Programmer to Programmer ™

Professional

C# 2nd Edition

Written and tested for final release of .NET v1.0

Simon Robinson, K. Scott Allen, Ollie Cornes, Jay Clynn, Zach Greenvoss, Burton Harvey,
Christian Nagel, Morgan Skinner, Karli Watson

Wrox technical support at: support@wrox.com
Updates and source code at: www.wrox.com
Peer discussion at: p2p.wrox.com

What you need to use this book

The following list is the recommended operating system requirements for running the C# code in this book:

O Windows 2000 Professional or higher with 11S installed
0 Windows XP Professiona with I1S installed
0 Visua Studio .NET Professiona or higher

The book isintended for experienced devel opers, probably from a VB 6, C++, or Java background. Although
previous experience of C# or .NET programming is useful, it is not required.

Summary of Contents

Introduction 1
Chapter 1: C# and .NET Architecture 11
Chapter 2: C# Basics 37
Chapter 3: Object-Oriented C# 109
Chapter 4: Advanced C# Topics 169
Chapter 5: C# and the Base Classes 259
Chapter 6: Programming in the .NET Environment 337
Chapter 7: Windows Applications 381
Chapter 8: Assemblies 437
Chapter 9: Data Access with .NET 513
Chapter 10: Viewing .NET Data 567
Chapter 11: Manipulating XML 615
Chapter 12: File and Registry Operations 673
Chapter 13: Working with the Active Directory 717
Chapter 14: ASP.NET Pages 753
Chapter 15: Web Services 791
Chapter 16: User Controls and Custom Controls 815
Chapter 17: COM Interoperability 851
Chapter 18: COM+ Services 875
Chapter 19: Graphics with GDI+ 897
Chapter 20: Accessing the Internet 957
Chapter 21: Distributed Applications with .NET Remoting 981
Chapter 22: Windows Services 1035
Chapter 23:.NET Security 1085
Appendix A: Principles of Object-Oriented Programming 1141
Appendix B: C# Compilation Options 1181

Index 1191

-

Data Access with .NET

In this chapter, we'll be discussing how to get at data from your C# programs using ADO.NET. Over the
course of this chapter, we'll be covering the following areas:

O

Connecting to the database — how to utilize the new Sql Connect i on and A eDbConnecti on
classes to connect to and disconnect from the database. Connections utilize the same form of
connection strings as did OLEDB providers (and therefore ADO), and these are briefly discussed.
We then go through a set of best practices for utilizing database connections, and show how to
ensure that a connection is closed after use, which is one of the sources of poor application
performance.

Executing Commands — ADO.NET has the concept of a command object, which may execute SQL
directly, or may issue astored procedure with return values. The various options on command
objects are discussed in depth, with examples to show how commands can be used for each of the
options presented by the Sgl and A eDB classes.

Stored Procedures — How to call stored procedures using command objects, and how the results of
those stored procedures may be integrated back into the data cached on the client.

The ADO.NET object model —thisis significantly different from the objects available with ADO,
and the Dat aSet , Dat aTabl e, Dat aRow, and Dat aCol umm classes are al discussed. A

Dat aSet can aso include relationships between tables, and aso constraints. These issues are also
discussed.

Using XML and XML Schemas — ADO.NET is built upon an XML framework, so we'll examine
how some of the support for XML has been added to the data classes.

Chapter 9

We'll also present a guide to the naming conventions that preside in the world of ADO.NET and explain some
of the reasoning behind them. First, though, let's take a brief tour of ADO.NET and see what's on offer.

ADO.NET Overview

Like most of the NET Framework, ADO.NET is more than just a thin veneer over some existing API. The
similarity to ADO isin name only — the classes and method of accessing data are completely different.

ADO (Microsoft's ActiveX Data Objects) was alibrary of COM components that has had many incarnations
over the last few years. Currently at version 2.7, ADO consists primarily of the Connect i on, Conmand,
Recor dset , and Fi el d objects. A connection would be opened to the database, some data selected into a
recordset, consisting of fields, that data would then be manipulated, updated on the server, and the connection
would be closed. ADO also introduced the concept of a disconnected recordset, which was used where keeping
the connection open for long periods of time was not desirable.

There were severa problemsthat ADO did not address satisfactorily, most notably the unwieldiness (in
physical size) of adisconnected recordset. This support was more necessary than ever with the evol ution of
"web-centric" computing, so afresh approach was taken. There are a number of similarities between
ADO.NET programming and ADO (not only the name), so upgrading from ADO shouldn't be too difficult.
What's more, if you're using SQL Server, there's a fantastic new set of managed classes that are very highly
tuned to squeeze maximum performance out of the database. This alone should be reason enough to move.

ADO.NET ships with two database client namespaces — one for SQL Server, the other for databases exposed
through an OLE DB interface. If your database of choice has an OLE DB driver, you will be able to easily
connect to it from .NET — just use the OLE DB classes and connect through your current database driver.

Namespaces

All of the examplesin this chapter access data in one way or another. The following namespaces expose the
classes and interfaces used in .NET data access:

Syst em Dat a — All generic data access classes

Syst em Dat a. Cormon — Classes shared (or overridden) by individua data providers

System Dat a. O eDb — OLE DB provider classes

System Dat a. Sgl d i ent —SQL Server provider classes

Syst em Dat a. Sgl Types — SQL Server data types

O 0o o o oo

514

Data Access with .NET

The main classesin ADO.NET are listed below:

Shared Classes

ADO.NET contains a number of classes that are used regardless of whether you are using the SQL Server
classes or the OLE DB classes.

The following are contained in the Syst em Dat a hamespace:

O

Dat aSet — This object may contain aset of Dat aTabl es, can include relationships between these
tables, and is designed for disconnected use.

Dat aTabl e — A container of data. A Dat aTabl e consists of one or more Dat aCol uims, and
when populated will have one or more Dat aRows containing data.

Dat aRow— A number of values, akin to arow from a database table, or arow from a spreadsheet.
Dat aCol umm — Contains the definition of a column, such as the name and data type.

Dat aRel at i on — A link between two Dat aTabl es within a Dat aSet . Used for foreign key and
master/detail relationships.

Const rai nt —Definesarule for aDat aCol umm (or set of data columns), such as
unique values.

These next two classes are to be found in the Syst em Dat a. Cormon namespace:

O

O

Dat aCol ummMappi ng — Maps the name of a column from the database with the name of a column
within aDat aTabl e.

Dat aTabl eMappi hg —Maps a table name from the database to a Dat aTabl e within a Dat aSet .

Database Specific Classes

In addition to the shared classes above, ADO.NET contains a number of database-specific classes shown
below. These classes implement a set of standard interfaces defined within the Syst em Dat a namespace,
allowing the classes to be used if required in a generic manner. For example, both the Sql Connecti on and
A eDbConnect i on classesimplement the | DbConnect i on interface.

O

O

Sql Conmand, A eDbConmand — A wrapper for SQL statements or stored procedure calls.

Sql ConmandBui | der , O eDbComrandBui | der — A class used to generate SQL commands
(such as | NSERT, UPDATE, and DELETE statements) from a SELECT statement.

Sql Connecti on, A eDbConnect i on — The connection to the database. Similar to an ADO
Connecti on.

Sql Dat aAdapt er, A eDbDat aAdapt er — A class used to hold select, insert, update, and delete
commands, which are then used to populate a Dat aSet and update the Dat abase.

Sql Dat aReader , O eDbDat aReader — A forward only, connected data reader.
Sql Par arret er, A eDbPar anet er — Defines a parameter to a stored procedure.

Sql Transacti on, d eDbTransacti on — A database transaction, wrapped in an object.

515

Chapter 9

The most important new feature of the ADO.NET classes is that they are designed to work in a disconnected
manner, which isimportant in today's highly web-centric world. It is now common practice to architect a service
(such as an online bookshop) to connect to a server, retrieve some data, and then work on that data on the client
PC before reconnecting and passing the data back for processing. The disconnected nature of ADO.NET enables
this type of behavior.

ADO 2.1 introduced the disconnected recordset, which would permit data to be retrieved from a database, passed
to the client for processing, and then reattached to the server. This was often cumbersome to use, as disconnected
behavior hadn't been designed in from the start. The ADO.NET classes are different —in all but one case (the

Sql /A eDb Dat aReader) they are designed for use offline from the database.

The classes and interfaces used for data accessin the .NET Framework will be introduced as
the chapter continues. | will mainly concentrate on the Sql classes when connecting to the
database, because the Framework SDK samplesinstall an MSDE database (SQL Server). In
most cases the d eDb classes mimic exactly the Sql code.

Using Database Connections

In order to access the database, you need to provide connection parameters, such as the machine that the
database is running on, and possibly your login credentials. Anyone who has worked with ADO will be
immediately familiar with the .NET connection classes, d eDbConnect i on and Sql Connecti on:

System.Data.IDbConnection Q—{ System.Data.OleDb.OleDbConnection ‘

System.Data.IDbConnection Q—< System.Data.SqlClient.SglConnection

The following code snippet illustrates how to create, open, and close a connection to the Nor t hwi nd
database. In the examples within this chapter | use the Nor t hwi nd database, which isinstalled with the NET
Framework SDK samples:

usi ng System Data. Sgl Cient;

string source = "server=(local)\\NetSDK;" +
"ui d=@SUser ; pwd=QSPasswor d; " +
" dat abase=Nort hwi nd";

Sql Connecti on conn = new Sql Connecti on(source);

conn. Open();

/1 Do sonet hing usef ul

conn. Cl ose();

The connection string should be very familiar to you if you've ever used ADO or OLE DB before — indeed,
you should be able to cut and paste from your old code if you use the d eDb provider. In the example
connection string, the parameters used are as follows. The parameters are delimited by a semicolon in the
connection string.

516

Data Access with .NET

0 server=(local)\\Net SDK - This denotes the database server to connect to. SQL Server
permits a number of separate database server processes to be running on the same machine, so here
we're connecting to the Net SDK processes on the local machine.

0 ui d=QSUser — This parameter describes the database user. You can also use User | D.

0 pwd=QSPasswor d — And thisisthe password for that user. The .NET SDK comes with a set of
sampl e databases, and this user/password combination is added during the installation of the NET
samples. Y ou can also use Passwor d.

0 dat abase=Nort hwi nd — This describes the database instance to connect to — each SQL Server
process can expose several database instances.

The exampl e opens a database connection using the defined connection string, and then closes that connection.
Once the connection has been opened, you can issue commands against the data source, and when you're
finished, the connection can be closed.

SQL Server has another mode of authentication — it can use Windows integrated security, so that the
credential s supplied at 1ogon are passed through to SQL Server. Thisis catered for by removing the ui d and
pwd portions of the connection string , and adding in | nt egr at ed Securi t y=SSPI .

In the download code available for this chapter, you will find afile Logi n. ¢s that simplifies the examplesin
this chapter. It islinked to all the example code, and includes database connection information used for the
examples; you can alter thisto supply your own server name, user, and password as appropriate. This by
default uses Windows integrated security; however, you can change the username and password as
appropriate.

Now that we know how to open connections, before we move on we should consider some good practices
concerning the handling of connections.

Using Connections Efficiently

In general, when using "scarce" resources in .NET, such as database connections, windows, or graphics
objects, it is good practice to ensure that each resource is closed after use. Although the designers of .NET
have implemented automatic garbage collection, which will tidy up eventually, it is necessary to actively
rel ease resources as early as possible.

Thisis al too apparent when writing code that accesses a database, as keeping a connection open for slightly
longer than necessary can affect other sessions. In extreme circumstances, not closing a connection can lock
other users out of an entire set of tables, considerably hurting application performance. Closing database
connections should be considered mandatory, so this section shows how to structure your code so as to
minimize the risk of |eaving aresource open.

There are two main ways to ensure that database connections and the like are rel eased after use.

517

Chapter 9

Option One —try/catch/finally

The first option to ensure that resources are cleaned up isto utilizetry...cat ch...fi nal | y blocks, and
ensure that you close any open connections within the finally block. Here's a short exampl e:

try

{
/1 Open the connection
conn. Open();
/1 Do sonething useful

}

catch (Exception ex)

{
/1 Do sonething about the exception

}

finally

{
/'l Ensure that the connection is freed
conn.Close () ;

}

Within thef i nal | y block you can release any resources you have used. The only trouble with this method is
that you have to ensure that you close the connection — it is all too easy to forget to add inthefi nal | y
clause, so something less prone to vagaries in coding style might be worthwhile.

Also, you may find that you open a number of resources (say two database connections and a file) within a
given method, so the cascading of t ry...cat ch...fi nal | y blocks can sometimes become less easy to read.
Thereis however another way to guarantee resource cleanup —the usi ng statement.

Option Two — The using Block Statement

During development of C#, .NET's method of clearing up objects after they are no longer referenced using
nondeterministic destruction became atopic of very heated discussion. In C++, as soon as an object went out
of scope, its destructor would be automatically called. This was great news for designers of resource-based
classes, as the destructor was the ideal place to close the resource if the user had forgotten to do so. A C++
destructor is called in any and every situation when an object goes out of scope — so for instanceif an
exception was raised and not caught, al objects with destructors would have them called.

With C# and the other managed languages, there is no concept of automatic, deterministic destruction —
instead there is the garbage collector, which will dispose of resources at some point in the future. What makes
this nondeterministic is that you have little say over when this process actually happens. Forgetting to close a
database connection could cause al sorts of problems for a .NET executable. Luckily, helpis at hand. The
following code demonstrates how to use the usi ng clause to ensure that objects that implement the

| Di sposabl e interface (discussed in Chapter 2) are cleared up immediately the block exits.

string source = "server=(local)\\Net SDK;" +
"ui d=@SUser ; pwd=QSPasswor d; " +
" dat abase=Nort hwi nd";

using (Sgl Connection conn = new Sgl Connection (source))

518

Data Access with .NET

/1 Open the connection
conn. Open () ;

/1 Do somet hing useful

}

The usi ng clause was introduced in Chapter 2. The object within the usi ng clause must implement the
I D sposabl e interface, or a compilation error will be flagged if the object does not support thisinterface.
The Di spose() method will automatically be called on exiting the usi ng block.

Looking at the IL code for the Di spose() method of Sgl Connecti on (and A eDbConnect i on), both of
these check the current state of the connection object, and if open will call the ose() method.

When programming, you should use at least one of these methods, and probably both. Wherever you acquire
resources it is good practice to utilize the usi ng () statement, as even though we all mean to write the

Cl ose() statement, sometimes we forget, and in the face of exceptions the usi ng clause does the right
thing. There is no substitute for good exception handling either, so in most instances | would suggest you use
both methods together as in the following example:

try
{

usi ng (Sql Connection conn = new Sqgl Connection (source))

/1 Open the connection
conn. Open () ;

/1 Do sonething useful

/Il Close it nyself
conn.Close () ;

}
}
catch (Exception e)
{
// Do something with the exception here...
}

Here | have explicitly called O ose() whichisn't strictly necessary as the usi ng clause will ensure that this
is done anyway; however, you should ensure that any resources such asthis are released as soon as possible — you may
have more code in the rest of the block and there's no point [ocking a resource unnecessarily.

In addition, if an exception is raised within the usi ng block, the | Di sposabl e. Di spose method will be
called on the resource guarded by the usi ng clause, which in this case will ensure that the database
connection is always closed. This produces easier to read code than having to ensure you close a connection
within an exception clause.

One last word —if you are writing a class that wraps a resource, whatever that resource may be, always

implement the | Di sposabl e interface to close the resource. That way anyone coding with your class can
utilizethe usi ng() statement and guarantee that the resource will be cleared up.

519

Chapter 9

Transactions

Often when there is more than one update to be made to the database, these updates must be performed within
the scope of atransaction. A transactionin ADO.NET is begun by calling one of the Begi nTr ansacti on()
methods on the database connection object. These methods return an object that implements the

| DbTr ansact i on interface, defined within Syst em Dat a.

The following sequence of code initiates a transaction on a SQL Server connection:

string source = "server=(local)\\NetSDK;" +
"ui d=Q@SUser ; pwd=QSPasswor d; " +
" dat abase=Nor t hwi nd";
Sgl Connection conn = new Sgl Connecti on(source);
conn. Open();
Sql Transaction tx = conn. Begi nTransacti on();

/| Execute some conmands, then commit the transaction

tx. Commit();
conn. Cl ose();

When you begin a transaction, you can choose theisolation level for commands executed within that
transaction. The level determines how isolated your transaction is from others occurring on the database
server. Certain database engines may support fewer than the four presented here. The options are as follows:

Isolation Level Description

ReadCommi tt ed The default for SQL Server. This level ensures that data written by one
transaction will only be accessible in a second transaction after the first
commits.

ReadUncommi tt ed This permits your transaction to read data within the database, even data that

has not yet been committed by another transaction. As an example, if two users
were accessing the same database, and the first inserted some data without
concluding their transaction (by means of aConmi t or Rol | back), then the
second user with their isolation level set to ReadUnconmi t t ed could read the
data

Repeat abl eRead Thislevel, which extends the ReadCommi t t ed level, ensures that if the same
statement is issued within the transaction, regardless of other potential updates
made to the database, the same data will always be returned. Thislevel does
require extra locks to be held on the data, which could adversely affect
performance.

Thislevel guarantees that, for each row in the initial query, no changes can be
made to that data. It does however permit "phantom" rows to show up — these
are completely new rows that another transaction may have inserted while your
transaction is running.

520

Data Access with .NET

Isolation Level Description

Serializabl e Thisisthe most "exclusive" transaction level, which in effect serializes access
to data within the database. With thisisolation level, phantom rows can never
show up, so a SQL statement issued within a serializabl e transaction will
always retrieve the same data.

The negative performance impact of aSeri al i zabl e transaction should not
be underestimated — if you don't absolutely need to use thislevel of isolation,
it is advisableto stay away fromit.

The SQL Server default isolation level, ReadConmmi t t ed, isa good compromise between data coherence and
data availability, as fewer locks are required on datathan in Repeat abl eRead or Seri al i zabl e modes.
However, there are situations where the isolation level should be increased, and so within .NET you can
simply begin a transaction with a different level from the default. There are no hard and fast rules as to which
levels to pick — that comes with experience.

One last word on transactions — if you are currently using a database that does not support
transactions, it is well worth changing to a database that does!

Commands

| briefly touched on the idea of issuing commands against a database in the Using Database Connections
section. A command is, in its simplest form, a string of text containing SQL statements that is to be issued to
the database. A command could al so be a stored procedure, or the name of atable that will return al columns
and all rows from that table (in other words, a SELECT * -style clause).

A command can be constructed by passing the SQL clause as a parameter to the constructor of the Sql Command
class, as shown below:

string source = "server=(local)\\Net SDK;" +
"ui d=@SUser ; pwd=QSPasswor d; " +
" dat abase=Nort hwi nd";

string select = "SELECT Cont act Nane, ConpanyNane FROM Cust oners";
Sgl Connection conn = new Sgl Connecti on(source);
conn. Open();

Sql Command cnd = new Sql Conmand(sel ect, conn);

The Sgl Command and A eDbConmand classes have a property called Conmand Ty pe, which is used to
define whether the command isa SQL clause, a call to a stored procedure, or afull table statement (which
simply selects al columns and rows from a given table). The following table summarizes the CommandType
enumeration:

521

Chapter 9

CommandType Example

Text String sel ect = "SELECT Cont act Name FROM Cust oners"”;
(default) Sql Command crmd = new Sql Conmand(sel ect , conn);

St oredProcedure Sql Command crmd = new Sql Command(" Cust Order Hi st", conn);

cnd. CommandType = CommandType. St or edPr ocedur e;
cnd. Paranet ers. Add(" @ust oner | D', "QUI CK");

Tabl eDi rect O eDbCommand cnd = new O eDbCommand(" Cat egori es", conn);
cnd. CommandType = ConmandType. Tabl eDi rect;

When executing a stored procedure, it may be necessary to pass parameters to that procedure. The example
above sets the @ust oner | D parameter directly, although there are other ways of setting the parameter value,
which we will look at later in the chapter.

Note: The Tabl eDi rect command typeisonly valid for the d eDb provider —an
exception isthrown by the Sgl provider if you attempt to use this command type with it.

Executing Commands

Once you have the command defined, you need to execute it. There are a number of ways to issue the
statement, depending on what you expect to be returned (if anything) from that command. The Sql Comrmand
and A eDbConmmand classes provide the following execute methods:

0 ExecuteNonQuery() — Executethe command but do not return any output

0 Execut eReader () — Executethe command and return atyped | Dat aReader

0 ExecuteScal ar () — Execute the command and return asingle value
In addition to the above methods, the Sql Command class a so exposes the foll owing method

0 Execut eXm Reader () — Execute the command, and return an Xm Reader object, which can be
used to traverse the XML fragment returned from the database.

The example code in this section can be found in the Chapt er 09\ 01_Execut i ngCommands subdirectory
of the code download.

ExecuteNonQuery()

This method is commonly used for UPDATE, | NSERT, or DELETE statements, where the only returned valueis
the number of records affected. This method can, however, return results if you call a stored procedure that
has output parameters.

522

Data Access with .NET

usi ng System
usi ng System Data. Sql Cli ent;
public class Execut eNonQuer yExanpl e

{
public static void Main(string[] args)
{
string source = "server=(local)\\NetSDK;" +
"ui d=Q@SUser ; pwd=QSPasswor d; " +
"dat abase=Nor t hwi nd";
string select = "UPDATE Custoners " +
"SET Contact Nane = 'Bob' " +
"WHERE ContactName = "Bill"'";
Sql Connection conn = new Sgl Connecti on(source);
conn. Open();
Sql Command cnd = new Sql Conmand(sel ect, conn);
int rowsReturned = cnd. Execut eNonQuery();
Consol e. WiteLine("{0} rows returned.", rowsReturned);
conn. Cl ose();
}
}

Execut eNonQuer y() returnsthe number of rows affected by the command asani nt .

ExecuteReader()

This method executes the command and returns a Sql Dat aReader or A eDbDat aReader object,
depending on the provider in use. The object returned can be used to iterate through the record(s) returned, as
shown in the following code:

using System
using System Data. Sql Cient;
public class Execut eReader Exanpl e

{
public static void Miin(string[] args)

{

string source "server=(local)\\ Net SDK; " +
"ui d=@SUser ; pwd=QSPasswor d; " +
" dat abase=Nort hwi nd";
string select = "SELECT Cont act Nane, ConpanyNanme FROM Cust oners";
Sqgl Connection conn = new Sgl Connecti on(source);
conn. Open();
Sql Command cnmd = new Sql Conmand(sel ect, conn);
Sql Dat aReader reader = cnd. Execut eReader ();
whi | e(reader. Read())
{
Consol e. WiteLine("Contact : {0,-20} Conpany : {1}" ,
reader[0] , reader[1]);

523

Chapter 9

ommand Prompt

G:~ProCSharp~Dataficcess »ExecuteReader
Haria Anders Company Alfreds Futterkiste
Ana Trujille Company Ana Trujillo Emparedados y helados
Antonio Moreno Company Antonio Moreno Tagueria
Thomas Hawdy Company Around the Howrn

Christina Berglund Company Berglunds snabbkip

Hanna Moos Company Blauer See Delikatessen
Frédérigue Citeaux Company Blondesddsl pére et Ffils
Martin Sommer Company Balido Comidas preparadas
Laurence Lebihan Company Bon app’

Elizaheth Lincoln Company Bottom—Dollar Markets
Victoria Ashworth Company B’'s Beverages

Patricio Simpson Compan Cactus Comidas para llevar

The Sgl Dat aReader and O eDbDat aReader objects will be discussed later in this chapter.

ExecuteScalar()

On many occasionsit is hecessary to return asingle result from a SQL statement, such as the count of records
in agiven table, or the current date/time on the server. The Execut eScal ar method can be used in such
situations:

using System
using System Data. Sql Cient;
public class ExecuteScal ar Exanpl e

{
public static void Min(string[] args)
{
string source = "server=(local)\\Net SDK;" +
"ui d=@SUser ; pwd=QSPasswor d; " +
"dat abase=Nort hwi nd";
string select = "SELECT COUNT(*) FROM Custoners";
Sqgl Connection conn = new Sgl Connecti on(source);
conn. Open();
Sql Command cnd = new Sql Conmand(sel ect, conn);
obj ect o = cnd. ExecuteScal ar();
Console. WiteLine (o) ;
}
}

The method returns an object, which you can cast into the appropriate type if required.

ExecuteXmlReader() (SqlClient Provider Only)

As its name implies, this method will execute the command and return an Xm Reader object to the caller.
SQL Server permits a SQL SELECT statement to be extended with a FOR XM clause. This clause can take one
of three options:

0 FORXM. AUTO- builds atree based on the tables in the FROMclause
0 FORXM. RAW-result set rows are mapped to elements, with columns mapped to attributes
0 FORXM EXPLI Cl T —you must specify the shape of the XML tree to be returned

524

Data Access with .NET

Professional SQL Server 2000 XML (Wrox Press, ISBN 1-861005-46-6) includes a compl ete description of
these options. For this example | shall use AUTO

using System

using System Data. Sqgl Cient;

usi ng System X ;

public class Execut eXm Reader Exanpl e

{
public static void Main(string[] args)
{
string source = "server=(local)\\NetSDK;" +
"ui d=Q@SUser ; pwd=QSPasswor d; " +
"dat abase=Nor t hwi nd";
string select = "SELECT Cont act Nane, ConpanyNane " +
"FROM Custoners FOR XML AUTQO';
Sgl Connection conn = new Sgl Connecti on(source);
conn. Open();
Sql Command cnd = new Sql Conmand(sel ect, conn);
Xm Reader xr = cnd. Execut eXm Reader ();
whi | e(xr. Read())
{
Consol e. Wi teLine(xr.ReadQuterXm ());
conn. Cl ose();
}
}

Note that we have to import the Syst em Xm namespace in order to output the returned XML. This
namespace and further XML capabilities of the NET Framework are explored in more detail in Chapter 11.

Here we include the FOR XM AUTO clause in the SQL statement, then call the Execut eXm Reader ()
method. A screenshot of the possible output from this code is shown bel ow:

SAWINNT Y System32 cmd.exe

wxd SglProvider
Uze ExecuteX¥mlReader with a FOR XML AUTO %9L clause

ContactMame="Maria Anders" CompanyMame="Alfreds Futterkiste"~>
ContactMame="fintonio Moreno' CompanyMame="fAntonio Moreno Tagueria'- >
ContactMame="Christina Berglund" CompanyMName="Berglunds snabbkiop"~>
ContactMame ="Frédérigque Citeaux" CompanyMame="Blondesddsl pére et fils'- >

<Customers ContactMame="Laurence Lehihan" CompanyMame="Bon app'"~ >

<Cuztomers ContactMame="Uictoria Ashworth" CompanyName="B'z Beverages' >

<Cusztomers ContactMame="Francisco Chang" CompanyMame='""Centro comercial Moctezuma'~>

KCustomers ContactMame="Pedro Afonso"” CompanyMame="Comércio Mineiro™->

<Customers ContactMame=""Sven Ottlieh" CompanyNam ‘Drachenblut Delikatessen'/>

<Customers ContactMame="finn Devon' CompanyMame="Eastern Connection'~>

<Customers ContactMame="Aria Cruz" CompanyMame="Familia Arquibaldo"~>

<Customers ContactMame="Martine Rancé” CompanyMame="Folies gourmandes"'- >

<Customers ContactMame="Peter Franken" CompanyMame="Frankenversand"~>

<Customers ContactMame="Paolo Accorti' CompanyMame=""Franchi S.p.A."~>

<KCustomers ContactMame="Eduardo Saavedra" CompanyName="Galeria del gastrdnomo"~>

{Customers ContactMame="André Fonseca' CompanyMame="Gourmet Lanchonetes'/>

525

Chapter 9

In the SQL clause, we specified FROMCust orrer s, so an element of type Customers is shown in the output.
To this are added attributes, one for each column selected from the database. This builds up an XML fragment
for each row selected from the database.

Calling Stored Procedures

Calling a stored procedure with a command object is just a matter of defining the name of the stored
procedure, adding a parameter's definition for each parameter of the procedure, then executing the command
with one of the methods presented in the previous section.

In order to make the examples in this section more useful, | have defined a set of stored procedures that can be
used to insert, update, and delete records from the Regi on table in the Nor t hwi nd example database. | have
chosen thistable despite its small size, asit can be used to define examples for each of the types of stored
procedures you will commonly write.

Calling a Stored Procedure that Returns Nothing

The simplest example of calling astored procedure is one that returns nothing to the caller. There are two such
procedures defined bel ow, one for updating a pre-existing Regi on record, and the other for deleting a given
Regi on record.

Record Update

Updating a Regi on record isfairly trivial, as thereis only one column that can be modified (assuming
primary keys cannot be updated). Y ou can type these examples directly into the SQL Server Query Analyzer,
or runthe St or edPr ocs. sql fileinthe Chapter 09\ 02_St or edPr ocs subdirectory, which will install
each of the stored procedures in this section:

CREATE PROCEDURE Regi onUpdat e (@Regi onl D | NTEGER,
@Regi onDescri pti on NCHAR(50)) AS
SET NOCOUNT OFF
UPDATE Regi on
SET Regi onDescription = @Regi onDescription
WHERE Regi onl D = @Regi onl D
GO

An update command on a more real-world table might need to re-select and return the updated record in its
entirety. This stored procedure takes two input parameters (@Regi onl Dand @Regi onDescri pti on), and
issues an UPDATE statement against the database.

To run this stored procedure from within .NET code, you need to define a SQL command and execute it:

Sql Command aCommand = new Sgl Command(" Regi onUpdat e", conn);

aCommand. ConmandType = CommandType. St or edPr ocedur €;
aCommand. Par anet er s. Add(new Sgl Par anet er (" @Regi onl D',
Sql DbType. I nt,
0,
"RegionlD"));

526

Data Access with .NET

aConmand. Par anet er s. Add(new Sql Par anet er (" @Regi onDescri ption",
Sqgl DbType. NChar ,
50,
"Regi onDescri ption"));
aCommand. Updat edRowSour ce = Updat eRowSour ce. None;

This code creates a new Sql Conmand object named aConmmand, and defines it as a stored procedure. We then
add each parameter in turn, and finally set the expected output from the stored procedure to one of the values
inthe Updat eRowSour ce enumeration, which is discussed later in this chapter.

The stored procedure takes two parameters: the unique primary key of the Regi on record being updated, and
the new description to be given to this record.

Once the command has been created, it can be executed by issuing the following commands:

aConmand. Par anet er s[0] . Val ue
aCommand. Par anet er s[1] . Val ue
aCommand. Execut eNonQuery();

999;
"Sout h Western Engl and";

Here we are setting the val ue of the parameters, then executing the stored procedure. As the procedure returns
nothing, Execut eNonQuer y() will suffice.

Command parameters may be set by ordinal as shown above, or set by name.

Record Deletion

The next stored procedure required is one that can be used to delete a Regi on record from
the database:

CREATE PROCEDURE Regi onDel et e (@Regi onl D | NTEGER) AS
SET NOCOUNT OFF
DELETE FROM Regi on
VWHERE Regi onl D = @Rregi onl D

GO

This procedure only requires the primary key value of the record. The code uses a Sql Comrand object to call
this stored procedure as follows:

Sql Command aConmmand = new Sqgl Command(" Regi onDel ete" , conn);

aCommand. ConmandType = CommandType. St or edPr ocedur €;

aCommand. Par anet er s. Add(new Sql Par anet er (" @Regi onl D' , Sqgl DbType.Int , 0 ,
"RegionlD"));

aCommand. Updat edRowSour ce = Updat eRowSour ce. None;

This command only accepts a single parameter as shown in the following code, which will execute the
Regi onDel et e stored procedure; here we see an example of setting the parameter by name:

aConmand. Par anet er s[" @Regi onl D'] . Val ue= 999;
aCommand. Execut eNonQuery();

527

Chapter 9

Calling a Stored Procedure that Returns Output Parameters

Both of the previous exampl es execute stored procedures that return nothing. If a stored procedure includes
output parameters, then these need to be defined within the .NET client so that they can be filled when the
procedure returns.

The following example shows how to insert arecord into the database, and return the primary key of that
record to the caller.

Record Insertion

The Regi on table only consists of a primary key (Regi onl D) and description field (Regi onDescri pti on).
Toinsert arecord, this numeric primary key needs to be generated, then a new row inserted into the database.

| have chosen to simplify the primary key generation in this example by creating one within the stored procedure.
The method used is exceedingly crude, which iswhy | have devoted a section to key generation later in the chapter.
For now this primitive example will suffice:

CREATE PROCEDURE Regi onl nsert (@Regi onDescri pti on NCHAR(50),
@Regi onl D | NTEGER OUTPUT) AS
SET NOCOUNT OFF
SELECT @Regi onl D = MAX(Regi onl D)+ 1
FROM Regi on
| NSERT | NTO Regi on(Regi onl D, Regi onDescri ption)
VALUES(@Regi onl D, @Regi onDescri pti on)
&0

The insert procedure creates a new Regi on record. Asthe primary key value is generated by the database
itself, this value is returned as an output parameter from the procedure (@Regi onl D). Thisis sufficient for
this simple example, but for a more complex table (especially one with default values), it is more common not
to utilize output parameters, and instead sel ect the entire inserted row and return thisto the caller. The .NET
classes can cope with either scenario.

Sql Command aCommand = new Sgl Command(" Regi onl nsert" , conn);
aCommand. ConmandType = CommandType. St or edPr ocedur €;
aConmand. Par anmet er s. Add(new Sql Par anet er (" @Regi onDescri ption"
Sql DbType. NChar
50 ,
"Regi onDescription"));
aCommand. Par anet er s. Add(new Sql Par anet er (" @Regi onl D' ,
Sql DbType. I nt,

Par anet er Di recti on. Qut put
fal se ,
0,
0,
"Regi onl D"
Dat aRowVer si on. Def aul t
null));
aCommand. Updat edRowSour ce = Updat eRowSour ce. Qut put Par anet er s;

Here, the definition of the parameters is much more complex. The second parameter, @Regi onl D, is defined
to include its parameter direction, which in this exampleis Qut put . In addition to this flag, on the last line of
the code, we utilize the Updat eRowSour ce enumeration to indicate that we expect to return data from this
stored procedure via output parameters. This flag is mainly used when issuing stored procedure calls from a
Dat aTabl e (covered later in the chapter).

528

Data Access with .NET

Calling this stored procedure is similar to the previous examples, except in thisinstance we need to read the
output parameter after executing the procedure:

aCommand. Par anet er s[" @Regi onDescription"]. Value = "South Wst";
aCommand. Execut eNonQuery();
int newRegi onl D = (int) aCommand. Par anet ers[" @Regi onl D'] . Val ue;

After executing the command, we read the value of the @Regi onl D parameter and cast this to
an integer.

Y ou may be wondering what to do if the stored procedure you call returns output parameters and a set of rows.
In thisinstance, define the parameters as appropriate, and rather than calling Execut eNonQuer y(), cal one
of the other methods (such as Execut eReader ()) that will permit you to traverse any record(s) returned.

Quick Data Access: The Data Reader

A datareader isthe simplest and fastest way of selecting some data from a data source, but also the least
capable. You cannot directly instantiate a datareader object — an instance is returned from a Sgl Comrmand or
A eDbCommand object having called the Execut eReader () method — from a Sql Command object, a

Sql Dat aReader object is returned, and from the O eDbComand object, ad eDbDat aReader object is
returned.

The following code demonstrates how to select data from the Cust oner s table in the Nor t hwi nd database.
The exampl e connects to the database, selects a number of records, |oops through these selected records and
outputs them to the console.

This example utilizes the OLE DB provider as a brief respite from the SQL provider. In most cases the classes
have a one-to-one correspondence with their Sql Cl i ent cousins, so for instance there is the

O eDbConnect i on object, which is similar to the Sql Connect i on object used in the previous examples.
To execute commands against an OLE DB data source, the d eDbCommrand class is used. The following code
shows an example of executing asimple SQL statement and reading the records by returning an

O eDbDat aReader object.

The code for this example can be found in the Chapt er 09\ 03_Dat aReader directory.

Note the second usi ng directive below that makes available the A eDb classes:

usi ng System
usi ng System Dat a. O eDb;

529

Chapter 9

All the data providers currently available are shipped within the same DLL, so it is only necessary to reference
the Syst em Dat a. dl | assembly to import all classes used in this section:

public cl ass Dat aReader Exanpl e

{
public static void Main(string[] args)
{
string source = "Provi der=SQ.OLEDB; " +
"server=(local)\\ Net SDK; " +
"ui d=Q@SUser ; pwd=QSPasswor d; " +
"dat abase=nort hwi nd";
string select = "SELECT Cont act Nane, ConpanyNane FROM Cust oners";
QA eDbConnecti on conn = new O eDbConnecti on(source);
conn. Open();
A eDbCommand cnd = new O eDbCommand(sel ect , conn);
O eDbDat aReader aReader = cnd. Execut eReader () ;
whi | e(aReader . Read())
Consol e. WiteLine("'{0}' from{1}" ,
aReader. Get String(0) , aReader.GetString(1));
aReader. Cl ose();
conn. Cl ose();
}
}

The preceding code includes many familiar aspects of C# covered in other chapters. To compile the example,
i ssue the following command:

csc /t:exe /debug+ Dat aReader Exanpl e.cs /r: System Dat a. dl |

The following code from the exampl e above creates a new OLE DB .NET database connection, based on the
source connection string:

A eDbConnection conn = new O eDbConnecti on(source);

conn. Open();
A eDbCommand cnd = new O eDbConmmand(sel ect, conn);

The third line creates anew A eDbCommand object, based on a particular SELECT statement, and the
database connection to be used when the command is executed. When you have a valid command, you then
need to execute it, which returns an initialized O eDbDat aReader :

O eDbDat aReader aReader = cnd. Execut eReader ();

An O eDbDat aReader isaforward-only "connected" cursor. In other words, you can only traverse through
the records returned in one direction, and the database connection used is kept open until the data reader has
been closed.

An O eDbDat aReader keepsthe database connection open until explicitly closed.

530

Data Access with .NET

The d eDbDat aReader class cannot be directly instantiated — it is always returned by a call to the
Execut eReader () method of the O eDbConmand class. Once you have an open data reader, there are
various ways to access the data contained within the reader.

When the O eDbDat aReader object is closed (viaan explicit call to d ose(), or the object being garbage
collected), the underlying connection may also be closed, depending on which of the Execut eReader ()
methodsis called. If you call Execut eReader () and pass CommandBehavi or . Cl oseConnecti on, you
can force the connection to be closed when the reader

is closed.

The d eDbDat aReader class has an indexer that permits access (although not type-safe access) to any field
using the familiar array style syntax:

object o
obj ect o

aReader [0] ;
aReader [" Categoryl D'];

Assuming that the Cat egor yl Dfield was the first in the SELECT statement used to popul ate the reader, these
two lines are functionally equivalent, although the second is slower than the first — | wrote a simple test
application that performed a million iterations of accessing the same column from an open data reader, just to
get some numbers that were big enough to read. | know — you probably don't read the same column a million
timesin atight loop, but every (micro) second counts, and you might as well write codethat is as close to
optimal as possible.

Just for interest, the numeric indexer took on average 0.09 seconds for the million accesses, and the textual
one 0.63 seconds. The reason for this difference is that the textual method |ooks up the column number
internally from the schema and then accesses it using its ordinal. If you know thisinformation beforehand you
can do abetter job of accessing the data.

So should you use the numeric indexer? Maybe, but there is a better way.

In addition to the indexers presented above, the O eDbDat aReader has a set of type-safe methods that can
be used to read columns. These are fairly self-explanatory, and all begin with Get . There are methods to read
most types of data, such as Get | nt 32, Get Fl oat , Get Gui d, and so on.

My million iterations using Get | nt 32 took 0.06 seconds. The overhead in the numeric indexer is incurred
while getting the data type, calling the same code as Get | nt 32, then boxing (and in thisinstance unboxing)
an integer. So, if you know the schema beforehand, are willing to use cryptic numbers instead of column
names, and you can be bothered to use a type-safe function for each and every column access, you stand to
gain somewhere in the region of aten fold speed increase over using a textual column name (when selecting
those million copies of the same column).

Needless to say, there is atradeoff between maintainability and speed. If you must use numeric indexers,
define constants within class scope for each of the columns that you will be accessing.

The code above can be used to select data from any OLE DB database; however, there are a number of SQL
Server-specific classes that can be used with the obvious portability tradeoff.

The following example is the same as the above, except in thisinstance | have replaced the OLE DB provider and

al references to OLE DB classes with their SQL counterparts. The changes in the code from the previous
exampl e have been highlighted. The exampleisin the 04_Dat aReader Sqgl directory:

531

Chapter 9

usi ng System
using System Data. Sqgl Cient;
public cl ass Dat aReader Sql

{
public static int Main(string[] args)
{
string source = "server=(local)\\Net SDK;" +
"ui d=Q@SUser ; pwd=QSPasswor d; " +
" dat abase=nort hwi nd";
string select = "SELECT Cont act Nane, ConpanyNane FROM Cust oners";
Sql Connection conn = new Sql Connecti on(source);
conn. Open();
Sqgl Command cnd = new Sgl Command(sel ect , conn);
Sql Dat aReader aReader = cnd. Execut eReader () ;
whi | e(aReader . Read())
Consol e. WiteLine("' {0}' from{1}" , aReader. GetString(0)
aReader. Get String(1));
aReader. Cl ose();
conn. Cl ose();
return O;
}
}

Notice the difference? If you're typing this in then do a global replace on A eDb with Sqgl , change the data
source string and recompile. It's that easy!

I ran the same performance tests on the indexers for the SQL provider, and this time the numeric indexers
were both exactly the same at 0.13 seconds for the million accesses, and the string-based indexer ran at about
0.65 seconds. You would expect the native SQL Server provider to be faster than going through A eDb, which
up until | tested this section under the release version of .NET it was. I'm reasonably sure that thisis an
anomaly due to the simplistic test approach | am using (sel ecting the same val ue 1,000,000 times), and would
expect areal-world test to show better performance from the managed SQL provider.

If you are interested in running the code on your own computer to see what performance is like, see the
05_1 ndexer Test i ngA eDb and 06_I ndexer Test i ngSql examplesincluded in the code download.

Managing Data and Relationships: The DataSet

The Dat aSet class has been designed as an offline container of data. It has no notion of database
connections. In fact, the data held within a Dat aSet doesn't necessarily need to have come from a database —
it could just as easily be records from a CSV file, or points read from a measuring device.

A Dat aSet consists of aset of data tables, each of which will have a set of data columns and data rows. In
addition to defining the data, you can a so define links between tables within the Dat aSet . One common
scenario would be when defining a parent-child relati onship (commonly known as master/detail). One record
inatable (say Or der) links to many records in another table (say Or der _Det ai | s). Thisrelationship can be
defined and navigated within the Dat aSet .

532

Data Access with .NET

DataSet
DataTable DataColumn
e v
DataRow
DataTable DataColumn
= — —
DataRow

The following sections describe the classes that are used with a Dat aSet .

Data Tables

A datatableisvery similar to a physical database table —it consists of a set of columns with particul ar
properties, and may contain zero or more rows of data. A datatable may also define a primary key, which can
be one or more columns, and may also contain constraints on columns. The generic term for thisinformation
used throughout the rest of the chapter is schema.

There are severa ways to define the schema for a particular data table (and indeed the Dat aSet as awhole).
These are discussed after we introduce data columns and data rows.

The following diagram shows some of the objects that are accessible through the data table:

Columns }—»»{ DataColumn)
Rows }—»»{ DataRow)
}
)

Constraints]—bb[Constraint

ExtendedProperties |—»»{ Object

A Dat aTabl e object (and also a Dat aCol umm) can have an arbitrary number of extended properties
associated with it. This collection can be populated with any user-defined information pertaining to the object.
For example, a given column might have an input mask used to validate the contents of that column — the
typical example would be the US socia security number. Extended properties are especialy useful when the
datais constructed within a middle tier and returned to the client for

some processing. You could, for example, store validation criteria (such as m n and max) for

numeric columns.

533

Chapter 9

When a data table has been populated, either by selecting data from a database, reading data from afile, or
manual ly populating within code, the Rows collection will contain thisretrieved data.

The Col ums collection contains Dat aCol unm instances that have been added to this table. These define the
schema of the data, such as the data type, nullability, default values, and so on. The Const r ai nt s collection
can be populated with either unique or primary key constraints.

One example of where the schema information for a datatable is used is when displaying that datain a

Dat aGri d (which we'll discuss at length in the next chapter). The Dat aGri d control uses properties such as
the data type of the column to decide what control to use for that column. A bit field within the database will
be displayed as a checkbox within the Dat aGri d. If a column is defined within the database schema as NOT
NULL, then this fact will be stored within the Dat aCol umm so that it can be tested when the user attempts to
move off arow.

Data Columns

A Dat aCol um object defines properties of a column within the Dat aTabl e, such as the data type of that
column, whether the column is read only, and various other facts. A column can be created in code, or can be
automatically generated by the runtime.

When creating a column, it is also useful to give it a name; otherwise the runtime will generate a name for you
in the form Col ummn where n is an incrementing number.

The data type of the column can be set either by supplying it in the constructor, or by setting the Dat aType
property. Once you have |loaded datainto a data table you cannot alter the type of a column — you'll just
receive an Ar gunent Except i on.

Data columns can be created to hold the following .NET Framework data types:

Bool ean Deci nal I nt 64 Ti meSpan
Byt e Doubl e Shyt e Ul nt16
Char Int16 Single Ul nt 32
Dat eTi e I nt 32 String Ul nt 64

Once created, the next thing to do with a Dat aCol unm object is to set up other properties, such as the
nullability of the column or the default value. The following code fragment shows a few of the more common
options to set on aDat aCol unm:

Dat aCol utm cust oner| D = new Dat aCol uim(" Custoner| D' , typeof (int));
custonmer | D. Al |l owDBNul | = fal se;

custoner| D. ReadOnly = fal se;

cust oner | D. Aut ol ncrenent = true;

cust oner | D. Aut ol ncr enent Seed = 1000;

Dat aCol umm nane = new Dat aCol umm(" Nane" , typeof(string));

nane. Al | owDBNul | = fal se;

nane. Uni que = true;

534

Data Access with .NET

The following properties can be set on a Dat aCol um:

Property Description

Al | owDBNul | If t r ue, permits the column to be set to DBNul | .

Aut ol ncr enment Defines that this column value is automatically generated as an
incrementing number.

Aut ol ncr enent Seed Theinitial seed value for an Aut ol ncr enent column.

Aut ol ncrenent St ep Defines the step between automatically generated column values, with a
default of one.

Caption Can be used for displaying the name of the column on screen.

Col unmmMappi ng Defines how a column is mapped into XML when a Dat aSet is saved by
callingDataSet. WiteXm .

Col ummNane The name of the column. This is auto-generated by the runtime if not set in
the constructor.

Dat aType The Syst em Type value of the column.

Def aul t Val ue Can define a default value for a column.

Expression This property defines the expression to be used in a computed column.

Data Rows

This class makes up the other part of the Dat aTabl e class. The columns within a data table are defined in
terms of the Dat aCol umn class. The actua data within the table is accessed using the Dat aRow object. The
following example shows how to access rows within a datatable. The code for this example is available in the
07_Si npl eDat aset Sgl directory. First, the connection details:

string source = "server=(local)\\Net SDK;" +

"ui d=@SUser ; pwd=QSPasswor d; " +

" dat abase=nort hwi nd";
string select = "SELECT Cont act Nane, ConpanyNane FROM Cust oners";
Sql Connection conn = new Sqgl Connecti on(source);

The following code introduces the Sgl Dat aAdapt er class, which is used to place datainto a Dat aSet . The
Sql Dat aAdapt er will issue the SQL clause, and fill atable in the Dat aSet called Cust oner s with the
output of this following query. We'll be discussing the data adapter class further in the Populating a DataSet
section.

Sql Dat aAdapt er da = new Sqgl Dat aAdapt er (sel ect, conn);
Dat aSet ds = new Dat aSet () ;
da.Fill(ds , "Custoners");

535

Chapter 9

In the code below, you may notice the use of the Dat aRow indexer to access values from within that row. The
value for a given column can be retrieved using one of the several overloaded indexers. These permit you to
retrieve a value knowing the column number, name, or Dat aCol um:

foreach(Dat aRow row i n ds. Tabl es[" Cust oners"] . Rows)
Consol e. WiteLine("'{0}' from{1}" , rowf0] ,row 1]);

One of the most appealing aspects of a Dat aRow s that it isversioned. This permits you to receive various
values for agiven column in a particular row. The versions are described in the following table:

Dat aRowMer si on Value Description

Current The value existing at present within the column. If no edit has occurred,
this will be the same asthe origina value. If an edit (or edits) have
occurred, the value will be the last valid value entered.

Def aul t The default value (in other words, any default set up for the column).

Ori gi nal The value of the column when originally selected from the database. If
the Dat aRows Accept Changes method is called, then this value will
update to be the Cur r ent value.

Proposed When changes are in progress for arow, it is possible to retrieve this
modified value. If you call Begi nEdi t () on therow and make
changes, each column will have a proposed val ue until either
EndEdi t () or Cancel Edi t () iscaled.

The version of a given column could be used in many ways. One example is when updating rows within the
database, in which instanceit is common to issue an SQL statement such as the following:

UPDATE Pr oduct s

SET Nanme = Col umm. Current
VWHERE Product| D = xxx

AND Name = Col umm. Ori gi nal ;

Obviously this code would never compile, but it shows one use for original and current values of a column
within arow.

To retrieve a versioned value from the Dat aRow, use one of the indexer methods that accept a
Dat aRowMer si on value as a parameter. The following code snippet shows how to obtain all values of each
columninaDat aTabl e:

foreach (DataRow row i n ds. Tabl es[" Cust oners"]. Rows)

foreach (DataColumm dc in ds. Tabl es["Custoners"]. Col ums)

Consol e. WiteLine ("{0} Current {1}" , dc. Col umNane ,

rowf dc, Dat aRower si on. Current]);

Consol e. WiteLine (" Default = {0}" , row dc, Dat aRowVer si on. Default]);

Consol e. WiteLine (" Original = {0}" , row dc, DataRowersion.Oiginal]);
}

}

536

Data Access with .NET

The whole row has a state flag called RowSt at e, which can be used to determine what operation is needed on
the row when it is persisted back to the database. The RowSt at e property is set to keep track of all the
changes made to the Dat aTabl e, such as adding new rows, deleting existing rows, and changing columns
within the table. When the datais reconciled with the database, the row state flag is used to determine what
SQL operations should occur. These flags are defined by the Dat aRowSt at e enumeration:

Dat aRowsSt at e Value Description

Added The row has been newly added to a Dat aTabl e's Rows collection. All
rows created on the client are set to this value, and will ultimately issue
SQL | NSERT statements when reconciled with the database.

Del et ed Thisindicates that the row has been marked as deleted from the
Dat aTabl e by means of the Dat aRow. Del et e() method. The row
still exists within the Dat aTabl e, but will not normally be viewable on
screen (unless a Dat aVi ew has been explicitly set up). Dat aVi ews will
be discussed in the next chapter. Rows marked as deleted in the
Dat aTabl e will be deleted from the database when reconcil ed.

Det ached A row isin this state immediately after it is created, and can also be
returned to this state by calling Dat aRow. Renove() . A detached row
is not considered to be part of any data table, and as such no SQL for
rows in this state will be issued.

Modi fi ed A row will be Modi fi ed if the value in any column has been changed.
Unchanged Therow has not been changed since the last call to
Accept Changes() .

The state of the row depends a so on what methods have been called on the row. The Accept Changes()
method is generally called after successfully updating the data source (that is, after persisting changesto the
database).

The most common way to alter datain a Dat aRow is to use the indexer; however, if you have a number of
changes to make you al so need to consider the Begi nEdi t () and EndEdi t () methods.

When an ateration is made to a column within a Dat aRow, the Col utmChangi ng event is raised on the
row's Dat aTabl e. This permits you to override the Pr oposedVal ue property of the

Dat aCol utmChangeEvent Ar gs class classes, and change it as required. This is one way of performing
some data validation on column values. If you call Begi nEdi t () before making changes, the

Col umChangi ng event will not be raised. This permits you to make multiple changes and then call
EndEdi t () to persist these changes. If you wish to revert to the original values, call Cancel Edi t ().

A Dat aRow can be linked in some way to other rows of data. This permits the creation of navigable links
between rows, which is common in master/detail scenarios. The Dat aRow contains a Get Chi | dRows ()
method that will return an array of associated rows from another table in the same Dat aSet asthe current
row. These are discussed in the Data Relationships section later in this chapter.

537

Chapter 9

Schema Generation
There are three ways to create the schema for a Dat aTabl e. These are:

0 Lettheruntimedo it for you
O Write code to create the table(s)

0 Usethe XML schema generator

Runtime Schema Generation

The Dat aRow example shown earlier presented the following code for sel ecting data from a database and
populating a Dat aSet :

Sql Dat aAdapt er da = new Sqgl Dat aAdapt er (sel ect , conn);
Dat aSet ds = new Dat aSet () ;
da.Fill(ds , "Custoners");

Thisis obviously easy to use, but it has a few drawbacks too. One example is that you have to make do with
the column names selected from the database, which may be fine, but in certain instances you might want to
rename a physical database column (say PKI D) to something more user-friendly.

Y ou could naturally rename columns within your SQL clause, asin SELECT Pl D AS Per sonl D FROM
Per sonTabl e; | would always recommend not renaming columns within SQL, as the only place a column
really needs to have a "pretty" nameis on screen.

Another potential problem with automated Dat aTabl e/Dat aCol unm generation is that you have no control
over the column types that the runtime chooses for your data. It does afairly good job of deciding the correct
datatype for you, but as usual there are instances where you need more control. Y ou might for example have
defined an enumerated type for a given column, so as to simplify user code written against your class. If you

accept the default column types that the runtime generates, the column will likely be an integer with a 32-bit

range, as opposed to an enumwith five options.

Lastly, and probably most problematic, isthat when using automated table generation, you have no type-safe
access to the data within the Dat aTabl e — you are at the mercy of indexers, which return instances of

obj ect rather than derived data types. If you like sprinkling your code with typecast expressions then skip
the following sections.

Hand-Coded Schema

Generating the codeto create a Dat aTabl e, replete with associated Dat aCol urms isfairly easy. The
examples within this section will access the Pr oduct s table from the Nor t hwi nd database shown bel ow.
The code for this section is available in the 08_Manuf act ur edDat aSet example.

538

Data Access with .NET

Products
Column Mame | Daka Type |Length | Allaws Mulls
% | ProductID ink 4 (I

| Productiame revarchar 40

| supplierIo int 4 W

| categaryID int 4 W
QuankityPerlnit rvarchar 20 W

" |UnitPrice maney g W

| UnitsIngtock smallink 2 v

| Uritstinorder srmallink z 7

" |recrderLevel srmallink z 7
Discontinued hit 1

| [

The following code manufactures a Dat aTabl e, which corresponds to the above schema.

public static void ManufactureProduct Dat aTabl e(Dat aSet ds)

{
Dat aTabl e products = new Dat aTabl e(" Products");
products. Col ums. Add(new Dat aCol um(" Product | D', typeof(int)));
product s. Col uims. Add(new Dat aCol urm(" Pr oduct Nane", typeof (string)));
products. Col ums. Add(new Dat aCol um(" Supplierl D', typeof(int)));
products. Col ums. Add(new Dat aCol um(" Cat egoryl D', typeof(int)));
product s. Col uims. Add(new Dat aCol utm(" QuantityPerUnit", typeof(string)));
products. Col ums. Add(new Dat aCol uim(" Uni t Price", typeof(decinal)));
products. Col ums. Add(new Dat aCol um(" Uni t sl nSt ock”, typeof(short)));
product s. Col uims. Add(new Dat aCol utm(" Uni t sOnOrder”, typeof(short)));
product s. Col ums. Add(new Dat aCol umm(" Reor der Level ", typeof (short)));
products. Col ums. Add(new Dat aCol um(" Di sconti nued", typeof(bool)));
ds. Tabl es. Add(pr oducts) ;
}
You can alter the code in the Dat aRow exampleto utilize this newly generated table definition
as follows:
string source = "server=local host;" +
"integrated security=sspi;" +

"dat abase=Nort hwi nd";
string select = "SELECT * FROM Products";
Sql Connection conn = new Sgl Connecti on(source);
Sql Dat aAdapter cnd = new Sgl Dat aAdapt er (sel ect, conn);
Dat aSet ds = new Dat aSet () ;
Manuf act ur ePr oduct Dat aTabl e(ds) ;
cmd. Fill (ds, "Products");
foreach(Dat aRow row i n ds. Tabl es[" Products"]. Rows)
Console. WiteLine("' {0}' from{1}", rowf 0], row 1]);

539

Chapter 9

The Manuf act ur ePr oduct Dat aTabl e() method creates anew Dat aTabl e, adds each column in turn,
and finally appends this to the list of tables within the Dat aSet . The Dat aSet has an indexer that takes the
name of the table and returns that Dat aTabl e to the caller.

The above exampleisstill not really type-safe, as I'm using indexers on columnsto retrieve the data. What
would be better isa class (or set of classes) derived from Dat aSet , Dat aTabl e, and Dat aRow, that define
type-safe accessors for tables, rows, and columns. Y ou can generate this code yourself — it's not particularly
tedious and you end up with truly type-safe data access classes.

If you don't like the sound of generating these type-safe classes yourself then help is at hand. The .NET
Framework includes support for using XML schemas to define a Dat aSet , Dat aTabl e, and the other classes
that we have touched on in this section. The XML Schemas section later in the chapter details this method; but
first, we will look at relationships and constraints within a Dat aSet .

Data Relationships

When writing an application, it is often necessary to obtain and cache various tables of information. The

Dat aSet classisthe container for thisinformation. With regular OLE DB it was necessary to provide a
strange SQL dialect to enforce hierarchical data relationships, and the provider itself was not without its own
subtle quirks.

The Dat aSet class on the other hand has been designed from the start to establish relationships between data
tables with ease. For the code in this section | decided to hand-generate and populate two tables with data. So,
if you haven't got SQL Server or the Nor t hW nd database to hand, you can run this example anyway. The
code isavailablein the 09 _Dat aRel at i onshi ps directory:

Dat aSet ds = new Dat aSet (" Rel ati onshi ps");

ds. Tabl es. Add(Cr eat eBui | di ngTabl e());

ds. Tabl es. Add(Cr eat eRoonTabl e());

ds. Rel ati ons. Add(" Roons",
ds. Tabl es[" Bui | di ng"] . Col unms[" Bui | di ngl D"],
ds. Tabl es[" Roont'] . Col ums[" Bui | di ngl D']);

The tables simply contain a primary key and name field, with the Roomtable having Bui | di ngl Dasa
foreign key.

Building Room

% | BuildingID [—— % | RoomID

Hmame Marme
oy BuildingID

These tables were kept deliberately simple, as my fingers were wearing out at this point so | didn't want to add
too many columns to either one.

540

Data Access with .NET

| then added some default data to each table. Once that was done, | could then iterate through the buil dings
and rooms using the code bel ow.

f oreach(Dat aRow t heBui | ding i n ds. Tabl es["Bui | di ng"]. Rows)
{
Dat aRow{] children = theBuil di ng. Get Chi | dRows(" Roons") ;
i nt roomCount = chil dren. Lengt h;
Consol e. WiteLine("Building {0} contains {1} roon{2}",
t heBui | di ng[" Nanme"],
r oonCount ,
roonCount > 1 ? "s" : "");
/1 Loop through the roons
f or each(Dat aRow t heRoom i n chi |l dren)
Consol e. WitelLine("Room {0}", theRooni"Nane"]);
}

The big difference between the Dat aSet and the old-style hierarchical Recor dset object isin the way the
relationship is presented. In a hierarchical Recor dset , the relationship was presented as a pseudo-column
within the row. This column itself was a Recor dset that could beiterated through. Under ADO.NET,
however, arelationship istraversed simply by calling the Get Chi | dRows () method:

Dat aRow{] children = theBuil di ng. Get Chi | dRows(" Roons");

This method has a number of forms, but the simple example shown above just uses the name of the
relationship to traverse between parent and child rows. It returns an array of rows that can be updated as
appropriate by using the indexers as shown in earlier examples.

What's more interesting with data rel ationships is that they can be traversed both ways. Not only can you go
from a parent to the child rows, but you can also find a parent row (or rows) from a child record simply by
using the Par ent Rel at i ons property on the Dat aTabl e class. This property returns a

Dat aRel at i onCol | ect i on, which can be indexed using the [] array syntax (for example,

Par ent Rel ati ons[" Roons"]), or asan aternative the Get Par ent Rows() method can be called as
shown bel ow:

f oreach(Dat aRow t heRoom i n ds. Tabl es[" Roont'] . Rows)
{
Dat aRow[{] parents = theRoom Get Par ent Rows(" Roons");
f oreach(Dat aRow t heBui | di ng in parents)
Consol e. WiteLine("Room {0} is contained in building {1}",
t heRoon{ " Nane"],
t heBui | di ng[" Nane"]);
}

There are two methods with various overrides available for retrieving the parent row(s) — Get Par ent Rows ()
(which returns an array of zero or more rows), or Get Par ent Row() (which retrieves asingle parent row
given arelationship).

541

Chapter 9

Data Constraints

Changing the data type of columns created on the client is not the only thing a Dat aTabl e is good for.
ADO.NET permits you to create a set of constraints on a column (or columns), which are then used to enforce
rules within the data.

The runtime currently supports the following constraint types, embodied as classes in the
Syst em Dat a namespace.

Constraint Description
For ei gnKeyConst r ai nt Enforce alink between two Dat aTabl es within aDat aSet
Uni queConst r ai nt Ensure that entriesin a given column are unique

Setting a Primary Key

Asis common for atablein arelationa database, you can supply a primary key, which can be based on one or
more columns from the Dat aTabl e.

The code below creates a primary key for the Pr oduct s table, whose schema we constructed by hand earlier,
and can be found in the 08_Manuf act ur eDat aSet folder.

Note that a primary key on atable isjust one form of constraint. When a primary key is added to a Dat aTabl e,
the runtime also generates a unique constraint over the key column(s). Thisis because thereisn't actualy a
constraint type of Pri mar yKey —aprimary key issimply a unique constraint over one or more columns.

public static void ManufacturePri maryKey(DataTabl e dt)

Dat aCol um[] pk = new Dat aCol um|[1] ;
pk[0] = dt. Col ums["Product!|D'];
dt. Pri maryKey = pk;

As aprimary key may contain several columns, it istyped as an array of Dat aCol umms. A table's primary key
can be set to those columns simply by assigning an array of columnsto the property.

To check the constraints for atable, you can iterate through the Const r ai nt Col | ect i on. For the auto-
generated constraint produced by the above code, the name of the constraint is Const r ai nt 1. That's not a
very useful name, so to avoid this problem it is aways best to create the constraint in code first, then define
which column(s) make up the primary key, as we shall do now.

As along time database programmer, | find named constraints much simpler to understand, as most databases
produce cryptic names for constraints, rather than something simple and legible. The code bel ow names the
constraint before creating the primary key:

Dat aCol um[] pk = new DataCol um[1] ;

pk[0] = dt. Col ums["Product!|D'];

dt. Constraints. Add(new Uni queConstrai nt ("PK Products”, pk[0]));
dt. PrimaryKey = pk;

Unique constraints can be applied to as many columns as you wish.

542

Data Access with .NET

Setting a Foreign Key

In addition to unique constraints, a Dat aTabl e may also contain foreign key constraints. These are primarily
used to enforce master/detail relati onships, but can also be used to replicate columns between tablesif you set
the constraint up correctly. A master/detail relationship is one where there is commonly one parent record (say
an order) and many child records (order lines), linked by the primary key of the parent record.

A foreign key constraint can only operate over tables within the same Dat aSet , so the following example
utilizesthe Cat egor i es table from the Nor t hwi nd database, and assigns a constraint between it and the
Product s table.

Products Categories

_? PraductID ﬂ Calurmn Mame | Drata Type |Length |.ﬁ.||c|w Bulls &
ProductMarne %[CategoryID int 4

T SupplierID |] CategoryHarne rivarchar 15 b

T ZategaoryID] Crezcription ritext 16 W

T CuantibyPerlnit | Picture irmage 16 W

| UritPrice] hd

| UritsInStack 4 | ﬂ_‘

| Unitsoncrder

| ReorderLewel

| Discontinued ;!

The first step is to generate a new data table for the Cat egor i es table. The 08_Manuf act ur eDat aSet
example includes this code:

Dat aTabl e cat egori es = new Dat aTabl e(" Cat egori es");
cat egori es. Col ums. Add(new Dat aCol utm(" Cat egoryl D', typeof(int)));
cat egori es. Col ums. Add(new Dat aCol uim(" Cat egor yNane", typeof(string)));
cat egori es. Col ums. Add(new Dat aCol uim(" Descri ption", typeof(string)));
cat egori es. Constrai nts. Add(new Uni queConstrai nt (" PK _Cat egori es",

cat egori es. Col ums[" Categoryl D']));
cat egories. PrimaryKey = new Dat aCol unm[1]

{categories. Col ums["Categoryl D'] };

Thelast line of the above code creates the primary key for the Cat egor i es table. The primary key in this
instance is a single column; however, it is possible to generate a key over multiple columns using the array
syntax shown.

Then | need to create the constraint between the two tables:

Dat aCol uim parent = ds. Tabl es[" Cat egori es"]. Col unms[" Cat egoryl D'];
Dat aCol umm child = ds. Tabl es[" Product s"]. Col ums|[" Cat egoryl D'];
For ei gnKeyConstraint fk =

new For ei gnKeyConstrai nt (" FK_Product _Cat egoryl D',
f k. Updat eRul e = Rul e. Cascade;
fk.DeleteRule = Rule.SetNull;
ds. Tabl es[" Products"]. Constraints. Add(fk);

parent, child);

543

Chapter 9

This constraint appliesto the link between Cat egori es. Cat egor yl Dand Pr oduct s. Cat egoryl D.
There are four different constructors for For ei gnKeyConst r ai nt , but again | would suggest using those
that permit you to name the constraint.

Setting Update and Delete Constaints

In addition to defining the fact that there is some type of constraint between parent and child tables, you can
define what should happen when a column in the constraint is updated.

The above exampl e sets the update rule and the delete rule. These rules are used when an action occursto a
column (or row) within the parent table, and the rule is used to decide what should happen to row(s) within the
child table that could be affected. There are four different rules that can be applied through the Rul e
enumeration:

0 Cascade —If the parent key was updated then copy the new key value to all child records. If the
parent record was del eted, delete the child records also. Thisis the default option.
None — No action whatsoever. This option will leave orphaned rows within the child data table.

Set Def aul t — Each child record affected has the foreign key column(s) set to their default value,
if one has been defined.

O Set Null —All child rows have the key column(s) set to DBNul | . (Following on from the naming
convention that Microsoft uses, this should really be Set DBNul |).

Constraintsare only enforced within a Dat aSet if the Enf or ceConstrai nts
property of the Dat aSet ist rue.

| have covered the main classes that make up the constituent parts of the Dat aSet , and shown how to

manual ly generate each of these classesin code. There is another way to define a Dat aTabl e, Dat aRow,
Dat aCol umm, Dat aRel ati on, and Const r ai nt — by using the XML schema file(s) and the XSD tool that
ships with .NET. The following section describes how to set up a simple schema and generate type-safe
classes to access your data.

XML Schemas

XML isfirmly entrenched into ADO.NET —indeed, the remoting format for passing data between objectsis
now XML. With the .NET runtime, it is now possible to describe a Dat aTabl e within an XML schema
definition file (XSD). What's more, you can define an entire Dat aSet , with a number of Dat aTabl es, aset
of relationships between these tables, and include various other details to fully describe the data.

When you have defined an XSD file, thereisanew tool in the runtime that will convert this schemato the
corresponding data access class(es), such as the type-safe product Dat aTabl e class shown above. In this
section we'll start with asimple XSD file that describes the same information as the Pr oduct s sample
previously shown, and then extend thisto include some extra functionality. This fileis Pr oduct s. xsd,
found inthe 10_XSD Dat aSet folder:

544

Data Access with .NET

<?xm version="1.0"

<xs:schema

i d="Products"
t ar get Nanmespace="http://tenpuri.org/ XM_.Schemal. xsd"
el enment For nDef aul t =" qual i fi ed"

xm ns="http://tenpuri.org/ XM.Schemal. xsd"

xm ns: netns="http://tenpuri.org/ XM.Schemal. xsd"

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

xm ns: nedat a="ur n: schemas- m crosoft-com xnl - nedat a" >

<xs: el enent
<xs: conpl exType>

<XS:sequence>

<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
<XS:
</ xs: sequence>

el ement
el enment
el enment
el enment
el enment
el enment
el enment
el ement
el ement
el enment

encodi

name="
name="
name="
name="
name="
name="
name="
name="
name="
name="

</ xs: conpl exType>
</ xs: el ement >

</ xs: schema>

We'll take a closer ook at some of the options within this file in Chapter 11; for now, this file basically

ng="utf-8" ?>

nanme="Pr oduct " >

Product | D' type="xs:int" />

Pr oduct Nane" type="xs:string" />

Supplierl D' type="xs:int" m nCccurs="0" />

Cat egoryl D' type="xs:int" m nCccurs="0" />
QuantityPerUnit" type="xs:string" m nCccurs="0" />
UnitPrice" type="xs:deciml" mnCccurs="0" />

Uni t sl nSt ock" type="xs:short" m nCccurs="0" />

Uni tsOnOrder" type="xs:short" m nCccurs="0" />
Reor der Level * type="xs:short" m nCccurs="0" />

Di sconti nued" type="xs:bool ean" />

defines a schema with the i d attribute set to Pr oduct s. A complex type called Pr oduct is defined, which
contains a number of elements, one for each of the fields within the Pr oduct s table.

These items map onto data classes as follows. The Pr oduct s schema maps to a class derived from Dat aSet .
The Product complex type maps to a class derived from Dat aTabl e. Each sub-element mapsto a class

derived from Dat aCol umm. The collection of all columns maps onto a class derived from Dat aRow.

Thankfully there is atool within the .NET Framework that will produce al of the code for these classes given
only the input XSD file. Because its sole job in lifeis to perform various functions on XSD files, the tool itself

is called XSD. EXE.

Generating Code with XSD

Assuming you save the above file as Pr oduct . xsd, you would convert the file into code by issuing the
following command in a command prompt:

xsd Product.

xsd /d

This creates the file Pr oduct . cs.

545

http://tempuri.org/XMLSchema1.xsd
http://tempuri.org/XMLSchema1.xsd
http://tempuri.org/XMLSchema1.xsd
http://www.w3.org/2001/XMLSchema

Chapter 9

There are various switches that can be used with XSD to alter the output generated. Some of the more
commonly used are shown in the table below.

Switch Description

/ dat aset (/d) Generate classes derived from Dat aSet , Dat aTabl e, and
Dat aRow.

/'l anguage: <l anguage> Permits you to choose which language the output file will be
written in. C#isthe default, but you can choose VB for a Visual
Basic .NET file.

/ namespace: <namespace> Define the namespace that the generated code should reside within.
The default is no namespace.

An abridged version of the output from XSD for the Pr oduct s schemais shown below. I've removed some of
the less necessary code to concentrate on the most important aspects, and done some reformatting so that it
will fit within the confines of a couple of pages. To see the complete output, run XSD. EXE on the Pr oduct s
schema (or one of your own making) and take alook at the . cs file generated. The example includes the
entire sourcecode plusthe Pr oduct . xsd file, and can be found in the 10_XSD_Dat aSet directory:

546

<aut ogener at ed>
This code was generated by a tool.
Runtime Version: 1.0.3512.0

Changes to this file may cause incorrect behavior and will be lost if
the code i s regenerated.
</ aut ogener at ed>

/'l This source code was auto-generated by xsd, Version=1.0.3512.0.

usi ng System

usi ng System Dat a;

usi ng System Xni ;

usi ng System Runti ne. Seri alization;

[Serializable()]

[Syst em Conponent Model . Desi gner Cat egor yAttri bute("code")]
[Syst em Di agnosti cs. Debugger St epThr ough()]

[Syst em Conponent Model . Tool box!|tenm(true)]

public class Products : DataSet

private ProductDataTabl e tabl eProduct;
public Products()
publ i c Product Dat aTabl e Product
public override DataSet Cl one()
publ i c del egate void Product RowChangeEvent Handl er (obj ect sender,
Pr oduct RowChangeEvent e);

[Syst em Di agnosti cs. Debugger St epThr ough()]
public class ProductDataTabl e : DataTabl e, System Collections.|Enunerable

[System Di agnosti cs. Debugger St epThrough()]
public class Product Row : Data

Data Access with .NET

| have taken some liberties with this sourcecode, as | have split it into three sections and removed any
protected and private members so that we can concentrate on the public interface. The embol dened

Pr oduct Dat aTabl e and Pr oduct Row definitions show the positions of two nested classes, which we're
going to implement next. Wel'll look at the code for these after a brief explanation of the Dat aSet derived
class.

The Product s() constructor calls a private method, | ni t d ass() , which constructs an instance of the
Dat aTabl e class derived class Pr oduct Dat aTabl e, and adds the table to the Tabl es collection of the
Dat aSet . The Pr oduct s datatable can be accessed by the following code:

Dat aSet ds = new Products();
Dat aTabl e products = ds. Tabl es[" Products"];

Or, more simply by using the property Pr oduct , available on the derived Dat aSet object:
Dat aTabl e products = ds. Product;

Asthe Pr oduct property is strongly typed, you could naturally use Pr oduct Dat aTabl e rather than the
Dat aTabl e reference | showed above.

The Pr oduct Dat aTabl e class includes far more code:

[Syst em Di agnosti cs. Debugger St epThr ough()]
public class ProductDataTable : DataTable, System Coll ections.|Enunerable

private DataCol uim col utmPr oduct | D,
private DataCol um col unmPr oduct Nane;
private DataCol utm col umSuppl i erl D;
private DataCol unm col utmcCat egoryl D;
private DataCol umm col utmQuantityPer Unit;
private DataCol utmm col umuUni t Pri ce;
private DataCol umm col utmUni t sl nSt ock;
private DataCol um col utmUni t sOnOr der
private DataCol utmm col utmReor der Level ;
private DataCol um col unmbi sconti nued;

i nternal ProductDataTabl e() : base("Product")

this.InitC ass();

The Pr oduct Dat aTabl e class, derived from Dat aTabl e and implementing the | Enurrer abl e interface,
defines a private Dat aCol um instance for each of the columns within the table. These areinitialized again
from the constructor by calling the private I ni t A ass() member. Each column is given an internal
accessor, which the Dat aRow class described |ater uses.

Syst em Conponent Mbdel . Browsabl e(f al se)]
ublic int Count

[
p
: get { return this.Rows. Count; }
i}nt ernal DataCol uim Product | DCol umm
i get { return this.columProduct!D; }
/

/ Other row accessors renoved for clarity — there is one for each of the colums

547

Chapter 9

Adding rows to the table is taken care of by the two overloaded (and significantly different, except
unfortunately by name) AddPr oduct Row() methods. The first takes an already constructed Dat aRow and
returns avoid. The latter takes a set of values, one for each of the columns in the Dat aTabl e, constructs a
new row, sets the values within this new row, adds the row to the Dat aTabl e and returns the row to the
caler. Such widely different functions shouldn't really have the same name, in my opinion.

public void AddProduct Row(Product Row r ow)
t his. Rows. Add(row);

publ i ¢ Product Row AddProduct Row (string ProductNane , int SupplierlD,
int CategorylD, string QuantityPerUnit ,
System Deci mal UnitPrice , short UnitslnStock ,
short UnitsOnOrder , short ReorderlLevel ,
bool Di scontinued)

Pr oduct Row r owPr oduct Row = ((Product Row) (t hi s. NewRow()));
rowPr oduct Row. | temArray = new obj ect[]
{

nul |,
Pr oduct Nane,
Supplierl D,
Cat egoryl D,
QuantityPerUnit,
UnitPrice,
Uni t sl nSt ock,
Uni t sOnOr der
Reor der Level ,
) Di sconti nued
t hi s. Rows. Add(r owPr oduct Row) ;
return rowProduct Row;

}

Just likethe I ni t d ass() member inthe Dat aSet derived class, which added the table into the Dat aSet ,
thel ni t A ass() member in Pr oduct Dat aTabl e addsin columns to the Dat aTabl e. Each column's
properties are set as appropriate, and the column is then appended to the columns collection.

private void Initd ass()

t hi s. col umProduct!| D = new Dat aCol um ("Productl| D',

typeof (int),

nul |,

Syst em Dat a. Mappi ngType. El enent) ;
/hi Col ums. Add(t hi s. col umProduct|D);

this.
// Oher colums renoved for clarity

this. col umProduct | D. Aut ol ncrenent = true;
this.col umProduct | D. Al |l owDBNul | = fal se;

t hi s. col umProduct | D. ReadOnly = true;

t hi s. col umProduct Nane. Al | owDBNul | = fal se;
this.col umbDi sconti nued. Al | owDBNul | = fal se;

}
publ i c Product Row NewPr oduct Row()

return ((Product Row) (this. NewRow()));

548

Data Access with .NET

Thelast method | want to discuss, NewRowFr onBui | der (), iscaled internally from the Dat aTabl e's
NewRow() method. Here it creates a new strongly typed row. The Dat aRowBui | der instanceis created by
the Dat aTabl e, and its members are only accessible within the Syst em Dat a assembly.

protected override Dat aRow NewRowkr onBui | der (Dat aRowBui | der bui | der)
{

}

return new Product Row(bui |l der);

Thelast classto discussisthe Pr oduct Row class, derived from Dat aRow. This class is used to provide type-
safe accessto all fields in the datatable. It wraps the storage for a particular row, and provides members to
read (and write) each of the fields in the table.

In addition, for each nullable field, there are functions to set the field to nul | , and check if the fieldisnul | .
The exampl e bel ow shows the functions for the Suppl i er | D column:

[Syst em Di agnosti cs. Debugger St epThr ough()]
public class Product Row : Dat aRow

{
private ProductDataTabl e tabl eProduct;
i nt ernal Product Row(Dat aRowBui | der rb) : base(rb)

t hi s.tabl eProduct = ((ProductDataTabl e)(this. Table));
}

public int ProductlD
{

get { return ((int)(this[this.tableProduct.Product!DColum])); }
set { this[this.tabl eProduct.ProductlDCol um] = val ue; }
/1 Oher colum accessors/nutators renoved for clarity

public bool |sSupplierlDNull()
{

}
public void Set SupplierlDNull ()

return this.IsNull (this.tableProduct. Supplierl DCol um);

this[this.tabl eProduct. SupplierlDCol um] = System Convert.DBNull;
}
}

Now that the sourcecode for these data access classes has been generated by XSD. EXE, we can incorporate the
classesinto code. The following code utilizes these classes to retrieve data from the Pr oduct s table and
display that datato the console:

usi ng System

usi ng System Dat a;

using System Data. Sql Cient;
public class XSD_Dat aSet

public static void Min()

549

Chapter 9

{
string source = "server=(local)\\NetSDK;" +
"ui d=@SUser ; pwd=QSPasswor d; " +
" dat abase=nort hwi nd";
string select = "SELECT * FROM Products";
Sql Connection conn = new Sql Connecti on(source);
Sql Dat aAdapt er da = new Sql Dat aAdapt er (sel ect , conn);
Products ds = new Products();
da.Fill(ds , "Product");
f oreach(Products. Product Row row i n ds. Product)
Consol e. WiteLine("'{0}' from {1}" ,
row. ProductI D ,
r ow. Product Nane) ;
}

}

The main areas of interest are highlighted. The output of the XSD file contains a class derived from Dat aSet ,
Product s, which is created and then filled by the use of the data adapter. The f or each statement utilizes
the strongly-typed Pr oduct Rowand also the Pr oduct property, which returns the Pr oduct datatable.

To compile this exampl e, issue the foll owing commands:

xsd product.xsd /d
and
csc /recurse:*.cs

The first generates the Pr oduct s. cs file from the Pr oduct s. XSD schema, and then the csc command
utilizesthe/ recur se: *. cs parameter to go through all files with the extension . ¢cs and add theseto the
resulting assembly.

Populating a DataSet

Once you have fully defined the schema of your data set, replete with Dat aTabl es, Dat aCol umms,
Const r ai nt s, and whatever else was necessary, you need to be able to populate the Dat aSet with some
information. There are two main ways to read data from an external source and insert it into the Dat aSet :

0 Useadataadapter
0 Read XML into the Dat aSet

Populating a DataSet Using a DataAdapter

The section on data rows briefly introduced the Sgl Dat aAdapt er class, as shown in the following code:

string select = "SELECT Contact Nane, ConpanyNane FROM Cust oners";
Sql Connection conn = new Sql Connecti on(source);

Sql Dat aAdapt er da = new Sql Dat aAdapt er (sel ect , conn);

Dat aSet ds = new Dat aSet () ;

da.Fill(ds , "Custoners");

550

Data Access with .NET

The two highlighted lines show the Sgl Dat aAdapt er inuse —the O eDbDat aAdapt er isagain virtualy
identical in functionality to the Sql equivalent.

The Sql Dat aAdapt er and A eDbDat aAdapt er are two of the classes that are derived from a common
base class rather than a set of interfaces, as are most of the other Sql G i ent - or A eDb- specific classes.
The inheritance hierarchy is shown below:

Syst em Dat a. Conmon. Dat aAdapt er
Syst em Dat a. Conmon. DbDat aAdapt er
Syst em Dat a. O eDb. O eDbDat aAdapt er
System Dat a. Sql Cl i ent. Sql Dat aAdapt er

In order to retrieve datainto a Dat aSet , it is necessary to have some form of command that is executed to
select that data. The command in question could be a SQL SELECT statement, a call to a stored procedure, or
for the OLE DB provider, a Tabl eDi r ect command. The example above utilizes one of the constructors
available on Sgl Dat aAdapt er that converts the passed SQL SELECT statement into a Sql Command, and
issuesthiswhentheFi | | () method is called on the adapter.

Going back to the example on stored procedures earlier in the chapter, | defined stored procedures to | NSERT,
UPDATE, and DELETE, but didn't present a procedure to SELECT data. We'll fill that gap in this next section,
and show how you can call astored procedure from an Sql Dat aAdapt er to populate datain a Dat aSet .

Using a Stored Procedure in a DataAdapter

First off we need to define a stored procedure and install it into the database. The code for this exampleis
availableinthe 11_Dat aAdapt er directory. The stored procedure to SELECT datais as foll ows:

CREATE PROCEDURE Regi onSel ect AS
SET NOCOUNT OFF
SELECT * FROM Regi on

&0

Again thisexampleis fairly trivial, and not really worthy of a stored procedure, as a direct SQL statement
would normally suffice. This stored procedure can be typed directly into the SQL Server Query Analyzer, or
you can run the St or edPr oc. sql filethat is provided for use by this example.

Next, we need to define a Sql Conmrand that will execute this stored procedure. Again the code is very simple,
and most of it was aready presented in the earlier section on issuing commands:

private static Sgl Command Gener at eSel ect Command(Sql Connecti on conn)

{
Sqgl Command aConmmand = new Sql Command(" Regi onSel ect” , conn);
aCommand. ConmandType = CommandType. St or edPr ocedur €;
aConmand. Updat edRowSour ce = Updat eRowSour ce. None;
return aCommand;
}

551

Chapter 9

This method generates the Sql Commaind that will call the Regi onSel ect procedure when executed. All that
remainsis to hook this command up to a Sql Dat aAdapt er, and call theFi I | () method:

Dat aSet ds = new Dat aSet ();

/'l Create a data adapter to fill the DataSet

Sqgl Dat aAdapt er da = new Sql Dat aAdapt er () ;

/1l Set the data adapter's select conmand

da. Sel ect Conmand = Cener at eSel ect Command (conn);
da.Fill(ds , "Region");

Here | create anew Sql Dat aAdapt er, assign the generated Sql Command to the Sel ect Comrand property
of the data adapter, and then call Fi | | (), which will execute the stored procedure and insert all rows returned
into the Regi on Dat aTabl e (which in thisinstance is generated by the runtime).

There's more to a data adapter than just sel ecting data by issuing a command. In the Persisting DataSet
Changes section | will explore the rest of the facilities of the data adapter.

Populating a DataSet from XML

In addition to generating the schema for a given Dat aSet and associated tables and so on, a Dat aSet can
read and write data in native XML, such as afile on disk, a stream, or atext reader.

Toload XML into a Dat aSet , simply call one of the ReadXM.() methods, such as that shown below, which
will read data from a disk file:

Dat aSet ds = new Dat aSet () ;
ds. ReadXm (".\\ MyData. xm ") ;

The ReadXm () method attempts to load any inline schema information from the input XML, and if found, uses
this schemain the validation of any data loaded from that file. If no inline schemais found then the Dat aSet
will extend itsinternal structure as datais loaded. Thisissimilar to the behavior of Fi I | () inthe previous
example, which retrieves the data and constructs a Dat aTabl e based on the data sel ected.

Persisting DataSet Changes

After editing data within a Dat aSet , it is probably necessary to persist these changes. The most common
example would be selecting data from a database, displaying it to the user, and returning those updates back to
the database.

In aless "connected" application, changes might be persisted to an XML file, transported to a middle-tier
application server, and then processed to update several data sources.

A Dat aSet can be used for either of these examples, and what's moreit's really easy to do.

552

Data Access with .NET

Updating with Data Adapters

In addition to the Sel ect Command that an Sql Dat aAdapt er most likely includes, you can also define an
I nsert Command, Updat eComand, and Del et eComand. As these names imply, these objects are
instances of Sql Conmrand (or O eDbConmand for the O eDbDat aAdapt er), so any of these commands
could be straight SQL or a stored procedure.

With thislevel of flexibility, you are free to tune the application by judicious use of stored procedures for
frequently used commands (say SELECT and | NSERT), and use straight SQL for less commonly used
commands such as DELETE.

For the example in this section | have resurrected the stored procedure code from the Calling Sored
Procedures section for inserting, updating, and deleting Regi on records, coupled these with the

Regi onSel ect procedure written above, and produced an example utilizes each of these commands to
retrieve and update data in a Dat aSet . The main body of code is shown below; the full sourcecode is
availableinthe 12_Dat aAdapt er 2 directory.

Inserting a New Row

There are two ways to add a new row to a Dat aTabl e. The first way isto call the NewRow() method, which
returns a blank row that you then populate and add to the Rows collection, as follows:

Dat aRow r = ds. Tabl es[" Regi on"]. NewRow() ;
r[" Regi onl D'] =999;

r[" Regi onDescription"]="North West";

ds. Tabl es[" Regi on"] . Rows. Add(r);

The second way to add a new row would be to pass an array of data to the Rows. Add() method as shown in
the following code:

Dat aRow r = ds. Tabl es[" Regi on"] . Rows. Add
(new object [] { 999 , "North West" });

Each new row within the Dat aTabl e will have its RowSt at e set to Added. The example dumps out the
records before each change is made to the database, so after adding the following row (either way) to the

Dat aTabl e, the rows will look something like the following. Note that the right-hand column shows the row
state.

New row pending inserting into database

1 Eastern Unchanged
2 Western Unchanged
3 Nor t hern Unchanged
4 Sout hern Unchanged
999 North West Added

To update the database from the Dat aAdapt er, call one of the Updat e() methods as shown bel ow:

da. Update(ds , "Region");

553

Chapter 9

For the new row within the Dat aTabl e, this will execute the stored procedure (in thisinstance
Regi onl nsert), and subsequently | dump the records in the Dat aTabl e again.

New r ow updat ed and new Regi onl D assi gned by dat abase

1 Eastern Unchanged
2 West ern Unchanged
3 Nor t hern Unchanged
4 Sout hern Unchanged
5 North West Unchanged

Look at thelast row inthe Dat aTabl e. | had set the Regi onl Din codeto 999, but after executing the
Regi onl nsert stored procedure the value has been changed to 5. Thisisintentional — the database will
often generate primary keys for you, and the updated datain the Dat aTabl e is due to the fact that the
Sql Conmand definition within our sourcecode has the Updat edRowSour ce property set to

Updat eRowSour ce. Qut put Par anet er s:

Sql Command aConmmand = new Sqgl Conmand(" Regi onl nsert" , conn);

aCommand. ConmandType = CommandType. St or edPr ocedur €;
aCommand. Par anet er s. Add(new Sql Par anet er (" @Regi onDescri pti on"
Sql DbType. NChar
50 ,
"Regi onDescription"));
aCommand. Par anet er s. Add(new Sql Par anet er (" @Regi onl D* ,
Sql DbType. I nt,
0

Par amet er Di r ect i on. Out put ,

fal se ,

0,

0,

"Regi onl D" , /1 Defines the SOURCE col um
Dat aRowVer si on. Defaul t

null));

aCommand. Updat edRowSour ce = Updat eRowSour ce. Qut put Par anet er s;

What this means is that whenever a data adapter issues this command, the output parameters should be mapped
back to the source of the row, which in thisinstance was arow in a Dat aTabl e. The flag states what data
should be updated — the stored procedure has an output parameter that is mapped back into the Dat aRow. The
column it appliestois Regi onl D, asthisis defined within the command definition.

The values for Updat eRowSour ce are as follows:

Updat eRowSour ce Value Description

Bot h A stored procedure may return output parameters and also a complete
database record. Both of these data sources are used to update the source
row.

Fi r st Ret urnedRecord Thisinfersthat the command returns a single record, and that the

contents of that record should be merged into the original source

Dat aRow. Thisis useful where a given table has a number of default (or
computed) columns, as after an | NSERT statement these need to be
synchronized with the Dat aRow on the client. An example might be

'I NSERT (columns) | NTO (table) W TH (primarykey)', then 'SELECT
(columns) FROM(table) WHERE (primarykey)'. The returned record
would then be merged into the original row.

554

Data Access with .NET

Updat eRowSour ce Value Description

None All datareturned from the command is discarded.

Qut put Par anet er s Any output parameters from the command are mapped onto the
appropriate column(s) in the Dat aRow.

Updating an Existing Row
Updating arow that already exists within the Dat aTabl e isjust a case of utilizing the Dat aRow class's
indexer with either a column name or column number, as shown in the following code:

r[" Regi onDescription"]="North Wst Engl and";
r[1] = "North East Engl and";

Both of these statements are equivalent (in this example):

Changed Regionl D 5 description

1 Eastern Unchanged
2 Western Unchanged
3 Nor t hern Unchanged
4 Sout hern Unchanged
5 North West Engl and Modi fi ed

Prior to updating the database, the row updated hasits state set to Modi f i ed as shown above.

Deleting a Row
Deleting arow is a matter of calling the Del et e() method:

r.Delete();

A deleted row hasits row state set to Del et ed, but you cannot read columns from the deleted Dat aRow as
these are no longer valid. When the adaptor's Updat e() method is called, all deleted rows will utilize the
Del et eCommand, which in this instance executes the Regi onDel et e stored procedure.

Writing XML Output

As you have seen already, the Dat aSet has great support for defining its schemain XML, and as you can
read data from an XML document, you can also write datato an XML document.

The Dat aSet . Wi t eXm () method permits you to output various parts of the data stored within the

Dat aSet . You can elect to output just the data, or the data and the schema. The following code shows an
example of both for the Regi on example shown above:

ds. WiteXm (".\\Wthout Schema. xm ") ;
ds. WiteXm (".\\WthSchema. xm " , Xm WiteMde. WiteSchem);

555

Chapter 9

Thefirst file, Wt hout Schenma. xnl isshown below:

<?xm version="1.0" standal one="yes"?>
<NewDat aSet >

<Regi on>

<Regi onl D>1</ Regi onl D>

<Regi onDescri pti on>Eastern </ Regi onDescri pti on>
</ Regi on>
<Regi on>

<Regi onl D>2</ Regi onl D>

<Regi onDescri pti on>West ern </ Regi onDescri pti on>
</ Regi on>
<Regi on>

<Regi onl D>3</ Regi onl D>

<Regi onDescri pti on>Nor t hern </ Regi onDescri ption>
</ Regi on>
<Regi on>

<Regi onl D>4</ Regi onl D>

<Regi onDescri pti on>Sout her n </ Regi onDescri ption>
</ Regi on>

</ NewDat aSet >

The closing tag on Regi onDescri pti on isover to the right of the page as the database column is defined as
NCHAR(50) , which isa 50 character string padded with spaces.

The output produced in the W t hSchema. xm file includes, not surprisingly, the XML schema for the
Dat aSet aswell asthe dataitself:

<?xm version="1.0" standal one="yes"?>
<NewDat aSet >
<xs:schema i d="NewDat aSet" xm ns=""
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: medat a="ur n: schemas- m crosoft-com xm - nsdat a" >
<xs: el enent name="NewDat aSet" nsdat a: | sDat aSet ="true">
<xs: conpl exType>
<xs: choi ce maxCccur s="unbounded" >
<xs: el ement name="Regi on" >
<xs:conpl exType>
<Xs: seguence>
<xs: el enent nanme="Regi onl D"
nsdat a: Aut ol ncr ement ="true"
nsdat a: Aut ol ncr enent Seed="1"
type="xs:int" />
<xs: el enent name="Regi onDescri pti on"
type="xs:string" />
</ xs: sequence>
</ xs: conpl exType>
</ xs: el ement >
</ xs: choi ce>
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>

<Regi on>
<Regi onl D>1</ Regi onl D>
<Regi onDescri pti on>Eastern </ Regi onDescri pti on>

556

http://www.w3.org/2001/XMLSchema

Data Access with .NET

</ Regi on>
<Regi on>

<Regi onl D>2</ Regi onl D>

<Regi onDescri pti on>Western </ Regi onDescri pti on>
</ Regi on>
<Regi on>

<Regi onl D>3</ Regi onl D>

<Regi onDescri pti on>Northern </ Regi onDescri pti on>
</ Regi on>
<Regi on>

<Regi onl D>4</ Regi onl D>

<Regi onDescri pti on>Sout hern </ Regi onDescri pti on>
</ Regi on>

</ NewDat aSet >

Note the use in this file of the nsdat a schema, which defines extra attributes for columns within a Dat aSet ,
such as Aut ol ncr enent and Aut ol ncr ement Seed — these attributes correspond directly with the
properties definable on a Dat aCol unm.

Working with ADO.NET

Thislast section will attempt to address some common scenarios when devel oping data access applications
with ADO.NET.

Tiered Development

Producing an application that interacts with data is often done by splitting the application up into tiers. A
common model isto have an application tier (the front end), a data services tier, and the database itself.

One of the difficulties with this model is deciding what datato transport between tiers, and the format that it
should be transported in. With ADO.NET you'll be pleased to hear that these wrinkles have been ironed out,
and support for this style of architecture has been designed in from the start.

Copying and Merging Data
Ever tried copying an entire OLE DB recordset? In .NET it's easy to copy a Dat aSet :

Dat aSet source = {sone dataset};
Dat aSet dest = source. Copy();

Thiswill create an exact copy of the source Dat aSet — each Dat aTabl e, Dat aCol urm, Dat aRow, and

Rel ati on will be copied across verbatim, and all data will be in exactly the same state as it was in the
source. If all you want to copy isthe schema of the Dat aSet , you can try the following:

Dat aSet source = {sone dataset};
Dat aSet dest = source. Cl one();

Thiswill again copy all tables, relations, and so on. However, each copied Dat aTabl e will be empty. It
really couldn't be more straightforward.

557

Chapter 9

A common requirement when writing atiered system, whether based on Win32 or the web, is to be able to
ship aslittle data as possible between tiers. This reduces the amount of resources consumed.

To cope with this requirement, the Dat aSet has the Get Changes() method. This simple method performs a
huge amount of work, and returns a Dat aSet with only the changed rows from the source dataset. Thisis
ideal for passing between tiers, as only aminimal set of data has to be passed across

the wire.

The following example shows how to generate a "changes' Dat aSet :

Dat aSet source = {sone dataset};
Dat aSet dest = source. Get Changes();

Again, thisistrivial. Under the covers things are a little more interesting. There are two overloads of the
Cet Changes() method. One overload takes a value of the Dat aRowSt at e enumeration, and returns only
rows that correspond to that state (or states). Get Changes() simply calls Get Changes(Del et ed |

Modi fi ed| Added), and first checks to ensure that there are some changes by calling HasChanges() . If
no changes have been made, then anul | is returned to the caller immediately.

The next operation is to clone the current Dat aSet . Once done, the new Dat aSet is set up toignore
constraint violations (Enf or ceConst rai nt s =f al se), and then each changed row for every tableis
copied into the new Dat aSet .

Once you have a Dat aSet that just contains changes, you can then move these off to the data services tier for
processing. Once the data is updated in the database, the "changes" Dat aSet can be returned to the caller (as
there may, for example, be some output parameters from the stored procedures that have updated valuesin the
columns). These changes can then be merged into the original Dat aSet using the Mer ge() method. This
sequence of operationsis depicted bel ow:

Client Tier Data Services Tier
f JHH Changes — [EEEEERERES| Updates —»
gl Y
DataSet D DataSet New Data

Database

Key Generation with SQL Server

The Regi onl nsert stored procedure presented earlier in the chapter was one example of generating a
primary key value on insertion into the database. The method for generating the key was fairly crude and
wouldn't scale well, so for area application you should look at utilizing some other strategy for generating
keys.

Your first instinct might be simply to define an identity column, and return the @@ DENTI TY value from the
stored procedure. The following stored procedure shows how this might be defined for the Cat egor i es table
inthe Nor t hwi nd example database. Type this stored procedure into SQL Query Analyzer, or run the

St oredProcs. sqgl fileinthe13_SQ.Ser ver Keys directory:

558

Data Access with .NET

CREATE PROCEDURE Cat egoryl nsert (@at egor yNanme NVARCHAR(15),
@escri ption NTEXT,
@cat egoryl D | NTEGER OUTPUT) AS
SET NOCOUNT OFF
| NSERT | NTO Cat egori es (CategoryNane, Description)
VALUES(@at egor yNanme, @escri ption)
SELECT @rCat egoryl D = @@ DENTI TY
GO

Thisinserts anew row into the Cat egor y table, and returns the generated primary key to the caller. You can
test the procedure by typing in the following SQL in Query Analyzer:

DECLARE @Cat|D int;
EXECUTE Cat egorylnsert 'Pasties' , 'Heaven Sent Food' , @CatlD OUTPUT;
PRI NT @cat | D

When executed as a batch of commands, this will insert a new row into the Cat egor i es table, and return the
identity of the new record, which is then displayed to the user.

Let's say that some months down the line, someone decides to add in a simple audit trail, which will record all
insertions and modifications made to the category name. Y ou define a table such as that shown below, which
will record the old and new val ue of the category:

Categories Categoryaudit
% | CategoryID > FK_Categury.ﬂudit_f:ategory. 3 CD|L!ITIH Mame | Data Type |Length | Allow fulls «
CateqoryMame % [AuditiD ink 4 [|
Description T CategoryvID ink 4
Picture T |oldiame nvarchar 15 W
: Mewkame nvarchar 15
_ |

The creation script for this table isincluded in the St or edPr ocs. sql file. The Audi t | D column is defined
as an | DENTI TY column. Y ou then construct a couple of database triggers that will record changesto the
Cat egor yNane field:

CREATE TRI GGER Cat egoryl nsert Tri gger
ON Cat egori es
AFTER UPDATE

AS
I NSERT | NTO Cat egor yAudi t (Categoryl D , O dNane , NewNane)
SELECT ol d. Cat egoryl D, ol d. Cat egor yNane, new. Cat egor yNane
FROM Del eted AS ol d,
Cat egori es AS new
WHERE ol d. Cat egoryl D = new. Cat egoryl D;
e}

For those of you used to Oracle stored procedures, SQL Server doesn't exactly have the concept of OLD and
NEWrows, instead for an insert trigger thereisan in memory table caled | nsert ed, and for deletes and
updates the old rows are available within the Del et ed table.

559

Chapter 9

Thistrigger retrieves the Cat egor yl D of the record(s) affected, and stores this together with the old and new
value of the Cat egor yNane column.

Now, when you call your original stored procedure to insert a new Cat egor yl D, you receive an identity
value; however, thisisno longer the identity value from the row inserted into the Cat egor i es table, itis
now the new value generated for the row in the Cat egor yAudi t table. Ouch!

To view the problem first hand, open up a copy of SQL Server Enterprise manager, and view the contents of
the Cat egori es table.

CategoryID |CategoryMame |Description
L1 Beverages Soft drinks, coffees, teas, beers, and ales
12 Condiments Sweet and savory sauces, relishes, spreads, and seasonings
{3 Confections Desserts, candies, and sweet breads
Ik Ciairy Products Cheeses
|5 Grains/Cereals Breads, crackers, pasta, and cereal
& MeatPoulkey Prepared meaks
|7 Produce Cried Fruit and bean curd
|8 Seafood Seaweed and fish
e Pasties Heawven Sent Grub
*

Thislists all the categories | have in my instance of the database.

The next identity value for the Cat egor i es table should be 21, so we'll insert a new row by executing the
code shown below, and see what | Dis returned as follows:

DECLARE @Cat|D int;
EXECUTE Cat egorylnsert 'Pasties' , 'Heaven Sent Food' , @CatlD OUTPUT;
PRI NT @Cat | D,

The output value of thison my PC was 17. If | look into the Cat egor yAudi t table, | find that thisis the
identity of the newly inserted audit record, not that of the category record created.

AuditID | CategoryID [Dldrame [Mewrame
|17 30 MULL = Yegetablas
*

The problem lies in the way that @@ DENTI TY actually works. It returns the LAST identity value created by
your session, so as shown above it isn't completely reliable.

There are two other identity functions that you can utilize instead of @@ DENTI TY, but neither are free from
possible problems. The first, SCOPE_|I DENTI TY(), will return the last identity val ue created within the
current "scope". SQL Server defines scope as a stored procedure, trigger, or function. This may work most of
the time, but if for some reason someone adds another | NSERT statement into the stored procedure, then you
will receive this value rather than the one you expected.

The other, | DENT_CURRENT() will return the last identity value generated for a given table in any scope, so
for instance, if two users were accessing SQL Server at exactly the sametime, it might be possible to receive
the other user's generated identity val ue.

As you might imagine, tracking down a problem of this nature isn't easy. The moral of the story isto beware
when utilizing | DENTI TY columnsin SQL Server.

560

Data Access with .NET

Naming Conventions

Having worked with database applications all my working life, I've picked up a few recommendations for
naming entities, which are worth sharing. | know, thisisn't really .NET related, but the conventions are useful
especially when naming constraints as above. Feel freeto skip this section if you already have your own views
on the subject.

Database Tables

0 Always use singular names — Pr oduct rather than Pr oduct s. Thisoneislargely dueto having to
explain to customers a database schema — it's much better grammatically to say "The Pr oduct
table contains products" than "The Pr oduct s table contains products”. Have alook at the
Nor t hwi nd database as an example of how not to do this.

O Adopt some form of naming convention for the fields that go into atable — oursis <Tabl e>_| Dfor
the primary key of atable (assuming that the primary key is a single column), Narre for the field
considered to be the user-friendly name of the record, and Descri pti on for any textual
information about the record itself. Having a good table convention means you can look at virtually
any table in the database and instinctively know what the fields are used for.

Database Columns
0 Usesingular rather than plural names again.

0 Any columns that link to another table should be named the same as the primary key of that table.
So, alink to the Pr oduct table would be Pr oduct _I D, and to the Sanpl e table Sanpl e_| D.
Thisisn't always possible, especialy if one table has multiple references to another. In that case use
your own judgment.

0 Datefields should have asuffix of _On, asin Modi fi ed_On, Creat ed_On. Then it's easy to read
some SQL output and infer what a column means just by its name.

0 Fieldsthat record the user should be suffixed with _By, asin Modi f i ed_By and Cr eat ed_By.
Again, thisaids legibility.

Constraints

0 If possible, include in the name of the constraint the table and column name, asin
CK _<Tabl e>_<Fi el d>. Examples would be CK_PERSON_SEX for a check constraint on the SEX
column of the PERSON table. A foreign key example would be FK_Pr oduct _Suppl i er _I D, for
the foreign key relationship between product and supplier.

0O Show the type of constraint with a prefix, such as CK for a check constraint and FK for a foreign key
constraint. Feel free to be more specific, asin CK_PERSON_AGE_GTO0 for a constraint on the age
column indicating that the age should be greater than zero.

0 If you haveto trim the length of the constraint, do it on the table name part rather than the column
name. When you get a constraint violation, it's usually easy to infer which table wasin error, but
sometimes not so easy to check which column caused the problem. Oracle has a 30-character limit
on names, which you can easily hit.

561

Chapter 9

Stored Procedures

Just like the obsession many have fallen into over the past few years of putting a'C in front of each and every
class they have declared (you know you have!), many SQL Server devel opers feel compelled to prefix every
stored procedure with 'sp_' or something similar. It's not a good idea.

SQL Server usesthe'sp_' prefix for al (well, most) system stored procedures. So, on the one hand, you risk
confusing your users into thinking that 'sp_w dget 'is something that comes as standard with SQL Server. In
addition, when looking for a stored procedure, SQL Server will treat procedures with the 'sp_" prefix
differently from those without.

If you use this prefix, and do not qualify the database/owner of the stored procedure, then SQL Server will
look in the current scope, then jump into the master database and ook up the stored procedure there. Without
the 'sp_' prefix your users would get an error alittle earlier. What's worse, and also possible to do, isto create
alocal stored procedure (one within your database) that has the same name and parameters as an system stored
procedure. I'd avoid this at all costs —if in doubt, don't prefix.

Above al, when naming entities, whether within the database or within code, be consistent.

Performance

The current set of managed providers available for .NET are somewhat limited — you can choose A eDb or
Sql d i ent; A eDb permits connection to any data source exposed with an OLE DB driver (such as Oracle),
and the Sql Cl i ent provider istailored for Sgl Server.

The Sgl A i ent provider has been written completely in managed code, and uses as few layers as possible to
connect to the database. This provider writes TDS (Tabular Data Stream) packets direct to SQL Server,
which should be substantially faster than the A eDb provider, which naturally has to go through a number of
layers before actually hitting the database.

To test the theory, the following code was run against the same database on the same machine, the only
difference being the use of the Sql C i ent managed provider over the ADO provider:

Sql Connecti on conn = new Sqgl Connecti on(Logi n. Connecti on);

conn. Open();

Sql Command cnd = new Sql Command ("update tenpdata set AvVal ue=1 Were | D=1" ,
conn);

Dat eTi me initial, elapsed ;

initial = DateTine. Now ;

for(int i = 0; i < iterations; i++)

cmd. Execut eNonQuery();
el apsed = Dat eTi ne. Now ;

conn. Cl ose();

562

Data Access with .NET

Naturally the OLE DB version utilizes O eDbCommand rather than Sql Conmand. | created a simple database
table with two columns as shown below, and manually added a single row:

TempData

2o
avalue

The SQL clause used was a simple UPDATE command:

UPDATE TenpData SET Avalue = 1 WHERE I D = 1.

The SQL was kept deliberately simple to attempt to highlight the differences in the providers. The results (in
seconds) achieved for various combinations of iterations were as follows :

Provider 100 1000 10000 50000
A eDb 0.109 0.798 7.95 39.11
Sal 0.078 0.626 6.23 29.27

If you are only targeting SQL Server then the obvious choice isthe Sgl provider. Back in therea world, if
you target anything other than SQL Server you naturally have to use the A eDb provider. Or do you?

As Microsoft has done an excellent job of making database access generic with the Syst em Dat a. Cormon
classes, it would be better to write code against those classes, and use the appropriate managed provider at run
time. It's fairly simpleto swap between A eDb and Sgl now, and if other database vendors write managed
providers for their products, you will be able to swap out ADO for a native provider with little (or no) code
changes. For an example of the versatility of .NET data access, The "Scientific Data Center" case study in
"Data-Centric .NET Programming with C#" (Wrox Press, ISBN 1-861005-92-x) details using C# to query a
MySQL database.

Summary

The subject of data accessis alarge one, especially in .NET as there is an abundance of new materia to cover.
This chapter has provided an outline of the main classesin the ADO.NET namespaces, and shown how to use
the classes when manipulating data from a data source.

Firstly, we explored the use of the Connect i on object, through the use of both the Sql Connecti on (SQL

Server specific) and O eDbConnect i on (for any OLE DB data sources). The programming model for these
two classesis so similar that one can normally be substituted for the other and the code will continue to run.

563

Chapter 9

After illustrating how to connect to and disconnect from the data source, we then discussed how to do it
properly, so that scarce resources, such as database connections, could be closed as early as possible. Both of
the connection classesimplement the | Di sposabl e interface, called when the object is placed within a

usi ng clause. If there's onething I'd like you to take away from this chapter is the importance of closing
database connections as early as possible.

We then discussed database commands, through examples that executed with no returned data, to calling
stored procedures with input and output parameters. Various execute methods were described, including the
Execut eXm Reader method available only on the SQL Server provider. This vastly simplifies the selection
and manipulation of XML-based data.

The generic classes within the Syst em Dat a hamespace were all described in detail, from the Dat aSet
class through Dat aTabl e, Dat aCol unm, Dat aRowand on to relationships and constraints. The Dat aSet
classis an excellent container of data, and various methods make it idea for crosstier data flow. The data
within aDat aSet can be represented in XML for transport, and in addition, methods are availabl e that will
pass a minimal amount of data between tiers. The ability of having many tables of data within asingle

Dat aSet can greatly increase its usability; being able to maintain rel ationships automatically between
master/details rows will be expanded upon in the next chapter.

Having the schema stored within a Dat aSet is onething, but .NET also includes the data adapter that along
with various Conmrand objects can be used to select datainto a Dat aSet and subsequently update data in the
data store. One of the beneficia aspects of adata adapter is that a distinct command can be defined for each of
the four actions — SELECT, | NSERT, UPDATE and DELETE. The system can create a default set of commands
based on database schema information and a SELECT statement, but for the best performance, a set of stored
procedures can be used, with the Dat aAdapt er 's commands defined appropriately to pass only the necessary
information to these stored procedures.

As XML and XSD schemas have become feverishly popular over the past couple of years, we discussed how
to convert an XSD schemainto a set of database classes using the XSD tool XSD. EXE that ships with .NET.
The classes produced are ready to be used within an application, and their automatic generation can save many
hours of laborious typing.

During the last few pages of the chapter we've gone through some best practices and naming conventions for
database development. Although not strictly .NET-related, these were thought to be a worthwhile inclusion. A
set of conventions should always be adhered to when programming, whether in C# against a SQL Server
database or in Perl scripts on Linux.

Armed with this knowledge, we're now in a good position to move on to the next chapter, where we'll explore
the use of Visual Studio and .NET's Windows Forms data controls.

564

Data Access with .NET

565

Chapter 9

566

	Data Access with . NET
	ADO.NET Overview
	Using Database Connections
	Commands
	Quick Data Access: The Data Reader
	Managing Data and Relationships: The DataSet
	XML Schemas
	Populating a DataSet
	Persisting DataSet Changes
	Working with ADO.NET
	Summary

