access the Products table from the Northwind database shown below.
The code for this section is available in the 08_ManufacturedDataSet example.

Data Access with .NET

539

The following code manufactures a DataTable, which corresponds to the above schema.

public static void ManufactureProductDataTable(DataSet ds)
{

DataTable products = new DataTable("Products");
products.Columns.Add(new DataColumn("ProductID", typeof(int)));
products.Columns.Add(new DataColumn("ProductName", typeof(string)));
products.Columns.Add(new DataColumn("SupplierID", typeof(int)));
products.Columns.Add(new DataColumn("CategoryID", typeof(int)));
products.Columns.Add(new DataColumn("QuantityPerUnit", typeof(string)));
products.Columns.Add(new DataColumn("UnitPrice", typeof(decimal)));
products.Columns.Add(new DataColumn("UnitsInStock", typeof(short)));
products.Columns.Add(new DataColumn("UnitsOnOrder", typeof(short)));
products.Columns.Add(new DataColumn("ReorderLevel", typeof(short)));
products.Columns.Add(new DataColumn("Discontinued", typeof(bool)));
ds.Tables.Add(products);

}

You can alter the code in the DataRow example to utilize this newly generated table definition
as follows:

string source = "server=localhost;" +
"integrated security=sspi;" +
"database=Northwind";

string select = "SELECT * FROM Products";
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter cmd = new SqlDataAdapter(select, conn);
DataSet ds = new DataSet();
ManufactureProductDataTable(ds);
cmd.Fill(ds, "Products");
foreach(DataRow row in ds.Tables["Products"].Rows)

Console.WriteLine("'{0}' from {1}", row[0], row[1]);

Chapter 9

540

The ManufactureProductDataTable() method creates a new DataTable, adds each column in turn,
and finally appends this to the list of tables within the DataSet. The DataSet has an indexer that takes the
name of the table and returns that DataTable to the caller.

The above example is still not really type-safe, as I'm using indexers on columns to retrieve the data. What
would be better is a class (or set of classes) derived from DataSet, DataTable, and DataRow, that define
type-safe accessors for tables, rows, and columns. You can generate this code yourself – it's not particularly
tedious and you end up with truly type-safe data access classes.

If you don't like the sound of generating these type-safe classes yourself then help is at hand. The .NET
Framework includes support for using XML schemas to define a DataSet, DataTable, and the other classes
that we have touched on in this section. The XML Schemas section later in the chapter details this method; but
first, we will look at relationships and constraints within a DataSet.

Data Relationships
When writing an application, it is often necessary to obtain and cache various tables of information. The
DataSet class is the container for this information. With regular OLE DB it was necessary to provide a
strange SQL dialect to enforce hierarchical data relationships, and the provider itself was not without its own
subtle quirks.

The DataSet class on the other hand has been designed from the start to establish relationships between data
tables with ease. For the code in this section I decided to hand-generate and populate two tables with data. So,
if you haven't got SQL Server or the NorthWind database to hand, you can run this example anyway. The
code is available in the 09_DataRelationships directory:

DataSet ds = new DataSet("Relationships");
ds.Tables.Add(CreateBuildingTable());
ds.Tables.Add(CreateRoomTable());
ds.Relations.Add("Rooms",

ds.Tables["Building"].Columns["BuildingID"],
ds.Tables["Room"].Columns["BuildingID"]);

The tables simply contain a primary key and name field, with the Room table having BuildingID as a
foreign key.

These tables were kept deliberately simple, as my fingers were wearing out at this point so I didn't want to add
too many columns to either one.

Data Access with .NET

541

I then added some default data to each table. Once that was done, I could then iterate through the buildings
and rooms using the code below.

foreach(DataRow theBuilding in ds.Tables["Building"].Rows)
{

DataRow[] children = theBuilding.GetChildRows("Rooms");
int roomCount = children.Length;
Console.WriteLine("Building {0} contains {1} room{2}",

theBuilding["Name"],
roomCount,
roomCount > 1 ? "s" : "");

// Loop through the rooms
foreach(DataRow theRoom in children)

Console.WriteLine("Room: {0}", theRoom["Name"]);
}

The big difference between the DataSet and the old-style hierarchical Recordset object is in the way the
relationship is presented. In a hierarchical Recordset, the relationship was presented as a pseudo-column
within the row. This column itself was a Recordset that could be iterated through. Under ADO.NET,
however, a relationship is traversed simply by calling the GetChildRows() method:

DataRow[] children = theBuilding.GetChildRows("Rooms");

This method has a number of forms, but the simple example shown above just uses the name of the
relationship to traverse between parent and child rows. It returns an array of rows that can be updated as
appropriate by using the indexers as shown in earlier examples.

What's more interesting with data relationships is that they can be traversed both ways. Not only can you go
from a parent to the child rows, but you can also find a parent row (or rows) from a child record simply by
using the ParentRelations property on the DataTable class. This property returns a
DataRelationCollection, which can be indexed using the [] array syntax (for example,
ParentRelations["Rooms"]), or as an alternative the GetParentRows() method can be called as
shown below:

foreach(DataRow theRoom in ds.Tables["Room"].Rows)
{

DataRow[] parents = theRoom.GetParentRows("Rooms");
foreach(DataRow theBuilding in parents)

Console.WriteLine("Room {0} is contained in building {1}",
theRoom["Name"],
theBuilding["Name"]);

}

There are two methods with various overrides available for retrieving the parent row(s) – GetParentRows()
(which returns an array of zero or more rows), or GetParentRow() (which retrieves a single parent row
given a relationship).

Chapter 9

542

Data Constraints
Changing the data type of columns created on the client is not the only thing a DataTable is good for.
ADO.NET permits you to create a set of constraints on a column (or columns), which are then used to enforce
rules within the data.

The runtime currently supports the following constraint types, embodied as classes in the
System.Data namespace.

Constraint Description

ForeignKeyConstraint Enforce a link between two DataTables within a DataSet

UniqueConstraint Ensure that entries in a given column are unique

Setting a Primary Key
As is common for a table in a relational database, you can supply a primary key, which can be based on one or
more columns from the DataTable.

The code below creates a primary key for the Products table, whose schema we constructed by hand earlier,
and can be found in the 08_ManufactureDataSet folder.

Note that a primary key on a table is just one form of constraint. When a primary key is added to a DataTable,
the runtime also generates a unique constraint over the key column(s). This is because there isn't actually a
constraint type of PrimaryKey – a primary key is simply a unique constraint over one or more columns.

public static void ManufacturePrimaryKey(DataTable dt)
{

DataColumn[] pk = new DataColumn[1];
pk[0] = dt.Columns["ProductID"];
dt.PrimaryKey = pk;

}

As a primary key may contain several columns, it is typed as an array of DataColumns. A table's primary key
can be set to those columns simply by assigning an array of columns to the property.

To check the constraints for a table, you can iterate through the ConstraintCollection. For the auto-
generated constraint produced by the above code, the name of the constraint is Constraint1. That's not a
very useful name, so to avoid this problem it is always best to create the constraint in code first, then define
which column(s) make up the primary key, as we shall do now.

As a long time database programmer, I find named constraints much simpler to understand, as most databases
produce cryptic names for constraints, rather than something simple and legible. The code below names the
constraint before creating the primary key:

DataColumn[] pk = new DataColumn[1];
pk[0] = dt.Columns["ProductID"];
dt.Constraints.Add(new UniqueConstraint("PK_Products", pk[0]));

dt.PrimaryKey = pk;

Unique constraints can be applied to as many columns as you wish.

Data Access with .NET

543

Setting a Foreign Key
In addition to unique constraints, a DataTable may also contain foreign key constraints. These are primarily
used to enforce master/detail relationships, but can also be used to replicate columns between tables if you set
the constraint up correctly. A master/detail relationship is one where there is commonly one parent record (say
an order) and many child records (order lines), linked by the primary key of the parent record.

A foreign key constraint can only operate over tables within the same DataSet, so the following example
utilizes the Categories table from the Northwind database, and assigns a constraint between it and the
Products table.

The first step is to generate a new data table for the Categories table. The 08_ManufactureDataSet
example includes this code:

DataTable categories = new DataTable("Categories");
categories.Columns.Add(new DataColumn("CategoryID", typeof(int)));
categories.Columns.Add(new DataColumn("CategoryName", typeof(string)));
categories.Columns.Add(new DataColumn("Description", typeof(string)));
categories.Constraints.Add(new UniqueConstraint("PK_Categories",

categories.Columns["CategoryID"]));
categories.PrimaryKey = new DataColumn[1]

{categories.Columns["CategoryID"]};

The last line of the above code creates the primary key for the Categories table. The primary key in this
instance is a single column; however, it is possible to generate a key over multiple columns using the array
syntax shown.

Then I need to create the constraint between the two tables:

DataColumn parent = ds.Tables["Categories"].Columns["CategoryID"];
DataColumn child = ds.Tables["Products"].Columns["CategoryID"];
ForeignKeyConstraint fk =

new ForeignKeyConstraint("FK_Product_CategoryID", parent, child);

fk.UpdateRule = Rule.Cascade;
fk.DeleteRule = Rule.SetNull;
ds.Tables["Products"].Constraints.Add(fk);

Chapter 9

544

This constraint applies to the link between Categories.CategoryID and Products.CategoryID.
There are four different constructors for ForeignKeyConstraint, but again I would suggest using those
that permit you to name the constraint.

Setting Update and Delete Constaints
In addition to defining the fact that there is some type of constraint between parent and child tables, you can
define what should happen when a column in the constraint is updated.

The above example sets the update rule and the delete rule. These rules are used when an action occurs to a
column (or row) within the parent table, and the rule is used to decide what should happen to row(s) within the
child table that could be affected. There are four different rules that can be applied through the Rule
enumeration:

❑ Cascade – If the parent key was updated then copy the new key value to all child records. If the
parent record was deleted, delete the child records also. This is the default option.

❑ None – No action whatsoever. This option will leave orphaned rows within the child data table.

❑ SetDefault – Each child record affected has the foreign key column(s) set to their default value,
if one has been defined.

❑ SetNull – All child rows have the key column(s) set to DBNull. (Following on from the naming
convention that Microsoft uses, this should really be SetDBNull).

Constraints are only enforced within a DataSet if the EnforceConstraints
property of the DataSet is true.

I have covered the main classes that make up the constituent parts of the DataSet, and shown how to
manually generate each of these classes in code. There is another way to define a DataTable, DataRow,
DataColumn, DataRelation, and Constraint – by using the XML schema file(s) and the XSD tool that
ships with .NET. The following section describes how to set up a simple schema and generate type-safe
classes to access your data.

XML Schemas
XML is firmly entrenched into ADO.NET – indeed, the remoting format for passing data between objects is
now XML. With the .NET runtime, it is now possible to describe a DataTable within an XML schema
definition file (XSD). What's more, you can define an entire DataSet, with a number of DataTables, a set
of relationships between these tables, and include various other details to fully describe the data.

When you have defined an XSD file, there is a new tool in the runtime that will convert this schema to the
corresponding data access class(es), such as the type-safe product DataTable class shown above. In this
section we'll start with a simple XSD file that describes the same information as the Products sample
previously shown, and then extend this to include some extra functionality. This file is Products.xsd,
found in the 10_XSD_DataSet folder:

Data Access with .NET

545

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema

id="Products"
targetNamespace="http://tempuri.org/XMLSchema1.xsd"
elementFormDefault="qualified"
xmlns="http://tempuri.org/XMLSchema1.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema1.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xs:element name="Product">
<xs:complexType>

<xs:sequence>
<xs:element name="ProductID" type="xs:int" />
<xs:element name="ProductName" type="xs:string" />
<xs:element name="SupplierID" type="xs:int" minOccurs="0" />
<xs:element name="CategoryID" type="xs:int" minOccurs="0" />
<xs:element name="QuantityPerUnit" type="xs:string" minOccurs="0" />
<xs:element name="UnitPrice" type="xs:decimal" minOccurs="0" />
<xs:element name="UnitsInStock" type="xs:short" minOccurs="0" />
<xs:element name="UnitsOnOrder" type="xs:short" minOccurs="0" />
<xs:element name="ReorderLevel" type="xs:short" minOccurs="0" />
<xs:element name="Discontinued" type="xs:boolean" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

We'll take a closer look at some of the options within this file in Chapter 11; for now, this file basically
defines a schema with the id attribute set to Products. A complex type called Product is defined, which
contains a number of elements, one for each of the fields within the Products table.

These items map onto data classes as follows. The Products schema maps to a class derived from DataSet.
The Product complex type maps to a class derived from DataTable. Each sub-element maps to a class
derived from DataColumn. The collection of all columns maps onto a class derived from DataRow.

Thankfully there is a tool within the .NET Framework that will produce all of the code for these classes given
only the input XSD file. Because its sole job in life is to perform various functions on XSD files, the tool itself
is called XSD.EXE.

Generating Code with XSD
Assuming you save the above file as Product.xsd, you would convert the file into code by issuing the
following command in a command prompt:

xsd Product.xsd /d

This creates the file Product.cs.

http://tempuri.org/XMLSchema1.xsd
http://tempuri.org/XMLSchema1.xsd
http://tempuri.org/XMLSchema1.xsd
http://www.w3.org/2001/XMLSchema

Chapter 9

546

There are various switches that can be used with XSD to alter the output generated. Some of the more
commonly used are shown in the table below.

Switch Description

/dataset (/d) Generate classes derived from DataSet, DataTable, and
DataRow.

/language:<language> Permits you to choose which language the output file will be
written in. C# is the default, but you can choose VB for a Visual
Basic .NET file.

/namespace:<namespace> Define the namespace that the generated code should reside within.
The default is no namespace.

An abridged version of the output from XSD for the Products schema is shown below. I've removed some of
the less necessary code to concentrate on the most important aspects, and done some reformatting so that it
will fit within the confines of a couple of pages. To see the complete output, run XSD.EXE on the Products
schema (or one of your own making) and take a look at the .cs file generated. The example includes the
entire sourcecode plus the Product.xsd file, and can be found in the 10_XSD_DataSet directory:

//--
// <autogenerated>
// This code was generated by a tool.
// Runtime Version: 1.0.3512.0
//
// Changes to this file may cause incorrect behavior and will be lost if
// the code is regenerated.
// </autogenerated>
//--

//
// This source code was auto-generated by xsd, Version=1.0.3512.0.
//
using System;
using System.Data;
using System.Xml;
using System.Runtime.Serialization;

[Serializable()]
[System.ComponentModel.DesignerCategoryAttribute("code")]
[System.Diagnostics.DebuggerStepThrough()]
[System.ComponentModel.ToolboxItem(true)]
public class Products : DataSet
{

private ProductDataTable tableProduct;
public Products()
public ProductDataTable Product
public override DataSet Clone()
public delegate void ProductRowChangeEventHandler (object sender,

ProductRowChangeEvent e);

[System.Diagnostics.DebuggerStepThrough()]
public class ProductDataTable : DataTable, System.Collections.IEnumerable

[System.Diagnostics.DebuggerStepThrough()]
public class ProductRow : DataRow

}

Data Access with .NET

547

I have taken some liberties with this sourcecode, as I have split it into three sections and removed any
protected and private members so that we can concentrate on the public interface. The emboldened
ProductDataTable and ProductRow definitions show the positions of two nested classes, which we're
going to implement next. We'll look at the code for these after a brief explanation of the DataSet derived
class.

The Products() constructor calls a private method, InitClass(), which constructs an instance of the
DataTable class derived class ProductDataTable, and adds the table to the Tables collection of the
DataSet. The Products data table can be accessed by the following code:

DataSet ds = new Products();
DataTable products = ds.Tables["Products"];

Or, more simply by using the property Product, available on the derived DataSet object:

DataTable products = ds.Product;

As the Product property is strongly typed, you could naturally use ProductDataTable rather than the
DataTable reference I showed above.

The ProductDataTable class includes far more code:

[System.Diagnostics.DebuggerStepThrough()]
public class ProductDataTable : DataTable, System.Collections.IEnumerable
{

private DataColumn columnProductID;
private DataColumn columnProductName;
private DataColumn columnSupplierID;
private DataColumn columnCategoryID;
private DataColumn columnQuantityPerUnit;
private DataColumn columnUnitPrice;
private DataColumn columnUnitsInStock;
private DataColumn columnUnitsOnOrder;
private DataColumn columnReorderLevel;
private DataColumn columnDiscontinued;

internal ProductDataTable() : base("Product")
{

this.InitClass();
}

The ProductDataTable class, derived from DataTable and implementing the IEnumerable interface,
defines a private DataColumn instance for each of the columns within the table. These are initialized again
from the constructor by calling the private InitClass() member. Each column is given an internal
accessor, which the DataRow class described later uses.

[System.ComponentModel.Browsable(false)]
public int Count
{

get { return this.Rows.Count; }
}
internal DataColumn ProductIDColumn
{

get { return this.columnProductID; }
}
// Other row accessors removed for clarity – there is one for each of the columns

Chapter 9

548

Adding rows to the table is taken care of by the two overloaded (and significantly different, except
unfortunately by name) AddProductRow() methods. The first takes an already constructed DataRow and
returns a void. The latter takes a set of values, one for each of the columns in the DataTable, constructs a
new row, sets the values within this new row, adds the row to the DataTable and returns the row to the
caller. Such widely different functions shouldn't really have the same name, in my opinion.

public void AddProductRow(ProductRow row)
{

this.Rows.Add(row);
}

public ProductRow AddProductRow (string ProductName , int SupplierID ,
int CategoryID , string QuantityPerUnit ,
System.Decimal UnitPrice , short UnitsInStock ,
short UnitsOnOrder , short ReorderLevel ,
bool Discontinued)

{
ProductRow rowProductRow = ((ProductRow)(this.NewRow()));
rowProductRow.ItemArray = new object[]
{

null,
ProductName,
SupplierID,
CategoryID,
QuantityPerUnit,
UnitPrice,
UnitsInStock,
UnitsOnOrder,
ReorderLevel,
Discontinued

};
this.Rows.Add(rowProductRow);
return rowProductRow;

}

Just like the InitClass() member in the DataSet derived class, which added the table into the DataSet,
the InitClass() member in ProductDataTable adds in columns to the DataTable. Each column's
properties are set as appropriate, and the column is then appended to the columns collection.

private void InitClass()
{

this.columnProductID = new DataColumn ("ProductID",
typeof(int),
null,
System.Data.MappingType.Element);

this.Columns.Add(this.columnProductID);
// Other columns removed for clarity

this.columnProductID.AutoIncrement = true;
this.columnProductID.AllowDBNull = false;
this.columnProductID.ReadOnly = true;
this.columnProductName.AllowDBNull = false;
this.columnDiscontinued.AllowDBNull = false;

}

public ProductRow NewProductRow()
{

return ((ProductRow)(this.NewRow()));
}

Data Access with .NET

549

The last method I want to discuss, NewRowFromBuilder(), is called internally from the DataTable's
NewRow() method. Here it creates a new strongly typed row. The DataRowBuilder instance is created by
the DataTable, and its members are only accessible within the System.Data assembly.

protected override DataRow NewRowFromBuilder(DataRowBuilder builder)
{

return new ProductRow(builder);
}

The last class to discuss is the ProductRow class, derived from DataRow. This class is used to provide type-
safe access to all fields in the data table. It wraps the storage for a particular row, and provides members to
read (and write) each of the fields in the table.

In addition, for each nullable field, there are functions to set the field to null, and check if the field is null.
The example below shows the functions for the SupplierID column:

[System.Diagnostics.DebuggerStepThrough()]
public class ProductRow : DataRow
{

private ProductDataTable tableProduct;

internal ProductRow(DataRowBuilder rb) : base(rb)
{

this.tableProduct = ((ProductDataTable)(this.Table));
}

public int ProductID
{

get { return ((int)(this[this.tableProduct.ProductIDColumn])); }
set { this[this.tableProduct.ProductIDColumn] = value; }

}
// Other column accessors/mutators removed for clarity

public bool IsSupplierIDNull()
{

return this.IsNull(this.tableProduct.SupplierIDColumn);
}

public void SetSupplierIDNull()
{

this[this.tableProduct.SupplierIDColumn] = System.Convert.DBNull;
}

}

Now that the sourcecode for these data access classes has been generated by XSD.EXE, we can incorporate the
classes into code. The following code utilizes these classes to retrieve data from the Products table and
display that data to the console:

using System;
using System.Data;
using System.Data.SqlClient;

public class XSD_DataSet
{

public static void Main()

Chapter 9

550

{
string source = "server=(local)\\NetSDK;" +

"uid=QSUser;pwd=QSPassword;" +
"database=northwind";

string select = "SELECT * FROM Products";
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(select , conn);
Products ds = new Products();
da.Fill(ds , "Product");
foreach(Products.ProductRow row in ds.Product)
Console.WriteLine("'{0}' from {1}" ,

row.ProductID ,
row.ProductName);

}
}

The main areas of interest are highlighted. The output of the XSD file contains a class derived from DataSet,
Products, which is created and then filled by the use of the data adapter. The foreach statement utilizes
the strongly-typed ProductRow and also the Product property, which returns the Product data table.

To compile this example, issue the following commands:

xsd product.xsd /d

and
csc /recurse:*.cs

The first generates the Products.cs file from the Products.XSD schema, and then the csc command
utilizes the /recurse:*.cs parameter to go through all files with the extension .cs and add these to the
resulting assembly.

Populating a DataSet
Once you have fully defined the schema of your data set, replete with DataTables, DataColumns,
Constraints, and whatever else was necessary, you need to be able to populate the DataSet with some
information. There are two main ways to read data from an external source and insert it into the DataSet:

❑ Use a data adapter

❑ Read XML into the DataSet

Populating a DataSet Using a DataAdapter
The section on data rows briefly introduced the SqlDataAdapter class, as shown in the following code:

string select = "SELECT ContactName,CompanyName FROM Customers";
SqlConnection conn = new SqlConnection(source);
SqlDataAdapter da = new SqlDataAdapter(select , conn);
DataSet ds = new DataSet();
da.Fill(ds , "Customers");

Data Access with .NET

551

The two highlighted lines show the SqlDataAdapter in use – the OleDbDataAdapter is again virtually
identical in functionality to the Sql equivalent.

The SqlDataAdapter and OleDbDataAdapter are two of the classes that are derived from a common
base class rather than a set of interfaces, as are most of the other SqlClient- or OleDb- specific classes.
The inheritance hierarchy is shown below:

System.Data.Common.DataAdapter
System.Data.Common.DbDataAdapter

System.Data.OleDb.OleDbDataAdapter
System.Data.SqlClient.SqlDataAdapter

In order to retrieve data into a DataSet, it is necessary to have some form of command that is executed to
select that data. The command in question could be a SQL SELECT statement, a call to a stored procedure, or
for the OLE DB provider, a TableDirect command. The example above utilizes one of the constructors
available on SqlDataAdapter that converts the passed SQL SELECT statement into a SqlCommand, and
issues this when the Fill() method is called on the adapter.

Going back to the example on stored procedures earlier in the chapter, I defined stored procedures to INSERT,
UPDATE, and DELETE, but didn't present a procedure to SELECT data. We'll fill that gap in this next section,
and show how you can call a stored procedure from an SqlDataAdapter to populate data in a DataSet.

Using a Stored Procedure in a DataAdapter
First off we need to define a stored procedure and install it into the database. The code for this example is
available in the 11_DataAdapter directory. The stored procedure to SELECT data is as follows:

CREATE PROCEDURE RegionSelect AS
SET NOCOUNT OFF
SELECT * FROM Region

GO

Again this example is fairly trivial, and not really worthy of a stored procedure, as a direct SQL statement
would normally suffice. This stored procedure can be typed directly into the SQL Server Query Analyzer, or
you can run the StoredProc.sql file that is provided for use by this example.

Next, we need to define a SqlCommand that will execute this stored procedure. Again the code is very simple,
and most of it was already presented in the earlier section on issuing commands:

private static SqlCommand GenerateSelectCommand(SqlConnection conn)
{

SqlCommand aCommand = new SqlCommand("RegionSelect" , conn);
aCommand.CommandType = CommandType.StoredProcedure;
aCommand.UpdatedRowSource = UpdateRowSource.None;
return aCommand;

}

Chapter 9

552

This method generates the SqlCommand that will call the RegionSelect procedure when executed. All that
remains is to hook this command up to a SqlDataAdapter, and call the Fill() method:

DataSet ds = new DataSet();
// Create a data adapter to fill the DataSet
SqlDataAdapter da = new SqlDataAdapter();
// Set the data adapter's select command
da.SelectCommand = GenerateSelectCommand (conn);
da.Fill(ds , "Region");

Here I create a new SqlDataAdapter, assign the generated SqlCommand to the SelectCommand property
of the data adapter, and then call Fill(), which will execute the stored procedure and insert all rows returned
into the Region DataTable (which in this instance is generated by the runtime).

There's more to a data adapter than just selecting data by issuing a command. In the Persisting DataSet
Changes section I will explore the rest of the facilities of the data adapter.

Populating a DataSet from XML
In addition to generating the schema for a given DataSet and associated tables and so on, a DataSet can
read and write data in native XML, such as a file on disk, a stream, or a text reader.

To load XML into a DataSet, simply call one of the ReadXML() methods, such as that shown below, which
will read data from a disk file:

DataSet ds = new DataSet();
ds.ReadXml(".\\MyData.xml");

The ReadXml() method attempts to load any inline schema information from the input XML, and if found, uses
this schema in the validation of any data loaded from that file. If no inline schema is found then the DataSet
will extend its internal structure as data is loaded. This is similar to the behavior of Fill() in the previous
example, which retrieves the data and constructs a DataTable based on the data selected.

Persisting DataSet Changes
After editing data within a DataSet, it is probably necessary to persist these changes. The most common
example would be selecting data from a database, displaying it to the user, and returning those updates back to
the database.

In a less "connected" application, changes might be persisted to an XML file, transported to a middle-tier
application server, and then processed to update several data sources.

A DataSet can be used for either of these examples, and what's more it's really easy to do.

Data Access with .NET

553

Updating with Data Adapters
In addition to the SelectCommand that an SqlDataAdapter most likely includes, you can also define an
InsertCommand, UpdateCommand, and DeleteCommand. As these names imply, these objects are
instances of SqlCommand (or OleDbCommand for the OleDbDataAdapter), so any of these commands
could be straight SQL or a stored procedure.

With this level of flexibility, you are free to tune the application by judicious use of stored procedures for
frequently used commands (say SELECT and INSERT), and use straight SQL for less commonly used
commands such as DELETE.

For the example in this section I have resurrected the stored procedure code from the Calling Stored
Procedures section for inserting, updating, and deleting Region records, coupled these with the
RegionSelect procedure written above, and produced an example utilizes each of these commands to
retrieve and update data in a DataSet. The main body of code is shown below; the full sourcecode is
available in the 12_DataAdapter2 directory.

Inserting a New Row
There are two ways to add a new row to a DataTable. The first way is to call the NewRow() method, which
returns a blank row that you then populate and add to the Rows collection, as follows:

DataRow r = ds.Tables["Region"].NewRow();
r["RegionID"]=999;
r["RegionDescription"]="North West";
ds.Tables["Region"].Rows.Add(r);

The second way to add a new row would be to pass an array of data to the Rows.Add() method as shown in
the following code:

DataRow r = ds.Tables["Region"].Rows.Add
(new object [] { 999 , "North West" });

Each new row within the DataTable will have its RowState set to Added. The example dumps out the
records before each change is made to the database, so after adding the following row (either way) to the
DataTable, the rows will look something like the following. Note that the right-hand column shows the row
state.

New row pending inserting into database
1 Eastern Unchanged
2 Western Unchanged
3 Northern Unchanged
4 Southern Unchanged
999 North West Added

To update the database from the DataAdapter, call one of the Update() methods as shown below:

da.Update(ds , "Region");

Chapter 9

554

For the new row within the DataTable, this will execute the stored procedure (in this instance
RegionInsert), and subsequently I dump the records in the DataTable again.

New row updated and new RegionID assigned by database
1 Eastern Unchanged
2 Western Unchanged
3 Northern Unchanged
4 Southern Unchanged
5 North West Unchanged

Look at the last row in the DataTable. I had set the RegionID in code to 999, but after executing the
RegionInsert stored procedure the value has been changed to 5. This is intentional – the database will
often generate primary keys for you, and the updated data in the DataTable is due to the fact that the
SqlCommand definition within our sourcecode has the UpdatedRowSource property set to
UpdateRowSource.OutputParameters:

SqlCommand aCommand = new SqlCommand("RegionInsert" , conn);

aCommand.CommandType = CommandType.StoredProcedure;
aCommand.Parameters.Add(new SqlParameter("@RegionDescription" ,

SqlDbType.NChar ,
50 ,
"RegionDescription"));

aCommand.Parameters.Add(new SqlParameter("@RegionID" ,
SqlDbType.Int,
0 ,
ParameterDirection.Output ,
false ,
0 ,
0 ,
"RegionID" , // Defines the SOURCE column
DataRowVersion.Default ,
null));

aCommand.UpdatedRowSource = UpdateRowSource.OutputParameters;

What this means is that whenever a data adapter issues this command, the output parameters should be mapped
back to the source of the row, which in this instance was a row in a DataTable. The flag states what data
should be updated – the stored procedure has an output parameter that is mapped back into the DataRow. The
column it applies to is RegionID, as this is defined within the command definition.

The values for UpdateRowSource are as follows:

UpdateRowSource Value Description

Both A stored procedure may return output parameters and also a complete
database record. Both of these data sources are used to update the source
row.

FirstReturnedRecord This infers that the command returns a single record, and that the
contents of that record should be merged into the original source
DataRow. This is useful where a given table has a number of default (or
computed) columns, as after an INSERT statement these need to be
synchronized with the DataRow on the client. An example might be
'INSERT (columns) INTO (table) WITH (primarykey)', then 'SELECT
(columns) FROM (table) WHERE (primarykey)'. The returned record
would then be merged into the original row.

Data Access with .NET

555

UpdateRowSource Value Description

None All data returned from the command is discarded.

OutputParameters Any output parameters from the command are mapped onto the
appropriate column(s) in the DataRow.

Updating an Existing Row
Updating a row that already exists within the DataTable is just a case of utilizing the DataRow class's
indexer with either a column name or column number, as shown in the following code:

r["RegionDescription"]="North West England";
r[1] = "North East England";

Both of these statements are equivalent (in this example):

Changed RegionID 5 description
1 Eastern Unchanged
2 Western Unchanged
3 Northern Unchanged
4 Southern Unchanged
5 North West England Modified

Prior to updating the database, the row updated has its state set to Modified as shown above.

Deleting a Row
Deleting a row is a matter of calling the Delete() method:

r.Delete();

A deleted row has its row state set to Deleted, but you cannot read columns from the deleted DataRow as
these are no longer valid. When the adaptor's Update() method is called, all deleted rows will utilize the
DeleteCommand, which in this instance executes the RegionDelete stored procedure.

Writing XML Output
As you have seen already, the DataSet has great support for defining its schema in XML, and as you can
read data from an XML document, you can also write data to an XML document.

The DataSet.WriteXml() method permits you to output various parts of the data stored within the
DataSet. You can elect to output just the data, or the data and the schema. The following code shows an
example of both for the Region example shown above:

ds.WriteXml(".\\WithoutSchema.xml");
ds.WriteXml(".\\WithSchema.xml" , XmlWriteMode.WriteSchema);

Chapter 9

556

The first file, WithoutSchema.xml is shown below:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>

<Region>
<RegionID>1</RegionID>
<RegionDescription>Eastern </RegionDescription>

</Region>
<Region>

<RegionID>2</RegionID>
<RegionDescription>Western </RegionDescription>

</Region>
<Region>

<RegionID>3</RegionID>
<RegionDescription>Northern </RegionDescription>

</Region>
<Region>

<RegionID>4</RegionID>
<RegionDescription>Southern </RegionDescription>

</Region>
</NewDataSet>

The closing tag on RegionDescription is over to the right of the page as the database column is defined as
NCHAR(50), which is a 50 character string padded with spaces.

The output produced in the WithSchema.xml file includes, not surprisingly, the XML schema for the
DataSet as well as the data itself:

<?xml version="1.0" standalone="yes"?>
<NewDataSet>

<xs:schema id="NewDataSet" xmlns=""
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xs:element name="NewDataSet" msdata:IsDataSet="true">
<xs:complexType>

<xs:choice maxOccurs="unbounded">
<xs:element name="Region">

<xs:complexType>
<xs:sequence>

<xs:element name="RegionID"
msdata:AutoIncrement="true"
msdata:AutoIncrementSeed="1"
type="xs:int" />

<xs:element name="RegionDescription"
type="xs:string" />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:schema>
<Region>

<RegionID>1</RegionID>
<RegionDescription>Eastern </RegionDescription>

http://www.w3.org/2001/XMLSchema

Data Access with .NET

557

</Region>
<Region>

<RegionID>2</RegionID>
<RegionDescription>Western </RegionDescription>

</Region>
<Region>

<RegionID>3</RegionID>
<RegionDescription>Northern </RegionDescription>

</Region>
<Region>

<RegionID>4</RegionID>
<RegionDescription>Southern </RegionDescription>

</Region>
</NewDataSet>

Note the use in this file of the msdata schema, which defines extra attributes for columns within a DataSet,
such as AutoIncrement and AutoIncrementSeed – these attributes correspond directly with the
properties definable on a DataColumn.

Working with ADO.NET
This last section will attempt to address some common scenarios when developing data access applications
with ADO.NET.

Tiered Development
Producing an application that interacts with data is often done by splitting the application up into tiers. A
common model is to have an application tier (the front end), a data services tier, and the database itself.

One of the difficulties with this model is deciding what data to transport between tiers, and the format that it
should be transported in. With ADO.NET you'll be pleased to hear that these wrinkles have been ironed out,
and support for this style of architecture has been designed in from the start.

Copying and Merging Data
Ever tried copying an entire OLE DB recordset? In .NET it's easy to copy a DataSet:

DataSet source = {some dataset};
DataSet dest = source.Copy();

This will create an exact copy of the source DataSet – each DataTable, DataColumn, DataRow, and
Relation will be copied across verbatim, and all data will be in exactly the same state as it was in the
source. If all you want to copy is the schema of the DataSet, you can try the following:

DataSet source = {some dataset};
DataSet dest = source.Clone();

This will again copy all tables, relations, and so on. However, each copied DataTable will be empty. It
really couldn't be more straightforward.

Chapter 9

558

A common requirement when writing a tiered system, whether based on Win32 or the web, is to be able to
ship as little data as possible between tiers. This reduces the amount of resources consumed.

To cope with this requirement, the DataSet has the GetChanges() method. This simple method performs a
huge amount of work, and returns a DataSet with only the changed rows from the source dataset. This is
ideal for passing between tiers, as only a minimal set of data has to be passed across
the wire.

The following example shows how to generate a "changes" DataSet:

DataSet source = {some dataset};
DataSet dest = source.GetChanges();

Again, this is trivial. Under the covers things are a little more interesting. There are two overloads of the
GetChanges() method. One overload takes a value of the DataRowState enumeration, and returns only
rows that correspond to that state (or states). GetChanges() simply calls GetChanges(Deleted |
Modified | Added), and first checks to ensure that there are some changes by calling HasChanges(). If
no changes have been made, then a null is returned to the caller immediately.

The next operation is to clone the current DataSet. Once done, the new DataSet is set up to ignore
constraint violations (EnforceConstraints = false), and then each changed row for every table is
copied into the new DataSet.

Once you have a DataSet that just contains changes, you can then move these off to the data services tier for
processing. Once the data is updated in the database, the "changes" DataSet can be returned to the caller (as
there may, for example, be some output parameters from the stored procedures that have updated values in the
columns). These changes can then be merged into the original DataSet using the Merge() method. This
sequence of operations is depicted below:

DataSet

Client Tier

DataSet

Data Services Tier

Changes Updates

New DataMerge

Database

Key Generation with SQL Server
The RegionInsert stored procedure presented earlier in the chapter was one example of generating a
primary key value on insertion into the database. The method for generating the key was fairly crude and
wouldn't scale well, so for a real application you should look at utilizing some other strategy for generating
keys.

Your first instinct might be simply to define an identity column, and return the @@IDENTITY value from the
stored procedure. The following stored procedure shows how this might be defined for the Categories table
in the Northwind example database. Type this stored procedure into SQL Query Analyzer, or run the
StoredProcs.sql file in the 13_SQLServerKeys directory:

Data Access with .NET

559

CREATE PROCEDURE CategoryInsert(@CategoryName NVARCHAR(15),
@Description NTEXT,
@CategoryID INTEGER OUTPUT) AS

SET NOCOUNT OFF
INSERT INTO Categories (CategoryName, Description)

VALUES(@CategoryName, @Description)
SELECT @CategoryID = @@IDENTITY

GO

This inserts a new row into the Category table, and returns the generated primary key to the caller. You can
test the procedure by typing in the following SQL in Query Analyzer:

DECLARE @CatID int;
EXECUTE CategoryInsert 'Pasties' , 'Heaven Sent Food' , @CatID OUTPUT;
PRINT @CatID;

When executed as a batch of commands, this will insert a new row into the Categories table, and return the
identity of the new record, which is then displayed to the user.

Let's say that some months down the line, someone decides to add in a simple audit trail, which will record all
insertions and modifications made to the category name. You define a table such as that shown below, which
will record the old and new value of the category:

The creation script for this table is included in the StoredProcs.sql file. The AuditID column is defined
as an IDENTITY column. You then construct a couple of database triggers that will record changes to the
CategoryName field:

CREATE TRIGGER CategoryInsertTrigger
ON Categories
AFTER UPDATE

AS
INSERT INTO CategoryAudit(CategoryID , OldName , NewName)

SELECT old.CategoryID, old.CategoryName, new.CategoryName
FROM Deleted AS old,

Categories AS new
WHERE old.CategoryID = new.CategoryID;

GO

For those of you used to Oracle stored procedures, SQL Server doesn't exactly have the concept of OLD and
NEW rows, instead for an insert trigger there is an in memory table called Inserted, and for deletes and
updates the old rows are available within the Deleted table.

Chapter 9

560

This trigger retrieves the CategoryID of the record(s) affected, and stores this together with the old and new
value of the CategoryName column.

Now, when you call your original stored procedure to insert a new CategoryID, you receive an identity
value; however, this is no longer the identity value from the row inserted into the Categories table, it is
now the new value generated for the row in the CategoryAudit table. Ouch!

To view the problem first hand, open up a copy of SQL Server Enterprise manager, and view the contents of
the Categories table.

This lists all the categories I have in my instance of the database.

The next identity value for the Categories table should be 21, so we'll insert a new row by executing the
code shown below, and see what ID is returned as follows:

DECLARE @CatID int;
EXECUTE CategoryInsert 'Pasties' , 'Heaven Sent Food' , @CatID OUTPUT;
PRINT @CatID;

The output value of this on my PC was 17. If I look into the CategoryAudit table, I find that this is the
identity of the newly inserted audit record, not that of the category record created.

The problem lies in the way that @@IDENTITY actually works. It returns the LAST identity value created by
your session, so as shown above it isn't completely reliable.

There are two other identity functions that you can utilize instead of @@IDENTITY, but neither are free from
possible problems. The first, SCOPE_IDENTITY(), will return the last identity value created within the
current "scope". SQL Server defines scope as a stored procedure, trigger, or function. This may work most of
the time, but if for some reason someone adds another INSERT statement into the stored procedure, then you
will receive this value rather than the one you expected.

The other, IDENT_CURRENT() will return the last identity value generated for a given table in any scope, so
for instance, if two users were accessing SQL Server at exactly the same time, it might be possible to receive
the other user's generated identity value.

As you might imagine, tracking down a problem of this nature isn't easy. The moral of the story is to beware
when utilizing IDENTITY columns in SQL Server.

Data Access with .NET

561

Naming Conventions
Having worked with database applications all my working life, I've picked up a few recommendations for
naming entities, which are worth sharing. I know, this isn't really .NET related, but the conventions are useful
especially when naming constraints as above. Feel free to skip this section if you already have your own views
on the subject.

Database Tables
❑ Always use singular names – Product rather than Products. This one is largely due to having to

explain to customers a database schema – it's much better grammatically to say "The Product
table contains products" than "The Products table contains products". Have a look at the
Northwind database as an example of how not to do this.

❑ Adopt some form of naming convention for the fields that go into a table – ours is <Table>_ID for
the primary key of a table (assuming that the primary key is a single column), Name for the field
considered to be the user-friendly name of the record, and Description for any textual
information about the record itself. Having a good table convention means you can look at virtually
any table in the database and instinctively know what the fields are used for.

Database Columns
❑ Use singular rather than plural names again.

❑ Any columns that link to another table should be named the same as the primary key of that table.
So, a link to the Product table would be Product_ID, and to the Sample table Sample_ID.
This isn't always possible, especially if one table has multiple references to another. In that case use
your own judgment.

❑ Date fields should have a suffix of _On, as in Modified_On, Created_On. Then it's easy to read
some SQL output and infer what a column means just by its name.

❑ Fields that record the user should be suffixed with _By, as in Modified_By and Created_By.
Again, this aids legibility.

Constraints
❑ If possible, include in the name of the constraint the table and column name, as in

CK_<Table>_<Field>. Examples would be CK_PERSON_SEX for a check constraint on the SEX
column of the PERSON table. A foreign key example would be FK_Product_Supplier_ID, for
the foreign key relationship between product and supplier.

❑ Show the type of constraint with a prefix, such as CK for a check constraint and FK for a foreign key
constraint. Feel free to be more specific, as in CK_PERSON_AGE_GT0 for a constraint on the age
column indicating that the age should be greater than zero.

❑ If you have to trim the length of the constraint, do it on the table name part rather than the column
name. When you get a constraint violation, it's usually easy to infer which table was in error, but
sometimes not so easy to check which column caused the problem. Oracle has a 30-character limit
on names, which you can easily hit.

Chapter 9

562

Stored Procedures
Just like the obsession many have fallen into over the past few years of putting a 'C' in front of each and every
class they have declared (you know you have!), many SQL Server developers feel compelled to prefix every
stored procedure with 'sp_' or something similar. It's not a good idea.

SQL Server uses the 'sp_' prefix for all (well, most) system stored procedures. So, on the one hand, you risk
confusing your users into thinking that 'sp_widget' is something that comes as standard with SQL Server. In
addition, when looking for a stored procedure, SQL Server will treat procedures with the 'sp_' prefix
differently from those without.

If you use this prefix, and do not qualify the database/owner of the stored procedure, then SQL Server will
look in the current scope, then jump into the master database and look up the stored procedure there. Without
the 'sp_' prefix your users would get an error a little earlier. What's worse, and also possible to do, is to create
a local stored procedure (one within your database) that has the same name and parameters as an system stored
procedure. I'd avoid this at all costs – if in doubt, don't prefix.

Above all, when naming entities, whether within the database or within code, be consistent.

Performance
The current set of managed providers available for .NET are somewhat limited – you can choose OleDb or
SqlClient; OleDb permits connection to any data source exposed with an OLE DB driver (such as Oracle),
and the SqlClient provider is tailored for SqlServer.

The SqlClient provider has been written completely in managed code, and uses as few layers as possible to
connect to the database. This provider writes TDS (Tabular Data Stream) packets direct to SQL Server,
which should be substantially faster than the OleDb provider, which naturally has to go through a number of
layers before actually hitting the database.

To test the theory, the following code was run against the same database on the same machine, the only
difference being the use of the SqlClient managed provider over the ADO provider:

SqlConnection conn = new SqlConnection(Login.Connection);
conn.Open();
SqlCommand cmd = new SqlCommand ("update tempdata set AValue=1 Where ID=1" ,

conn);

DateTime initial, elapsed ;
initial = DateTime.Now ;
for(int i = 0; i < iterations; i++)

cmd.ExecuteNonQuery();
elapsed = DateTime.Now ;

conn.Close();

Data Access with .NET

563

Naturally the OLE DB version utilizes OleDbCommand rather than SqlCommand. I created a simple database
table with two columns as shown below, and manually added a single row:

The SQL clause used was a simple UPDATE command:

UPDATE TempData SET AValue = 1 WHERE ID = 1.

The SQL was kept deliberately simple to attempt to highlight the differences in the providers. The results (in
seconds) achieved for various combinations of iterations were as follows :

Provider 100 1000 10000 50000

OleDb 0.109 0.798 7.95 39.11

Sql 0.078 0.626 6.23 29.27

If you are only targeting SQL Server then the obvious choice is the Sql provider. Back in the real world, if
you target anything other than SQL Server you naturally have to use the OleDb provider. Or do you?

As Microsoft has done an excellent job of making database access generic with the System.Data.Common
classes, it would be better to write code against those classes, and use the appropriate managed provider at run
time. It's fairly simple to swap between OleDb and Sql now, and if other database vendors write managed
providers for their products, you will be able to swap out ADO for a native provider with little (or no) code
changes. For an example of the versatility of .NET data access, The "Scientific Data Center" case study in
"Data-Centric .NET Programming with C#" (Wrox Press, ISBN 1-861005-92-x) details using C# to query a
MySQL database.

Summary
The subject of data access is a large one, especially in .NET as there is an abundance of new material to cover.
This chapter has provided an outline of the main classes in the ADO.NET namespaces, and shown how to use
the classes when manipulating data from a data source.

Firstly, we explored the use of the Connection object, through the use of both the SqlConnection (SQL
Server specific) and OleDbConnection (for any OLE DB data sources). The programming model for these
two classes is so similar that one can normally be substituted for the other and the code will continue to run.

Chapter 9

564

After illustrating how to connect to and disconnect from the data source, we then discussed how to do it
properly, so that scarce resources, such as database connections, could be closed as early as possible. Both of
the connection classes implement the IDisposable interface, called when the object is placed within a
using clause. If there's one thing I'd like you to take away from this chapter is the importance of closing
database connections as early as possible.

We then discussed database commands, through examples that executed with no returned data, to calling
stored procedures with input and output parameters. Various execute methods were described, including the
ExecuteXmlReader method available only on the SQL Server provider. This vastly simplifies the selection
and manipulation of XML-based data.

The generic classes within the System.Data namespace were all described in detail, from the DataSet
class through DataTable, DataColumn, DataRow and on to relationships and constraints. The DataSet
class is an excellent container of data, and various methods make it ideal for cross tier data flow. The data
within a DataSet can be represented in XML for transport, and in addition, methods are available that will
pass a minimal amount of data between tiers. The ability of having many tables of data within a single
DataSet can greatly increase its usability; being able to maintain relationships automatically between
master/details rows will be expanded upon in the next chapter.

Having the schema stored within a DataSet is one thing, but .NET also includes the data adapter that along
with various Command objects can be used to select data into a DataSet and subsequently update data in the
data store. One of the beneficial aspects of a data adapter is that a distinct command can be defined for each of
the four actions – SELECT, INSERT, UPDATE and DELETE. The system can create a default set of commands
based on database schema information and a SELECT statement, but for the best performance, a set of stored
procedures can be used, with the DataAdapter's commands defined appropriately to pass only the necessary
information to these stored procedures.

As XML and XSD schemas have become feverishly popular over the past couple of years, we discussed how
to convert an XSD schema into a set of database classes using the XSD tool XSD.EXE that ships with .NET.
The classes produced are ready to be used within an application, and their automatic generation can save many
hours of laborious typing.

During the last few pages of the chapter we've gone through some best practices and naming conventions for
database development. Although not strictly .NET-related, these were thought to be a worthwhile inclusion. A
set of conventions should always be adhered to when programming, whether in C# against a SQL Server
database or in Perl scripts on Linux.

Armed with this knowledge, we're now in a good position to move on to the next chapter, where we'll explore
the use of Visual Studio and .NET's Windows Forms data controls.

Data Access with .NET

565

Chapter 9

566

	Data Access with . NET
	ADO.NET Overview
	Using Database Connections
	Commands
	Quick Data Access: The Data Reader
	Managing Data and Relationships: The DataSet
	XML Schemas
	Populating a DataSet
	Persisting DataSet Changes
	Working with ADO.NET
	Summary

