Programmer to Programmer ™

Professional

C# 2nd Edition

Written and tested for final release of .NET v1.0

Simon Robinson, K. Scott Allen, Ollie Cornes, Jay Clynn, Zach Greenvoss, Burton Harvey,
Christian Nagel, Morgan Skinner, Karli Watson

Wrox technical support at: support@wrox.com
Updates and source code at: www.wrox.com
Peer discussion at: p2p.wrox.com

What you need to use this book

The following list is the recommended operating system requirements for running the C# code in this book:

O Windows 2000 Professional or higher with 11S installed
0 Windows XP Professiona with I1S installed
0 Visua Studio .NET Professiona or higher

The book isintended for experienced devel opers, probably from a VB 6, C++, or Java background. Although
previous experience of C# or .NET programming is useful, it is not required.

Summary of Contents

Introduction 1
Chapter 1: C# and .NET Architecture 11
Chapter 2: C# Basics 37
Chapter 3: Object-Oriented C# 109
Chapter 4: Advanced C# Topics 169
Chapter 5: C# and the Base Classes 259
Chapter 6: Programming in the .NET Environment 337
Chapter 7: Windows Applications 381
Chapter 8: Assemblies 437
Chapter 9: Data Access with .NET 513
Chapter 10: Viewing .NET Data 567
Chapter 11: Manipulating XML 615
Chapter 12: File and Registry Operations 673
Chapter 13: Working with the Active Directory 717
Chapter 14: ASP.NET Pages 753
Chapter 15: Web Services 791
Chapter 16: User Controls and Custom Controls 815
Chapter 17: COM Interoperability 851
Chapter 18: COM+ Services 875
Chapter 19: Graphics with GDI+ 897
Chapter 20: Accessing the Internet 957
Chapter 21: Distributed Applications with .NET Remoting 981
Chapter 22: Windows Services 1035
Chapter 23:.NET Security 1085
Appendix A: Principles of Object-Oriented Programming 1141
Appendix B: C# Compilation Options 1181

Index 1191

Graphics with GDI+

Thisisthe second of the two chapters in this book that cover the elements of interacting directly with the user;
displaying information on the screen and accepting user input. In Chapter 7 we focused on Windows Forms,
where we learned how to display a dialog box or SDI or MDI window, and how to place various controls on it
such as buttons, textboxes, and listboxes. We used these familiar, predefined controls at a high level and relied
on the fact that they are able to take full responsibility for getting themselves drawn on the display device.

Although these standard controls are powerful, and are by themselves quite adequate for the complete user
interface for many applications, there are situations in which you need more flexibility in your user
interface. For example, you may want to draw text in a given font in a precise position in a window, display
images without using a picture box control, or draw simple shapes or other graphics. None of this can be
done with the controls from Chapter 7. To display that kind of output, the application must take direct
responsibility for telling the operating system precisely what needs to be displayed where in its window.

Therefore, in this chapter we're going to show you how to draw a variety of items including:

0 Linesand simple shapes
0 Images from bitmap and other image files
0O Text
In the process, we'll also need to use a variety of helper objectsincluding pens (to define the characteristics of

lines), brushes (to define how areas are filled in), and fonts (to define the shape of the characters of text).
We'll also go into some detail on how devices interpret and display different colors.

Chapter 19

Wel'll start, however, by discussing atechnology called GDI+. GDI+ consists of the set of .NET base classes
that are available to carry out custom drawing on the screen. These classes arrange for the appropriate
instructions to be sent to graphics device drivers to ensure the correct output is placed on the monitor screen
(or printed to a hard copy).

Understanding Drawing Principles

In this section, we'll examine the basic principles that we need to understand in order to start drawing to the
screen. Wel'll start by giving an overview of GDI, the underlying technology on which GDI+ is based, and see
how it and GDI+ are related. Then we'll move on to a couple of simple examples.

GDI and GDI+

In general, one of the strengths of Windows — and indeed of modern operating systemsin general —liesin
their ability to abstract the details of particular devices away from the devel oper. For example, you don't need
to understand anything about your hard drive device driver in order to programmatically read and write files
to disk; you simply call the appropriate methodsin the relevant .NET classes (or in pre-.NET days, the
equivalent Windows API functions). This principle is also very true when it comes to drawing. When the
computer draws anything to the screen, it does so by sending instructions to the video card. However, there are
many hundreds of different video cards on the market, most of which have different instruction sets and
capabilities. If you had to take that into account, and write specific code for each video driver, writing any
such application would be an almost impossible task. This is why the Windows Graphical Device | nterface
(GDI) has always been around since the earliest versions of Windows.

GDI provides alayer of abstraction, hiding the differences between the different video cards. Y ou simply call
the Windows API function to do the specific task, and internally the GDI figures out how to get your
particular video card to do whatever it is you want. Not only this, but if you have several display devices —
monitors and printers, say — GDI achieves the remarkable feat of making your printer look the same as your
screen as far as your application is concerned. If you want to print something instead of displayingit, you
simply inform the system that the output deviceis the printer and then call the same API functionsin exactly
the same way.

As you can see, the DC is a very powerful object and you won't be surprised to learn that under GDI all
drawing had to be done through a device context. The DC was even used for operations that don't involve
drawing to the screen or to any hardware device, such as modifying imagesin memory.

Although GDI exposes arelatively high-level API to developers, it isstill an API that is based on the old
Windows API, with C-style functions. GDI + to alarge extent sits as alayer between GDI and your
application, providing a more intuitive, inheritance-based object model. Although GDI+ is basically a wrapper
around GDI, Microsoft has been able through GDI+ to provide new features and claims to have made some
performance improvements.

The GDI+ part of the .NET base classlibrary is huge, and we will scarcely scratch the surface of its featuresin
this chapter. That's a deliberate decision, because trying to cover more than atiny fraction of the library would
have effectively turned this chapter into a huge reference guide that simply listed classes and methods. It's
more important to understand the fundamental principlesinvolved in drawing, so that you will be in a good
position to explore the classes available yourself. Full lists of all the classes and methods available in GDI+
are of course available in the MSDN documentation.

898

Graphics with GDI+

Developers coming from a VB background, in particular, arelikdy to find the concepts
involved in drawing quite unfamiliar, since VB's focus lies so strongly in controls that handle
their own painting. Those coming from a C++/MFC background are likdy to bein more
comfortable territory since MFC does require developers to take control of more of the
drawing process, using GDI. However, even if you have a good background in GDI, you'll find

a lot of the material is new.

GDI+ Namespaces

Here's an overview of the main namespaces you'll need to look into find the GDI+ base classes:

Namespace

Contains

System Dr awi ng

System Dr awi ng. Dr awi ng2D

System Dr awi ng. | nagi ng

System Drawi ng. Printing

Syst em Dr awi ng. Desi gn

Syst em Dr awi ng. Text

Most of the classes, structs, enums, and del egates concerned
with the basic functionality of drawing

Provides most of the support for advanced 2D and vector
drawing, including antialiasing, geometric transformations, and
graphics paths

Various classes that assist in the manipulation of images
(bitmaps, GIF files, and so on)

Classes to assist when specifically targeting a printer or print
preview window as the "output device"

Some predefined dialog boxes, property sheets, and other user
interface elements concerned with extending the design-time
user interface

Classes to perform more advanced manipul ation of fonts and
font families

Y ou should note that almost all of the classes and structs that we use in this chapter will be taken from the

Syst em Dr awi ng namespace.

Device Contexts and the Graphics Object

In GDI, the way that you identify which device you want your output to go to isthrough an object known as
the device context (DC). The DC stores information about a particular device and is able to trandate calls to
the GDI API functionsinto whatever instructions need to be sent to that device. Y ou can also query the device
context to find out what the capabilities of the corresponding device are (for example, whether a printer prints
in color or only black and white), so you can adjust your output accordingly. If you ask the deviceto do
something it's not capable of, the DC will normally detect this, and take appropriate action (which depending
on the situation might mean throwing an error or modifying the request to get the closest match that the device

isactualy capable of).

However, the DC doesn't only dea with the hardware device. It acts as a bridge to Windows and is able to take
account of any requirements or restrictions placed on the drawing by Windows. For example, if Windows
knows that only a portion of your application's window needs to be redrawn, the DC can trap and nullify
attempts to draw outside that area. Dueto the DC's relationship with Windows, working through the device
context can simplify your code in other ways.

899

Chapter 19

For example, hardware devices need to be told where to draw objects, and they usually want coordinates
relative to the top left corner of the screen (or output device). Usually, however, your application will be
thinking of drawing something at a certain position within the client area (the areareserved for drawing) of its
own window, possibly using its own coordinate system. Since the window might be positioned anywhere on
the screen, and a user might move it at any time, transl ating between the two coordinate systems is potentially
a difficult task. However, the DC always knows where your window is and is able to perform this translation
automatically.

With GDI+, the device context is wrapped up in the .NET base class Syst em Drawi ng. G- aphi ¢cs. Most
drawing is done by calling methods on an instance of Gr aphi cs. In fact, sincethe G- aphi cs classisthe
class that isresponsible for actually handling most drawing operations, very little gets donein GDI+ that
doesn't involve a Gr aphi c¢s instance somewhere, so understanding how to manipulate this object isthe key to
understanding how to draw to display devices with GDI+.

Drawing Shapes

We're going to start off with a short example, Di spl ayAt St ar t up, toillustrate drawing to an application's
main window. The examplesin this chapter are all created in Visua Studio.NET as C# Windows applications.
Recall that for thistype of project the code wizard gives us a class called For niL, derived from

Syst em W ndows. For m which represents the application's main window. Unless otherwise stated, in all
code samples, new or modified code means code that we've added to the wizard-generated code.

In .NET usage, when we ar e talking about applications that display various controls, the
terminology form has largdy replaced window to represent the rectangular object that
occupies an area of the screen on behalf of an application. In this chapter, we've tended to
stick to the term window, since in the context of manually drawing items it's rather more
meaningful. We'll also talk about the Form when we're referring to the .NET class used to
instanti ate the form/window. Finally, we'll use the terms drawing and painting interchangeably
to describe the process of displaying some item on the screen or other display device.

The first example will simply create a form and draw to it in the constructor, when the form starts up. | should
say at the start that thisis not actually the best or the correct way to draw to the screen —wel'll quickly find that
this example has a problem in that it is unable to redraw anything when it needs to after starting up. However
the sample will illustrate quite a few points about drawing without our having to do very much work.

For this sample, we start Visual Studio .NET and create a Windows application. We first set the background
color of the form to white. We've put thislineinthel ni ti al i zeConponent () method so that Visual
Studio .NET recognizesthe line and is able to alter the design view appearance of the form. We could have
used the design view to set the background color, but this would have resulted in pretty much the same line
being added automatically:

private void InitializeConponent()

{
t hi s. conponents = new System Conponent Model . Cont ai ner () ;
this.Size = new System Drawi ng. Si ze(300, 300);
this. Text = "Display At Startup”;

this. BackCol or = Col or. Wi te;

900

Graphics with GDI+

Then we add code to the For mL constructor. We create a G- aphi ¢s object using the Form's
Cr eat eGr aphi cs() method. This G aphi ¢s object contains the Windows DC we need to draw with. The
device context created is associated with the display device, and al so with this window:

public Forml()

{
InitializeConponent();
G aphics dc = this. CreateG aphics();
this. Show() ;
Pen bl uePen = new Pen(Col or. Bl ue, 3);
dc. DrawRect angl e(bl uePen, 0, 0, 50, 50);
Pen redPen = new Pen(Col or. Red, 2);
dc. Drawkl | i pse(redPen, 0, 50, 80, 60);
}

As you can see, we then call the Show() method to display the window. Thisisreally afudgeto force the
window to display immediately, because we can't actually do any drawing until the window has been
displayed — there's nothing to draw onto.

Finally, we display arectangle, at coordinates (0,0), and with width and height 50, and an ellipse with
coordinates (0,50) and with width 80 and height 50. Note that coordinates (X,y) means x pixels to the right and
y pixels down from the top left corner of the client area of the window — and these are the coordinates of the
top left corner of the shape being displayed:

The overloads that we are using of the Dr awRect angl e() and DrawEl | i pse() methods each take five
parameters. The first parameter of each is an instance of the class Syst em Dr awi ng. Pen. A Pen isone of a
number of supporting objects to help with drawing — it contains information about how lines are to be drawn.
Our first pen says that lines should be blue and with a width of 3 pixels, the second says that lines should be
red and have awidth of 2 pixels. The final four parameters are coordinates and size. For the rectangle, they
represent the (x,y) coordinates of the top left hand corner of the rectangle, and its width and height. For the
ellipse these numbers represent the same thing, except that we are talking about a hypothetical rectangle that
the ellipse just fits into, rather than the ellipse itself.

Running this code givesthis result:

ﬂgDraWShapESSample 1ol x|

901

Chapter 19

I know —the book's printed in grayscale. As with al the screenshots in this chapter, you'll just have to take my
word for it that the colors are correct. Or you can always try running the exampl es yoursel f!

This screenshot demonstrates a couple of points. First, you can see clearly what the client area of the window means.
It's the white area— the area that has been affected by our setting the Back Col or property. And notice that the
rectangle nestles up in the corner of this area, as you'd expect when we specified coordinates of (0,0) for it. Second,
notice how the top of the dlipse overlaps the rectangle slightly, which you wouldn't expect from the coordinates we
gave in the code. That results from where Windows places the lines that border the rectangle and dlipse. By defaullt,
Windows will try to center the line on where the border of the shape is— that's not always possible to do exactly,
because the line has to be drawn on pixel's (obviously), but normally the border of each shapetheoretically lies
between two pixels. Theresult isthat linesthat are 1 pixel thick will get drawn just inside thetop and left sides of a
shape, but just outside the bottom and right sides — which means that shapes that strictly speaking are next to each
other will have their borders overlap by one pixe. We've specified wider lines; therefore the overlap is greater. It is
possible to change the default behavior by setting the Pen. Al i gnment property, asdetailed inthe MSDN
documentation, but for our purposes the default behavior is adequate.

Unfortunately, if you actually run the sample you'll notice the form behaves a bit strangely. It's fineif you just
leave it there, and it's fine if you drag it around the screen with the mouse. Try minimizing it then restoring it,
however, and our carefully drawn shapes just vanish! The same thing happensif you drag another window
across the sample. If you drag another window across it so that it only obscures a portion of our shapes, then
drag the other window away again, you'll find the temporarily obscured portion has disappeared and you're left
with half an ellipse or half arectangle!

So what's going on? The problem arises when part of a window gets hidden, because Windows usually
immediately discards all the information concerning exactly what was being displayed there. It has to —
otherwise the memory usage for storing screen data would be astronomical. A typical computer might be
running with the video card set to display 1024 x 768 pixels, perhaps with 24-bit color mode. We'll cover what
24-hit color means later in the chapter, but for now I'll say that implies that each pixel on the screen occupies
3 bytes. That means 2.25MB to display the screen. However, it's not uncommon for a user to sit there working,
with 10 or 20 minimized windows in the taskbar. Let's do a worst-case scenario: 20 windows, each of which
would occupy the whole screen if it wasn't minimized. If Windows actually stored the visual information those
windows contained, ready for when the user restored them, you'd be talking about 45MB! These days, a good
graphics card might have 64MB of memory and be able to cope with that, but it's only a couple of years ago
that 4MB was considered generous in a graphics card — and the excess would need to be stored in the
computer's main memory. A lot of people still have old machines — for example, my backup computer that has
a4 MB graphics card. Clearly it wouldn't be practical for Windows to manage its user interface like that.

The moment any part of awindow gets hidden, the 'hidden' pixels get lost, because Windows frees the
memory that was holding those pixels. It does, however, note that a portion of the window is hidden, and when
it detectsthat it is no longer hidden, it asks the application that owns the window to redraw its contents. There
are a couple of exceptions to thisrule — generally for casesin which a small portion of a window is hidden
very temporarily (a good example is when you select an item from the main menu and that menu item drops
down, temporarily obscuring part of the window below). In general, however, you can expect that if part of
your window gets hidden, your application will need to redraw it later.

That's the source of the problem for our sample application. We placed our drawing code in the For mil

constructor, which is called just once when the application starts up, and you can't call the constructor again to
redraw the shapes when required later on.

902

Graphics with GDI+

In Chapter 7, when we covered controls, we didn't need to know about any of that. This is because the
standard controls are pretty sophisticated and they are able to redraw themsel ves correctly whenever Windows
asks them to. That's one reason why when programming controls you don't need to worry about the actual
drawing process at all. If we are taking responsibility for drawing to the screen in our application then we also
need to make sure our application will respond correctly whenever Windows asksit to redraw all or part of its
window. In the next section, we will modify our sample to do just that.

Painting Shapes Using OnPaint()

If the above explanation has made you worried that drawing your own user interface is going to be terribly
complicated, don't worry. Getting your application to redraw itself when necessary is actually quite easy.

Windows notifies an application that some repainting needs to be done by raising a Pai nt event.
Interestingly, the For mclass has already implemented a handler for this event so you don't need to add one
yourself. The For mlL handler for the Pai nt event will at some point in its processing call up avirtual method,
OnPai nt (), passing toit asingle Pai nt Event Ar gs parameter. This meansthat all we needto dois
override OnPai nt () to perform our painting.

Although we've chosen to work by overriding OnPai nt () , it's equaly possible to achieve the same results by
simply adding our own event handler for the Pai nt event (aFor mL_Pai nt () method, say) —in much the same
way as you would for any other Windows Forms event. This other approach is arguably more convenient, since you
can add anew event handler through the VS .NET properties window, saving yourself from typing some code.
However, our approach, of overriding OnPai nt () , isdightly more flexible in terms of |etting us control when the
call to the base class window processing occurs, and isthe approach recommended in the documentation. We
suggest you use this approach for consistency.

We'll create a new Windows Application called Dr awShapes to do this. As before, we set the background color
to white using the Properties Window. Well aso changethe Form'stext to 'Dr awShapes sanpl e'. Then we add
the following code to the generated code for the For il class:

protected override void OnPaint(PaintEventArgs e)
{

base. OnPai nt (e);

Graphi cs dc = e. Graphi cs;

Pen bl uePen = new Pen(Col or. Bl ue, 3);

dc. Dr awRect angl e(bl uePen, 0, 0, 50, 50);

Pen redPen = new Pen(Col or. Red, 2);

dc. Drawkl | i pse(redPen, 0, 50, 80, 60);

}

Noticethat OnPai nt () isdeclared as pr ot ect ed, becauseit isnormally used internally within the class, so
there's no reason for any other code outside the class to know about its existence.

Pai nt Event Ar gs isaclassthat is derived from the Event Ar gs class normally used to pass in information
about events. Pai nt Event Ar gs has two additional properties, of which the more important isa G aphi cs
instance, already primed and optimized to paint the required portion of the window. This means that you don't
have to call Cr eat eG aphi cs() togetaDC inthe OnPai nt () method — you've aready been provided
with one. We'll ook at the other additional property soon —it contains more detailed information about which
area of the window actually needs repainting.

903

Chapter 19

In our implementation of OnPai nt (), we first get areference to the G aphi ¢s object from

Pai nt Event Ar gs, then we draw our shapes exactly as we did before. At the end we call the base class's
OnPai nt () method. This step isimportant. We've overridden OnPai nt () to do our own painting, but it's
possible that Windows may have some additional work of its own to do in the painting process — any such
work will be dealt within an OnPai nt () method in one of the .NET base classes.

For this example, you'll find that removing the call to base. OnPai nt () doesn't seemto have
any effect, but don't ever be tempted to |eave this call out. You might be stopping Windows
from doing its work properly and the results could be unpredictable.

OnPai nt () will also be called when the application first starts up and our window is displayed for the first
time, so there is no need to duplicate the drawing code in the constructor.

Running this code gives the same resultsinitially as for our previous example — except that now our
application behaves itself properly when you minimizeit or hide parts of the window.

Using the Clipping Region

Our Dr awShapes sample from the last section illustrates the main principlesinvolved with drawing to a
window, although it's not very efficient. The reason is that it attempts to draw everything in the window,
irrespective of how much needsto be drawn. Consider the situation shown in this screenshot. | ran the

Dr awShapes example, but while it was on the screen | opened another window and moved it over the
Dr awShapes form, so it hid part of it.

[® prawshapesSample o] 4

File ©Options VYiew ‘Windows Help

Applications |Processes Performance

Task

Display AL Startup

A% SimpleGraphics - Microsoft Yisual ©
’\‘%Paint Shop Pro - [Image?* [1:1](
B 7043 _21_Frid.doc - Microsaft W
Inbu:ux - Microsoft Cutlaok
@Results - Railtrack Timetable - Micr
’\‘%Paint shop Pro - 7043_21_01.bmp

So far, so good. However, when | move the overlapping window so that the Dr awShapes window is fully
visible again, Windows will as usual send a Pai nt event to the form, asking it to repaint itself. The rectangle
and ellipse both liein the top left corner of the client area, and so were visible al the time; therefore, there's
actually nothing that needs to be done in this case apart from repaint the white background area. However,
Windows doesn't know that, so it thinksit should raise the Pai nt event, resulting in our OnPai nt ()
implementation being called. OnPai nt () will then unnecessarily attempt to redraw the rectangle and ellipse.

904

Graphics with GDI+

Actually, in this case, the shapes will not get repainted. The reason is to do with the device context. Windows
has pre-initialized the device context with information concerning what area actually needed repainting. In the
days of GDI, the region that is marked for repainting used to be known as the invalidated region, but with
GDI+ the terminology has largely changed to clipping region. The device context knows what thisregion is;
therefore, it will intercept any attempts to draw outside this region, and not pass the relevant drawing
commands on to the graphics card. That sounds good, but there's still a potential performance hit here. We
don't know how much processing the device context had to do before it figured out that the drawing was
outside the invalidated region. In some cases it might be quite a lot, since cal culating which pixels need to be
changed to what color can be very processor-intensive (although a good graphics card will provide hardware
accel eration to help with some of this).

The bottom line to thisisthat asking the Gr aphi cs instance to do some drawing outsi de the invalidated
region is almost certainly wasting processor time and slowing your application down. In awell designed
application, your code will actively help the device context out by carrying out a few simple checks, to see if
the proposed drawing work is likely to be actually needed, before it callsthe relevant G aphi cs instance
methods. In this section we're going to code up a new example — Dr awShapesW t hCl i ppi ng — by
modifying the Di spl ayShapes exampleto do just that. In our OnPai nt () code, we'll do asimpletest to
see whether the invalidated region intersects the area we need to draw in, and only call the drawing methods if
it does.

First, we need to obtain the details of the clipping region. Thisiswhere an extra property, d i pRect angl e,
on the Pai nt Event Args comesin. d i pRect angl e contains the coordinates of the region to be repainted,
wrapped up in an instance of astruct, Syst em Dr awi ng. Rect angl e. Rect angl e is quite asimple struct
—it contains four properties of interest: Top, Bott om Lef t , and Ri ght . These respectively contain the
vertical coordinates of the top and bottom of the rectangle, and the horizontal coordinates of the left and right
edges.

Next, we need to decide what test we'll use to determine whether drawing should take place. We'll go for a
simple test here. Notice, that in our drawing, the rectangle and ellipse are both entirely contained within the
rectangle that stretches from point (0,0) to point (80,130) of the client area; actually, point (82,132) to be on
the safe side, since we know that the lines may stray a pixel or so outside this area. So we'll check whether the
top left corner of the clipping region isinside thisrectangle. If it is, we'll go ahead and redraw. If it isn't, we
won't bother.

Hereis the code to do this:

protected override void OnPaint(PaintEventArgs e)

{
base. OnPai nt (e) ;
Graphi cs dc = e. Graphics;
if (e.ClipRectangle.Top < 132 && e.ClipRectangle. Left < 82)
{
Pen bl uePen = new Pen(Col or. Bl ue, 3);
dc. Dr awRect angl e(bl uePen, 0,0, 50, 50);
Pen redPen = new Pen(Col or. Red, 2);
dc. Drawkl | i pse(redPen, 0, 50, 80, 60);
}
}

905

Chapter 19

Note that what gets displayed is exactly the same as before — but performance is improved now by the early
detection of some cases in which nothing needs to be drawn. Notice, also that we've chosen afairly crude test
of whether to proceed with the drawing. A more refined test might be to check separately, whether the
rectangle needs to be drawn, or whether the ellipse needs to be redrawn, or both. However, there's a balance
here. You can make your testsin OnPai nt () more sophisticated, improving performance, but you'll also
make your own OnPai nt () code more complex. It's almost always worth putting some test in, because
you've written the code so you understand far more about what is being drawn than the G aphi cs instance,
which just blindly follows drawing commands.

Measuring Coordinates and Areas

In our last example, we encountered the base struct, Rect angl e, which is used to represent the coordinates of
arectangle. GDI+ actually uses several similar structures to represent coordinates or areas, and we're at a
convenient point in the chapter to go over the main ones. We'll look at the following structs, which are all
defined in the Syst em Dr awi ng namespace:

Struct Main Public Properties

struct Point
] XY
struct PointF

struct Size])
] Wdth, Height
struct SizeF

struct Rectangle) .) . .
Left, Ri ght, Top, Bottom Wdth, Hei ght, X, Y, Location, Size

struct Rectangl eF

Note that many of these objects have a number of other properties, methods, or operator overloads not listed
here. In this section we'll just discuss the most important ones.

Point and PointF

We'll look at Poi nt first. Poi nt is conceptually the simplest of these structs. Mathematically, it's completely
equivalent to a 2D vector. It contains two public integer properties, which represent how far you move
horizontally and vertically from a particular |ocation (perhaps on the screen). In other words, look at this
diagram:

Point A 20 units X

o »
Ll

10 units

Point B

906

Graphics with GDI+

In order to get from point A to point B, you move 20 units across and 10 units down, marked as x and y on the
diagram as thisis how they are commonly referred to. We could create a Poi nt struct that represents that as
follows:

Poi nt ab = new Poi nt (20, 10);
Consol e. WitelLine("Mved {0} across, {1} down", ab.X, ab.Y);

Xand Y are read-write properties, which means you can also set the valuesin a Poi nt likethis:

Point ab = new Point();

ab. X = 20;

ab.Y = 10;

Consol e. WitelLi ne("Mved {0} across, {1} down", ab.X, ab.Y);

Note that although conventionally horizontal and vertical coordinates are referred to as x and y coordinates
(lowercase), the corresponding Poi nt properties are X and Y (uppercase) because the usual convention in C#
isfor public properties to have names that start with an uppercase | etter.

Poi nt Fisessentially identical to Poi nt, except that X and Y are of type f | oat instead of i nt . Poi nt Fis
used when the coordinates are not necessarily integer values. A cast has been defined so that you can
implicitly convert from Poi nt to Poi nt F. (Note that because Poi nt and Poi nt F are structs, this cast
involves actually making a copy of the data). There is no corresponding reverse case — to convert from

Poi nt Fto Poi nt you have to explicitly copy the values across, or use one of three conversion methods,
Round(), Truncate(),andCeiling():

Poi nt F abFl oat = new Poi nt F(20. 5F, 10. 9F);
// converting to Point

Poi nt ab = new Point();

ab. X = (i nt)abFl oat. X;

ab.Y = (int)abFloat.Y;

Poi nt abl = Poi nt. Round(abFl oat);
Poi nt ab2 = Poi nt. Truncat e(abFl oat) ;
Poi nt ab3 = Point. Ceiling(abFl oat);

/1 but conversion back to PointF is inplicit
Poi nt F abFl oat2 = ab;

Y ou may be wondering what a"unit" is measured in. By default, GDI+ will interpret units as pixels along the
screen (or printer, whatever the graphics device is) — so that's how the G- aphi cs object methods will view
any coordinates that they get passed as parameters. For example, the point new Poi nt (20, 10) represents
20 pixels across the screen and 10 pixels down. Usually these pixels will be measured from the top left corner
of the client area of the window, as has been the case in our examples up to now. However, that won't always
be the case — for example, on some occasions you may wish to draw relative to the top left corner of the whole
window (including its border), or even to the top left corner of the screen. In most cases, however, unless the
documentation tells you otherwise, you can assume you're talking pixelsrelative to the top left corner of the
client area.

Well have moreto say on this subject later on, after we've examined scrolling, when we mention the three
different coordinate systems in use, world, page, and device coordinates.

907

Chapter 19

Size and SizeF

Like Poi nt and Poi nt F, sizes come in two varieties. The Si ze struct is for when you are using i nt s;
Si zeF isavailableif you need tousef | oat s. Otherwise Si ze and Si zeF areidentical. We'll focus on the
Si ze struct here.

In many ways the Si ze struct isidentical to the Poi nt struct. It hastwo integer properties that represent a
distance horizontally and a distance vertically — the main differenceisthat instead of X and Y, these properties
are named W dt h and Hei ght . We can represent our earlier diagram by:

Si ze ab = new Si ze(20, 10);
Consol e. WiteLine("Mved {0} across, {1} down", ab. Wdth, ab.Height);

Although strictly speaking, a Si ze mathematically represents exactly the same thing as a Poi nt ;
conceptually it is intended to be used in a dightly different way. A Poi nt is used when we are talking about
where something is, and a Si ze is used when we are talking about how big it is. However, because Si ze and
Poi nt are so closely related, there are even supported explicit conversions between these two:

Poi nt point = new Point (20, 10);
Si ze size = (Size) point;
Poi nt anot her Poi nt = (Point) size;

As an exampl e, think about the rectangle we drew earlier, with top left coordinate (0,0) and size (50,50). The
size of thisrectangleis (50,50) and might be represented by a Si ze instance. The bottom right corner is also
at (50,50), but that would be represented by a Poi nt instance. To see the difference, suppose we drew the
rectangle in adifferent location, so it's top |eft coordinate was at (10,10):

dc. Dr awRect angl e(bl uePen, 10, 10, 50, 50) ;

Now the bottom right corner is at coordinate (60,60), but the size is unchanged — that's still (50,50).

The addition operator has been overloaded for Poi nt sand Si zes, sothat it is possibletoadd aSi ze toa
Poi nt giving another Poi nt :

static void Main(string[] args)
{
Poi nt topLeft = new Poi nt (10, 10);
Si ze rectangl eSi ze = new Si ze(50, 50);
Poi nt bottonRi ght = topLeft + rectangleSi ze;

Consol e. WitelLine("topLeft = " + topLeft);
Consol e. WiteLine("bottonRight =" + bottonRight);
Consol e. WiteLine("Size =" + rectangl eSi ze);

}

This code, running as a simple consol e application, called Poi nt sAndSi zes, produces this output:

908

Graphics with GDI+

ommand Prompt

C=“ProCSharp~GdiPlus *PointsAndSizes
topLeft = {¥=18_Y=18>

hottomRight = {X=68.Y=68}

Size = {Width=58, Height=583}

C=“ProCSharp GdiFlus »_

Notice that this output a so shows how the ToSt ri ng() method has been overridden in both Poi nt and
Si ze todisplay thevauein {X, Y} format.

It is also possible to subtract a Si ze from aPoi nt to giveaPoi nt, and you can add two Si zes together,
giving another Si ze. It is not possible, however, to add a Poi nt to another Poi nt . Microsoft decided that
adding Poi nt s doesn't conceptually make sense, and so chose not to supply any overload to the + operator
that would have allowed that.

Y ou can also explicitly cast a Poi nt toaSi ze and vice versa:

Poi nt toplLeft = new Point (10, 10);
Size s1 = (Size)toplLeft;
Point pl = (Point)sl;

With thiscast s1. W dt h is assigned the value of t opLef t. X, and s1. Hei ght isassigned the value of
topLeft. Y. Hence, sl contains (10,10). p1 will end up storing the same values ast opLeft.

Rectangle and RectangleF

These structures represent arectangular region (usually of the screen). Just as with Poi nt and Si ze, well
only consider the Rect angl e struct here. Rect angl eF is basically identical except that those of its
properties that represent dimensions al usef | oat , whereas those of Rect angl e usei nt .

A Rect angl e can bethought of as composed of a point, representing the top left corner of the rectangle, and
aSi ze, which represents how large it is. One of its constructors actually takesa Poi nt and aSi ze asits
parameters. We can see this by rewriting our earlier code from the Dr awShapes samplethat draws a
rectangle:

Graphics dc = e. G aphi cs;

Pen bl uePen = new Pen(Col or. Bl ue, 3);

Poi nt topLeft = new Point(0,0);

Si ze howBig = new Si ze(50, 50);

Rect angl e rect angl eArea = new Rect angl e(topLeft, howBig);
dc. Dr awRect angl e(bl uePen, rectangl eArea);

This code also uses an alternative override of G aphi ¢s. Dr awRect angl e() , which takesa Pen and a
Rect angl e struct as its parameters.

Y ou can also construct a Rect angl e by supplying the top left horizontal coordinate, top left vertical
coordinate, width, and height separately, and in that order, as individual numbers:

Rect angl e rect angl eArea = new Rectangl e(0, 0, 50, 50)

909

Chapter 19

Rect angl e makes quite a few read-write properties availabl e to set or extract its dimensionsin different
combinations:

Property Description

int Left x-coordinate of |eft-hand edge
int Right x-coordinate of right-hand edge
int Top y-coordinate of top

int Bottom y-coordinate of bottom

int X same as Lef t

int Y same as Top

int Wdth width of rectangle

i nt Hei ght height of rectangle

Poi nt Location top left corner

Size Size size of rectangle

Note that these properties are not all independent — for example setting W dt h will also affect the
value of Ri ght .

Region
Welll mention the existence of the Syst em Dr awi ng. Regi on class here, though we don't have space to go

detailsin this book. Regi on represents an area of the screen that has some complex shape. For example the
shaded area in the diagram could be represented by Regi on:

As you can imagine, the process of initializing a Regi on instance is itself quite complex. Broadly speaking,
you can do it by indicating either what component simple shapes make up the region or what path you take as
you trace round the edge of the region. If you do need to start working with areas like this, then it's worth
looking up the Regi on class.

910

Graphics with GDI+

A Note about Debugging

We're just about ready to do some more advanced drawing now. First,however, | just want to say a few things
about debugging. If you have a go at setting break points in the examples in this chapter you will quickly
notice that debugging drawing routinesisn't quite as simple as debugging other parts of your program. Thisis
because entering and leaving the debugger often causes Pai nt messages to be sent to your application. The
result can be that setting a breakpoint in your OnPai nt () override simply causes your application to keep
painting itself over and over again, soit's unable to do anything else.

A typical scenarioisas follows. You want to find out why your application is displaying something
incorrectly, so you set abreak point in OnPai nt () . As expected, the application hits the break point and the
debugger comes in, at which point your devel oper environment MDI window comes to the foreground. If
you're anything like me, you probably have the devel oper environments set to full screen display so you can
more easily view all the debugging information, which means it always compl etely hides the application you
are debugging.

Moving on, you examine the values of some variables and hopefully find out something useful. Then you hit
F5 to tell the application to continue, so that you can go on to see what happens when the application displays
something else, after it's done some processing. Unfortunately, the first thing that happensisthat the
application comesto the foreground and Windows efficiently detects that the form is visible again and
promptly sendsit aPai nt event. This means, of course, that your break point gets hit again straight away. If
that's what you want fine, but more commonly what you really want is to hit the breakpoint later, when the
application is drawing something more interesting, perhaps after you've selected some menu option to read in
afile or in some other way changed what gets displayed. It looks like you're stuck. Either you don't have a
break point in OnPai nt () at all, or your application can never get beyond the point where it's displaying its
initial startup window.

There are a couple of ways around this problem.

If you have a big screen the easiest way is simply to keep your devel oper environment window tiled rather
than maximized and keep it well away from your application window — so your application never gets hidden
in the first place. Unfortunately, in most cases that is not a practical solution, because that would make your
devel oper environment window too small. An alternative that uses the same principleisto have your
application declare itself as the topmost application while you are debugging. Y ou do this by setting a property
inthe For mclass, TopMost , which you can easily dointhel ni ti al i zeConponent () method:

private void InitializeConponent()

{
this. TopMbst = true;

Y ou can also set this property through the Properties Window in Visua Studio .NET.
Being a TopMbst window means your application can never be hidden by other windows (except other

topmost windows). It always remains above other windows even when another application has the focus. This
is how the Task Manager behaves.

911

Chapter 19

Even with this technique you have to be careful, because you can never quite be certain when Windows might
decide for some reason to raise a Pai nt event. If you really want to trap some problem that occursin

OnPai nt () for some specific circumstance (for example, the application draws something after you select a
certain menu option, and something goes wrong at that point), then the best way to do thisisto place some
dummy code in OnPai nt () that tests some condition, which will only bet r ue in the specified
circumstances — and then place the break point inside the i f block, like this:

protected override void OnPaint(PaintEventArgs e)

{
/1 Condition() evaluates to true when we want to break
if (Condition() == true)

int ii = 0; /] <-- SET BREAKPO NT HERE!!!

Thisis effectively a quick-and-easy way of putting in a conditional break point.

Drawing Scrollable Windows

Our earlier Dr awShapes sample worked very well, because everything we needed to draw fitted into the
initial window size. In this section we're going to look at what we need to do if that's not the case.

We shall expand our Dr awShapes sample to demonstrate scrolling. To make things a bit more realistic, we'll
start by creating an example, Bi gShapes, in which we will make the rectangle and ellipse abit bigger. Also,
while we're at it we'll demonstrate how to use the Poi nt , Si ze, and Rect angl e structs by using them to
assist in defining the drawing areas. With these changes, the relevant part of the For mlL class looks like this:

/1 menmber fields

private Point rectangl eTopLeft = new Point(0, 0);
private Size rectangl eSize = new Si ze(200, 200);
private Point ellipseTopLeft = new Point (50, 200);
private Size ellipseSize = new Size(200, 150);
private Pen bluePen = new Pen(Col or. Bl ue, 3);
private Pen redPen = new Pen(Col or. Red, 2);

protected override void OnPaint(PaintEventArgs e)

{
base. OnPai nt (e) ;
Graphi cs dc = e. Graphics;
if (e.ClipRectangle.Top < 350 || e.CdipRectangle.Left < 250)
{
Rect angl e rectangl eArea =
new Rectangl e (rectangl eTopLeft, rectangleSize);
Rectangle el lipseArea =
new Rectangle (ellipseTopLeft, ellipseSize);
dc. Dr awRect angl e(bl uePen, rectangl eArea);
dc. Drawkl | i pse(redPen, ellipseArea);
}
}

912

Graphics with GDI+

Notice, that we've also turned the Pen, Si ze, and Poi nt objectsinto member fields—thisis more efficient than
creating anew Pen every time we need to draw anything, as we have been doing up to now.

The result of running this example looks like this:

" BigShapes _ ol x|

N

We can see a problem instantly. The shapes don't fit in our 300x300 pixel drawing area.

Normally, if adocument istoo large to display, an application will add scrollbarsto et you scroll the window
and look at a chosen part of it. Thisis another area in which, with the kind of user interface that we were
dealing with in Chapter 7, we'd let the .NET runtime and the base classes handle everything. If your form has
various control s attached to it then the For minstance will normally know where these controls are and it will
therefore know if its window becomes so small that scrollbars become necessary. The For minstance will also
automatically add the scrollbars for you, and not only that, but it's a so able to correctly draw whichever
portion of the screen you've scrolled to. In that case there is nothing you need to explicitly doin your code. In
this chapter, however, we're taking responsibility for drawing to the screen; therefore, we're going to have to
help the For minstance out when it comes to scrolling.

Inthelast paragraph we said "if a document is too large to display". This probably made you
think in terms of something like a Word or Excel document. With drawing applications,
however, it's better to think of the document as whatever data the application is manipulating
that it needs to draw. For our current example, the rectangle and dlipse between them
constitute the document.

Getting the scrollbars added is actually very easy. The For mcan still handle all that for us — the reason it hasn't
inthe above Scr ol | Shapes sampleisthat Windows doesn't know they are needed — because it doesn't know
how big an area we will want to draw in. How big an areaisthat? More accurately, what we need to figure out
isthe size of arectangle that stretches from the top left corner of the document (or equivaently, the top left
corner of the client area before we've done any scrolling), and which isjust big enough to contain the entire
document. In this chapter, we'll refer to this area as the document area. Looking at the diagram of the
‘document’ we can see that for this example the document areais (250, 350) pixels.

913

Chapter 19

<+ 200y >

50 T

150

i (250, 350)

It is easy to tell the form how big the document is. We use the relevant property,
Form Aut oScrol | M nSi ze. Therefore we can add this code to either thel ni ti al i zeConponent ()

method or the For nil constructor:

private void InitializeConponent()

{

t hi s. conponents = new System Conponent Model . Cont ai ner () ;

this.Size = new System Drawi ng. Si ze(300, 300);

this. Text = "Scroll Shapes"”;

this. BackCol or = Col or. Wi te;

this. AutoScrol I M nSize = new Si ze(250, 350);
}

Alternatively the Aut oScr ol | M nSi ze property can be set through the Visual Studio .NET properties

window.

Setting the minimum size at application startup and leaving it thereafter is fine in this particular application,
because we know that is how big the screen area will always be. Our "document™" never changes size whilethis
particular application isrunning. Bear in mind, however, that if your application does things like display
contents of files or something else for which the area of the screen might change, you will need to set this
property at other times (and in that case you'll have to sort out the code manually — the Visua Studio .NET
Properties window can only help you with the initial value that a property has when the form is constructed).

Setting Aut oScr ol | M nSi ze isastart, but it's not yet quite
enough. To seethat, let's ook at what our sample —which in this
version is downloadable as the Scr ol | Shapes sample —looks like
now. Initially we get the screen that correctly displays

the shapes:

rollS =lofx]

914

Graphics with GDI+

Notice that, not only has the form correctly set the scrollbars, but it's even correctly sized them to indicate
what proportion of the document is currently displayed. Y ou can try resizing the window while the sampleis
running — you'll find the scrollbars respond correctly, and even disappear if we make the window big enough
that they are no |onger needed.

However, now look at what happens if we actually use one of the scrollbars and scroll down abit:

my
WY

Clearly something has gone wrong!

In fact, what's gone wrong is that we haven't taken into account the position of the scrollbars in the codein our
OnPai nt () override. We can seethis very clearly if we force the window to completely repaint itself by
minimizing and restoring it. The result looks like this:

B =lofx|
] =l

r

The shapes have been painted, just as before, with the top left corner of the rectangle nestled into the top left
corner of the client area—just as if we hadn't moved the scrollbars at all.

915

Chapter 19

Before we go over how to correct this problem, we'll take a closer look at precisely what is happening in these
screenshots. Doing so is quite instructive, both because it'll help usto understand exactly how the drawing is
done in the presence of scrollbars and because it'll be quite good practice. If you start using GDI+, | promise
you that sooner or later, you'll find yourself presented with a strange drawing like one of those above, and
having to try to figure out what has gone wrong.

We'll look at the last screenshot first since that oneis easy to deal with. The Scr ol | Shapes sample has just
been restored so the entire window has just been repainted. Looking back at our code it instructs the graphics
instance to draw arectangle with top left coordinates (0,0) — relative to the top | eft corner of the client area of
the window — which is what has been drawn. The problem s, that the graphics instance by default interprets
coordinates as rel ative to the client window — it doesn't know anything about the scrollbars. Our code as yet
does not attempt to adjust the coordinates for the scrollbar positions. The same goes for the ellipse.

Now, we can tackle the earlier screenshot, from immediately after we'd scrolled down. We notice that here the
top two-thirds or so of the window look fine. That's because these were drawn when the application first
started up. When you scroll windows, Windows doesn't ask the application to redraw what was already on the
screen. Windows is smart enough to figure out for itself which bits of what's currently being displayed on the
screen can be smoothly moved around to match where the scrollbars now are. That's a much more efficient
process, since it may be able to use some hardware accel eration to do that too. The bit in this screenshot that's
wrong is the bottom third of the window. This part of the window didn't get drawn when the application first
appeared, since before we started scrolling it was outside the client area. This means that Windows asks our
Scr ol | Shapes application to draw this area. It'll raise aPai nt event passing in just this area as the clipping
rectangle. And that's exactly what our OnPai nt () override has done.

One way of looking at the problem is that we are at the moment expressing our coordinates relative to the top
left corner of the start of the 'document’ — we need to convert them to express them rel ative to the top left
corner of the client areainstead. The following diagram should make this clear:

Document

Client Area
A (Screen)

P

To make the diagram clearer we've actually extended the document further downwards and to the right,
beyond the boundaries of the screen, but this doesn't change our reasoning. We've also assumed a small
horizontal scroll aswell as a vertical one.

In the diagram the thin rectangles mark the borders of the screen area and of the entire document. The thick
lines mark the rectangle and ellipse that we are trying to draw. P marks some arbitrary point that we are
drawing, which we're going to take as an example. When calling the drawing methods we've supplied the
graphicsinstance with the vector from point B to (say) point P, expressed as a Poi nt instance. We actually
need to give it the vector from point A to point P.

916

Graphics with GDI+

The problemisthat we don't know what the vector from A to Pis. We know what B to P is—that's just the
coordinates of P relative to the top left corner of the document — the position where we want to draw point Pin
the document. We a so know what the vector from B to A is—that's just the amount we've scrolled by; thisis
stored in a property of the For mclass called Aut oScr ol | Posi ti on. However, we don't know the vector
from A toP.

Now, if you were good at math at school, you might remember what the solution to thisis — you just have to
subtract vectors. Say, for example, to get from B to P you move 150 pixels across and 200 pixels down, while
to get from B to A you have to move 10 pixels across and 57 pixels down. That meansto get from A to P you
have to move 140 (=150 minus 10) pixels across and 143 (=200 minus 57) pixels down. The G- aphi cs class
actually implements a method that will do these calculations for us. It's called Tr ansl at eTr ansf or m() .

Y ou pass it the horizontal and vertical coordinates that say where the top left of the client areais relative to
the top left corner of the document, (our Aut oScr ol | Posi ti on property, that isthe vector fromBto A in
the diagram). Then the G- aphi cs device will from then on work out all its coordinates taking into account
where the client areaisrelative to the document.

After al that explanation, all we need to dois add this lineto our drawing code:

dc. Transl at eTransfornm(thi s. AutoScrol | Position. X, this.AutoScrollPosition.Y);

In fact in our example, it's alittle more complicated because we are also separately testing whether we need to
do any drawing by looking at the clipping region. We need to adjust this test to take the scroll position into
account too. When we've done that, the full drawing code for the sample (downl oadabl e from the Wrox Press
web siteas Scr ol | Shapes) lookslikethis:

protected override void OnPaint(PaintEventArgs e)
{
base. OnPai nt (e) ;
Graphics dc = e. Gaphics;
Size scroll O fset = new Si ze(this.AutoScrol | Position);
if (e.dipRectangle. Toptscrol |l O fset. Wdth < 350 ||
e. i pRectangl e. Left +scrol | O f set. Hei ght < 250)
{
Rect angl e rect angl eArea = new Rectangl e
(rectangl eTopLeft +scrol | O f set, rectangl eSize);
Rectangl e el li pseArea = new Rectangl e
(el l'i pseTopLeft+scroll Offset, ellipseSize);
dc. Dr awRect angl e(bl uePen, rectangl eArea);
dc. DrawEl | i pse(redPen, ellipseArea);

}

Now we have our scroll code working perfectly, we can at last obtain a correctly scrolled screenshot!

917

Chapter 19

=lofx|

World, Page, and Device Coordinates

The distinction between measuring position relative to the top left corner of the document and measuring it
relative to the top left corner of the screen (desktop), is so important that GDI+ has special names for these
coordinate systems:

0 World coordinates are the position of apoint measured in pixels from the top left corner of the
document

0 Page coordinates are the position of apoint measured in pixels from the top left corner of the client
area

Devel opers familiar with GDI will note that world coordinates correspond to what in GDI
were known as logical coordinates. Page coordinates correspond to what used to be known as
device coordinates. Those developers should also note that the way you code up conversion
between logical and device coordinates has changed in GDI+. In GDI, conversions took place
via the device context, using the LPt oDP() and DPt oLP() Windows API functions. In GDI+,
it'sthe Cont r ol class, fromwhich both Formand all the various \WWindows Forms controls derive,
that maintains the information needed to carry out the conversion.

GDI+ also distinguishes athird coordinate system, which is now known as device coor dinates. Device
coordinates are similar to page coordinates, except that we do not use pixels as the unit of measurement —
instead we use some other unit that can be specified by the user by calling the G aphi cs. PageUni t
property. Possible units, besides the default of pixels, include inches and millimeters. Although we won't use
the PageUni t property in this chapter, it can be useful as away of getting around the different pixel densities
of devices. For example, 100 pixels on most monitors will occupy something like an inch. However, |aser
printers can have anything up to thousands of dpi (dots per inch) —which means that a shape specified to be
100 pixels wide will look alot smaller when printed on it. By setting the units to, say, inches — and specifying
that the shape should be 1 inch wide, you can ensure that the shape will 1ook the same size on the different
devices.

918

Graphics with GDI+

Colors
In this section, were going to look at the ways that you can specify what color you want something to be drawn in.

Colorsin GDI+ are represented by instances of the Syst em Dr awi ng. Col or struct. Generally, once you've
instantiated this struct, you won't do much with the corresponding Col or instance — just passit to whatever
other method you are calling that requires a Col or . We've encountered this struct before — when we set the
background color of the client area of the window in each of our samples, as well as when we set the col ors of
the various shapes we were displaying. The For m BackCol or property actually returnsa Col or instance. In
this section, we'll look at this struct in more detail. In particular, we'll examine severa different ways that you
can construct a Col or .

Red-Green-Blue (RGB) Values

The total number of colorsthat can be displayed by a monitor is huge — over 16 million. To be exact the
number is 2 to the power 24, which works out at 16,777,216. Obviously we need some way of indexing those
colors so we can indicate which of these is the color we want to display at a given pixel.

The most common way of indexing colorsis by dividing them into the red, green, and blue components. This
ideais based on the principle that any color that the human eye can distinguish can be constructed from a
certain amount of red light, a certain amount of the green light, and a certain amount of blue light. These
colors are known as components. In practice, it's found that if we divide the amount of each component light
into 256 possible intensities, then that gives a sufficiently fine gradation to be able to display images that are
perceived by the human eye to be of photographic quality. We therefore specify colors by giving the amounts
of these components on a scale of 0 to 255 where 0 means that the component is not present and 255 means
that it is at its maximum intensity.

We can now see where are quoted figure of 16,777,216 colors comes from, since that nunber isjust 256
cubed.

This gives us our first way of telling GDI+ about a color. You can indicate a color's red, green, and blue
values by calling the static function Col or . Fr omAr gh() . Microsoft has chosen not to supply a constructor
to do thistask. The reason isthat there are other ways, besides the usual RGB components, to indicate a col or.
Because of this, Microsoft felt that the meaning of parameters passed to any constructor they defined would be
open to misinterpretation:

Col or redCol or = Col or. FromAr gb(255, 0, 0);

Col or funnyOrangyBrownCol or = Col or. Fr omAr gb(255, 155, 100) ;
Col or bl ackCol or = Col or. FromArgh(0, 0, 0);

Col or whi teCol or = Col or. Fr omAr gh(255, 255, 255) ;

The three parameters are respectively the quantities of red, green, and blue. There are a number of other
overloads to this function, some of which also allow you to specify something called an alpha-blend (that's the
Ain the name of the method, Fr onAr gb()). Alpha blending is beyond the scope of this chapter, but it allows
you to paint a color semi-transparently by combining it with whatever color was already on the screen. This
can give some beautiful effects and is often used in games.

919

Chapter 19

The Named Colors

Constructing aCol or using Fr omAr gb() isthe most flexible technique, sinceit literally means you can specify
any color that the human eye can see. However, if you want asimple, standard, well-known color such asred or
blue, it'salot easer to just be able to name the color you want. Hence Microsoft has aso provided alarge number of
static propertiesin Col or , each of which returnsa named color. It is one of these properties that we used when we
set the background color of our windows to whitein our samples:

this. BackCol or = Col or. Wi te;

/'l has the sane effect as:
/'l this.BackCol or = Col or. FromArgh(255, 255 , 255);

There are severa hundred such colors. The full list is given in the MSDN documentation. They include all the
simple colors: Red, Wi t e, Bl ue, G een, Bl ack, and so on, as well as such delights as

Medi umAquanar i ne, Li ght Cor al , and Dar kOr chi d. Thereis also a KnownCol or enumeration, which
lists the named colors.

Incidentally, although it might ook that way, these named colors have not been chosen at
random. Each one represents a precise set of RGB values, and they were originally chosen
many years ago for use on the Internet. Theidea was to provide a useful set of colorsright
across the spectrum whose hames would be recognized by web browsers — thus saving you
from having to write explicit RGB valuesin your HTML code. A few years ago these colors
were also important because early browsers couldn't necessarily display very many colors
accurately, and the named col ors were supposed to provide a set of colors that would be
displayed correctly by most browsers. These days that aspect is less important since modern
web browsers are quite capable of displaying any RGB value correctly.

Graphics Display Modes and the Safety Palette

Although we've said that in principle monitors can display any of the over 16 million RGB colors, in practice
this depends on how you've set the display properties on your computer. In Windows, there are traditionally
three main color options (although some machines may provide other options depending on the hardware):
true color (24-bit), high color (16-hit), and 256 colors. (On some graphics cards these days, true color is
actually marked as 32-bit for reasons to do with optimizing the hardware, though in that case only 24 bits of
the 32 bits are used for the color itself.)

Only true-color mode allows you to display all of the RGB col ors simultaneously. This sounds the best option,
but it comes at a cost: 3 bytes are needed to hold a full RGB val ue which means 3 bytes of graphics card
memory are needed to hold each pixel that is displayed. If graphics card memory is at a premium (arestriction
that's less common now than it used to be) you may choose one of the other modes. High color mode gives you
2 bytes per pixel. That's enough to give 5 hits for each RGB component. So instead of 256 gradations of red
intensity you just get 32 gradations; the same for blue and green, which gives atotal of 65,536 colors. That is
just about enough to give apparent photographic quality on a casua inspection, though areas of subtle shading
tend to be broken up abit.

256-color mode gives you even fewer colors. However, in this mode, you get to choose which colors. What
happens isthat the system sets up something known as apalette. Thisisalist of 256 colors chosen from the
16 million RGB colors. Once you've specified the colors in the palette, the graphics device will be able to
display just those colors. The palette can be changed at any time — but the graphics device can still only
display 256 different colors on the screen at any one time. 256-color mode is only really used when high
performance and video memory is at a premium. Most games will use this mode — and they can still achieve
decent-looking graphics because of a very careful choice of paette.

920

Graphics with GDI+

In generd, if adisplay device isin high-color or 256-color mode and it is asked to display a particular RGB
color, it will pick the nearest mathematical match from the pool of colorsthat it isableto display. It's for this
reason that it's important to be aware of the color modes. If you are drawing something that involves subtle
shading or photographic quality images, and the user does not have 24-bit color mode sel ected, they may not
see the image the same way you intended it. So if you're doing that kind of work with GDI+, you should test
your application in different color modes. (It is also possible for your application to programmatically set a
given color mode, though we won't go into that in this chapter.)

The Safety Palette

For reference, we'll quickly mention the safety palette, which is a very commonly-used default palette. The
way it worksisthat we set six equally spaced possible values for each color component. Namely, the values 0,
51, 102, 153, 204, and 255. In other words, the red component can have any of these values. So can the green
component. So can the blue component. So possible col ors from the safety palette include: (0,0,0), black;
(153,0,0), afairly dark shade of red; (0, 255,102), green with a smattering of blue added; and so on. This gives
us atotal of 6 cubed = 216 colors. Theideaisthat this gives us an easy way of having a palette that contains
colors from right across the spectrum and of al degrees of brightness, although in practice this doesn't actually
work that well because equal mathematical spacing of color components doesn't mean equal perception of
color differences by the human eye. Because the safety pal ette used to be widely used, however, you'll still
find a fair number of applications and images exclusively use colors from the safety palette.

If you set Windows to 256-color mode, you'll find the default palette you get is the safety pal ette, with 20
Windows standard colors added to it, and 20 spare colors.

Pens and Brushes

In this section, we'll review two helper classes that are needed in order to draw shapes. We've already
encountered the Pen class, used to tell the graphics instance how to draw lines. A related classis

Syst em Dr awi ng. Br ush, which tellsit how to fill regions. For example, the Pen is needed to draw the
outlines of the rectangle and ellipse in our previous samples. If we'd needed to draw these shapes as salid, it
would have been a brush that would have been used to specify how to fill them in. One aspect of both of these
classesisthat you will hardly ever call any methods on them. Y ou simply construct a Pen or Br ush instance
with the required color and other properties, and then pass it to drawing methods that require a Pen or Br ush.

We will look at brushes first, then pens.

Incidentally, if you've programmed using GDI before you have noticed from the first couple of
exampl es that pens are used in a different way in GDI+. In GDI the normal practice was to
call a Windows API function, Sel ect Cbj ect (), which actually associated a pen with the
device context. That pen was then used in all drawing operations that required a pen until you
informed the device context otherwise, by calling Sel ect Cbj ect () again. The same
principle held for brushes and other objects such as fonts or bitmaps. With GDI+, as mentioned
earlier, Microsoft has instead gone for a stateless model in which thereis no default pen or other
helper object. Rather, you simply specify with each method call the appropriate helper object to be
used for that particular method.

921

Chapter 19

Brushes

GDI+ has several different kinds of brush — more than we have space to go into in this chapter, so we'll just
explain the simpler onesto give you an idea of the principles. Each type of brush is represented by an instance
of a class derived from the abstract class Syst em Dr awi ng. Br ush. The simplest brush,

Syst em Dr awi ng. Sol i dBr ush, simply indicatesthat a region isto be filled with solid color:

Brush sol i dBei geBrush = new Sol i dBrush(Col or. Bei ge) ;
Brush sol i dFunnyOr angyBr ownBr ush =
new Sol i dBrush(Col or. Fr omAr gb(255, 155, 100));

Alternatively, if the brush is one of the Internet named colors you can construct the brush more simply using
another class, Syst em Dr awi ng. Br ushes. Br ushes is one of those classes that you never actually
instantiate (it's got a private constructor to stop you doing that). It simply has a large number of static
properties, each of which returns a brush of a specified color. You'd use Br ushes like this:

Brush sol i dAzureBrush = Brushes. Azure;
Brush sol i dChocol at eBrush = Brushes. Chocol at €;

The next level of complexity is a hatch brush, which fills aregion by drawing a pattern. This type of brush is
considered more advanced so it's in the Dr awi ng2D namespace, represented by the class

Syst em Dr awi ng. Dr awi ng2D. Hat chBr ush. The Br ushes class can't help you with hatch brushes —
you'll need to construct one explicitly, by supplying the hatch style and two colors — the foreground col or
followed by the background color (you can omit the background color, in which caseit defaults to black). The
hatch style comes from an enumeration, Syst em Dr awi ng. Dr awi ng2D. Hat chStyl e. Therearealarge
number of Hat chSt yl e values available, so it's easiest to refer to the MSDN documentation for the full list.
To give you anidea, typical stylesinclude For war dDi agonal , Cr oss, D agonal Cross,

Smal | Confetti,and Zi gZag. Examples of constructing a hatch brush include:

Brush crossBrush = new Hat chBrush(HatchStyl e. Cross, Col or. Azure);
/'l background col or of CrossBrush is black

Brush brickBrush = new Hat chBrush(Hat chStyl e. Di agonal Bri ck,
Col or. Dar kGol denr od, Col or. Cyan);

Solid and hatch brushes are the only brushes avail able under GDI. GDI+ has added a couple of new styles of
brush:

0 System Drawi ng. Drawi ng2D. Li near G adi ent Br ush fillsin an areawith a color that
varies across the screen

O System Drawi ng. Drawi ng2D. Pat hG adi ent Br ush issimilar, but in this case the color
varies along a path around the region to be filled

We won't go into these brushes in this chapter. We'll note though that both can give some spectacular effects if
used carefully.

922

Graphics with GDI+

Pens

Unlike brushes, pens are represented by just one class — Syst em Dr awi ng. Pen. The penis, however,
actually slightly more complex than the brush, because it needs to indicate how thick lines should be (how
many pixels wide) and, for awide line, how to fill the areainside the line. Pens can al so specify a number of
other properties, which are beyond the scope of this chapter, but which include the Al i gnment property that
we mentioned earlier, which indicates where in relation to the border of a shape aline should be drawn, as
well as what shape to draw at the end of aline (whether to round off the shape).

The areainside a thick line can be filled with solid color, or it can be filled using a brush. Hence, a Pen
instance may contain areference to aBr ush instance. Thisis quite powerful, as it means you can draw lines
that are colored in by using — say — hatching or linear shading. There are four different ways that you can
construct a Pen instance that you have designed yourself. You can do it by passing a color, or you can do it by
passing in a brush. Both of these constructors will produce a pen with a width of one pixel. Alternatively, you
can passin acolor or abrush, and additionaly af | oat , which represents the width of the pen. (It needs to be
afl oat in case we are using non-default units such as millimeters or inches for the G- aphi cs object that
will do the drawing — so we can for example specify fractions of an inch.) So for example, you can construct
pens like this:

Brush brickBrush = new Hat chBrush(HatchStyl e. Di agonal Bri ck,
Col or. Dar kGol denrod, Col or. Cyan);

Pen sol i dBl uePen = new Pen(Col or. FromAr gb(0, 0, 255));
Pen sol i dW deBl uePen = new Pen(Col or. Bl ue, 4);

Pen brickPen = new Pen(brickBrush);

Pen brickW dePen = new Pen(brickBrush, 10);

Additionally, for the quick construction of pens, you can use the class Syst em Dr awi ng. Pens which, like
the Br ushes class, simply contains a number of stock pens. These pens all have width one pixel and comein
the usua sets of Internet named colors. This allows you to construct pensin this way:

Pen solidYel | owPen = Pens. Yel | ow;

Drawing Shapes and Lines

We've almost finished the first part of the chapter, in which we've covered all the basic classes and objects
required in order to draw specified shapes and so on to the screen. We'll round off by reviewing some of the
drawing methods the Gr aphi cs class makes available, and presenting a short example that illustrates the use
of severa brushes and pens.

System Dr awi ng. G aphi ¢s has alarge number of methods that allow you to draw various lines, outline

shapes, and solid shapes. Once again there are too many to provide a comprehensive list here, but the
following table gives the main ones and should give you some idea of the variety of shapes you can draw.

923

Chapter 19

M ethod Typical parameters What it draws

DrawLi ne Pen, start and end points A single straight line

Dr awRect angl e Pen, position, and size Outline of arectangle

DrawEl | i pse Pen, position, and size Outline of an ellipse

Fil | Rectangl e Brush, position, and size Solid rectangle

FillEllipse Brush, position, and size Solid ellipse

DrawLi nes Pen, array of points Series of lines, connecting each point to

the next one in the array

Dr awBezi er Pen, 4 points A smooth curve through the two end
points, with the remaining two points
used to contral the shape of the curve

Dr awCur ve Pen, array of points A smooth curve through the points

Dr awAr ¢ Pen, rectangle, two angles Portion of circle within the rectangle
defined by the angles

DrawCl osedCurve Pen, array of points Like Dr awCur ve but also draws a
straight lineto close the curve

Dr awPi e Pen, rectangle, two angles Wedge-shaped outline within the
rectangle

FillPie Brush, rectangle, two angles Solid wedge-shaped area within the
rectangle

Dr awPol ygon Pen, array of points Like Dr awLi nes but al so connects first

and last points to close the figure drawn

Before we | eave the subject of drawing simple objects, we'll round off with a simple exampl e that
demonstrates the kinds of visual effect you can achieve by use of brushes. The exampleis called

Scr ol | Mor eShapes, and it's essentially arevision of Scr ol | Shapes. Besides the rectangle and dlipse,
wel'll add athick line and fill the shapes in with various custom brushes. We've already explained the principles of
drawing so we'll present the code without too many comments. First, because of our new brushes, we need to
indicate we are using the Syst em Dr awi ng. Dr awi ng2D namespace:

using System

usi ng System Draw ng;

usi ng System Dr awi ng. Dr awi ng2D;
usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;

usi ng System W ndows. For ns;

usi ng System Dat a;

Next some extra fieldsin our For mil class, which contain details of the locations where the shapes are to be
drawn, as well as various pens and brushes we will use:

924

Graphics with GDI+

private

private

private
private
private
private
static private Brush brickBrush = new Hat chBrush(HatchStyl e. Di agonal Bri ck,

Rect angl e rect angl eBounds = new Rect angl e(new Poi nt (0, 0),
new Si ze(200, 200));

Rect angl e el | i pseBounds = new Rect angl e(new Poi nt (50, 200),
new Si ze(200, 150));

Pen bl uePen = new Pen(Col or. Bl ue, 3);

Pen redPen = new Pen(Col or. Red, 2);

Brush sol i dAzureBrush = Brushes. Azure;

Brush solidYell owBrush = new Sol i dBrush(Col or. Yel | ow) ;

Col or . Dar kGol denr od, Col or. Cyan);

private Pen brickWdePen = new Pen(brickBrush, 10);

Thebri ckBr ush field has been declared as static, so that we can use its value to initialize the

bri ckW dePen field. C# won't | et us use one instance field to initialize another instance field, because it's
not defined which one will be initialized first, but declaring the field as static solves the problem. Since only
one instance of the For nl class will be instantiated, it isimmaterial whether the fields are static or instance

fields.

Hereisthe OnPai nt () override:

protected override void OnPaint(PaintEventArgs e)
{
base. OnPai nt (e) ;
Graphics dc = e. G aphics;
Point scrol |l Offset = this.AutoScroll Position;
dc. Transl ateTransforn(scrol | Offset. X, scroll Offset.Y);
if (e.dipRectangle. Top+scroll Offset. X < 350 ||
e.ClipRectangl e. Left+scrol | O fset.Y < 250)
{

dc. DrawRect angl e(bl uePen, rectangl eBounds);

dc. Fi | | Rect angl e(sol i dYel | owBrush, rectangl eBounds);
dc. Drawkl | i pse(redPen, ellipseBounds);

dc.Fill Ell'i pse(solidAzureBrush, ellipseBounds);

dc. DrawLi ne(bri ckW dePen, rectangl eBounds. Locati on,

el | i pseBounds. Locati on+el | i pseBounds. Si ze) ;

}

As before we aso set the Aut oScr ol | M nSi ze to (250,350).
Now theresults:

%

LY

=10 x|

=

Notice that the thick diagonal line has been drawn on top of the rectangle and ellipse, because it was the last

item to be painted.

925

Chapter 19

Displaying Images

One of the most common things you may want to do with GDI+ is display an image that already existsin a
file. Thisisactually alot simpler than drawing your own user interface, because theimage is already pre-
drawn. Effectively, all you haveto doisload the file and instruct GDI+ to display it. The image can be a
simple line drawing, an icon, or a complex image such as a photograph. It's also possible to perform some
mani pulations on the image, such as stretching it or rotating it, and you can choose to display only a portion of
it.

In this section, just for a change, we'll present the sample first. Then we'll discuss some of the issues you need
to be aware of when displaying images. We can do this, because the code needed to display an imagereally is
so simple.

The class we need isthe .NET base class, Syst em Dr awi ng. | mage. Aninstance of | nage represents one
image —if you like, one picture. Reading in an image takes one line of code:

| mage nylnmage = | mage. FronFil e("Fil eNane");

Frontil e() isastatic member of | mage and is the usual way of instantiating an image. The file can be any
of the commonly-supported graphics file formats, including . bnp, . j pg, . gi f,and. png.

Displaying an image is also very simple, assuming you have a suitable G aphi cs instance to hand —asimple
call to either G- aphi cs. Draw nageUnscal ed() or G aphi cs. Drawl mage() will suffice. There are
quite afew overloads of these methods, allowing you alot of flexibility in the information you supply in terms
of wherethe image is located and how big it isto be drawn. But we will use Dr awl mage(), like this:

dc. Drawl mage(nyl mage, points);

In thisline of code, dc is assumed to be a G aphi c¢s instance, while nyl mage isthe | mage to be displayed.
poi nt s isan array of Poi nt structs, where poi nt s[0] , poi nts[1], and poi nt s[2] are the coordinates
of top left, top right, and bottom left corner of the image.

Images are probably the area in which deve opers familiar with GDI will notice the biggest
difference with GDI+. In GDI, displaying an image involved several nontrivial steps. If the
image was a bitmap, loading it was reasonably simple, but if it was any other file type, loading
it would involve a sequence of calls to OLE objects. Actually getting a loaded image onto the
screen involved getting a handleto it, selecting it into a memory device context, then
performing a block transfer between device contexts. Although the device contexts and handles
are still there behind the scenes, and will be needed if you want to start doing sophisticated
editing of the images from your code, simple tasks have now been extremely well wrapped up
inthe GDI+ object model.

Wel'll illustrate the process of displaying an image with an example called D spl ayl mage. The example
simply displays a. j pg filein the application's main window. To keep things simple, the path of the . j pg file
is hard coded into the application (so if you run the example you'll need to change it to reflect the location of
the filein your system). The . j pg file we'll display isa group photograph of attendees from arecent

COM Fest event.

926

Graphics with GDI+

COMFest (www.comfest.co.uk) isan informal group of developersin the UK who meet to
discuss the latest technologies and swap ideas. The pictureincludes all the attendees at
COMFest 4, except for the author of this chapter who was (conveniently) taking the picture!

As usual for this chapter, the Di spl ayl nage project is a standard C# Visual Studio .NET-generated
Windows application. We add the following fields to our For ni class:

| mage piccy;
private Point [] piccyBounds;

We then load the filein the For niL() constructor:

public Forml()

{
InitializeConponent();
piccy =
| mage. FronFi |l e(@ C: \ Pr oCShar p\ Gdi Pl us\ | mages\ CF4Gr oup. bnp") ;
this. AutoScrol |l M nSize = piccy. Size;
pi ccyBounds = new Point[3];
pi ccyBounds[0] = new Poi nt (0, 0); Il top left
pi ccyBounds[1] = new Poi nt (pi ccy. Wdth, 0); /1 top right
pi ccyBounds[2] = new Poi nt (0, pi ccy. Hei ght); /'l bottom | eft
}

Note that the size in pixels of theimage is obtained asits Si ze property, which we use to set the document
area. We also set up the pi ccyBounds array, which is used to identify the position of the image on the
screen. We have chosen the coordinates of the three cornersto draw the image in its actual size and shape
here, but if we'd wanted the image to be resized, stretched, or even sheared into a non-rectangul ar

parall elogram, we could do so simply by changing the values of the Poi nt sin the pi ccyBounds array.

Theimageisdisplayed in the OnPai nt () override:

protected override voi d OnPai nt (Pai nt Event Args e)
{
base. OnPai nt (e) ;
Graphi cs dc = e. Graphi cs;
dc. Scal eTransforn(1. 0f, 1.0f);
dc. Transl ateTransforn(this. AutoScrol | Position. X, this.AutoScrollPosition.Y);
dc. Drawl mage(pi ccy, piccyBounds);
}

Finaly, we'll take particular note of the modification made to the code wizard-generated For mL. Di spose()
method:

protected override void Di spose(bool disposing)

{
pi ccy. Di spose();

927

Chapter 19

i f(disposing)
if (conponents != null)
conmponent s. Di spose();

base. Di spose(di sposing);

}

Disposing of the image as soon as possible when it's no longer needed isimportant, because images generally
eat alot of memory while in use. After | mage. Di spose() has been called the | mage instance no longer
refers to any actual image, and so can no longer be displayed (unless you load a new image).

Running this code produces these results:

Issues When Manipulating Images
Although digplaying imagesis very smple, it still pays to have some understanding whet's going on behind the scenes.

The most important point to understand about images is that they are always rectangular. That's not just a
convenience, but because of the underlying technology. It's because all modern graphics cards have hardware
built-in that can very efficiently copy blocks of pixels from one area of memory to another area of memory,
provided that the block of pixels represents a rectangular region. This hardware-accel erated operation can
occur virtually as one single operation, and as such is extremely fast. Indeed, it is the key to modern high-
performance graphics. This operation is known as a bitmap block transfer (or BitBIt).

Graphi cs. Drawl mageUnscal ed() internally usesaBi t Bl t , which iswhy you can see a huge image,
perhaps containing as many as a million pixels, appearing almost instantly. If the computer had to copy the
image to the screen individually pixel by pixel, you'd see the image gradually being drawn over a period of up
to several seconds.

Bi t Bl t sare very efficient; therefore amost all drawing and manipulation of imagesis carried out using
them. Even some editing of images will be done by Bi t Bl t ing portions of images between DCs that represent
areas of memory. In the days of GDI, the Windows 32 API function Bi t Bl t () was arguably the most
important and widely used function for image manipulation, though with GDI+ the Bi t Bl t operations are
largely hidden by the GDI+ object model.

928

Graphics with GDI+

It's not possibleto Bi t Bl t areas of images that are not rectangular, although similar effects can be easily
simulated. One way isto mark a certain color as transparent for the purposes of aBi t Bl t , so that areas of that
color in the source image will not overwrite the existing color of the corresponding pixel in the destination
device. It isalso possible to specify that in the process of aBi t Bl t , each pixel of the resultant image will be
formed by some logical operation (such as a bitwise AND) on the colors of that pixel in the source image and in
the destination device before the Bi t Bl t . Such operations are supported by hardware acceleration, and can be
used to give avariety of subtle effects. We're not going to go into details of this here. We'll remark however,
that the G aphi cs object implements another method, Dr awl mage() . Thisis similar to

Dr awl mageUnscal ed() , but comesin alarge number of overloads that allow you to specify more complex
forms of Bi t Bl t to be used in the drawing process. Dr awl mage() aso allows you todraw (Bi t Bl t) only a
specified part of the image, or to perform certain other operations on it such as scaling it (expanding or
reducing itinsize) asit is drawn.

Drawing Text

We've |eft the very important topic of displaying text until thislate in the chapter because drawing text to the
screenis (in general) more complex than drawing simple graphics. Although displaying aline or two of text
when you're not that bothered about the appearance is extremely easy — it takes one single call to the

Graphi cs. Drawst ri ng() method, if you aretrying to display a document that has a fair amount of text in
it, you rapidly find that things become alot more complex. This is for two reasons:

0 If you're concerned about getting the appearance just right, you need to understand fonts. Where
shape drawing requires brushes and pens as helper objects, the process of drawing text
correspondingly requires fonts as helper objects. And understanding fontsis not trivial task.

O Text needsto be very carefully laid out in the window. Users generally expect words to follow
naturally from one another — to be lined up with clear spacesin between. Doing that is harder than
you'd think. For a start, unlike the case for shapes, you don't usually know in advance how much
space on the screen aword is going to take up. That has to be cal culated (using the
Graphi cs. Measur eSt ri ng() method). Also, how much space on the screen a word occupies
will affect whereabouts on the screen every subsequent word in the document gets placed. If your
application does line wrapping then it'll need to carefully assess word si zes before deciding where to
place the break. The next time you run Word for Windows, ook carefully at the way Word is
continually repositioning text as you do your work: there's alot of complex processing going on
there. The chances are that any GDI+ application you work on won't be anything like as complex as
Word, but if you need to display any text then many of the same considerations still apply.

So, good quality text processing istricky to get right, but putting aline of text on the screen, assuming you
know the font and where you want it to go, isactually very simple. Therefore, the next thing we'll dois
present a quick example that shows how to display a couple of pieces of text. After that, the plan for the rest of
the chapter isto review some of the principles of fonts and font families before moving on to our more
realistic text-processing example, the CapsEdi t or sample, which will demonstrate some of the issues
involved when you're trying to control text layout on-screen, and will aso show how to handle user input.

929

Chapter 19

Simple Text Example

Thisexample, Di spl ayText , isour usua Windows Forms effort. This time we've overridden OnPai nt ()
and added member fields as follows:

private System Conponent Model . Cont ai ner conponents = nul | ;

private Brush bl ackBrush = Brushes. Bl ack;

private Brush bl ueBrush = Brushes. Bl ue;

private Font haettenschweil er Font = new Font ("Haettenschweiler", 12);

private Font bol dTi mesFont = new Font (" Ti nes New Roman", 10, FontStyle. Bold);

private Font italicCourierFont = new Font("Courier", 11, FontStyle.ltalic |
Font Styl e. Underl i ne);

protected override voi d OnPai nt (Pai nt Event Args e)

{
base. OnPai nt (e) ;
Graphi cs dc = e. G aphi cs;
dc.DrawString("This is a groovy string", haettenschweil erFont, blackBrush,
10, 10);
dc.DrawString("This is a groovy string " +
"with some very long text that will never fit in the box",

bol dTi nesFont, bl ueBrush,
new Rect angl e(new Poi nt (10, 40), new Size(100, 40)));

dc. DrawString("This is a groovy string”, italicCourierFont, blackBrush,
new Poi nt (10, 100));

}

Running this example produces this:

" Display” =13

This is a groovy string

This is a gromry
siring with

cnma o lnsr

This is a groovy stang

The example demonstrates the use of the Gr aphi c¢s. DrawSt ri ng() method to draw items of text.

DrawsSt ri ng() comesinanumber of overloads, of which we demonstrate three. The different overloads all,
however, require parameters that indicate the text to be displayed, the font that the string should be drawn in, and the
brush that should be used to construct the various lines and curves that make up each character of text. Therearea
couple of alternatives for the remaining parameters. In genera, however, it is possible to specify either aPoi nt (or
equivaently, two numbers), or aRect angl e.

930

Graphics with GDI+

If you specify a Poi nt , the text will start with itstop left corner at that Poi nt and simply stretch out to the
right. If you specify a Rect angl e, then the G aphi cs instance will lay the string out inside that rectangle. If
the text doesn't fit into the bounds of the rectangle, then it'll be cut off, as you see from the screenshot. Passing
arectangleto DrawSt ri ng() means that the drawing process will take longer, as Dr awSt ri ng() will need
to figure out where to put line breaks, but the result may ook nicer, provided the string fits in the rectangl e!

This example aso shows a couple of ways of constructing fonts. Y ou aways need the name of the font, and itssize
(height). Y ou can also optionally passin various styles that modify how the text is to be drawn (bold, underline, and so
on).

Fonts and Font Families

We all think intuitively that we have a fairly good understanding of fonts; after all we look at them almost all
the time. A font describes exactly how each letter should be displayed. Selection of the appropriate font and
providing areasonable variety of fonts within a document are important factors in improving readability.

Oddly, our intuitive understanding usually isn't quite correct. Most people, if asked to name a font, will say
things like 'Aria’ or 'Times New Roman' or ‘Courier'. In fact, these are not fonts at all — they are font families.
The font family tells you in generic terms the visual style of the text, and is a key factor in the overal
appearance of your application. Most of us will have become used to recognizing the styles of the most
common font families, even if we're not consciously aware of this.

An actual font would be something like Arial 9-point italic. In other words, the size and other modifications to
the text are specified as well as the font family. These modifications might include whether it is bold, italic,
underlined, or displayed in SMALL CAPS Or &s & suscript; thisistechnically referred to the style, though in some
ways the term is misleading since the visual appearance is determined as much by the font family.

The way the size of the text is measured is by specifying its height. The height is measured in points—a
traditional unit, which represents 1/72 of an inch (0.351 mm). So lettersin a 10-point font are roughly 1/7" or
3.5 mm high. However, you won't get seven lines of 10 point text into oneinch of vertical screen or paper
space, because you need to allow for the spacing between the lines as well.

Strictly speaking, measuring the height isn't quite as simple as that, since there are several
different heights that you need to consider. For example, thereisthe height of tall letters like
the A or F (thisis the measurement that we really mean when we talk about the height), the
additional height occupied by any accents on letters like A or N (the internal leading), and the
extra height below the base line needed for thetails of letterslikey and g (the descent).
However, for this chapter we won't worry about that. Once you specify the font family and the
main height, these subsidiary heights are determined automatically — you can't independently
choose their values.

When you're dealing with fonts you may al so encounter some other terms that are commonly used to describe
certain font families.

0 A serif font family is one that has little tick marks at the ends of many of the lines that make up the
characters (These ticks are known as serifs). Times New Roman is a classic example of this.

931

Chapter 19

0 Sansserif font families, by contrast, don't have these ticks. Good examples of sans serif fonts are
Arial, and Verdana. The lack of tick marks often gives text a blunt, in-your-face appearance, so
sans serif fonts are often used for important text.

O A True Type font family is one that is defined by expressing the shapes of the curves that make up
the charactersin a precise mathematical manner. This means that that the same definition can be
used to calculate how to draw fonts of any size within the family. These days, virtually all the fonts
you will use are true type fonts. Some older font families from the days of Windows 3.1 were
defined by individually specifying the bitmap for each character separately for each font size, but
the use of these fontsis now discouraged.

Microsoft has provided two main classes that we need to deal with when selecting or manipulating fonts.
These are:

0 System Draw ng. Font
0 System Drawi ng. Font Fam |y

We have already seen the main use of the Font class. When we wish to draw text we instantiate an instance of
Font and passit tothe DrawSt ri ng() method to indicate how the text should be drawn. A Font Fami |y
instance is used (surprisingly enough) to represent a family of fonts.

One use of the Font Fam | y classisif you know you want afont of a particular type (Serif, Sans Serif or
Monospace), but don't mind which font. The static properties Generi cSeri f, Generi cSansSeri f , and
Cener i cMonospace return default fonts that satisfy these criteria:

Font Fami |y sansSerif Font = Font Fam |y. Generi cSansSerif;

Generally speaking, however, if you're writing a professional application, you will want to choose your font in
a more sophisticated way than this. Most likely, you will implement your drawing code so that it checks the
font families available, and selects the appropriate one, perhaps by taking the first available one on alist of
preferred fonts. And if you want your application to be very user-friendly, the first choice on the list will
probably be the one that the user selected last time they ran your software. Usually, if you're dealing with the
most popular font families, such as Arial and Times New Roman, you'll be safe. However, if you do try to
display text using a font that doesn't exist the results aren't always predictable and you're quite likely to find
that Windows just substitutes the standard system font, which is very easy for the system to draw but it doesn't
look very pleasant —and if it does appear in your document it's likely to give the impression of very poor-
quality software.

Y ou can find out what fonts are available on your system using aclass called | nst al | edFont Col | ecti on,
whichisinthe Syst em Dr awi ng. Text namespace. This classimplements a property, Fam | i es, whichis
an array of al the fontsthat are available to use on your system:

I nstal |l edFont Col | ection insFont = new InstalledFontCol |l ection();

FontFamily [] famlies = insFont.Fanilies;
foreach (FontFamly family in famlies)
{

/'l do processing with this font famly

932

Graphics with GDI+

Example: Enumerating Font Families

In this section, we will work through a quick example, Enunf-ont Fani | i es, which listsall the font families
available on the system and illustrates them by displaying the name of each family using an appropriate font
(the 10-poaint regular version of that font family). When the sampleisrun it will look something like this:

1ol

Andalus

Angsana Hem

AngsanallE C

Arabic Transparent
Avrial

Arial Black

Avial Marrou

Batang

BatanelChe

Book Antiqua
Bookman Old Style
Browallia New

BrowalliaUFC

Century Gothic
Comic Sans M5
Cordia Mew

CordiallFC

Courier New
David

David Transparent oo
DillamiaT TP

Diatum

DotumChe

EaommdaTPE _.I

Of course, the results that you get will depend on what fonts you have installed on your computer.

For this sample we have as usual created a standard C# Windows Application — this time named
Enuntont Fami | i es. We start off by adding an extra namespace to be searched. We will be using the
I nstal | edFont Col | ecti on class, whichis defined in Syst em Dr awi ng. Text .

usi ng System
usi ng System Draw ng;
usi ng System Drawi ng. Text;
We then add the following constant to the For il class:

private const int margin = 10;

mar gi n will be the size of the left and top margin between the text and the edge of the document — it stops the
text from appearing right at the edge of the client area.

Thisis designed as a quick-and-easy way of showing off font families; therefore the code is crude and in many
cases doesn't do things the way you ought toin areal application. For example, I've just hard-coded in a
guessed value for the document size of (200,1500) and set the Aut oScr ol | M nSi ze property to this value
using the Visual Studio .NET Properties window. Normally you would have to examine the text to be
displayed to work out the document size. We will do that in the next section.

933

Chapter 19

Hereisthe OnPai nt () method:

protected override void OnPai nt (Pai nt Event Args e)

{
base. OnPai nt (e);
int vertical Coordi nate = margin;
Poi nt topLeft Corner;
| nst al | edFont Col | ecti on i nsFont = new I nstall edFont Col | ection();
FontFam |y [] fam lies = insFont.Famlies;
e. Graphi cs. Transl at eTr ansf or n(Aut oScr ol | Posi ti on. X,
Aut oScrol | Position.Y);
foreach (FontFamily family in famlies)
{
if (famly.IsStyl eAvail abl e(Font Styl e. Regul ar))
{
Font f = new Font(fam |y. Nanme, 10);
topLeft Corner = new Poi nt(margin, vertical Coordi nate);
verti cal Coordi nate += f. Height;
e. Graphics.Drawstring (fam|ly. Name, f,
Brushes. Bl ack, t opLeft Cor ner);
f.Di spose();
}
}
}

In this code we start off by using an | nst al | edFont Col | ect i on object to obtain an array that contains
details of al the available font families. For each family, we instantiate a 10 point Font . We use asimple
constructor for Font — there are many more that allow additional options to be specified. The constructor
we've picked takes two parameters, the name of the family and the size of the font:

Font f = new Font(fam |y. Name, 10);

This constructor constructs a font that has the regular style. To be on the safe side, however, we first check
that this style is available for each font family before attempting to display anything using that font. Thisis
done using the Font Fami | y. | sSt yl eAvai | abl e() method, and this check is important, because not all
fonts are availablein all styles:

if (famly.IsStyl eAvail abl e(Font Styl e. Regul ar))

Font Fam | y. I sStyl eAvai | abl e() takes one parameter, a Font St yl e enumeration. This enumeration
contains a number of flags that may be combined with the bitwise OR operator. The possible flags are Bol d,
Italic,Regul ar, Stri keout, andUnder | i ne.

Finally, note that we use a property of the Font class, Hei ght , which returns the height needed to display
text of that font, in order to work out the line spacing:

Font f = new Font(fam |ly.Name, 10);
topLeft Corner = new Point(margin, vertical Coordinate);
vertical Coordi nate += f. Height;

934

Graphics with GDI+

Again, to keep things ssimple, our version of OnPai nt () reveals some bad programming practices. For a start, we
haven't bothered to check what area of the document actually needs drawing —we just try to display everything.
Also, instantiating aFont is, asremarked earlier, a computationdly intensive process, so we really ought to save
the fonts rather than instantiating new copies every time OnPai nt () iscalled. As aresult of the way the code has
been designed, you may natice that this example actually takes a noticeable time to paint itself. In order to try to
conserve memory and help the garbage collector out we do, however, cal Di spose() on each font instance after
we have finished with it. If we didn't, then after 10 or 20 paint operations, there'd be alot of wasted memory storing
fonts that are no longer needed.

Editing a Text Document: The CapsEditor Sample

We now come to the extended example in this chapter. The CapsEdi t or example is designed to illustrate
how the principles of drawing that we've learned up till now need to be applied in a more realistic example.
The example won't require any new material, apart from responding to user input via the mouse, but it will
show how to manage the drawing of text so that the application maintains performance while ensuring that the
contents of the client area of the main window are always kept up to date.

The CapsEdi t or programis functionally quite simple. It allows the user to read in atext file, which isthen
displayed line by line in the client area. If the user double-clicks on any line, that line will be changed to all
uppercase. That's literally all the sample does. Even with this limited set of features, we'll find that the work
involved in making sure everything gets displayed in the right place while considering performanceissuesis
quite complex. In particular, we have anew element here, that the contents of the document can change —
either when the user selects the menu option to read a new file, or when they double-click to capitalize aline.
In the first case we need to update the document size so the scrollbars still work correctly, and we have to
redisplay everything. In the second case, we need to check carefully whether the document size is changed,
and what text needs to be redisplayed.

Wel'll start by reviewing the appearance of CapsEdi t or . When the application is first run, it has no document
loaded, and displays this:

=1o] x|

<Empty document:

935

Chapter 19

The File menu has two options: Open and Exit. Exit exits the application, while Open brings up the standard
OpenFi | eDi al og and reads in whatever file the user selects. The next screenshot shows CapsEdi t or
being used to view its own source file, For L. cs. I've also randomly doubl e-clicked on a couple of linesto
convert them to uppercase:

(1 CapsEditor - =10/ x|

File

using Systern; :I
using Systerm. Drawing,

using System. Collections;

using Systern. ComponentModel;
USING SYSTEMMWINDOWS. FORMS;
using System. Data;

using System.10;

namespace ¥Wrox. ProCSharp. GDIFlus
{

class TextLinelnforration

{
public string Text;
PUBLIC UINT WIDTH;

}

M =summary= =
Al | 'z

The sizes of the horizontal and vertical scrollbars are, by the way, correct. The client area will scroll just
enough to view the entire document. CapsEdi t or doesn't try to wrap lines of text — the example is aready
complicated enough without doing that. It just displays each line of the file exactly asitisread in. There are
no limitsto the size of the file, but we are assuming it is atext file and doesn't contain any non-printable
characters.

Wel'll start off by adding a usi ng command:

usi ng System

usi ng System Draw ng;

usi ng System Col | ecti ons;
usi ng Syst em Conponent Model ;
usi ng System W ndows. For ns;
usi ng System Dat a;

using System | G

Thisis because we'll be using the St r eanReader classwhichisin Syst em | O Next we'll add in some
fields to the For ml class:

#regi on Constant fields
private const string standardTitle = "CapsEditor";
// default text in titlebar
private const uint margin = 10;
/1 horizontal and vertical margin in client area
#endr egi on

#regi on Menber fields
private ArraylList documentLines = new ArrayList(); /!l the 'docunent’

936

Graphics with GDI+

private uint |ineHeight; /1 height in pixels of one |ine

private Size docunentSi ze; // how big a client area is needed to
/1 display docunent

private uint nLines; /1 nunber of lines in docunment

private Font mai nFont; [/l font used to display all lines

private Font enptyDocunmentFont; // font used to display enpty nessage
private Brush mai nBrush = Brushes. Bl ue;
/1 brush used to display docunent text
private Brush enptyDocunment Brush = Brushes. Red;
/1 brush used to display enpty docunent nessage
private Point nouseDoubl eCl i ckPosition;
/1 location nmouse is pointing to when doubl e-clicked
private OpenFil eDi alog fil eOpenDi al og = new OpenFi | eDi al og() ;
/1 standard open file dial og
private bool docunentHasData = fal se;
I/ set to true if document has sone data in it
#endr egi on

Most of these fields should be self-explanatory. The docunent Li nes fieldisan ArrayLi st that contains
the actual text of the file that has been read in. In areal sense, thisisthe field that contains the datain the
"document". Each element of documnent Li nes containsinformation for one line of text that has been read in.
Sinceit'san Arr ayLi st, rather than aplain array, we can dynamically add elementstoit asweread in afile.
You'll notice I've aso liberally used #r egi on preprocessor directivesto block up bits of the program to make
it easier to edit.

| said each docunent Li nes element contains information about aline of text. Thisinformation is actually
an instance of another class I've defined, Text Li nel nf or mat i on:

cl ass TextLinel nformation
{
public string Text;
public uint Wdth;

}

Text Li nel nf or mat i on looks like a classic case where you'd normally use a struct rather than a class
sinceit'sjust there to group together a couple of fields. However, its instances are always accessed as
elements of an Arr ayLi st, which expects its elements to be stored as reference types, so declaring
Text Li nel nf or mat i on as a class makes things more efficient by saving a lot of boxing and unboxing
operations.

Each Text Li nel nf or mat i on instance stores aline of text — and that can be thought of as the smallest item
that is displayed as asingle item. In general, for each similar item in a GDI+ application, you'd probably want
to store the text of the item, as well as the world coordinates of where it should be displayed and its size (the
page coordinates will change frequently, whenever the user scrolls, whereas world coordinates will normally
only change when other parts of the document are modified in some way). In this case we've only stored the
W dt h of the item. The reason is because the height in this case is just the height of whatever our selected
font is. It's the same for all lines of text so there's no point storing it separately for each one; we storeit once,
inthe For miL.l i neHei ght field. Asfor the position — well in this case the x coordinate is just equal to the
margin, and the y coordinate is easily cal culated as:

margi n + |ineHei ght*(however many |ines are above this one)

937

Chapter 19

If we'd been trying to display and manipulate, say, individual words instead of complete lines, then the x
position of each word would have to be cal culated using the widths of all the previous words on that line of
text, but | wanted to keep it simple here, which is why we're treating each line of text as one single item.

Let's deal with the main menu now. This part of the application is more the realm of Windows Forms — the
subject of Chapter 7, than of GDI+. | added the menu options using the design view in Visual Studio .NET,
but renamed them as mrenuFi | e, menuFi | eOpen, and nenuFi | eExi t . | then added event handlers for the
File Open and File Exit menu options using the Visual Studio .NET Properties window. The event handlers
have their VS .NET-generated names of menuFi | eOpen_Cl i ck()and nenuFi | eExit_Qd i ck().

We need some extra initialization code in the For mL() constructor:

public Forml()

{
InitializeConponent();
Creat eFonts();
fil eOpenDi al og. Fil ek += new
Syst em Conponent Mbdel . Cancel Event Handl er (
t hi s. OpenFi | eDi al og_Fi | eCk) ;
fileOpenDialog.Filter =
"Text files (*.txt)|*.txt|C# source files (*.cs)|*.cs";
}

The event handler added hereis for when the user clicks OK on the File Open dialog. We have also set the
filter for the open file dialog so that we can only load up text files—we've opted for . t xt filesaswell as C#
source files, so we can use the application to examine the sourcecode for our samples.

Cr eat eFont s() isahelper method that sorts out the fonts we intend to use:

private void CreateFonts()

{

mai nFont = new Font ("Arial", 10);

| i neHei ght = (ui nt)nmai nFont . Hei ght ;

enpt yDocunent Font = new Font (" Verdana", 13, FontStyle.Bold);
}

The actual definitions of the handlers are pretty standard stuff:

protected void OpenFil eDi al og_Fi | eOk(obj ect Sender, Cancel Event Args e)

this. LoadFil e(fil eQpenDi al og. Fi | eNan®) ;

}
protected void nenuFil eOpen_Cl i ck(object sender, EventArgs e)
{
fil eOpenDi al og. ShowDi al og();
}

protected void nmenuFil eExit_Cick(object sender, EventArgs e)

this.C ose();
}

938

Graphics with GDI+

We'll examine the LoadFi | e() method now. It's the method that handles the opening and reading in of afile
(as well as ensuring a Pai nt event gets raised to force a repaint with the new file):

private void LoadFile(string FileNanme)
{
St reanReader sr = new StreanReader (Fil eNane) ;
string nextlLine;
docunent Li nes. C ear () ;
nLi nes = 0;
Text Li nel nformati on next Li nel nf o;
while ((nextLine = sr.ReadLine()) !'= null)
{
next Li nel nfo = new Text Li nel nf ormati on();
next Li nel nf o. Text = nextLi ne;
docunent Li nes. Add(next Li nel nf o) ;
++nLi nes;
}
sr.d ose();
docunent HasData = (nLines>0) ? true : fal se;

Cal cul at eLi neW dt hs();
Cal cul at eDocunent Si ze() ;

this. Text = standardTitle + " - " + Fil eNane;
this.Invalidate();

}

Most of this function isjust standard file-reading stuff, as covered in Chapter 12. Notice how asthe file isread
in, we progressively add linesto the docunent Li nes ArraylLi st, sothisarray ends up containing
information for each of the linesin order. After we've read in the file, we set the docunent HasDat a flag,
which indicates whether there is actually anything to display. Our next task isto work out where everything is
to be displayed, and, having done that, how much client area we need to display the file — the document size
that will be used to set the scrollbars. Finally, we set the title bar text and call | nval i dat e() .

I nval i dat e() isanimportant method supplied by Microsoft, so we'll break for a couple of pagesto explain
its use, before we examine the code for the Cal cul at eLi neW dt hs() and Cal cul at eDocunent Si ze()
methods.

The Invalidate() Method

I nval i dat e() isamember of Syst em W ndows. For ns. For mthat we've not met before. It marks an
area of the client window asinvalid and, therefore, in need of repainting, and then makes sure a Pai nt event
israised. There are a couple of overridesto | nval i dat e() : you can pass it arectangle that specifies (in
page coordinates) precisely which area of the window needs repainting, or if you don't pass any parameters
it'll just mark the entire client area asinvalid.

Y ou may wonder why we are doing it this way. If we know that something needs painting, why don't we just
call OnPai nt () or some other method to do the painting directly? The answer is that in general, calling
painting routines directly is regarded as bad programming practice — if your code decides it wants some
painting done, in general you should call I nval i dat e() . Here's why:

939

Chapter 19

Drawing is amost always the most processor-intensive task a GDI+ application will carry out, so
doing it in the middle of other work holds up the other work. With our example, if we'd directly
called a method to do the drawing from the LoadFi | e() method, then the LoadFi | e() method
wouldn't return until that drawing task was complete. During that time, our application can't respond
to any other events. On the other hand, by calling | nval i dat e() we are simply getting Windows
toraise aPai nt event before immediately returning from LoadFi | e() . Windows is then free to
examine the events that are waiting to be handled. How this worksinternally isthat the events sit as
what are known as messages in a message queue. Windows periodically examines the queue and if
there are eventsin it, it picks one and calls the corresponding event handler. Although the Pai nt
event may be the only one sitting in the queue (so OnPai nt () gets caled immediately anyway), in
a more complex application there may be other eventsthat ought to get priority over our Pai nt
event. In particular, if the user has decided to quit the application, this will be marked by a message
known as WM QUI T.

Related to the first reason, if you have a more complicated, multithreaded, application, you'll
probably want just one thread to handle al the drawing. Using | nval i dat e() to route all drawing
through the message queue provides a good way of ensuring that the same thread (whatever thread
is responsible for the message queue — this will be the thread that called Appl i cati on. Run())
does dl the drawing, no matter what other thread requested the drawing operation.

There's an additiona performance-related reason. Suppose at about the same time a coupl e of
different requests to draw part of the screen come in. Maybe your code has just modified the
document and wants to ensure the updated document is displayed, while at the same time the user
has just moved another window that was covering part of the client area out of the way. By calling

I nval i dat e(), you are giving windows a chance to notice that this has occurred. Windows can
then merge the Pai nt events if appropriate, combining the invalidated areas, so that the painting is
only done once.

Finally, the code to do the painting is probably going to be one of the most complex parts of the
code in your application, especialy if you have a very sophisticated user interface. The guys who
have to maintain your code in a couple of years time will thank you for having kept your painting
code all in one place and as simple as you reasonably can — something that's easier to do if you don't
have too many pathways into it from other parts of the program.

The bottom line from all thisisthat it is good practice to keep all your painting in the OnPai nt () routine, or
in other methods called from that method. However, you have to strike a balance; if you want to replace just
one character on the screen and you know perfectly well that it won't affect anything el se that you've drawn,
then you may decide that it's not worth the overhead of going through | nval i dat e(), and just write a
separate drawing routine.

940

In a very complicated application, you may even write a full class that takes responsibility for
drawing to the screen. A few years ago when MFC was the standard technology for GDI-
intensive applications, MFC followed this model, with a C++ class,

C<Appli cati onNane>Vi ew that was responsible for painting. However, even in this case,
this class had one member function, OnDr aw() , which was designed to be the entry point for
most drawing requests.

Graphics with GDI+

Calculating Item Sizes and Document Size

Wel'll return to the CapsEdi t or example now and examine the Cal cul at eLi neW dt hs() and
Cal cul at eDocunent Si ze() methodsthat are called from LoadFi | e() :

private void Cal cul ateLi neW dt hs()

{
G aphics dc = this. CreateG aphics();
foreach (TextLinelnformation nextLine in docunentLines)
{
next Line. Wdth = (uint)dc. MeasureString(nextLine. Text,
mai nFont) . W dt h;
}
}

This method simply runs through each line that has been read in and uses the

Graphi cs. Measur eSt ri ng() method to work out and store how much horizontal screen space the string
requires. We store the value, because Measur eSt ri ng() is computationally intensive. If we hadn't made the
CapsEdi t or sample so simple that we can easily work out the height and | ocation of each item, this method
would almost certainly have needed to be implemented in such a way as to compute all those quantities too.

Now we know how big each item on the screen is, and we can cal culate where each item goes, wearein a
position to work out the actual document size. The height is basically the number of lines multiplied by the
height of each line. The width will need to be worked out by iterating through the lines to find the longest. For
both height and width, we will also want to make an allowance for a small margin around the displayed
document, to make the application ook more attractive.

Here's the method that cal cul ates the document size:
private voi d Cal cul at eDocunent Si ze()

i f (!docunent HasDat a)

{
docunent Si ze = new Si ze(100, 200);
}
el se
{

docunent Si ze. Hei ght = (int)(nLines*lineHeight) + 2*(int)margin;
ui nt maxLi neLength = O;
foreach (TextLinelnformtion nextWrd in docunentLines)

{
ui nt tenpLi neLength = nextWord. Wdth + 2*margi n;
i f (tenpLineLength > nmaxLi neLengt h)
maxLi neLengt h = tenpLi neLengt h;

docunent Si ze. Wdth = (int)nmaxLi neLengt h;

this. AutoScrol | M nSize = docunent Si ze;

}

This method first checks whether there is any datato be displayed. If thereisn't we cheat abit and use a hard-
coded document size, which | happen to know is big enough to display the big red <Empty Document>
warning. If we'd wanted to really do it properly, we'd have used Measur eStri ng() to check how big that
warning actualy is.

941

Chapter 19

Once we've worked out the document size, we tell the For minstance what the size is by setting the

Form Aut oScrol | M nSi ze property. When we do this, something interesting happens behind the scenes.
In the process of setting this property, the client areaisinvalidated and a Pai nt event is raised, for the very
sensible reason that changing the size of the document means scrollbars will need to be added or modified and
the entire client area will aimost certainly be repainted. Why do | say that's interesting? It illustrates perfectly
what | was saying earlier about using the For m | nval i dat e() method. You see, if you look back at the
code for LoadFi | e() you'll realizethat our call to | nval i dat e() inthat method is actually redundant.
The client areawill be invalidated anyway when we set the document size. | |eft the explicit call to

I nval i dat e() intheLoadFi |l e() implementation toillustrate how in general you should normally do
things. In fact in this case, all caling | nval i dat e() again will dois needlessy request a duplicate Pai nt
event. However, thisinturnillustrates what | was saying about how | nval i dat e() gives Windows the
chance to optimize performance. The second Pai nt event won't in fact get raised: Windows will see that
there's aPai nt event aready sitting in the queue and will compare the requested invalidated regionsto seeif
it needs to do anything to merge them. In this case both Pai nt events will specify the entire client area, so
nothing needs to be done, and Windows will quietly drop the second Pai nt request. Of course, going through
that process will take up alittle bit of processor time, but it'll be an negligible amount of time compared to
how long it takes to actually do some painting.

OnPaint()

Now we've seen how CapsEdi t or loadsthefile, it'stimeto look at how the painting is done:

protected override voi d OnPai nt (Pai nt Event Args e)
{
base. OnPai nt (e) ;
Graphi cs dc = e. Graphi cs;
int scrollPositionX = this.AutoScroll Position.X;
int scrollPositionY = this.AutoScroll Position.Y;
dc. Transl at eTransforn(scrol | Posi tionX, scrollPositionY);

i f (!docunent HasDat a)
{
dc. Drawst ri ng(" <Enpty docunent>", enptyDocunent Font,
enpt yDocunent Brush, new Poi nt (20, 20));
base. OnPai nt (e) ;
return;

}

/1 work out which lines are in clipping rectangle
int mnLinelnC ipRegion =
Wor | dYCoor di nat eToLi nel ndex(e. Cl i pRect angl e. Top —
scrol | Posi tionY);
if (mnLinelnCipRegion == -1)
m nLi nel nCl i pRegi on = 0;
i nt maxLi nel nCl i pRegi on =
Wor | dYCoor di nat eToLi nel ndex(e. Cl i pRect angl e. Bott om —
scrol | Posi tionY);
i f (maxLinel nCl i pRegi on >= this.docunent Li nes. Count ||
maxLi nel nCl i pRegi on == -1)
maxLi nel nCl i pRegi on = this.docunentLi nes. Count - 1;

Text Li nel nf or mati on next Li ne;

for (int i=mnLinelnCipRegion; i<=maxLinelnCipRegion ; i++)

{

942

Graphics with GDI+

next Li ne = (TextLi nel nformati on)docunentLi nes[i];
dc. Drawst ri ng(next Li ne. Text, mai nFont, mai nBrush,
t his. Li nel ndexToWor | dCoordi nates(i));
}
}

At the heart of this OnPai nt () overrideis aloop that goes through each line of the document, calling
Graphi cs. DrawSt ri ng() to paint each one. The rest of this code is mostly to do with optimizing the
painting — the usual stuff about figuring out what exactly needs painting instead of rushing in and telling the
graphicsinstance to redraw everything.

We start off by checking if thereis any data in the document. If there isn't, we draw a quick message saying
s0, call the base class's OnPai nt () implementation, and exit. If thereis data, then we start looking at the
clipping rectangle. The way we do thisis by calling another method that we've written,

Wor | dYCoor di nat eToLi nel ndex() . We'll examine this method next, but essentially it takesa giveny
position relative to the top of the document, and works out what line of the document is being displayed at that
point.

The first time we call the Wor | dYCoor di nat eToLi nel ndex() method, we passit the coordinate val ue

e. Cli pRectangl e. Top - scroll Posi tionY. Thisisjust the top of the clipping region, converted to
world coordinates. If the return valueis—1, we'll play safe and assume we need to start at the beginning of the
document (thisis the case if the top of the clipping region isin the top margin).

Once we've done al that, we essentially repeat the same process for the bottom of the clipping rectangle, in
order to find the last line of the document that is inside the clipping region. The indices of the first and last
lines are respectively stored in m nLi nel nC i pRegi on and maxLi nel nCl i pRegi on, so then we can just
run af or loop between these values to do our painting. Inside the painting loop, we actually need to do
roughly the reverse transformation to the one performed by Wor | dYCoor di nat eToLi nel ndex() . We are
given theindex of aline of text, and we need to check where it should be drawn. This calculation is actually
quite simple, but we've wrapped it up in another method, Li nel ndexToWr | dCoor di nat es(), which
returns the required coordinates of the top left corner of the item. The returned coordinates are world
coordinates, but that's fine, because we have already called Tr ansl at eTr ansf or n{) onthe G aphi cs
object so that we need to passit world, rather than page, coordinates when asking it to display items.

Coordinate Transforms

In this section, we'll examine the implementation of the helper methods that we've written in the
CapsEdi t or sample to help us with coordinate transforms. These are the

Wor | dYCoor di nat eToLi nel ndex() and Li nel ndexToWbr | dCoor di nat es() methods that we
referred to in the last section, as well as a couple of other methods.

First, Li nel ndexToWwor | dCoor di nat es() takes agiven line index, and works out the world coordinates
of the top left corner of that line, using the known margin and line height:

private Point LinelndexToWwrl dCoordi nates(int index)

{
Poi nt TopLeft Corner = new Poi nt (
(int)margin, (int)(lineHeight*index + margin));
return TopLeft Corner;
}

943

Chapter 19

We also used a method that roughly does the reverse transformin OnPai nt () .

Wor | dYCoor di nat eToLi nel ndex() works out the line index, but it only takes into account a vertical
world coordinate. Thisis because it is used to work out the line index corresponding to the top and bottom of
the clip region.

private int Wrl dYCoordi nat eToLi nel ndex(i nt vy)

{
if (y < margin)
return -1,
return (int)((y-margin)/lineHeight);
}

There are three more methods, which will be called from the handler routine that responds to the user double-
clicking the mouse. First, we have a method that works out the index of the line being displayed at given
world coordinates. Unlike WWr | dYCoor di nat eToLi nel ndex() , this method takes into account the x and
y positions of the coordinates. It returns—1 if thereis no line of text covering the coordinates passed in:

private int Wrl dCoordi nat esToLi nel ndex(Poi nt position)

{
i f (!docunent HasDat a)
return -1;
if (position.Y < margin || position.X < margin)
return -1;
int index = (int)(position.Y-margin)/(int)this.lineHeight;
/1 check position isn't bel ow docunent
if (index >= docunentLines. Count)
return -1;
/1 now check that horizontal positionis within this line
Text Li nel nformati on thelLine =
(Text Li nel nf or mat i on) docunent Li nes[i ndex] ;
if (position.X > margin + theLine. Wdth)
return -1;
/1 all is OK W can return answer
return index;
}

Finally, on occasions we also need to convert between line index and page, rather than world, coordinates. The
following methods achieve this:

private Poi nt Linel ndexToPageCoordi nates(int index)

return Linel ndexToWor| dCoor di nat es(i ndex) +
new Si ze(Aut oScrol | Posi tion);

}
private int PageCoordi nat esToLi nel ndex(Poi nt position)
return Worl dCoor di nat esToLi nel ndex(position - new

) Si ze(Aut oScrol | Posi tion));

Note that when converting to page coordinates, we add the Aut oScr ol | Posi t i on, which is negative.

944

Graphics with GDI+

Although these methods by themselves don't ook particularly interesting, they doillustrate a general
technique that you'll probably often need to use. With GDI+, we'll often find ourselves in a situation where we
have been given some coordinates (for example the coordinates of where the user has clicked the mouse) and
we'll need to figure out what item is being displayed at that point. Or it could happen the other way round —
given aparticular display item, whereabouts should it be displayed? Hence, if you are writing a GDI+
application, you'll probably find it useful to write methods that do the equivalent of the coordinate
transformation methods illustrated here.

Responding to User Input

So far, with the exception of the File menu in the CapsEdi t or sample, everything we've done in this chapter
has been one way: the application has talked to the user, by displaying information on the screen. Almost al
software of course works both ways: the user can talk to the software as well. We're now going to add that
facility to CapsEdi t or.

Getting a GDI+ application to respond to user input is actually alot simpler than writing the code to draw to
the screen, and indeed we've already covered how handle user input in Chapter 7. Essentially, you override
methods from the For mclass that get called from the relevant event handler — in much the same way that
OnPai nt () is called when aPai nt event israised.

For the case of detecting when the user clicks or moves the mouse the methods you may wish to override

include:
Method Called when:
Ondl i ck(Event Args €) mouse is clicked
OnDoubl ed i ck(Event Args e) mouse is double-clicked

OnMouseDown(MouseEvent Args e) left mouse button pressed
OnMbuseHover (MouseEvent Args e) mouse stays still somewhere after moving
OnMouseMove(MouseEvent Args e) mouse is moved

OnMouseUp(MouseEvent Args e) left mouse button is released

-

you want to detect when the user types in any text, then you'll probably want to override these methods:

M ethod Called when:

OnKeyDown(KeyEvent Args e) akey is depressed
OnKeyPr ess(KeyPressEvent Args e) akey is pressed and released
OnKeyUp(KeyEvent Args e) apressed key isreleased

Notice that some of these events overlap. For example, if the user presses a mouse button this will raise the
MouseDown event. If the button isimmediately released again, this will raise the MouseUp event and the

i ck event. Also, some of these methods take an argument that is derived from Event Ar gs rather than an
ingtance of Event Ar gs itsdlf. These instances of derived classes can be used to give more information about a
particular event. MouseEvent Ar gs hastwo properties X and Y, which give the device coordinates of the
mouse at the time it was pressed. Both KeyEvent Ar gs and KeyPr essEvent Ar gs have properties that
indicate which key or keys the event concerns.

945

Chapter 19

That's all thereistoit. It's then up to you to think about the logic of precisely what you want to do. The only
point to note is that you'll probably find yourself doing a bit more logic work with a GDI+ application than
you would have with aW ndows. For ns application. That's becausein a W ndows. For ns application you
are typically responding to quite high-level events (Text Changed for a textbox, for exampl€e). By contrast
with GDI+, the events tend to be more basic — user clicks the mouse, or hits the key h. The action your
application takes is likely to depend on a sequence of events rather than a single event. For example, say your
application works like Word for Windows, where in order to select some text the user clicks the left mouse
button, then moves the mouse, then releases the | eft mouse button. Y our application will receive the
MouseDown event, but there's not much you can do with this event except record that the mouse was clicked
with the cursor in a certain position. Then, when the MouseMove event is received, you'll want to check from
the record whether the left button is currently down, and if so highlight text as the user selectsit. When the
user rel eases the left mouse button, your corresponding action (in the OnMouseUp () method) will need to
check whether any dragging took place while the mouse button was down, and act accordingly. Only at this
point is the sequence compl ete.

Another point to consider is that, because certain events overlap, you will often have a choice of which event
you want your code to respond to.

The golden rule really is to think carefully about the logic of every combination of mouse movement or click
and keyboard event that the user might initiate, and ensure that your application responds in away that is
intuitive and in accordance with the expected behavior of applicationsin every case. Most of your work here
will bein thinking rather than in coding, though the coding you do will be quite fiddly, as you may need to
take into account alot of combinations of user input. For example, what should your application do if the user
starts typing in text while one of the mouse buttonsis held down? It might sound like an improbable
combination, but sooner or later some user is going to try it!

For the CapsEdi t or example, we are keeping things very simple, so we don't really have any combinations
to think about. The only thing we are going to respond to is when the user double-clicks — in which case we
capitalize whatever line of text the mouse pointer is hovering over.

This should be afairly simple task, but there is one snag. We need to trap the Doubl eCl i ck event, but the
table above shows that this event takes an Event Ar gs parameter, not a MouseEvent Ar gs parameter. The
trouble isthat we'll need to know where the mouse is when the user double-clicks, if we are to correctly
identify the line of text to be capitalized — and you need a MouseEvent Ar gs parameter to do that. There are
two workarounds. One is to use a static method that is implemented by the For mlL object,

Control . MousePosi ti on, to find out the mouse position, like so:

protected override void OnDoubl eCl i ck(Event Args e)
{

Poi nt MouselLocati on = Control . MousePosition;
/1 handl e doubl e click

In most cases this will work. However, there could be a problem if your application (or even some other
application with a high priority) is doing some computationally intensive work at the moment the user double-
clicks. It just might happen in that case that the OnDoubl eCl i ck() event handler doesn't get called until
perhaps half a second or so after the user has double-clicked. You don't really want delays like that, because
they usually annoy usersintensely, but even so, occasionaly it does happen, and sometimes for reasons
beyond the control of your app (a slow computer for instance). Trouble is, half a second is easily enough time
for the mouse to get moved halfway across the screen —in which case your call to

Control . MousePosi ti on will return completely the wrong location!

946

Graphics with GDI+

A better way hereisto rely on one of the many overlaps between mouse-event meanings. The first part of
double-clicking a mouse involves pressing the left button down. This means that if OnDoubl eCl i ck() is
called then we know that OnMouseDown() has also just been called, with the mouse at the same | ocation. We
can use the OnvbuseDown() override to record the position of the mouse, ready for OnDoubl eCl i ck() .
Thisisthe approach we take in CapsEdi t or :

protected override void OnMouseDown(MouseEvent Args e)
base. OnMbuseDown(e) ;
t hi s. nrouseDoubl eCl i ckPosition = new Point(e. X, e.Y);
}
Now let's ook at our OnDoubl eCl i ck() override. There's quite a bit more work to do here:

protected override void OnDoubl eCl i ck(Event Args e)

{
int i = PageCoordi nat esToLi nel ndex(this. museDoubl ed i ckPosition);
if (i >=0)
{
Text Li nel nformati on |ineToBeChanged =
(Text Li nel nf or mati on) docunent Li nes[i];
| i neToBeChanged. Text = |ineToBeChanged. Text. ToUpper ();
Graphics dc = this.CreateG aphics();
uint newN dth =(uint)dc. MeasureString(lineToBeChanged. Text,
mai nFont) . W dt h;
if (newWdth > |ineToBeChanged. W dt h)
| i neToBeChanged. Wdth = newW dt h;
if (newW dt h+2*margin > this.docunent Si ze. Wdt h)
{
this. docunment Si ze. Wdth = (int)newW dth;
this. AutoScrol I M nSi ze = this.docunentSi ze;
Rect angl e changedRect angl e = new Rect angl e(
Li nel ndexToPageCoor di nates(i),
new Si ze((i nt)neww dth,
(int)this.lineHeight));
this. I nval i dat e(changedRect angl e) ;
}
base. OnDoubl eCl i ck(e);
}

We start off by calling PageCoor di nat esToLi nel ndex() towork out which line of text the mouse
pointer was hovering over when the user double-clicked. If this call returns —1 then we weren't over any text,
so there's nothing to do; except, of course, call the base class version of OnDoubl eCl i ck() tolet Windows
do any default processing.

Assuming we've identified aline of text, we can usethe stri ng. ToUpper () method to convert it to
uppercase. That was the easy part. The hard part is figuring out what needs to be redrawn where. Fortunately,
because we kept the sample so simplistic, there aren't too many combinations. We can assume for a start, that
converting to uppercase will always either |eave the width of the line on the screen unchanged, or increase it.
Capital letters are bigger than lowercase |etters; therefore, the width will never go down. We also know that since
we are not wrapping lines, our line of text won't overflow to the next line and push out other text below. Our
action of converting the line to uppercase won't, therefore, actually change the locations of any of the other items
being displayed. That's a big simplification!

947

Chapter 19

The next thing the code doesis use G aphi c¢s. MeasureSt ri ng() towork out the new width of the text.
There are now just two possibilities:

0 The new width might make our line the longest line, and cause the width of the entire document to
increase. If that's the case then we'll need to set Aut oScr ol | M nSi ze to the new size so that the
scrollbars are correctly placed.

0 Thesize of the document might be unchanged.

In either case, we need to get the screen redrawn, by calling | nval i dat e() . Only one line has changed; therefore,
we don't want to have the entire document repainted. Rather, we need to work out the bounds of a rectangle that
contains just the modified line, so that we can passthisrectangleto | nval i dat e() , ensuring that just that line of
text will be repainted. That's precisely what the above code does. Our call to | nval i dat e() will resultin

OnPai nt () being called, when the mouse event handler finally returns. Bearing in mind our comments earlier in
the chapter about the difficulty in setting a break point in OnPai nt () , if you run the sample and set a break point
inOnPai nt () totrap theresultant painting action, you'll find that the Pai nt Event Ar gs parameter to

OnPai nt () doesindeed contain aclipping region that matches the specified rectangle. And since we've
overloaded OnPai nt () to take careful account of the clipping region, only the one required line of text will be
repainted.

Printing

In this chapter we've focused so far entirely on drawing to the screen. However, at some point you will
probably also want to be able to produce a hard copy of the data too. That's the topic of this section. We're
going to extend the CapsEdi t or sample so that it is able to print preview and print the document that is
being edited.

Unfortunately, we don't have enough space to go into too much detail about printing here, so the printing
functionality we will implement will be very basic. Usually, if you are implementing the ability for an
application to print data, you will add three items to the application's main File menu:

0 Page Setup —alows the user to choose options such as which pages to print, which printer to use,
etc.

0 Print Preview — opens a new Form that displays a mock-up of what the printed copy should | ook

0 Print —actualy prints the document

In our case, to keep things simple, we won't implement a Page Setup menu option. Printing will only be
possible using default settings. We will note, however, that, if you do want to implement Page Setup, then
Microsoft has aready written a page setup dialog class for you to use. It is the class

System W ndows. Forns. Pri nt Di al og. You will normally want to write an event handler that displays
this form, and saves the settings chosen by the user.

In many ways printing isjust the same as displaying to a screen. Y ou will be supplied with a device context
(G aphi cs instance) and call all the usual display commands against that instance. Microsoft has written a
number of classesto assist you in doing this; the two main ones that we need to use are

System Drawi ng. Printing. Print Docunent and

System Drawi ng. Printing. PrintPreviewD al og. These two classes handle the process of making
sure that drawing instructions passed to a device context get appropriately handled for printing, leaving you to
think about the logic of what to print where.

948

Graphics with GDI+

There are some important differences between printing/print previewing on the one hand, and displaying to the
screen on the other hand. Printers cannot scroll — instead they have pages. So you'll need to make sure you find a
sensible way of dividing your document into pages, and draw each page as requested. Among other things that
means cal culating how much of your document will fit onto a single page, and therefore how many pages you'll
need, and which page each part of the document needs to be written to.

Despite the above complications, the process of printing is quite simple. Programmatically, the steps you need
to go through look roughly likethis:

0 Printing
You instantiate a Pr i nt Docunent object, and call itsPri nt () method. This method will
internally cause an event, Pr i nt Page, to be raised to signal the printing of the first page.
Pri nt Page takes aPri nt PageEvent Ar gs parameter, which supplies information concerning
paper size and setup, as well asa G aphi cs object used for the drawing commands. Y ou should
therefore have written an event handler for this event, and have implemented this handler to print a
page. Thisevent handler should also set a Bool ean property of the Pri nt PageEvent Ar gs,
HasMor ePages, to either t r ue or f al se to indicate whether there are more pages to be printed.
The Pri nt Document . Pri nt () method will repeatedly raise the Pri nt Page event until it sees
that Has Mor ePages has been set tof al se.

O Print Previewing
In this case, you instantiate both a Pr i nt Docunent object and aPri nt Previ ewDi al og object.
You attach the Pri nt Docunent tothePri nt Previ ewDi al og (using the property
Pri nt Previ ewDi al og. Docunent) and then call the dialog's Showbi al og() method. This
method will modally display the dia og — which turns out to be a standard Windows print preview
form, and which displays pages of the document. Internally, the pages are displayed once again by
repeatedly raising the Pr i nt Page event until the HasMor ePages property isf al se. There's no
need to write a separate event handler for this; you can use the same event handler as used for
printing each page since the drawing code ought to be identical in both cases (after all, whatever is
print previewed ought to look identical to the printed version!).

Implementing Print and Print Preview

Now we've gone over the broad steps to be taken, let's see how this worksin code terms. The code is
downloadable asthe Pri nti ngCapsEdi t project, and consists of the CapsEdi t or project, with the
changes highlighted below made.

We start off by using the VS .NET design view to add two new items to the Fi | e menu: Print and Print
Preview. We a so use the properties window to name these items menuFi | ePri nt and

menuFi | ePri nt Previ ew, and to set them to be disabled when the application starts up (we can't print
anything until a document has been opened!). We arrange for these menu items to be enabled by adding the
following code to the main form's LoadFi | e() method, which werecall is responsible for loading a file into
the CapsEdi t or application:

private void LoadFile(string Fil eNane)
{
StreanReader sr = new StreanReader (Fil eNane) ;
string nextlLine;
docunent Li nes. Clear();
nLines = 0;
Text Li nel nf or mati on next Li nel nf o;
while ((nextLine = sr.ReadLine()) !'= null)

949

Chapter 19

}

{
next Li nel nfo = new Text Li nel nformation();
next Li nel nfo. Text = nextLi ne;
docunent Li nes. Add(next Li nel nf o) ;
++nLi nes;
}
sr.Cl ose();

if (nLines > 0)

docunent HasData = true;
menuFi | ePrint. Enabl ed = true;
menuFi | ePrint Previ ew. Enabl ed = true;

}
el se
{
docunent HasData = fal se;
nmenuFi | ePrint. Enabl ed = fal se;
nmenuFi | ePri nt Previ ew. Enabl ed = fal se;
}

Cal cul at eLi neW dt hs();
Cal cul at eDocunent Si ze() ;

this. Text = standardTitle + " -
this.Invalidate();

+ Fi |l eNang;

The highlighted code above is the new code we have added to this method. Next we add a member field to the
For mL class:

public class Forml :
{

private int pagesPrinted = 0;

Syst em W ndows. For ns. Form

Thisfield will be used to indicate which page we are currently printing. We are making it a member field, snce we will
need to remember thisinformation between calsto the Pr i nt Page event handler.

Next, the event handlers for when the user selects the Print or Print Preview menu options:

private void nenuFil ePrintPreviewCick(object sender,

{

pri

950

this. pagesPrinted = 0;

System Event Args e)

Print Previ ewDi al og ppd = new PrintPrevi ewDi al og();

Pri nt Docunent pd = new Print Docunent () ;

pd. Pri nt Page += new Pri nt PageEvent Handl er
(this.pd_PrintPage);

ppd. Docunent = pd;

ppd. ShowDi al og() ;

vate voi d nmenuFil ePrint_Cick(object sender,

t hi s. pagesPrinted = O;

Print Docunent pd = new Print Docunent () ;

pd. Pri nt Page += new Pri nt PageEvent Handl er
(this.pd_PrintPage);

pd. Print();

System Event Args e)

Graphics with GDI+

We've already explained the broad procedure involved in printing, and we can see that these event handlers are
simply implementing that procedure. In both cases we are instantiating a Pr i nt Docunent object and attaching
an event handler toits Pr i nt Page event. For the case of printing, we call Pri nt Docunent . Pri nt (), while
for print previewing, we attach the Pr i nt Docunent objecttoaPri nt Previ ewDi al og, and call the
preview dialog object's ShowDi al og() method. The real work is going to be done in that event handler to the
Pri nt Page event —and thisis what that handler looks like:

private void pd_PrintPage(object sender, PrintPageEventArgs e)
{

float yPos = 0;

float |eftMargin = e. Margi nBounds. Left;

float topMargin = e. Margi nBounds. Top;

string line = null;

/'l Cal cul ate the number of |ines per page.

int linesPerPage = (int)(e.Mrgi nBounds. Hei ght /
mai nFont . Get Hei ght (e. Graphi cs));

int lineNo = this.pagesPrinted * |inesPerPage;

/1 Print each line of the file.
int count = O;
whi |l e(count < linesPerPage && |ineNo < this.nLines)

{

l'ine ((Text Li nel nformation)this.docunentLines[lineNo]). Text;
yPos = topMargin + (count * mai nFont. Get Hei ght (e. Graphics));
e. Graphics. Drawstri ng(line, mainFont, Brushes. Bl ue,

| eft Margi n, yPos, new StringFormat());
|'i neNo++;
count ++;

}

/1 If more lines exist, print another page.
i f(this.nLines > |ineNo)
e. HasMor ePages = true;
el se
e. HasMor ePages = fal se;
pagesPri nt ed++;

}

After declaring a couple of local variables, the first thing we do is work out how many lines of text can be
displayed on one page — which will be the height of a page divided by the height of aline and rounded down.
The height of the page can be obtained from the Pri nt PageEvent Ar gs. Mar gi nBounds property. This
property isaRect angl eF struct that has been initialized to give the bounds of the page. The height of aline
is obtained from the For mL. mai nFont field, which we recall from the CapsEdi t or sampleisthe font used
for displaying the text. There is no reason here for not using the same font for printing too. Note that for the
Pri nti ngCapsEdi t or sample, the number of lines per page is aways the same, so we arguably could have
cached the value the first time we cal culated it. However, the calculation isn't too hard, and in a more

sophi sticated application the value might change, soit's not bad practice to recalculate it every time we print a
page.

951

Chapter 19

We alsoinitialize avariable called | i neNo. This gives the zero-based index of the line of the document that
will bethe first line of this page. Thisinformation isimportant because in principle, the pd_Pri nt Page()
method could have been called to print any page, not just the first page. | i neNo is computed as the number of
lines per page times the number of pages that have so far been printed.

Next we run through aloop, printing each line. Thisloop will terminate either when we find that we have printed all
the lines of text in the document, or when we find that we have printed all the lines that will fit on this page —
whichever condition occurs first. Finally, we check whether there is any more of the document to be printed, and set
the HasMor ePages property of our Pri nt PageEvent Ar gs accordingly, and also increment the

pagesPri nt ed fidd, so that we know to print the correct page the next time the Pr i nt Page event handler is
invoked.

One point to note about this event handler is that we do not worry about where the drawing commands are
being sent. We simply use the Gr aphi cs object that was supplied with the Pr i nt PageEvent Ar gs. The
Pri nt Document class that Microsoft has written will internally take care of making sure that, if we are
printing, the Gr aphi cs object will have been hooked up to the printer, while if we are print previewing
then the Gr aphi cs object will have been hooked up to the print preview form on the screen.

Finally, we need to ensure the Syst em Dr awi ng. Pri nti ng namespace is searched for type definitions:

usi ng System

usi ng System Draw ng;

usi ng System Draw ng. Printing;
usi ng System Col | ecti ons;

usi ng Syst em Conponent Model ;
usi ng System W ndows. For ns;

usi ng System Dat a;

using System |G

All that remainsisto compile the project and check that the code works. We can't really show screenshots of a
printed document(!) but thisis what happens if you run CapsEdi t , load atext document (as before, we've
picked the C# source file for the project), and select Print Preview:

5 BEBE06 | o |

this. Text = standardTitle + " - " + FileName;
this. Imvalidate();

!
private woid CalculateLineyWidths()

{
Graphics dc = this.CreateGraphics();
foreach (TextLinelnformation nextLine in documentlines)

{

nextLine Width = {uint)dc.MeasureStringinextline Text,
mainFont). YWidth;

}

private void CalculateDocumentSizel)

{

if ldocurnentHasData)

documentSize = new Size(100, 200);

else

docurmentSize. Height = (int)inLines™lineHeight) + 2*(int)margin;

uint maxLineLength = 0;
foreach (TextLinelnformation next¥Word in documentLines) -

952

Graphics with GDI+

In the screenshot, we have scrolled through to page 5 of the document, and set the preview to display
normal size. The Pri nt Previ ewDi al og has supplied quite alot of features for us, as can be seen from
the toolbar at the top of the form. The options available include actually printing the document, zooming in
or out, and displaying two, three, four or six pages together. These options are all fully functional, without
our needing to do any work. For example, if we change the zoom to auto and click to display four pages
(third toolbar button from the right), we get this.

&0 - BmBEE B | o | Page | 53

953

Chapter 19

Summary

In this chapter, we've covered the area of drawing to a display device, where the drawing is done by your code
rather than by some predefined control or dialog —the realm of GDI+. GDI+ is a powerful tool, and there are
many .NET base classes avail able to help you draw to a device. We've seen that the process of drawing is
actually relatively simple —in most cases you can draw text or sophisticated figures or display images with
just a couple of C# statements. However, managing your drawing — the behind-the-scenes work involving
working out what to draw, where to draw it, and what does or doesn't need repainting in any given situation —
is far more complex and requires careful algorithm design. For thisreason, it is aso important to have a good
understanding of how GDI+ works, and what actions Windows takesin order to get something drawn. In
particular, because of the architecture of Windows, it is important that where possible drawing should be done
by invalidating areas of the window and relying on Windows to respond by issuing a Pai nt event.

There are many more .NET classes concerned with drawing than we've had space to cover in this chapter, but if
you've worked through it and understood the principlesinvalved in drawing, you'll be in an excellent position to
explore them, by looking at their lists of methods in the documentation and instantiating instances of them to see
what they do. In the end, drawing, like almost any other aspect of programming, requires logic, careful thought,
and clear algorithms. Apply that and you'll be able to write sophisticated user interfaces that don't depend on the
standard contrals. Y our software will benefit hugely in both user-friendliness and visual appearance: There are
many applications out there that rely entirely on controls for their user interface. While this can be effective, such
applications very quickly end up looking just like each other. By adding some GDI+ code to do some custom
drawing you can mark out your software as distinct and make it appear more original —which can only help your
sales!

954

	Graphics with GDI+
	Understanding Drawing Principles
	Measuring Coordinates and Areas
	A Note about Debugging
	Drawing Scrollable Windows
	Colors
	Pens and Brushes
	Drawing Shapes and Lines
	Displaying Images
	Drawing Text
	Fonts and Font Families
	Example: Enumerating Font Families
	Editing a Text Document: The CapsEditor Sample
	Printing
	Summary

